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Abstract

We study preservation of distance regularity when taking strong sums and strong products
of distance-regular graphs.
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1 Introduction

Let G denote a simple connected graph with vertex set V = V (G) having at least two vertices,
adjacency matrix A = A(G) and the maximum vertex degree ∆G. The distance between two vertices
u, v ∈ V is represented by dG(u, v). The eccentricity of a vertex u is ecc G(u) := maxv∈V dG(u, v),
and the diameter of G is D(G) := maxu∈V ecc G(u). Further, let Gk(u), 0 ≤ k ≤ ecc G(u), denote
the set of vertices at distance k from u, with G1(u) being simply written as G(u). For the sake of
completeness, let Gk(u) := ∅ if k < 0 or ecc G(u) < k.

A connected graph G is distance-regular if, for any two vertices u and v ∈ Gk(u), 0 ≤ k ≤ D(G),
the numbers aG

k (u, v) = |Gk(u)∩G(v)|, bG
k (u, v) = |Gk+1(u)∩G(v)|, and cG

k (u, v) = |Gk−1(u)∩G(v)|
do not depend on u and v, but only on k. In such case, we will simply write aG

k , bG
k and cG

k instead
of aG

k (u, v), bG
k (u, v) and cG

k (u, v), and call the set of these values the parameters of G. Note that
aG

k + bG
k + cG

k = ∆G for all 0 ≤ k ≤ D(G). This definition also extends to disconnected graphs, by
assuming that each of its components is distance-regular with the same parameters aG

k , bG
k and cG

k

for 0 ≤ k ≤ D(G). Some basic references dealing with this topic are [1, 2, 3]. For other undefined
notions of graph theory, the reader is referred to [4].

Many compositions of graphs are defined on the Cartesian product of vertex sets of graphs using
only equality and adjacency among corresponding vertices of these graphs. Most widely known are
the sum and the product of graphs, which are special cases of the following very general graph
composition. It is defined for the first time in [5], while the following definition is taken from [6,
p. 66], with a minor modification.

Definition 1 Let B be a set of binary n-tuples, i.e. B ⊆ {0, 1}n \ {(0, . . . , 0)} such that for every
i = 1, . . . , n there exists β ∈ B with βi = 1. The non-complete extended p-sum (NEPS) of graphs
G1, . . . , Gn with basis B, denoted by NEPS (G1, . . . , Gn;B), is the graph with the vertex set V (G1)×
. . . × V (Gn), in which two vertices (u1, . . . , un) and (v1, . . . , vn) are adjacent if and only if there
exists (β1, . . . , βn) ∈ B such that ui is adjacent to vi in Gi whenever βi = 1, and ui = vi whenever
βi = 0. In such case, we will say that the adjacency of (u1, . . . , un) and (v1, . . . , vn) is determined
by (β1, . . . , βn).

In particular, for n = 2 we have the following instances of NEPS: the product G1 × G2, when
B = {(1, 1)}; the sum G1 + G2, when B = {(0, 1), (1, 0)}; the strong sum G1 ⊕ G2, when B =
{(1, 1), (1, 0)}; and the strong product G1 ⊗ G2, when B = {(0, 1), (1, 0), (1, 1)}. Despite the fact
that the sum of graphs is also known as Cartesian product, while the product of graphs is also known
as direct product, Kronecker product or tensor product of graphs, we adopted the terminology of [6,
p. 66], because of the spectral properties of these operations. The eigenvalues of G1 + G2 are of the
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Yugoslavia.

1



form λ1 + λ2, and the eigenvalues of G1 ×G2 are of the form λ1 · λ2, where λ1 is an eigenvalue of
G1, and λ2 is an eigenvalue of G2.

Preservation of distance-regularity under the sum and product of distance-regular graphs is
studied in [7] and [8]. Here we consider preservation of distance-regularity under the remaining two
cases of the strong sum and the strong product of graphs, and in the main theorem in Section 3 we
summarize the results from [7], [8] and this paper.

Before passing to our results, we mention that the question of connectedness of NEPS is
discussed in [9], where it is proved (see Corollary 2) that if G1, . . . , Gk are connected bipartite
graphs, and Gk+1, . . . , Gn are connected nonbipartite graphs, then the number of components of
NEPS(G1, . . . , Gn;B) is equal to 2k−rank (B′), where B′ consists of the first k columns of B, and
rank (B′) denotes the rank of a 0-1 matrix taken over the binary field. Therefore, we see from
definitions of the sum, strong sum and strong product that the resulting composition of connected
graphs is always connected. Further, the product of connected graphs is connected if at least one
of the graphs is not bipartite, while it has exactly two components if both graphs are bipartite.

2 Results

For a graph G and two vertices u, v ∈ V (G) we define the odd distance odG(u, v) as the length of
the shortest odd walk joining u and v in G, and the even distance edG(u, v) as the length of the
shortest even walk joining u and v in G. If no walk of odd (even) length exists between u and v,
then we set odG(u, v) = ∞ (edG(u, v) = ∞).

We begin with a lemma on distances in compositions of graphs.

Lemma 1 Let G and H be two connected graphs, and let u = (u1, u2), v = (v1, v2) ∈ V (G)×V (H).
Then:

dG+H(u, v) = dG(u1, v1) + dH(u2, v2),(1)
dG⊗H(u, v) = max{dG(u1, v1), dH(u2, v2)},(2)

dG⊕H(u, v) =





dG(u1, v1), if dG(u1, v1) ≥ dH(u2, v2)
dH(u2, v2), if dG(u1, v1) < dH(u2, v2)

and dG(u1, v1) ≡ dH(u2, v2) (mod 2)
dH(u2, v2), if dG(u1, v1) < dH(u2, v2),

dG(u1, v1) 6≡ dH(u2, v2) (mod 2)
and max{odG(u1, v1), edG(u1, v1)} ≤ dH(u2, v2)

dH(u2, v2) + 1, if dG(u1, v1) < dH(u2, v2),
dG(u1, v1) 6≡ dH(u2, v2) (mod 2)
and max{odG(u1, v1), edG(u1, v1)} > dH(u2, v2),

(3)

and if u and v are in the same component of G×H, then

dG×H(u, v) = min{max{odG(u1, v1), odH(u2, v2)}, max{edG(u2, v2), edH(u2, v2)}}.(4)

Proof We first show that in the corresponding compositions there exist walks between u and v
of lengths given in (1)-(4), and then show that there are no shorter walks. Let d1 = dG(u1, v1)
and d2 = dH(u2, v2), and let u1 = s0, s1, . . . , sd1−1, sd1 = v1 and u2 = t0, t1, . . . , td2−1, td2 = v2 be
the shortest walks between u1 and v1 in G, and respectively, between u2 and v2 in H. The first
coordinate needs at least d1 steps, the second coordinate needs at least d2 steps, and thus a walk
between u and v may not be shorter than max{d1, d2} in any of these compositions.

The following walk between u and v in G + H has length d1 + d2:

W1 : u = (s0, t0), (s1, t0), (s2, t0), . . . , (sd1 , t0), (sd1 , t1), (sd1 , t2), . . . , (sd1 , td2) = v.

Since any walk between u and v in G + H changes exactly one coordinate at any step, we see that
the number of steps needed to go from u to v is at least d1 + d2. Thus, dG+H(u, v) = d1 + d2.

Suppose now that d1 ≥ d2. The following walk between u and v has length d1, and it belongs
to both G⊗H and G⊕H:

W2 : u = (s0, t0), (s1, t1), (s2, t2), . . . , (sd2 , td2), (sd2+1, td2), (sd2+2, td2), . . . , (sd1 , td2) = v.
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Suppose now that d1 < d2. The following walk between u and v in G⊗H has length d2:

W3 : u = (s0, t0), (s1, t1), (s2, t2), . . . , (sd1 , td1), (sd1 , td1+1), (sd1 , td1+2), . . . , (sd1 , td2) = v.

Since max{d1, d2} is the smallest possible length of any walk between u and v in G⊗H, we conclude
that dG⊗H(u, v) = max{d1, d2}.

If d1 < d2 and d1 ≡ d2 (mod 2), then the following walk between u and v in G⊕H, which first
reaches the vertex (sd1 , td1) and then the first coordinate oscillates until the second one reaches td2 ,
has length d2:

W4 : u = (s0, t0), (s1, t1), . . . , (sd1 , td1), (sd1−1, td1+1), (sd1 , td1+2), (sd1−1, td1+3), . . . , (sd1 , td2) = v.

If d1 < d2 and d1 6≡ d2 (mod 2), then the following walk between u and v in G ⊕ H, in
which, after reaching (sd1 , td1), the first coordinate oscillates until the second one reaches td2 , has
length d2 + 1:

W5 : u = (s0, t0), (s1, t1), . . . , (sd1 , td1), (sd1−1, td1+1), (sd1 , td1+2), . . . , (sd1−1, td2), (sd1 , td2) = v.

A shorter walk between u and v in G⊕H exists if and only if there exists a walk between u1 and v1

in G having a length at most d2 and the same parity as d2. Thus, we conclude that (3) also holds.
Finally, any walk between u and v in G × H must change both coordinates at the same time,

therefore it must induce walks between u1 and v1 in G and between u2 and v2 in H having the same
parity. This also shows that G×H has two components when both G and H are bipartite, because
in that case exactly one of odG(u1, v1) and edG(u1, v1) exists (the same holds for odH(u2, v2) and
edH(u2, v2)). Whenever a graph is connected and not bipartite, then both odd and even distance
exists for all pairs of its vertices. Thus, if u and v are in the same component, dG×H(u, v) ≤
max{odG(u1, v1), odH(u2, v2)} and dG×H(u, v) ≤ max{edG(u1, v1), edH(u2, v2)}. Since by “oscillat-
ing” one of the coordinates we can construct the walks between u1 and v1 in G × H of lengths
max{odG(u1, v1), odH(u2, v2)} and max{edG(u1, v1), edH(u2, v2)} (for those values not equal to ∞),
we conclude that (4) also holds.

For the rest of this section, we suppose that G and H are connected, distance-regular graphs.

Lemma 2 If either G⊗H or G⊕H is distance-regular, then either D(G) = 1 or D(H) = 1.

Proof By contradiction. Suppose that D(G) ≥ 2 and D(H) ≥ 2. We will show that neither G⊗H
nor G⊕H can be distance-regular by showing that the coefficients cG⊗H

2 (u, v) and cG⊕H
2 (u, v) vary

with the choice of vertices u, v ∈ V (G)× V (H).
First, let u1, v1 ∈ V (G), u2, v2 ∈ V (H) be chosen such that dG(u1, v1) = 2 and dH(u2, v2) = 2.

Then for u = (u1, u2), v = (v1, v2) ∈ V (G)×V (H) we have from (2) and (3) that dG⊗H(u, v) = 2 and
dG⊕H(u, v) = 2. A vertex w = (w1, w2) ∈ V (G)×V (H) is adjacent to both u and v if and only if the
adjacency between u and w, and between w and v in G⊗H, respectively G⊕H, is determined by the
vector (1, 1) from bases of these compositions. Therefore, the vertex w1 ∈ V (G) must be adjacent to
both u1 and v1 which gives cG

2 choices for w1, while the vertex w2 ∈ V (H) must be adjacent to both
u2 and v2 which gives cH

2 choices for w2. Thus, we conclude that cG⊗H
2 (u, v) = cG⊕H

2 (u, v) = cG
2 ·cH

2 .
Next, let v∗ = (v1, u2) ∈ V (G) × V (H). Then from (2) and (3) we have that dG⊗H(u, v∗) = 2

and dG⊕H(u, v∗) = 2. A vertex w = (w1, w2) ∈ V (G) × V (H) is adjacent to both u and v∗ if and
only if the adjacency between u and w, and between w and v∗ in G ⊗ H, respectively G ⊕ H, is
determined by one of the vectors (1, 0) and (1, 1) from bases of these compositions. Therefore, the
vertex w1 ∈ V (G) must be adjacent to both u1 and v1 which gives cG

2 choices for w1, while the
vertex w2 ∈ V (H) is either equal to u2 or adjacent to it, giving ∆H + 1 choices for w2. Thus, we
conclude that cG⊗H

2 (u, v∗) = cG⊕H
2 (u, v∗) = cG

2 · (∆H + 1).
Since D(G) ≥ 2 and D(H) ≥ 2, we have that cG

2 > 0 and cH
2 < ∆H + 1, and we obtain that

cG⊗H
2 (u, v) 6= cG⊗H

2 (u, v∗) and cG⊕H
2 (u, v) 6= cG⊕H

2 (u, v∗). Thus, neither G ⊗ H nor G ⊕ H is
distance-regular.

Let Km denote the complete graph on m vertices, and let Km1,m2,...,ml
denote the complete

multipartite graph with parts of sizes m1, m2, . . . , ml.

Theorem 1 G⊗H is distance-regular if and only if G ∼= Km and H ∼= Kn for some m, n ∈ N.
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Proof On the one hand, if G ∼= Km and H ∼= Kn for some m,n ∈ N, then G⊗H ∼= Km ⊗Kn
∼=

Kmn, which is distance-regular.
On the other hand, suppose that G ⊗ H is distance-regular. Based on Lemma 2 and the fact

that the base of the strong product is symmetric with respect to columns, we may suppose, without
loss of generality, that H ∼= Kn for some n ∈ N. Choose u1, v1 ∈ V (G) and u2, v2 ∈ V (Kn) such
that u1 and v1 are adjacent in G and u2 6= v2.

First, consider vertices u = (u1, u2) and s = (u1, v2) of G⊗Kn. They are adjacent in G⊗Kn,
and a vertex w adjacent to both u and s has either the form (u1, w2), with w2 /∈ {u2, v2}, giving
n− 2 choices for w2, or the form (w1, w2), with w1 adjacent to u1 and w2 being an arbitrary vertex
of Kn, giving ∆G · n choices. We conclude that

aG⊗Kn
1 (u, s) = (∆G + 1)n− 2.(5)

Next, consider vertices u and t = (v1, u2), that are also adjacent in G⊗Kn. A vertex w adjacent
to both u and t has either the form (u1, w2), with w2 6= u2, giving n − 1 choices for w2, or the
form (v1, w2), with w2 6= u2, giving again n− 1 choices for w2, or the form (w1, w2), with w1 being
adjacent to both u1 and v1, and w2 being an arbitrary vertex of Kn, giving aG

1 · n choices. We
conclude that

aG⊗Kn
1 (u, t) = (aG

1 + 2)n− 2.(6)

From (5) and (6), we have that aG
1 = ∆G − 1, which together with cG

1 = 1, shows that bG
1 = 0,

i.e., that D(G) = 1 and G ∼= Km for some m ∈ N.

Theorem 2 a) If G has at least three vertices, then G⊕H is distance-regular if and only if there
exists m,n, t ∈ N such that G ∼= Km,m, . . . ,m︸ ︷︷ ︸

t

and H ∼= Kn.

b) The graph K2 ⊕H is distance-regular if and only if the parameters of H satisfy the following
relations for all j = 0, 1, . . . , D(H)− 1

bH
j = 1 + aH

j+1 + bH
j+1,(7)

1 + aH
j + cH

j = cH
j+1.(8)

Proof of a) If G ∼= Km,m, . . . , m︸ ︷︷ ︸
t

and H ∼= Kn for some m,n, t ∈ N , then

G⊕H ∼= Km,m, . . . , m︸ ︷︷ ︸
t

⊕Kn
∼= Kmn,mn, . . . ,mn︸ ︷︷ ︸

t

,

which is distance-regular.
On the other hand, if G ⊕ H is distance-regular, then it follows from Lemma 2 that either

D(G) = 1 or D(H) = 1. If D(G) = D(H) = 1, then G ∼= Km (with t = 1) and H ∼= Kn for some
m,n ∈ N. Thus, we can suppose that either D(G) ≥ 2 or D(H) ≥ 2.

First, suppose that G ∼= Km (thus, t = 1) for some m ∈ N, m ≥ 3, and D(H) ≥ 2. Let
u = (u1, u2), s = (u1, v2) and t = (v1, v2) ∈ V (Km)× V (H), such that u1 6= v1 and dH(u2, v2) = 2.
Then dKm⊕H(u, s) = dKm⊕H(u, t) = 2. A vertex w = (w1, w2) is adjacent to both u and s in Km⊕H
if and only if w1 6= u1 and w2 is adjacent to both u2 and v2 in H, showing that cKm⊕H

2 (u, s) =
(m−1)·cH

2 . Also, a vertex w = (w1, w2) is adjacent to both u and t in Km⊕H if and only if w1 6= u1,
w1 6= v1 and w2 is adjacent to both u2 and v2 in H, showing that cKm⊕H

2 (u, t) = (m − 2) · cH
2 .

From D(H) ≥ 2 it follows that cH
2 > 0, and we get that cKm⊕H

2 (u, s) 6= cKm⊗H
2 (u, t), showing that

Km ⊕H is not distance-regular, which is a contradiction.
We conclude that D(H) = 1, i.e., H ∼= Kn for some n ∈ N and that D(G) ≥ 2. Again, let

u = (u1, u2), s = (u1, v2) and t = (v1, v2) ∈ V (G)× V (Kn), such that dG(u1, v1) = 2 and u2 6= v2.
Then dG⊕Kn(u, s) = dG⊕Kn(u, t) = 2. A vertex w = (w1, w2) is adjacent to both u and s in
G⊕Kn if and only if w1 is adjacent to u1 in G and w2 is an arbitrary vertex of Kn, showing that
cG⊕Kn
2 (u, s) = ∆G · n. On the other hand, a vertex w = (w1, w2) is adjacent to both u and t in

G ⊕Kn if and only if w1 is adjacent to both u1 and v1 in G and w2 is an arbitrary vertex of Kn,
showing that cG⊕Kn

2 (u, t) = cG
2 ·n. It follows that cG

2 = ∆G, and that D(G) = 2 (since then bG
2 = 0).
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Therefore, each vertex at distance two from u1 in G must be adjacent to all neighbors of u1. If we
denote by Su1 the set formed by u1 and all vertices at distance two from u1 in G, we conclude that
each vertex from Su1 is adjacent to all vertices from V (G) \ Su1 , and the set Su1 has the fixed size:
m = |Su1 | = |V (G)| −∆G. Thus, each component of the complement G of G is a clique of size m,
and we conclude that G ∼= Km,m, . . . ,m︸ ︷︷ ︸

t

.

Proof of b) Let V (K2) = {0, 1}. If u1, v1 ∈ V (K2), u2, v2 ∈ V (H) then from (3) it follows that

dK2⊕H((u1, u2), (v1, v2)) =





dH(u2, v2), dH(u2, v2) is even and u1 = v1,
dH(u2, v2) is odd and u1 6= v1,

dH(u2, v2) + 1, dH(u2, v2) is even and u1 6= v1,
dH(u2, v2) is odd and u1 = v1.

Next, let u = (0, u′) ∈ V (K2 ⊕ H) and let v′ ∈ V (H). Then, dK2⊕H(u, (0, v′)) is always even
and dK2⊕H(u, (1, v′)) is always odd (and vice versa if we would have u = (1, u′)). Thus, K2 ⊕H is
bipartite and we have that aK2⊕H

l (u, v) = 0 for every l ∈ N and and v ∈ V (K2)× V (H).
Suppose that dH(u′, v′) = 2k, k ∈ N. Then dK2⊕H(u, (0, v′)) = 2k and dK2⊕H(u, (1, v′)) =

2k + 1. All neighbors of (0, v′) have the form (1, t), t ∈ V (H), and dK2⊕H(u, (1, t)) = 2k − 1 holds
if and only if dH(u′, t) = 2k − 1. Thus, we see that

bK2⊕H
2k (u, (0, v′)) = 1 + aH

2k + bH
2k and cK2⊕H

2k (u, (0, v′)) = cH
2k.(9)

Further, all neighbors of (1, v′) have the form (0, t), t ∈ V (H), and dK2⊕H(u, (0, t)) = 2k + 2 holds
if and only if dH(u′, t) = 2k + 1. Thus, we see that

bK2⊕H
2k+1 (u, (1, v′)) = bH

2k and cK2⊕H
2k+1 (u, (1, v′)) = 1 + aH

2k + cH
2k.(10)

Similarly, if we suppose that dH(u′, v′) = 2k + 1, k ∈ N, we see that

bK2⊕H
2k+2 (u, (0, v′)) = bH

2k+1 and cK2⊕H
2k+2 (u, (0, v′)) = 1 + aH

2k+1 + cH
2k+1,(11)

while
bK2⊕H
2k+1 (u, (1, v′)) = 1 + aH

2k+1 + bH
2k+1 and cK2⊕H

2k+1 (u, (1, v′)) = cH
2k+1.(12)

If we assume K2 ⊕ H is distance-regular, then equating (9) and (11) for corresponding values
of k, as well as (10) and (12), we get (7) and (8). Conversely, if we assume relations (7) and (8)
hold, we may use (10)-(8) to find that K2 ⊕H is distance-regular.

Remark The hypercubes Qn and complete graphs Kn, together with some other graphs (e.g. an
octahedron), satisfy relations (7) and (8). However, at present we are not aware of a characterization
of distance-regular graphs satisfying these relations.

3 Conclusion

The Hamming graphs Ham(d, n), d ≥ 2, n ≥ 2, of the diameter d have vertex set consisting of
all d-tuples of elements taken from an n-element set, with two vertices adjacent if and only if they
differ in exactly one coordinate. Notice that Ham(d, n) is actually equal to Kn + Kn + . . . + Kn︸ ︷︷ ︸

d

.

It was shown in [10, 11] that Ham(d, n) is characterized by its parameters if and only if n 6= 4.
Summarizing the results of [8, 7] and Theorems 1 and 2, we get the following theorem.
The Main Theorem Let G and H be connected, distance-regular graphs. Then

(i) G + H is distance-regular if and only if G has the same parameters as Ham(D(G), aG
1 + 2)

and H has the same parameters as Ham(D(H), aG
1 + 2) (see [7]);

(ii) G×H is distance-regular if and only if either G ∼= H ∼= Kn,n or G ∼= H ∼= Kn for some n ∈ N
(see [8]);
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(iii) G⊗H is distance-regular if and only if G ∼= Km and H ∼= Kn for some m,n ∈ N;

(iv) If G has at least three vertices, then G ⊕ H is distance-regular if and only if there exists
m,n, t ∈ N such that G ∼= Km,m, . . . , m︸ ︷︷ ︸

t

and H ∼= Kn;

(v) K2 ⊕ H is distance-regular if and only if the parameters of H satisfy the following relations
for all j = 0, 1, . . . , D(H)− 1

bH
j = 1 + aH

j+1 + bH
j+1,

1 + aH
j + cH

j = cH
j+1.

From this main theorem it can be seen that among these compositions, only the sum of graphs
allows distance-regularity to be preserved by factors which both may have arbitrarily large diameters.
That can be explained by the fact that it is the only one of these compositions for which the distance
formula does not involve further relations among distances of coordinates (like max, min, od, ed
etc.). We see that one could hope to achieve preservation of distance-regularity, only if the distance
formula for the NEPS of graphs could be expressed as a symmetric function of the distances between
coordinates and some further conditions on the factors of NEPS are met.

Finally, having such a variety of distance formulas just for the special cases when NEPS has only
two factors, it is understandable that at the moment it is hardly possible to expect a nice distance
formula for the general case of NEPS. Currently, it is only known that if all factors of the NEPS
are connected and bipartite, and the NEPS itself is connected, then the diameter of NEPS does not
exceed the sum of the diameters of the factors (see [12]).
Acknowledgement The author would like to thank Jack Koolen for an enlightening discussion
on strongly regular graphs.
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