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Abstract

Let the trunk of a graph G be the graph obtained by removing all leaves of G. We prove
that, for every integer c ≥ 2, there are at most finitely many trunks of semiharmonic graphs
with cyclomatic number c — in contrast to the fact established by the last two of the present
authors in their paper Semiharmonic Bicyclic Graphs (this journal) that there are infinitely
many connected semiharmonic graphs with given cyclomatic number. Further, we prove that
there are at most finitely many semiharmonic but not almost semiregular graphs with cyclomatic
number c.
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1 Introduction

We consider locally finite simple graphs G = (V,E) without isolated vertices and with vertex set
V = VG, edge set E = EG ⊆ (

V
2

)
, adjacency matrix A = AG (indexed by the elements of V ), and

trunk
sk(G) := (VG − V1(G), EG − E1(G))

where V1(G) denotes the set of leaves of G and E1(G) denotes the set of pending edges of G, i.e. the
set of edges of G that are incident with a leaf. The degree of a vertex v ∈ V and the set of neighbors
of v are denoted by d(v) = dG(v) and N(v) = NG(v), respectively. The number of walks of length k
of G starting at v is denoted by dk(v). Clearly, one has

d0(v) = 1, d1(v) = d(v), and dk+1(v) = dk(N(v))

for every v ∈ V and k ∈ N0 where we use the convention to denote, for any set X, any finite subset
Y of X, and any map f : X → R, by f(Y ) the sum

∑
y∈Y f(y).

G is called regular if there exists a constant r such that d(v) = r holds for every v ∈ V in which
case G is also called r-regular. Further: G is called a, b-semiregular for some integers a, b ∈ N if
{d(v), d(w)} = {a, b} holds for all edges {v, w} ∈ E; G is called almost semiregular if there exist
constants a, b ∈ R and a bipartition V = V + ∪ V − of its vertex set V (with E ⊆ {{v+, v−}|v+ ∈
V +, v− ∈ V −}, as usual) such that d(v+) = a and d2(v+) = ab holds for every vertex v+ ∈ V + in
which case G is also called almost a,b-semiregular and the set V + is called a constant part of G; G is
called harmonic if there exists a constant µ such that d2(v) = µd(v) holds for every v ∈ V in which
case G is also called µ−harmonic; and G is called semiharmonic if there exists a constant µ such that
d3(v) = µd(v) holds for every v ∈ V in which case G is also called µ-semiharmonic. Every µ-harmonic
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graph is also µ2-semiharmonic in view of d3(v) = d2(N(v)) = µd1(N(v)) = µd2(v) = µ2d1(v).
Similarly, almost semiregular graphs are halfway between semiregular and semiharmonic graphs:
Indeed, every a,b -semiregular graph is almost a,b -semiregular and every almost a,b -semiregular
graph is ab-semiharmonic since d2(v−) = ad(v−) and d3(v−) = ab d(v−) holds for every v− ∈ V −,
and d3(v+) = a d2(v+) = a (ab) = ab d(v+) holds for every v+ ∈ V +. A connected semiharmonic
graph that is not harmonic will be called strictly semiharmonic.

Classification of harmonic and semiharmonic graphs according to their cyclomatic number became
of interest recently. All (finite or infinite) harmonic trees were constructed in [4]. All finite harmonic
graphs with up to four independent cycles were characterized in [1] where it was also shown that,
while the number of finite harmonic trees is infinite, the number of finite harmonic graphs with a
fixed positive cyclomatic number is finite.

Semiharmonic trees and unicyclic graphs were characterized in [2], and semiharmonic bicyclic
graphs were determined in [5]. It turned out that, while there are infinitely many trunks (up to
isomorphism) of semiharmonic unicyclic graphs, there are only finitely many trunks of semiharmonic
bicyclic graphs. We are interested in this contrast and prove in Section 2 that, for every integer
c ≥ 2, there are at most finitely many trunks of semiharmonic graphs with cyclomatic number c.

In [5], the following theorem has been established:

Theorem 1 Let G be an almost semiregular graph with constant part V + and consider, for any
k ∈ N, the graph G+k = G+k(V +) obtained by attaching k pendant vertices to each vertex of V +.
Then G+k is almost semiregular (and thus semiharmonic).

This theorem was used in [5] to show that the number of finite semiharmonic graphs with a
fixed positive cyclomatic number is infinite. Remarkably, as will be shown here in Section 3, this
construction gives almost all such graphs, because it will be shown there that, for every integer c ≥ 2,
there are at most finitely many semiharmonic graphs with cyclomatic number c that are not almost
semiregular.

For our proofs, we’ll need a corollary of the following result a proof of which can be found in [3]:

Lemma 1 Given a locally finite semiharmonic graph G and two vertices v, v′ that are both adjacent
to a third vertex u, one has d2(v)d(v′) = d2(v′)d(v).

Corollary 1 Any finite, connected, and strictly semiharmonic graph G is bipartite and the average
degree

ad(v) :=
d2(v)
d(v)

of the neighbours of a vertex v ∈ V is constant on both bipartite classes of G.

In other words, a finite connected graph G is semiharmonic if and only if the set

ad(G) := {ad(v) | v ∈ V }

coincides with the set ad(e) := {ad(v) | v ∈ e} for every edge e ∈ E, and G is strictly semiharmonic
if and only if, in addition, ad(G) has cardinality exactly 2. We mention one more

Corollary 2 Any strictly semiharmonic connected finite graph G = (V,E) with bipartition V =
V + ∪ V − and average degrees ad(v+) = λ+ for v+ ∈ V + and ad(v−) = λ− for v− ∈ V − for which
every vertex v+ ∈ V + is adjacent to a leaf is almost semiregular.

Proof If w ∈ V − is a leaf that is adjacent to a vertex v ∈ V +, one has d(v) = d2(w) = λ−d(w) =
λ−. Thus, if every v ∈ V + is adjacent to a leaf, d(v) is constant on V + which in turn implies that
G is indeed almost semiregular (with V + as a constant part).
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2 Trunks of semiharmonic graphs

We define a vertex v in a graph G to be a bud, if v is not a leaf, yet all neighbors of v except at most
one are leaves, and we define v to be a knob if exactly two of its neighbours are not leaves. Further,
we define the graph Ta,b for any a, b ∈ N to be the tree that contains a “central” vertex v of degree
a all of whose neighbors are leaves in case b = 1 and buds of degree b in case b > 1. Clearly, any
such tree is (a + b− 1)-semiharmonic. A proof of the following lemma can be found in [2]:

Lemma 2 Let G be a connected semiharmonic graph.

(i) If G contains a bud, it is a finite tree.

(ii) If G is a finite tree, there exist a, b ∈ N with G ' Ta,b.

For a, k ∈ N with k ≥ 2, let M2k
a = (V 2k

a , E2k
a ) denote the connected graph containing a

cycle (v1, . . . , v2k = v0, v1) of length 2k of knobs, alternatingly of degree 2 + a and 2, i.e. with
d(v2i−1) = 2 + a, d(v2i) = 2 for i = 1, . . . , k, and every neighbor of v2i−1 that is distinct from v2i−2

and v2i being a leaf. Then M2k
a is a unicyclic (4 + a)-semiharmonic graph, and every finite and

strictly semiharmonic unicyclic graph is of this form (cf. [2]).
A proof of the following lemma can be found in [5]:

Lemma 3 Let G = (V,E) be a finite and strictly semiharmonic graph, let v0, v1, v2, v3, v4 be a path
or a cycle (if v0 = v4) of G such that v1, v2, and v3 are knobs, and let ai := d(vi) − 2 (i = 1, 2, 3)
denote the number of leaves adjacent to vi. Then either one of the following three assertions holds:

(i) a2 > 0 and G ∼= M2k
a2

for some k ∈ N,

(ii) a2 = 0, a1 = a3 > 0, and v0, v4 are not adjacent to a leaf,

(iii) a1 = a2 = a3 = 0, and G is obtained from a d(v0)-regular multigraph by subdividing every edge
by three new vertices.

Theorem 2 For every integer c ≥ 2, there are only finitely many (isomorphism classes of) trunks
of connected semiharmonic graphs with cyclomatic number c.

Proof Let G be a connected semiharmonic graph with cyclomatic number c = c(G). If m is the
number of edges and n the number of vertices of G, we have c = m− n + 1.

Since there are at most finitely many harmonic graphs with cyclomatic number c (cf. [1]) and,
hence, only finitely many trunks of such graphs, we will further suppose that G is strictly semihar-
monic.

Let G′ := sk(G) denote the trunk of G. Clearly, G does not contain a bud (otherwise, G would
be a tree by Lemma 2) and thus, all vertices of G′ have degree at least 2. Further, G′ also has
cyclomatic number c since the cyclomatic number does not change by removing leaves. Therefore,
c = m′ − n′ + 1, where m′ is the number of edges, and n′ is the number of vertices of G′.

We show that G does not contain a path v0, v1, . . . , v5 (or cycle if v0 = v5) for which the vertices
v1, . . . , v4 all are knobs. Otherwise, put ai := d(vi) − 2 for i = 1, . . . , 4 and note that a2 = a3 = 0
must hold in view of Lemma 3 and c(G) > 1. However, using Lemma 3 again, this would imply that
also a1 = a4 = 0 must hold which in turn would imply that G is obtained from a d(v1) = 2-regular
multigraph by subdividing every edge by three new vertices which is impossible, again in view of
c(G) > 1.

Let p denote the number of vertices of G′ having degree 2, and let Q denote the set of vertices
of G′ having degree larger than 2. We have

2m′ =
∑

u∈V (G′)

dG′(u) = 2p +
∑

u∈Q

dG′(u),

while, on the other hand, m′ = n′ − 1 + c holds. Since n′ = p + #Q, we get
∑

u∈Q

dG′(u) = 2#Q− 2 + 2c. (1)
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Moreover, since dG′(u) ≥ 3 for all u ∈ Q, we also get

#Q ≤ −2 + 2c. (2)

Further, contracting all vertices of degree 2 in G′, we get a (multi)graph G′′ = (V ′′, E′′) with
vertex set V ′′ = Q and cyclomatic number c = #E′′−#Q+1 and, thus, #E′′ = c+#Q−1 ≤ 3c−3.
So, there are only finitely many possibilities for G′′.

Finally, every edge e′′ ∈ E′′ in G′′ “carries” at most 3 vertices of degree 2 from G′. So, there are
only finitely many possibilities for G′.

3 Semiharmonic graphs that are not almost semiregular

Let us now switch our perspective and study, for every given connected graph G = (V,E), the
collection of all (isomorphism classes of) semiharmonic graphs G′ = (V ′, E′) with sk(G′) = G.
Clearly, there is a one-to-one correspondence between the isomorphism classes of arbitrary graphs
G′ = (V ′, E′) with sk(G′) = G and maps r : V → N≥2 with r(v) ≥ d(v) for every vertex v ∈ V
given by associating, to each graph G′ = (V ′, E′) with sk(G′) = G, the map

r = rG′ : V → N≥2 : v 7→ dG′(v),

or, conversely, to each map r : V → N≥2 with r(v) ≥ d(v) for every vertex v ∈ V , the graph
G(r) := (V (r), E(r)) defined by

V (r) := V ∪ {(v, i) | v ∈ V, i ∈ {1, 2, . . . , r(v)− d(v)}}

and
E(r) := E ∪ {{v, (v, i)} | v ∈ V, i ∈ {1, 2, . . . , r(v)− d(v)}}.

Thus, assuming that a map r : V → N≥2 with r(v) ≥ d(v) for every vertex v ∈ V is given
and using the superscript (r) throughout to indicate reference to the graph G(r) when dealing with
parameters like N, d, or d2 (and no superscript to indicate reference to the graph G), we have

d(r)(v) = r(v)

and
d
(r)
2 (v) = d(r)(N (r)(v)) = r(v)− d(v) + r(N(v))

for all v ∈ V , as well as
d(r)((v, i)) = 1

and
d
(r)
2 ((v, i)) = d(r)(v) = r(v)

for all v ∈ V and i ∈ {1, 2, . . . , r(v)− d(v)}}.

In particular, G(r) is harmonic if and only if there exists a positive real number k with r(v) = k
for all v in

L(r) := {v ∈ V | r(v) > d(v)},
and

k r(v) = r(v)− d(v) + r(N(v)) = r(v)− d(v) + d(N(v) \ L(r)) + k #(N(v) ∩ L(r))

for all v ∈ V .

And G(r) is connected and strictly semiharmonic if and only if G is connected and bipartite with
bipartition, say, V = V + ∪ V − and there exist positive real numbers λ+ and λ− with

r(v) = λ− for all v ∈ L+(r) := {v ∈ V + | r(v) > d(v)},

r(v) = λ+ for all v ∈ L−(r) := {v ∈ V − | r(v) > d(v)},
λ+ λ− = λ− − d(v) + r(N(v)) = λ− − d(v) + d(N(v) \ L(r)) + λ+ #(N(v) ∩ L(r))
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for all v ∈ L+(r),

λ− λ+ = λ+ − d(v) + r(N(v)) = λ+ − d(v) + d(N(v) \ L(r)) + λ−#(N(v) ∩ L(r))

for all v ∈ L−(r),
λ+d(v) = d(N(v) \ L(r)) + λ+ #(N(v) ∩ L(r))

for all v in V + \ L+(r), and

λ− d(v) = d(N(v) \ L(r)) + λ−#(N(v) ∩ L(r))

for all v in V − \ L−(r).

This suggests to define, for any subset L of V and any two integers k+, k− ∈ N≥2, the map
r(L|k+,k−) : V → N≥2 that maps any v ∈ V \ L onto d(v), any v ∈ L+ := V + ∩ L onto k+, and any
v ∈ L− := V − ∩ L onto k−, because any map r in the set

sh(L) := {r : V → N≥2 |L(r) = L and G(r) is semiharmonic},

is necessarily of this form. Note also that

r(L1|k+
1 ,k−1 ) = r(L2|k+

2 ,k−2 )

holds for some L1, k
+
1 , k−1 and L2, k

+
2 , k−2 as above if and only if one has L1 = L2 as well as k+

1 =
k+
2 in case L+

1 6= ∅ and k−1 = k−2 in case L−1 6= ∅. Moreover, the above assertions imply that
r(L|k+,k−) ∈ sh(L) holds for some integers k+, k− ∈ N≥2 if and only if there exist positive real
numbers λ+ = λ+(L|k+, k−) and λ− = λ−(L|k+, k−), uniquely determined by L and k+, k− such
that the following holds:

(sh1) L+ 6= ∅ implies λ− = k+, and v ∈ L+ implies k+ > d(v) and

λ+ k+ = k+ − d(v) + d(N(v) \ L) + λ+ #(N(v) ∩ L)

(sh2) L− 6= ∅ implies λ+ = k−, and v ∈ L− implies k− > d(v) and

λ− k− = k− − d(v) + d(N(v) \ L) + λ−#(N(v) ∩ L)

(sh3) v ∈ V + \ L+ implies λ+d(v) = d(N(v) \ L) + λ+ #(N(v) ∩ L) or, equivalently,

λ+ #(N(v) \ L) = d(N(v) \ L)),

(sh4) and v ∈ V − \ L− implies λ−d(v) = d(N(v) \ L) + λ−#(N(v) ∩ L) or, equivalently,

λ−#(N(v) \ L) = d(N(v) \ L)).

We are interested in the cardinality of the sets sh(L). Clearly, we have #sh(L) ≤ 1 whenever
there exists at least one edge e = {v+, v−} ∈ E with v+ ∈ V + \ L+ and v− ∈ V − \ L− because this
implies #(N(v+) \ L) 6= 0 and

λ+ =
d(N(v+) \ L))
#(N(v+) \ L)

as well as #(N(v−) \ L) 6= 0 and

λ− =
d(N(v−) \ L))
#(N(v−) \ L)

and therefore k− = λ+ = d(N(v+)\L))
#(N(v+)\L) in case L+ 6= ∅ and k+ = λ− = d(N(v−)\L))

#(N(v−)\L) in case L− 6= ∅
while r(L|k+,k−) does not depend on the choice of k+ or k− in case L+ = ∅ or L− = ∅, respectively.
Thus, #sh(L) > 1 implies N(v) ⊆ L for all v ∈ V \ L.

Moreover, L+, L− 6= ∅ implies λ− = k+ ∈ N≥2 and λ+ = k− ∈ N≥2 and, hence,

(k− − 1) (k+ − #(N(v) ∩ L)) = d(N(v) \ L)− #(N(v) \ L)
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and, therefore, also N(v) 6⊆ L for every v ∈ L+ in view of

(k− − 1) (k+ − #(N(v) ∩ L)) ≥ (k− − 1)(k+ − d(v)) > 0,

as well as
(k+ − 1) (k− − #(N(v) ∩ L)) = d(N(v) \ L)− #(N(v) \ L)

and, therefore, also N(v) 6⊆ L for every v ∈ L− in view of

(k+ − 1) (k− − #(N(v) ∩ L)) ≥ (k+ − 1)(k− − d(v)) > 0.

Thus, we have

0 < k+ − #(N(v) ∩ L) ≤ (k− − 1) (k+ − #(N(v) ∩ L)) = d(N(v) \ L)− #(N(v) \ L)

for every v ∈ L+ and

0 < k− − #(N(v) ∩ L) ≤ (k+ − 1) (k− − #(N(v) ∩ L)) = d(N(v) \ L)− #(N(v) \ L)

for every v ∈ L− which implies in particular

#sh(L) ≤ min{d(N(v) \ L)− #(N(v) \ L) + #(N(v) ∩ L) | v ∈ L}.
It remains to consider the cases L− = ∅ and L+ = ∅. However, our analysis implies that, if L− = ∅
holds, we have #sh(L) > 1 if and only if we have L = L+ = V + and the map d2−d is constant on V +

in which case G(r) is necessarily an almost semiregular graph for every r of the form r = r(V +|k+,k−)

with k+ > d(v) for all v ∈ V +. By symmetry, we have L+ = ∅ and #sh(L) > 1 if and only
L = L− = V − and the map d2 − d is constant on V − in which case G(r) is an almost semiregular
graph for every r of the form r = r(V −|k+,k−) with k+ > d(v) for all v ∈ V −.

Let us note finally that our analysis implies in particular the following two theorems:

Theorem 3 Let G be a connected, bipartite graph. Then there are at most finitely many semihar-
monic, but not almost semiregular graphs with trunk G.

Theorem 4 Given a graph G = (V,E) and a subset U of V with #(e ∩ U) = 1 for all e ∈ E, the
following assertions are equivalent:

(i) the graph G(r) is almost semiregular for every map r : V → N≥2 with r(v) = d(v) for all
v ∈ V \ U and r(u) = k for some k ≥ max{d(u) |u ∈ U} and all u ∈ U ,

(ii) the graph G(r) is semiharmonic for every map r : V → N≥2 with r(v) = d(v) for all v ∈ V \U
and r(u) = k for some k ≥ max{d(u) |u ∈ U} and all u ∈ U ,

(iii) the graph G(r) is almost semiregular for the map r = rU : V → N≥2 defined by rU (v) := d(v)
for all v ∈ V \ U and rU (u) = max{d(u) |u ∈ U} for all u ∈ U ,

(iv) the graph G(rU ) is semiharmonic for the map rU defined above,

(v) the map d2 − d is constant on U .
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