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1 Introduction

Let X be a smooth projective connected variety over field k of characteristic zero, and K = k(X) be
its function field. It is known (see e.g. [6]) that there is a natural inclusion of Br X in Br(K) and this
inclusion identifies Br X with unramified Brauer group Brn,(K|K). Below we shall write Br X instead
of Brnr(K|k) keeping in mind this identification.

The group Br X is of great importance for many problems. It is enough to mention the problems
of rationality of varieties, the problem of Brauer-Manin obstructions to various Hasse principles and,
finally, the classical problem of the description of finite-dimensional division algebras over function fields.
(see [6],[20], [11])

In this paper we are interested in the problem of description of Br X for a smooth geometrically
connected projective curves over local fields, more precisely, for finite extensions k of Q,. The classical
class field theory gives us a complete description of Brauer group Br(k) of k (and also of finite dimensional
central division algebras over k). But if k(X) is a function field of smooth geometrically connected
projective variety over Kk, the situation is much more complicated. In spite of many results obtained in
connection with the developing of multidimensional class field theory ([8],[9]), unfortunately, we do not
have a complete description as in the classical situation even in case of curves X (a “complete” description
means here a presentation of each element of Br(k(X)) by the corresponding central division algebra over
k(X), in other words, it means a description of all central division algebras over k(XX)). Traditions of
local-to-global principle prescribe us before the investigation of a global situation to describe all local
ones. In case of curves X over k this requires to investigate the groups Br(k, (X)) for all v, where k, is
a completion of k at absolute value v on k and X, = X Xy ky. By Tsen’s theorem Br(k,(Xy)) is trivial
in case of complex v and its structure is well-known for real v according to results in [1], [2], [3] and [7].

Thus, in this situation the case of non-Archimedean v is the main unknown one. In the following, by
a local field we shall understand a finite extension of the field of p-adic numbers Q,. Let now X be a
smooth geometrically connected projective curve over a local field k. Then it follows from [4] that there
exists the exact sequence

0 — BrX — Br(k(X)) = [ x(Gp) % x(G) — 0.
PeX

Here G denotes the Galois group of the separable closure of k, Gp = Gal((kp)s|kp), kp is the residue
field at P € X and x(Gp), x(G) are the groups of continuous characters of Gp and G respectively
(for definitions of ¢ and ) see [4]). In view of this sequence the group Im¢ is known, so the group
Br X is of main interest for the description of Br(k(XX)). The structure of Br X is well-known in case
of curves of genus zero, but even in case of elliptic curves the complete structure of Br X is unknown.
More generally, one can consider a smooth connected projective model X of an affine curve defined by
the equation y2 = f(x), where f(x) is a polynomial with coefficients in k without multiple roots and one
can ask for the structure of Br X. One of the aims of our paper is to answer some questions related to
this. Since Br X is an abelian periodic group, the main problem of its description is to find the m-torsion
part of it as an abstract abelian group for any m. Among the groups Br X the group Br X is of
particular importance, because its elements are represented by central division algebras with involutions,
and this group is, according to the result of Merkurjev [12], related to the theory of quadratic forms by
the isomorphism Br(k(x)) 2 12712, where | is the fundamental ideal of Witt ring of k(X). Another



important problem is to find an explicit presentation of all elements of Br X (or at least to find such
presentation for generators of \Br X) by central division algebras.

Of course, solutions of these two problems strongly depend on the curve X. Both problems have
trivial solutions in case of curves of genus zero. For genus one curves one has more complicated situation.
If X is an elliptic curves both these problems were solved completely in [13] for non-dyadic fields k. There
are also a few preliminary results in case of dyadic fields and in case of principal homogeneous spaces
which will be published elsewhere. For hyperelliptic curves only the case of non-dyadic local curves with
good reduction is considered (see [14]).

Our main object of consideration is the group Br X for X being a smooth projective model of
the affine curve defined by the equation y? = f(x), where f(x) is a polynomial of the fifth degree with
coefficients in k without multiple roots. The presentation of generators of JBr X by quaternion algebras
depends on the irreducible factors of f(x) over k. We will consider all possible decomposition cases of
f(X) step by step. The main result is the complete list of quaternion algebras representing generators of
the group Br X.

2 Splitting type (1,1,1,1,1).

Preliminary results. Let k be a local field of characteristic 0 with residue field k. Let = € k denote a
prime element, and let Ok, O, 7Ok be its valuation ring, the group of units and the maximal ideal of the
valuation ring. For u € O let u denote its class modulo 7Ox. We will consider also a hyperelliptic curve
C defined over k by the equation y? = f(x), where f(x) € Ok[x] is a monic polynomial without multiple
roots and deg f = 5. Let us assume also that f(x) = [[iz, fi(x), fi(x) € Ok[x] are monic irreducible
polynomials. In what follows let o be a fixed unit of k which is not a square in k, g(x) will denote the
reduction of a polynomial g(x) € Ok[x]. For a,b € k* we write a ~ b if a and b belong to the same class
modulo (k*)2.
In our further considerations we will need the following lemmas.

Lemma 1
| BrC|=2m,

particularly, in this section
| BrC| =32

For the proof see theorem 1 and §4 in [14].

Lemma 2 Let g(x) € k[x] be a monic divisor of f(x), g(x) € k and let either n be odd or degg(x) be
even. Then for any a € k* the quaternion algebra

()

is unramified and not isomorphic to the scalar algebra

(&)

The proof is similar to the proof of lemma 7 in [14].

Lemma 3 Let g(x) € Ok[x] be a monic divisor of f(x). If § ¢ K[x]?> and T(X)7g(X) & K[X]2, then the

quaternion algebra
™, 9(X)
k(C)

is non-trivial.

For the proof see [14], proposition 4.



Lemma 4 Let g(x) € Ok[x] be a monic divisor of f(x). If the quaternion algebra

ko6 VEG0)
_ [, 9(X)
A‘( k(C) )

Proof. If A ~ 1, then k(X)(1/f(X)) is a splitting field for the algebra

vo= (")

therefore this field is isomorphic to a maximal subfield of Ag. Then

is non-trivial one, then the algebra

is also non-trivial.

f=c2a+e39— Egag, gi € k(X).
If £i = pi/ai, pi € K[X], gi € k[x] let s;j = cont,p; —cont.qg;. We have

p/2 p/2 p/2
f= Wzsl%a + m2s2 %g - 7r253%ag,

03 a2 O3
where pi and g; are primitive polynomials. If h is the greatest common divisor of g1, g2, g3 and h is
primitive polynomial, then

h?f = 7*pfa + 7230 — 7*%p3ag  (+)

and all the polynomials y;, h are primitive. In particular, pj, h € O[x]. By comparing the w-contents of
both sides of the previous equality we obtain that all s; cannot be positive. If all of them are equal to 0,
then we have a
f=2a+5%5-%ag

and A ~ 1. If sj; = mini<i<z{si} < 0, then after comparing the 7-contents of both sides of (*) we
obtain that there exists jo # ip such that s;, = sj,. If s = s, < s3, then after taking the reduction
W2a+ p3g = 0. If s; = s3 < sp, then p2a — p3ag = 0. If s, = s3 < s1, then p3g — p3ag = 0. Finally,
let s; = sp = S3, SO 2 + P39 — p3ag = 0. In all these cases we have that there exists § € A such that
Nrd(f) = 0 and this is a contradiction with A % 1.

Lemma 5 Let V be a variety defined over a finite field F,. Then for any integral positive number N
there exists an integral positive ng such that for any n > ng the subset V (Ryn) of all Fy~-rational points
of V consists of more then N elements.

Proof is straightforward in view of the Lang-Weil theorem.

Lemma 6 Let K be an algebraically closed field and f(x), g(x) € K[x]. Then the system

y2 =1(x)
{ 22 = g(x)

defines a variety V in P3(K) if and only if f(x) ¢ K[x]2, g(x) ¢ K[x]? and f(x)g(x) & K[x]?.

Proof. It is sufficient to prove that the K-algebra K[V] = K[x, Y, z]/(y? — f(x), z? — g(x)) has no zero
divisors. Let us consider the 4-dimensional commutative algebra A over the field K(x) with the basis
1,1, j, k and with the multiplication rule i = f, j2 = g, ij = ji = k. The associativity of the multiplication
of the basis elements is evident. Let us consider the map

¢ KNV]— A, o([p(x,y,2)]) = p(x, i,j), pe€KI[X,Y,z].



Because of ¢((y? — F(x),z% —g(x))) = 0, ¢ is correctly defined. Furthermore, ¢ is a ring homomorphism.
Let us show that ¢ is an embedding. Indeed, let p € K[X,y,z]. We have p(X,Y,z) = po(X) + p1(X)y +
P2(X)Z + pa(x)yz + q(x,y, 2)(y* — F(x)) + r(x,y,2)(z> — g(x)). Then ¢([p]) = po + pai + pzj + psk. If
¢([p]) = 0, then po = p1 = p2 = p3 = 0 and p € (y* — F(x),z* — g(x)), so [p] = 0. Since K[V] € A
it is enough to prove that A has no zero divisors. Let | = {a € A,ab = 0 forsome b € A,b # 0} and
ael,a#0. Ifa=ap+azi +ayj +agk, then

a(a + k) = (aag + Bazfg) + (aa1 + FazQ)i + (aaz + Barf)j + (aaz + Bag)k € 1.
ai =a;f +api +azfj +akel.
aj = apg +aggi +agj +akel.
ak = agfg + axgi + a;fj +agk € 1.

Since a # 0, then we have that among of a; there exists a non-zero coefficient. Then after replacement of a
by ai, aj, or ak if it is necessary we can assume that ag # 0. If ag # 0 let us replace a by a’ = a(a + 3k),
where 3 = —aag/ap. After the replacement we have a’3 = 0. If a’o = 0, then a§ = a3fg. Hence
fg € K[x]? and we have a contradiction. Thus a’o # 0 and one can assume from the very beginning
that a = 1+ ayi +ayj. If ab = 0,b € I, then in view of the previous arguments we can suppose that
b =1+ x3i +Xx2j. Therefore,

(L+agi+azj)(d +x10+ Xoj) = (L + arxa T +axxog) + (a1 + X1)i + (a2 + X2)j + (a2xy + ayx2)k =0,

SO
X1 = —a,
Xp = —ap,
ajax =0,

asf +ajg = 1.

If a; =0, then g € K[x]? and if a, = 0, then f € K[x]?. The lemma is proved.

The reduction theorem. From now on we will assume that f(x) € k[x] completely splits over k. Let
k(C) be the function field of C. If f is of odd degree, we may assume without loss of generality that
f(X) € Ok[x] and f(X) is monic. We also may assume that f(x) = x(x — 7#°u)g(x), where 0 < ¢ < 1,
u e O, and g(x) € Ok[x].

Proof: By a linear transformation we obtain that f(x) is divisible by X, hence

n—2
f(x) = x(x — 7'u) H(X — 7kiuy),

i=1
where 0 <1 < k; <kp and u,ug,...,un € Of. Let | =2m + ¢ with ¢ € {0, 1} and x = 7#2Mx’. Then
n—2

y2 — 7_‘_:LOmX/(X/ _ ﬂ'EU) H(X/ _ ﬂ_ki—Zmui),
i=1

and the transformation y = y’7°™ will lead us to the equation of the desired type.

Let now f be of degree 5. The aim of this section is to prove that by means of some special transfor-
mation of variables we may restrict our consideration to some special forms of f(x). More precisely, we
prove the

Theorem 1 Let f(x) be as above, such that, in addition f_(x) has multiple roots over k (bad reduction).
Then f(x) can be transformed by an appropriate transformation x — X +m, where m € 7Oy into one of
the following forms.
1. F(X) = xX(x — mu)(x — 7K1u7) (X — 7K2UL) (X — 73 u3),

where u, u; € O;, 1 < kg < ky <ks. If kj =1, then u; # u.

If ki = kj, i #J, then u; # u;.



17. £(xX) = x(x — mu)(X — 751U (X — 7K1 (ug + 79V)) (X — 7K3U3),

where 1 < k; <Kz, u,v,us,usz € Of and s > 0.
17,. F(X) = x(x — 7u)(x — 7(u + 75Vv)) (X — 7K2uL) (X — 7%3u3),

where 1 < kp < ks, 1 <Ks, u,v,up, uz € Of.

If ko = 1, then U # Uy, if ko = kg, then U, # u3z, and s > 0.
1. f(X) = x(x — 781U (X — 7% u,) (x — 7K3uz) (X + €),

where 1 < k; <k <ks, uj,e € Of, and if ki = kj, i #j, then u; # u;j.
1. £(x) = x(x — 7K1u1) (X — 7% (ug + 75V)) (X — 7K3uUz) (X + €),

where 1 < k; < ks, uj,ve O, s=>0.
I f(X) = x(x — 7K1u) (X — 7%2uR) (X + e) (X + e — 7'V),

where 1 < kj <kp, uj,e € O, | >0, and if ky = ko, then u; # u,.
IV. F(X) = x(X — 7 u)(x — 7k2u2) (X + e1) (X + €2),

where 1 < kj <Ks, uj,ej € O, e1 # ez, and if ky = ko, then u1 # us.
V. F(x) = x(x — 7K1V ) (X + u)(X + u — 72V, (X + ),

where ki,kz > 1, u,e,vi € Of, u # e.
VI f(X) = x(x — 7Ku)(X + e1)(X + e2) (X + e3),

where k > 1, u,ej € O, ej Zej if i Z].
The proof of the theorem is based on the following lemmas.

Lemma 7 Let f_(x) = x5. Then by an appropriate transformation x — X + n,n € 7O the polynomial
f(x) can be transformed to one of the forms I, 1., 1

1 By D

Proof. Assume that f(x) cannot be transformed to the form |I. Then by an appropriate transformation
it can be transformed to a polynomial of the form

X(X — wU)(X — 70U ) (X — 7R2UR) (X — 7T%Ug)  (xx)

where u, u; € O, 0 <ky < ky < ks > 1, all elements u; such that k; = k3 are pairwise unequal and in
case k; =k, = 1 u; # Uz. Indeed, by above considerations

f(x) = x(x — 7v)(X — 7v1) (x — 72vp) (X — T%v3),

where v,v; € Oy and 0 < ky < ky < ks. If kg3 =1, then the change of variables x — X + 7vs transforms
f(x) to the polynomial

X(X — (v —Vv3))(X — (v — Vv3))(X — (V2 — v3))(X — w(—V3)).

By assumption this polynomial is not of the form I, so at least one of the elements v —vg, Vi — V3, Vo, — V3
is zero and this means that for the transformed polynomial after renumeration the exponent ks is greater
than 1. Thus we may assume from the beginning that k3 > 1.

Let now ky = ks. Then the transformation x — X + 7¥3v3 leads us to the polynomial

X(x — w(v — 77 Ivg)) (x — 7 (vq — K8 TKIv)) (X — 73 (—v3)) (X — K3 (Vo — v3)).
If kg # ks, then this polynomial is of the form (xx). If k; = ks, then we have the polynomial
x(x — w(v — 77 Ivz)) (x — 7 (V1 — va)) (X — T3 (—v3)) (X — 7K (v — v3)).

If vi — v3 # v, — v3, then this polynomial is also of the form (xx). If v; —v3 = v, —v3 = 0 then we
have either the above case ki # ko, = k3 or case k; < ko < kg and in the last case our polynomial is



again of the form (xx). Thus v; — vz = v, —Vv3 # 0. In this case it is enough to use the transformation
X — X + 7K3(vy — v3). Hence in all possible cases (x) can be transformed to a polynomial of the form
(xx). Thus we have: in case k; = ko =1 f(X) can be transformed to

X(x — wu) (X — 7(u + 7SV)) (X — TU)(X — TX3U3), 1)

$>0, ks3>1, u,uj,ve O u#up.
In case ko > 1, k; = 1 f(X) can be transformed to

X(x — wu)(x — 7(u + 7SV)) (X — T2Uz) (X — T%us), (2)

(if ko = ks, Uz # uz, s=>0).
The remaining case is

X(X — wu)(X — 751U ) (X — 7K (ug + 73V)) (X — TF3U3), ©))

where 1 < k; < k3, s > 0. Combining together cases 1 and 2 we will obtain case of the form 1., and
case 3 is the case of the form 1.

Lemma 8 f_(x) = x*(x + &), where e # 0. Then by an appropriate transformation X — x+m, m € 7Oy
f(x) can be transformed to one of forms 11, 11".

Proof. Let
f(X) = x(x — 7up) (X — 7?Up)(x — 7F3uz) (X + e),

where uj,e € OF and 0 < k; < kp < Ka.

Firstly, let ks = 1 and all u; be pairwise unequal. Then f(x) is of the form 11. Otherwise there exist
i # J such that u; # uj but u; = uj. Then the transformation x — X + 7u; leads us to the case where
ks > 1. Let now k3 > 1. Then there are the following possibilities for ki, k2, k3.

() ki=k2=1,

(i) 1=k <ky,

(iii) 1 <ky =ko =k,
(iv) 1 <k <k,

(V) 1<ky =k <Kks.

Let us consider all possibilities step by step.

In case i) if u; # Uy, then F(x) is of the form 1. Otherwise after the transformation x — X+ 7u; we
will have a polynomial of the form I1’.

In case ii) if ko = ks and U, = Us, then the transformation x — x + 7K3u3 leads us to a polynomial
of the form I1. In case ii) if ko # ks or ko = k3 but u, # ug, then f(x) is of the form I1.

In case iii) if u; (i = 1,2, 3) are pairwise unequal, then f(x) is of the form I1. Otherwise, without loss
of generality let us suppose U1 = Uz. Then the transformation x — X + 7X3u3 leads us to the polynomial

X(X — 72 (—Ug))(X — 7 (U — Ug))(X — 7 (U2 — Us))(X + e + T°ug).

This polynomial either is of the form 1 or can be transformed to one of cases iv), v).

In case iv) if either ko # ks or ko = ks but u, # uz f(x) is of the form Il. Otherwise, the
transformation x — x + 7K3uz leads us to case iv) where k, # ka.

In case V) it is clear that f(x) is either of the form Il or I1’.

Lemma 9 By means of an appropriate transformation X — X+ m, m € 7Oy f(X) can be transformed
to a polynomial of the form:



. x(X — 7Ku)(x — 72 u) (X + e)(x + e — 7'v),
where uj,e € Of, 1 >0, 1 <k; <kz
and if k; = ko, then u; # uy
(case F(x) = x3(x + 8)2, & #0).
V. X(X — 75tup) (X — 7%2U) (X + 1) (X + e3),
where uj, ej € Of, €1 #Z €2, 1 <k < kz and if ky = ko, then u; # Uz
(case F(X) = x3(x + &1)(x + &), & # 0, &1 7 &).
V. X(X — 7%V (X + u)(X + u — 7k2v,) (X + ),
where u,e,vi € Of, ki, ko >1, u#e
(case F(x) = X2(x + U)2(Xx + €), eu# 0, U # 6).
V1. (X — 7Ku)(X + e1) (X + e2)(X + e3),
where u,e; € Of, e Zej if i Z
(case F(x) = x?(x + &1)(X + &)(X + E3), €18285 7 0, & # & if i # ).
Proof. Let f(x) = x3(x + €)2. If either ky # k» or ky = ko but Uy # Up, then F(x) is of the form I11.
Otherwise the transformation x — x + 7K2u, leads us to case ki # Ko, so we have transformed f(x) to
the form I11.
Let f(x) = x3(x + e1)(X + &,). Then similarly to the previous case either £(x) is of the form 111 or
one may use the transformation x — x + 7*zuj.
The two last splitting cases of f(x) are obvious. B
Now our theorem follows from lemmas 7-9 because all possible cases of splitting of f(X) are considered.
It follows from the theorem that in the case of bad reduction of C given by equation y? = f(x) to

describe quaternion generation of Br C we may restrict our attention to f(x) given by forms I-V I, I,
1., 1. For the further considerations we will need the following list of subcases.

The cases of consideration.
1. £(X) = x(x — mu)(x — 7% up)(x — 72u) (x — 7<3u3),
where u,uj € Oy, 1 < ki <k <ks. If ki =1, then u; # u.
If ki = kj, i # J, then u; # u;.
11. kl = k2(2)
12. 12'. kl 7‘é k2(2), kl = k3(2)
127, k1 # ka2(2), k1 # Kks(2), ka2 # k3, —uuzup ~ 1.
13. ki # k2(2), ki # k3(2) and either k, = k3 or —uujuy £ 1.
17. £(X) = x(x — 7u)(X — 7K u) (X — 7K1 (U1 + 75V)) (X — T3 u3),
where u,v,u; € O, 1 <ki <ksand s> 0.
17,. F(X) = x(x — 7u)(x — 7(u + 75V))(x — 7K2uz) (x — 7K3u3),
where u,v,uj € OF, 1 <k; <ksz, 1 <kszands=>0.
If k2 =1, then u # Gz, and if k2 = k3, then Ug # Ug.
1,1, ko =1(2).
1.,2. ko =0(2) and either ks = 1(2) or (k3 = 0(2) but k, # k3 and —u, ~ 1).
1.,3. ko = ks = 0(2) and either ko = k3 or —uy # 1.
1. £(x) = x(x — 7K1u1) (X — 7% uL) (x — 7ksuz) (X + €),
where uj, e € O;, 1 < ki <k <Ks, if ki = Kkj, i #j, then Ui # u;j.



111, e~ 1.
111,1. kg #Z ko(2).
111,2. Either ky = k2(2), k1 Z ka(2) or k; = ko = k3(2) but ko # ks and uzu, ~ 1.
111,3. ki =k = ksz(2) and either ko = k3 or uyu, # 1.

112. e £ 1.
112,1. ky #Z ko(2).
112,2. ky = ko(2), k1 # kz(2) or k; =k = ks(2) but ko # ks and uyus £ 1.
112,3. k1 =k = ksz(2) and either ko = k3 or uyuy ~ 1.

1. f(x) = x(x — 7€up)(x — 7K1 (U + 73V)) (X — 7% u3) (X + e),

where uj,e,v € O, 1 <k; <ks, s=>0.

11 e~1.

11'2,1. e £ 1, ky Zksz(2).

11'2,2. e £ 1, k; =kz(2).

. F(X) = X(X — 7% u)(x — 7k2up)(x + e)(x + e — 7'v),
where uj,e,v € O, 1 <k <Ky, | >0 and if ky = kp, then u; # us.
1111, —e £ 1, kg #0(2).
1112. —e ~ 1, kg #0(2).
1113. —e ¢ 1 and either (ky = 0(2), ky # 0(2)) or
(kl =k, = 0(2) and k; < ks, —up ~ 1)
1114. —e ~ 1 and either (ky = 0(2), ky # 0(2)) or
(kl =k, = 0(2) and k1 < kp, —up ~ 1)
1115, —e % 1, k; = ko = 0(2) and either k; = k, or —u; # 1.
1116. —e ~ 1, k; = ko = 0(2) and either k; = k, or —u; # 1.
V. f(x) = x(x — 7k1u)(x — 7k2u2) (X + e1) (X + e2),
where uj, ej € O, e1 # €2, 1 < ki <kp, and if k1 = k, then u; # u,.
IV 1. ki = ko = 0(2) and either k; = ko or —ejesu; £ 1.
1V 2. The other cases.
V. F(x) = x(x — 7K1ug) (X + u)(X + u — 7k2up) (x + e),
where u,e,vj € O;, u#e, ki, ko >0.
V1. extl e—uxl.
V2. ex4l,e—u~1.
V3. e~1 e—uxl.
V4. e~1, e—u~1

V1. f(X) = X(X — 7%u)(X + e1)(X + e2)(X + e3),
where u,ej € Of, e #¢gj if i #J.
VI1. eiezes 7(/ 1.
VI12. ejezez ~ 1.



Presentation by quaternion algebras.

Theorem 2 Let C be given by the equation y? = f(x), where (x) is of form 1. Then the class of (r, a)
and the classes of the following quaternion algebras generate Br C.

11. {(«,1;)}, where I; is a monic linear divisor of f(x).
12. (a,X), (o, x—7u), (o, x — 7K1uy), (7, X).
13. (a,X), (o, X —7u), (7, X —73uz), (x,X).

Proof. By lemma 1 the order of JBrC is 32, so to prove the theorem it is enough to prove that in each
case 11,12, 13 the classes of the corresponding algebras generate the subgroup H of -Br C of order 16
such that [(7, )] € H.

Observe firstly that in order to prove that some algebra is non-trivial it is enough to prove that some
of its completions is non-trivial. We have

(o, X)s—ru ~ (a, TU) £ 1,
(o, x— Wkiui)x—wu ~ (o, 7u — wk‘ui) ~(a,m) £ 1(i=1,2,3),
(a, X = wU)x ~ (a, u) £ 1.

Let now {i,j,t,m,n} = {1,2,3,4,5}. Then (¢, liljldImln) ~ 1, so that («, liljldm) ~ (o, 1n) # 1 and
(a, liljle) ~ (o, Imln). 1t follows from the above consideration that to prove that the order of the group
H is 16 it is enough to prove that all the algebras («, l;lj) are non-trivial. If I; = x — 7u, then

(o, X = 7)) x—ru ~ (@, lelmln)x—ru ~ (o, 7r3) A 1.
Let us consider the remaining cases, where |;, lj 7 X — 7u.
(o, X(X = 7TU1))yaa, ~ (@, (X — TU) (X — TR2UR) (X — T2 U3))y_pan, ~ (@, w2 £ 1.
(., X(x = TF2UE)) sy ~ (@, TTRT) (o, ) £ L
(o, (X — TR UL) (X — T%2U2)) ) rkrn, ~ (@, T UL (R Ug — 7u) (K ug — 7*2U3)) ~ (@, ) 2 1.

(o, (X = T UL (X = TU3))y_ka, ~ (a, T UL (TR Ug — mu) (K ug — 7R2U2)) ~ (@, ) £ 1.

(CY, X(X - 7rk2 UZ))X—ﬂ'kZ u, © (Oé, 7rk1+k2+1) ~ (Oé, ﬂ') 76 1.
(o, (X — TR2UR) (X — T2U3)) ko, ~ (@, T2UL(TR2U, — 7U)(TK2Up — 7%MUp)) ~ (@, ) 2 1.

To finish the consideration of case 11 one needs to observe that by the lemma 2 all the algebras from the
list in case 11 are unramified and non-isomorphic to (=, ).

In case 12 let H be the subgroup of BrC generated by the classes of algebras («, Xx), (a,X —
7u), (a, x —7k1uy), (m, x). All these algebras are unramified over k(C). Let us prove that H is of order
16. Just by the same way as in the previous case one can prove that the algebras (a, X — wu), (a, X(X —
7*1uy)), (. X), (o, x—7%uy), (o, X(X—7K1U1)), (o, X(Xx—7u)), (o, (x—7u)(x—7K1uy)) are non-trivial.
To prove that [(c, X)], [(o, x— 7u)], [(cr, x — 7K1u1)] generate a group of order 8 one needs only to prove
that (a, x(x — mu)(X — 7¢1u1)) ~ (a, (X — 7K2uUL) (X — T3 u3z)) ~ 1.

In case 12" we have (a, (X — 72 U2)(X — T2U3) )y rks yy ~ (v, T<TRe*TY £ 1,

In case 12" ko+1 < kg and (o, (X—7"2Up) (X—753U3) )y ko +1 ~ (v, (rKe L —7R2up) (rket1 —7kauz)) ~
(a, ) # 1 since F(rke*1) ~ —gkarke*lyy,u, ~ —uugus ~ 1.

To prove that (7, X) »¢ 1 let us consider a curve (—1)kZaUQ1x2_— uuU, = y? defined over the residue
field k of k. This curve has a smooth point (g, b) such that @, b € k(2), where k(3) is an extension of k of
some prime odd degree. Then for the unramified extension N over k with residue field k(2) there is a lift



(a,b) € N2 of (&,b) to a point of a curve (—1)2aquuix2 — uuiU, = y2. Set w = (—1)¥2aa? and 0 = wkew.
It is easy to see that f(0) ~ (—1)*?auuia® — uuiuy ~ 1. Then it follows that

T, X T, 0 7, (—1)<ew T, o
(k(x,x/f(X))>x_9 (N(«/—f(a))<x—0>> <N<x—0>> <N<x—9>>7“'

Hence (m, X) ¢ 1. Since the algebra

T, X
(km)(x, \/f<x»>

belongs again to case 12 (with constant field k( /), then k(y/a)(1/T (X)) does not split the algebra (=, X)
but it splits all the algebras (o, X), (a, Xx—7u), (a,X—7*1uy), so it follows that elements [(«, X)], [(c, X —
7], [(o, x—7K1uy)] and [(7, X)] generate a group H of order 16. In view of lemma 2 [(7, @)] &€ H. This
finishes the consideration of case 12.

In case 13 one can prove similar to case 12 that [(«, X)], [(«, X — 7wu)] generate a group of order 4. As
to the non-triviality of (7, X) one can prove this just in the same way as in the previous case if ky < k3.
If ko = k3 consider the curve over k defined by the equation

(~1)aan, (x2 - 7(_1)_%2) (x2 - 7(_1)_%3) = 2.

(0% «

Then there exists an extension E(ﬁ)lE of odd prime degree with a smooth point (5,5) such that b € E(’é).
Let (a,b) € N2 be a lifted point on the curve defined by the equation

(—1)*? quuy <x2 — ﬂ) <x2 - ﬂ) =y?,

« «

where Nk is the unramified extension with residue field E(’é), w = (—1)k2aa?. Set § = 7kew. Then
f(0) ~ w(w — uz)(w — uzg)uu; ~ 1 and consequently

T, X N ™, 0 >N<7ﬂ’a >7('1
kx, VFO) ), \NG/F@)(x—0) N (x —0) '

Thus (7, X) £ 1.
Let N be an extension of k as above for a curve defined by the equation uu;((—1)k2az? — u,) = y2.
Then such a curve has a point (a, b) over N. In case ko < k3 for # = 7¢(—1)*2a.a® we have () ~ 1 and

7T,X—7-(k3U3 T, 0 < T, >7(,]_
k(x, vE() /. _, N(/F(@))(x —6) N (x —6) '
In case ko = k3 one need to consider instead of the latter curve, a curve defined by the equation
y? = (—D*auur (1) az? — u)((—1)**aa® — us)

and proceed by analogy as in case ko < ks.

One can prove in a similar way that (7, x(x — 7%su3)) +# 1. If ko < ks consider a curve y? =
a(x? + uz/(uup))(x? + (uz — uz)/(uuy)) and in case k, = ks a curve y?> = az? — uz and proceed by
analogy as in the previous cases.

To finish the consideration of case 13 let us prove that groups ([(«,X)], [(a,x — wu)]) and
(l(m, X)), [(w,x — 72u3)]) have trivial intersection.

Since the extension of k by \/a leaves us either in case 12 or in case 13, the algebra (7, x) does not
split by k(v/a)(x, /F(x)) and consequently [(7, x)] & ([(«, X)], [(c, x = wu)]). The transformation x —
x+ 733 leaves us again either in case 12 or in case 13, so that [(7, x — 7X3u3)] ¢ ([(a, X)], [(e, X —7u)]).
Let us consider the algebra (m, x(x — 7K3uz)). If ko = ks, then the extension of constants by /o shows
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us that [(m,x(x — 7X3u3))] & ([(o, X)], [(c,x — wu)]). Let now ky # ks. Comparing completions of
(7, X(x — 7*3u3)) and (o, X — 7u):

(7, X(X = T2U3))y _rkan, ~ (7, T2Up (742U, — 7R3 Ug)) ~ 1,

(o, X = TU) gz, ~ (av, 7K2u, — 7u) ~ (a, 7) £ 1,

so one can see that (7, x(x — 7X3u3)) and (o, x — 7u) are non-isomorphic. Comparing completions of
(m, x(x—7¥3u3)) and (o, X) in Xx—=u one can see that these algebras are also non-isomorphic. And finally
we have for i € {1, 2}, ki = 0(2) that

(0 X0 = Tty ~ (e T570) o4 1 and (o, X(X = 75Uy, ~ () (P07 ~ L.

Hence (a, X(x — wu)) £ (7, X(Xx — 7K3u3)). This completes the proof.
In cases 1, and 1., we have

Theorem 3 Let C be given by the equation y? = f(x), where f(x) is of form I’. Then the class of (7, a)
and the classes of the following quaternion algebras generate Br C.

1.. {(a,1;)}, where I; is a monic linear divisor of f.

17,1, {(a, 1})}, where I; is @ monic linear divisor of f.

1.,2. (o,%), (a,x—mu), (a,x—7u’), (m,X), U =u+7Sv.
17.3. (a.X), (o, x —7u), (7, x — 7K3u3), (m, X).

Proof. Similarly to case | one can prove that («, l;) +¢ 1 for a monic linear divisor I; of f(x). In case I
if i =x—mu and i #Z j we have similarly to case | (o, lilj) # 1. Furthermore,

(a7 X(X _ ﬂ'klul))x ~ (a’ 7_[_k1+k3+1), (a, X(X _ ﬂ'klul))x—wk3U3 ~ (a7 7_[_k1+k3)_

One of the algebras (c, 717%3) and (o, 71 *ks+1) is non-trivial, therefore (o, X(Xx—7%¥1u1)) % 1. Similarly
one can prove that (a, X(X — 7 (u1 + 75v))) ¢ 1. We have also

(OZ, X(X - 7Tk3 u3))X ~ (OZ, 71_2k1+1) 76 1

and
(o, (X = 7 UL (X = 7Y ) ka gy ~ (0 XOX— TUY(X = 7 U3) )y ka iy L.
For the algebra (o, (x — 7K1u)(x — 7%3u3)) we have
(O[, (X - Trklul)(x - 7Tk3 u3))X—7‘rk1U1 ~ (OZ, X(X - ﬂ—klu&)(x - ﬂ—u))X—ﬂ'kl u; ™ (OZ, 7TS+1)!

(@, (x = UL (X = T UB))wrca g ~ (@, 7279) ~ (0, 7).

One of the algebras («, 7%), (a, 75*1) is non-trivial, so that (o, (x — 7K1u)(x — 73 u3)) +# 1.

In a similar way one proves that (o, (x — 7tu})(x — 72u3z)) # 1. Now by analogy to case | we
complete the proof.

Let us consider case I.,. We have

(OZ, (X - 71'U)(X - Tru/))X—WU ~ (OZ, X(X - 7Tk2 UZ)(X - 7Tk3 u3))X—7ru ~ (OZ, 7T3) 76 1
We have also («a, X(x — wu)) £ 1, since
(a, X(X — TU))x—ru ~ (o, 71 and (o, X(X — 7U))x—rur ~ (v, 7).

Similarly (o, x(x — wu’)) # 1.
Consider now the algebra (o, (x — 7u)(X — 7%2U5)). We have (o, (x — 7u)(Xx — 7%2u5)) + 1, since

(OZ, (X - 7TU)(X - 7Tk2 UZ))X—WU ~ (OZ, 7TS+1) and (0[7 (X - 7I'U)(X - ﬂ—kz UZ))X—ﬂ'u’ ~ (OZ, 77-8)'
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Similarly (o, (x — 7u’)(x — 7K2uy)) £ 1.
Furthermore, (o, (X — 7u)(x — 7X3u3)) + 1, since

(o, (x = TU)(X = TCUg))x—ru ~ (@, 7°*1) @nd (@, (X = TUY(X = 7 CUZ))x—rur ~ (@, 7).

Similarly (o, (x — 7u’)(x — 7€3u3)) # 1.
We have also (o, X(x — 7K2uy)) # 1, since

(0, X(X = 7 2U2) ko, ~ (@, (X = TUY(X = 7YX = T U)o, ~ (@, )

and ko is odd.
Then
(., X(x = 7%U3z))x ~ (a. (X = TU)(x — 7U') (X — T°U))x ~ (v, )

and k; is odd.
Finally, (o, (X — 7%2uy)(x — 73u3)) + 1, since

(@, (x = T 2U2) (X = T UZ)) sz, ~ (@0 X(X = TUYX = TU') )y kzus, ~ (0, 7 2) £ 1.

It is clear from the above considerations that similarly to case | one can complete the proof in case I.,.

Let us consider the next case. We can conclude that the group {[(a, X)], [(a, X — 7wu)], [(er, X — 7U’)])
is of order 8 in case 1,,2 and ([(a, )], [(c«r,x — wu)]) is of order 4 in case 1.,3. The non-triviality of the
algebra (7, x) in both cases can be established by considerations similar to the ones in the proof of the
theorem 2. As to the algebra (7, x — 7%3u3) in case 17,3 one can use the replacement x’ = x — 7*3u3 and
reduces this case to the case of the algebra (7, x). The non-triviality of the algebra (7, x(x — 73u3)) in
case 1,3 can be obtained by using arguments similar to the ones in case I. To complete the proof in
case 17,2 let us observe that the extension of constants by /« does not split (7, X) but splits any algebra
of the form («, g(x)).

To complete the proof of the theorem in case 1., 3 we need to prove that the groups ([(«, X)], [(a, x—
7u)]) and ([(, X)], [(7,x — 7*3uz)]) have a trivial intersection. But in case 17,3, ko = ks the extension
of constants by /«a leaves us in case 1/,3 and this completes the proof in case ko = ks. If we are
in case 1,3, ko # ks then the similar extension of constants leads us to case 1.,2 so that [(7, X)] ¢
([(e, )], [(a,x — wu)]). After the replacement x’ = x — 7k3uz we are left again in the case 17,3, then
[(m, x—7k3u3)] & ([(a, X)], [(e,x—7u)]). The proof of the fact that [(r, x(x—7*2u3))] & ([(c, X)], [(c,Xx—
wu)]) is just the same as the corresponding part of the proof of the theorem 2. This completes the proof
of the theorem.

In case Il we have

Theorem 4 Let C be given by the equation y? = f(x), where f(x) is of form 11. Then the class of (r, a)
and the classes of the following algebras generate BrC.

111,1. (o, X), (o, Xx—7Uu1), (o, x — 7K2Uy), (7, X).

111,2. (o, X), (o, x— 7uy), (7, x—7K1uy), (7, X).

111,3. (o, X), (7, x —7K1uy), (m, x — 7%2uy), (7, X).

112,1. (o, X), (o, Xx— 7%U3), (7, x+¢€), (7,X).

112,2. (o, X), (7,x —7Kuy), (m,x +e), (1,X).

112,3. (m,x —7%tuy), (7, x—7%2u,), (7,x— 7K3uz), (m,X).

Proof. Observe first of all that in case Il (a,x+¢€) ~ 1 for any e € O and (7, x +e) ¢ 1 if and only if
e € O; \ (Of)?. Indeed, one needs only to prove that for any irreducible polynomial p(x) € K[x] we have
(o, X+ €)pxy ~ 1, and for any irreducible p(x) we have (7, X + &)y ~ 1 ife € (Of)? but there exists
p(X) such that (m,X + €)p) # 1 if e & (OF)2.

Assume firstly that 6 is a root of p(x). Then

(o, X + &)y ~ (a0, 0+ €) ~ (0, 0(0 — 7 u1) (0 — 72U2) (0 — 7 u3))
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and if 6 ¢ 7Ok, then (a, X + €)px) ~ (v, 0%) ~ 1. Let § € 7Oy, then
(. X+ €)ppy ~ (v, 0 +€) ~ (a,€) ~ 1.

Assume that e € (O;)?, then similar arguments show that (7,x +¢€) ~ 1. In case e ¢ (O})? we have
(7T1X+e)XN(7T!e)7(’1' _ _ _ _

Consider case 111. Let lg = x, |j = X_’]Tijj, j =1,2,3. Since F(x)/1j(x), lj(x) ¢ k[X]?, j =
0,1,2,3, then by lemma 3 (7, ;) % 1. Furthermore,

a, li(x) =( a, x )
K (/F (X)) kx)(vx+e)/ "

Since in case 111 e ~ 1 we have

(wwea=s), - () 7
Hence

o, X 1
(fo0s) "
and in view of lemma 4 (o, I;) £ 1, (i =0,1,2,3). Thus all the algebras listed incases 111,1, 111,2, 111,3
are non-trivial. Since (a,x +¢€) ~ 1, then (a,lpl1l2) ~ (a,l3) £ 1 and hence in order to prove that
([(a, 10)], [(,11)], [, 12)]) is @ group of order 8 it is enough to prove that (a,loli) # 1, (a,lol2) #
1, (o, 1112) £ 1. We have
(a, lol)y_pkou, ~ (@, T2 1) ~ (@, ) # 1,

(OZ, IOIZ)X—ﬂ'kZUZ ~ (O[, |1|3)X—7rk2uz ~ (O[, Trklﬂ-kz) 7(' 1, (OZ, |1|2)X ~ (OZ, Wklﬂ-kz) 76 1.

It is clear that the extension of constants by /« leaves us in case 111 and this implies that [(7, X)] &
([(a, 10)], [(r, 1)1, [, 12)]), so that case 111, 1 is considered.
In case 111,2 let us show firstly that (a, x(x — 75tuy)) # 1 and (m, x(x — 7K1u1)) % 1. If ko # k3(2)
we have
(a, X(X — 751 U1))x ~ (v, (X — T2U2) (X — 7F3U3))x ~ (o, TK2+K3) £ 1.

If ko = k3(2), then
f(rerh) ~ et (rtoun) (- eup)atett ~ ugup ~ 1

and this implies
(o, X(X — TU))y o er ~ (, wFEHRe*LY £ 1)

so that (a, X(X — 7%uy)) # 1.

To prove (m, x(x — 7K1uy)) ¢ 1 let us find a polynomial p(x) such that (m, X(x — wklul))p # 1. Let
p(x) be a minimal polynomial of element # = 7X3w, where w is a unit from the algebraic closure of k.
Then

f(0) ~ 7wW(—7" uy) (=7 2up) 7 3 (W — u3) ~ urUuW(W — us).

Assume now that k(w)|k is an unramified prime odd degree extension (or its degree is 1). Then

T, -1 k1+k3+1u W
(ﬂ',X(X_ Wklul))p(x) ~ ( ( ) 1 .

k(W) (X — 0)/uguzw(w — ug)

And if ugupw(w — ug) ~ 1 and (—1)*****1u;w ~ « then (m, X(X — 75U1))pxy 7 1. To find such w let
us consider a curve over k given by the equation y? = UiUpx? + (—1)<**ksl,Uzar. 5

There exists a finite odd degree extension of k, where our curve has a smooth point (3, b) which can
be lifted to a point (a, b) on the curve y? = uju,x? + (—1)K1*Ksuyuza. And we will be done if put w =
(—D*arks+1ly aa. It follows immediately from the above considerations that ([(a, X)], [(c, X — 7% u1)])
and ([(,X)], [(w,x — 7**uy)]) are groups of order 4. Since the extension of constants by \/a leaves us
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in case 111, 2 these two groups have the trivial intersection and this completes the consideration of case
11,2,

In case 111,3 in order to prove that ([(«,X)], [(7,x — 7%*uy)] [(7, x — 7K2uy)]) is a group of order 8
in view of (7, X(x — 7%1u;)(x — 72 u3)) ~ (m,x — 7K3u3) £ 1 it is enough to establish that the algebras
(7, x(x — 7k1uy)), (m, X(X — 7™2uy)), (7, (x — 7™ u)(x — 7K2uy)) are non-trivial. If ko < ks, then the
non-triviality of the first algebra can be checked similar to the previous case. Let now ky = k3 and assume
that w is a unit from the algebraic closure of k with the above mentioned properties, = 7w, and p(x)
is the minimal polynomial of #. Then we have f(#) ~ w(r**~Kiw — u;)(w — uz)(w — u3) and

7, wlwre ke —yy)
k(W) (x — 0)(y/W(r*s—kKiw — ug)(w — uz) (W — ug))

(m, x(x — 7TklUl))p(x) ~ (

and if
w(reTkKiw —ug) ~ o
(W —u2)(Ww—ug) ~ a,

then (7T, X(X - Wklul))p(x) A4 1.

Assume that k; < ks, then one can take w = —auia?, where (a,b) is a point on a curve y? =
a(X? + us/(our))(X? + us/(cur)).

If k1 = ko = ks, then we have a system

{ w(w —U1) ~ o

(W—uz)(W—uz) ~

The existence of w in this case can be established by inspection of points on the curve defined by the
following system in view of lemmas 5 and 6.

y? = ax(X — Uy)
72 = a(x — Uz)(w — U3).

If ko # ks, then the non-triviality of the algebra (7, x(x — 7K2uy)) can be checked by analogy as in the
previous cases.

Let ko = ks and k; < ko. If as above § = wr*3, then we have F(0) ~ mksw(—rKiuy)rks(W—uy) ks (w—
uz) ~ —wuj(w — uz)(w — uz) and for minimal polynomial p(x) of 6 over k

e T ww —u2)
(7, X(x = 72 U2))po (k(w)<p>(\/m)>'

The non-triviality of the algebra (7, X(X — 752U5))p(x) Will be follow from the existence of solution of the
system
w(w —Uup) ~
{ —ur(W—uz) ~«a
and k(w)|k is of odd prime degree or its degree is 1. The existence of such w as usual can be deduced by
the inspection of points of the reduced curve.
Let us show that (7, (x — 751Uy ) (X — 7%2U5)) ¢ 1. If ky # Ka, then

(7, (X — 74U (X — 752U))x ~ (7, T 2Uqu,) ~ (7, uru) £ 1.

Let ko, = k3 and ky < ks (if ky = kz, then one can prove everything as in one of the previous cases since
(7, (X — T*1Up) (X — T*2UR)) ~ (m, X(x — 7*3U3))).

By analogy with the above considerations one can find a unit w such that k(w)|k is of odd prime
degree and such that

{ wW(W — U3) ~ «

—ui(w —up) ~ a.

Then for the minimal polynomial p(x) of § = 72w we have (7, (x — 7K1u1) (X — T2U2))pxy # 1, SO that
(7, (X — 7%1u1) (X — 72 uy)) is also non-trivial.
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Thus ([(7, X)], [(7, x—7*u1)], [(w, x—7*2uy)]) is a group of order 8. Since the extension of constants
by /7 leaves us in case 111, 3, we conclude that [(«, x)] does not belong to this group and the proof of
case 111 is finished.

In case 112 the algebras (7, x), (7, x — 7% u;), (m, x(x + €)) and (7, (X + &)(x — 7 u;)) are non-trivial
by the lemma 3.

Let us consider case 112,1. There exists i € {1, 2} such that k; is odd. Then we have

(a, X)X—TrkiLIi %1, (a,x— 7rk3u3)x—7rkiui #* 1,

(a, X(X — 7K3U3))x ~ (v, (X + €)(X — 7K UL ) (X — T%U3))x ~ (r, TK1¥K2) £ 1,

so that ([(a,x)], [(@,x — wK3ug)]) is of order 4. From the above considerations it follows that
{[(m,x)], [(w,x+e)]) is also of order 4. After the extension of constants to k(,/a) we have case 111, 1, so

that
(7, %) @ k(v/a)(x, v/T(X)) # 1 and
(7, X(x + €)) ® K(vVa)(X, /T(X)) ~ (7,X) @ K(vVa)(X, /T(X)) % 1

and therefore [(m, X)], [(7,x(X + €))] & ([(a, X)], [(a,x — 7X3u3)]). To complete the inspection of case
112,1 we need only to prove that [(7, X + €)] & ([(cr, X)], [(c, x — 7<3u3)]).
Let k; iseven, j € {1,2}. Then

(T X+ )iy, ~ (18) % L, (0 %)y iy, ~ (@ T905) ~ 1,

(o, x — 7F3u3) ~ 1, (o, X(x — 7Uu3)) ~1,

x—rti Uj x—mki uj
and case 112, 1 is considered.

In case 112,1 in order to see that the group {([(7,x — 7Ktuy)], [(7,x + €)1, [(, x)]) has order 8 it is
enough to prove that (7, X(x — 7%1u1)(x +€)) ¢ 1 and (7, X(Xx — 71u1)) ¢ 1. This follows from the above
considerations. But the extension of constants by /a leads us to case 111,2 and we saw that in this case
(m,x+e) ~ 1, (m, x(x — 7%1u1)) £ 1 and therefore (7, x(x — 7%1u1)(x + €)) £ 1 over k(C).

Let us prove now that (a,x) ¢ 1. If ko # ks(2) and k; (i € {2,3}) is odd, then (o, X)x— xiy, ~
(a, 7%%) £ 1 therefore without loss of generality we can assume ki, k, ks to be even (ko < ks). Then

("2 *) ~ gke* L (—rkiuy) (=72 u,)rke e ~ uguse ~ 1 and

(a, X) ~ a, e ~ (L) +1
s A)x—rhka+1 k<X _ 7Tk2+1>(\/m) k<X — 71—k2+1> .

To complete the consideration of case 112,2 we need to prove that [(a, X)] & ([(7,x — 7*tuy)], [(7,x +
&)l [(r. x))).

First of all (a,x) ¢ (7, x) because the extension of constants by ./« leads us to case 111, 2, where
(m, X) #£ 1. Furthermore, the same extension of constants shows that (a, X) £ (w, X(X +€)) since in case
111,2 we have (7, X+ e) ~ 1. By the same way we have

(CY, X) 7[’ (7T, X = Trklul): (aa X) 76 (7T, (X - 7Tklul)(x + e)):

(a0, X) % (7, x(x — 7%u1)) and (o, X) % (r, X(X + e)(X — 7*uy)).

Consider the algebra (7, x + €). If among of ki, ko, k3 there exists an even kj, then (o, X),_ iy, ~ 1,
but (m,X + €)y_ iy, ~ (m,€) 2 1. Let now all kj be odd. Then in view of ko + 1 < ks we have
f(m2*1) ~ uguze ~ 1 and (o, X)y_ kor1 ~ (a, T2* L) ~ 1, (7, X + €)y_ ko+1 ~ (7,€) # 1 and again
(o, X) # (7w, x + e). This completes the consideration of case 112, 2.

Consider case 112,3. Let lo = x, I = x—7Xiu; (j =1,2,3). Let us observe that all algebras listed
in 112, 3 are non-trivial because of lemma 3, so to prove that the group generated by them is of order 16
it is enough to check that all of them are pairwise non-isomorphic.
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First of all it is true for (7, li(x + €)) because of lemma 3. For the algebra (, lIol3) if ko # ks we have
(m, lol3)x ~ (m,uuze) £ 1. If ko = ks, ki < kz one can find a unit w such that k(w)|k is of odd prime
degree and
{ w(w —Uz) ~ o

—uze(w —uy) ~ a.

Then for the minimal polynomial p(x) of 7Ksw over k one has (x, lol3)pexy) # 1. In case ky = ko = k3 one
can use a unit w such that
{ w(w —U3) ~ «

(W —up)(w—up) ~ a.

Then again (m, lol3)px) 7 1. Similar arguments prove that (m, lol1) and (, lpl2) are non-trivial in case
ko < ks. Indeed, in first case one can use a unit w such that

W~ —Uj«
W — Uz ~ —Uy

and in the second one such a unit that

W ~ —Us«
W — Uz ~ —Uj.

Then in both cases for the minimal polynomial p(x) of 73w over k one has (x, lol1)py # 1 and
(m, lol2)py 7 1. Let now ka2 = ks. Then in the case of the algebra (m,lol1) we need to use a unit
W!
W ~ —Quq
(W —uz)(w—us) ~ 1,
if k; <k, and
{ w(Ww —Up) ~

(W —uz)(w—uz) ~ 1,

if k1 = ko = ks. In the case of algebra (m, lpl2) one can work similarly.

Consider algebras (7, 1113), (7, l213), (7, l1l5). After replacing X’ = x — 7K3u3 we are again in case
112,3 and with new notations algebras (m, l1l3), (m,l213) look like algebras (m,I5l1), (=, 1gl5), where
4 =x"and I = I; + 7%uz. But the last algebras are non-trivial in view of the above arguments. In case
ko = ks for the algebra (m,I112) one can renumber Iy, I, I3 as follows: 15 = I3, 15 = I, I} = I1, so that
(7, 1112) = (=, 1113) and the last algebra is non-trivial. Finally, let ky < k3. Then

(7, 11 l2)y—rkayy ~ (5 lola (X + €))—piay, ~ (7, €) £ 1.

The theorem is proved.
If £(x) is of the form 11’ we have the following statement.

Theorem 5 Let C be given by the equation y? = f(x), where f(x) is of form 11’. Then the class of
(m, @) and the classes of the following algebras generate Br C.

1’1, (a. %), (a,x—751uy), (7, x — 71uy), (7, X).
11'2,1. (. X), (7, x—751uy), (7, X), (7, X +e).
11'2,2. (7, x—7Kuy), (m,x — 7K1u)), (m,x+e), (7,X), U} = ug + V.

Proof. As in the proof of theorem 4 one can easy prove that (a,Xx +e) 5 1 for any e € O} and
(mr,x+e) # 1ifand only if e € Oy \ (O})?. Similarly to this proof one can check that the algebras
(7,X), (m,x—7kuy), (7, x —7*uy), (7, x — 7ksuz) are non-trivial.

If e ~ 1, then one has as in the proof of theorem 4 that the algebras (o, x — 7tu1), («,X) are
non-trivial. Hence all algebras (except («, X) in case 11’2, 1) listed in case 11’ are non-trivial.

Consider case 11'1. First of all observe that («, lol1) # 1. Indeed, if ky # k3(2), then

(. lol)x ~ (a, (x — 7KUY la(X + €))x ~ (ar, T2 ¥K3) £ 1.
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If ky = k3(2), then since f(7***1) ~ e ~ 1 we have

(o lol1)y— ka2 ~ (ka77r>> % 1.

<X — ﬂ.k1+1
As to the algebra (7, lol1) one can find a unit w generating an odd degree extension over k such that

{ W~ (=)°auy

w—V ~ (—=1)%aus.
Let 9 = 7Tk1(U1 + 7SwW), p= Irrk(w)|k(9). Then
f(0) ~ 7 uy (7 uy + 7KW — ki) (7tug + ATSw — rkiuy — 7KISy) s ww —v) ~ 1

and
(7, lol)p ~ (@, m°wuy) ~ (7, (—1)%u1w) ~ (m, @) % 1.

Thus groups ([(«, l0)], [(«, 11)]) and {[(7, lo)], [(,11)]) are of order 4. And since the extension of constants
by /a leaves us in case 11’1 we have that these two groups have trivial intersection, so case 11’1 is
considered.

Now we are in case 11’2, The extension of k by \/a leads us to case 11’1 and splits the algebra
(m, x +€), hence the group ([(, lo)], [(w,11)], [(7, X + €)]) is of order 8.

Now if i € {1,3} and k; is odd, then (o, X)y_ iy, ~ (o, 7K1) £ 1 and therefore (a, X) ¢ 1. To complete
the consideration of case 11'2,1 we need only to prove that [(«,X)] & ([(m, lo)], [(m,11)], [(m, X + €)]).
The extension of constants by \/a shows us that [(a, X)] & ([(r,lo)], [(m,11)]) and (a,x) # (7, lo(X +
), (a,Xx) 7 (m, lo(x+e)) and («, X) £ (m, lol1(x + €)). Furthermore, for even ki € {ko, ks} (o, X);; ~ 1
and (7, x+¢€), %1, s0 (a, X) % (m,x+e). Case 11’2, 1 is done.

Consider case 112.2. In this case it is enough to prove that all listed algebras with the algebra
(m,x — 7k3uz) are pairwise non-isomorphic. Furthermore, (7, li(x +¢)) # 1 and (7, I;(x +€)) # 1 as was
noted before. We also have

(i lols)x ~ (m, 1l (X + €))x ~ (7, €) # 1,

so that (mr, lpl3) % 1. One can also prove similarly to the previous case that (r, lgl1) # 1 and (x, Ipl}) # 1.
To prove that (,l1l3) % 1 (similarly (7, 1713) % 1) it is enough to observe that after replacement x’ =
X — 73 u3 our algebra looks like (, lol1), where I = X’ and Iy = I + 7¥3us. Finally,

(7T! Illi)h ~ (ﬂ', |0|3(X + e))|1 ~ (7T, e) 76 1

The theorem is proved.
In case where f(x) is of the form 111 we have

Theorem 6 Let C be given by the equation y2 = f(x), where f(x) is of form I11. Then the class of
(m, @) and the classes of the following algebras generate Br C.

11 (o, X), (a,x —7%Uu,), (m,x+¢€), (1,x+e—7'v).
112, (o, X), (a,x —7U,), (m,x+¢€), (a,Xx+e).
113, (o, %), (7,X), (m,x+e), (m,x+e—r'V).

4. (a,x), (7, X), (7, x+e), (a,x+¢e).

115, (7, %), (7, X —7%2Uy), (7,x+e), (r,x +e—x'v).

1116, (m,X), (m,x—71X2uy), (r,x+e), (o, X +€).
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Proof. Let Gy = ([(w,x+¢)], [(w,x+¢)]), where &’ = e—n'v. Let us prove that in cases 1111, 1113,1115
G, is of order 4. Indeed, in these cases (m,X +¢€) « 1 and (w,x +¢€’) # 1 according to lemma 3.
Furthermore,

(m, (X + €)(X + &))xre ~ (7, X(X = T L) (X = T 2U2))xre ~ (1, —€) # L.

Now let G, = ([(m,x + €)], [(«,x + €)]), then in cases 1112,1114,1116 G, is also of order 4. Indeed,
(a,x+e) £ 1 by lemmad4 and (7, x+e) £ 1 by lemma 3. And (a, X+e) £ (7, x+e) since kK(v/a)(X, /T (X))
does not split (7, x + ¢e).

In cases 1111, 1112 let Gz = ([(cr, X)], [(c,x — 7K2uz)]). Then Gs is of order 4. Indeed,

(Oé, X)X—wklul ~ (CY, Trkl) 76 1, (CY, X ﬂ-kZUZ)X—ﬂ*klul ~ (Oé, 7T) 7[’ 1,

(a, X(X — T%2U2))x ~ (a, (X — 7K UL) (X + ) (X + €'))x ~ (a, =7 *uqee’) £ 1.

In cases 1113,1114 let G4 = ([(«,X)], [(7,x)]) and let us show that G4 is of order 4. For the algebra
(o, X) we have: if ko is odd, then

(@ Xz, ~ (@0, T 2U2) 2 1.

If ky is even, then
f(’]‘(k1+1) ~ 7Tk1+1(—71'k1U1)7Tk1+1 ~ —Uy ~ 1

and
o, T

(O[,X)X_Wklwtl ~ (m) 7(’ 1.

As for the algebra (m, X), one can find a unit w such that k(w)|k is an unramified odd prime degree

extension and
W~ o
w—ug ~ 1.

In view of f(7*w) ~ w — u; we have

T, mKiw

(7, X)pxy ~ (I((T)(p)) #1,

where p(x) is a minimal polynomial of 7K1w over k. Now since k(/a)(x, +/F(x)) does not split (=, X), we
have (7, X) # (a, X).

Finally, let Gs = {[(7, X)], [(m, X — 72uy)]) in cases 1115 and 1116. We prove that Gs is of order 4.
To prove that (m, X) is non-trivial it is enough to repeat previous arguments with the last w. Similarly,
with the same w in case k; < ko we have

(m,x— ke U2)x—mkiw ~ (7, X)x—rkaw 7 1.
If k1 = ko let w satisfies the following property

W—Uy~
w(w —up) ~ a.

Then (7, x — 7K2U,), 1y, # 1. For the algebra (, x(x — 7%2u,)) in case ki # ky we have
(7, X(X — T2U2))x ~ (7, (X — T U (X + €)(X + €))x ~ (7, —u7) # 1.
If k1 = ko one can find a unit w with the property

{ w(w —Uup) ~ «

W—Uug ~ «.

Then (7, X(X — 72 U32)) 5 k1 # 1. Thus Gs is of order 4.
To complete the proof of the theorem it remains to show that all the following groups are trivial
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1. Gi1NGzincase 1111,
GoNGszincase 1112,
G1N Gy in case 1113,
GoN Gy incase 1114,

G1NGs incase 1115,

© g &M e N

G,NGs in case 1116.

In case 1116 the extension of constants by /7 leaves us in this case, so that [(«, X)] € Gs and [(«, X) ®
(r,x+¢€)] € Gs. Let g(x) € {x,x— 7k2uy, x(x — 7K2u,). Then (7, g(X)(X + €)) # 1 in view of g(x)(x +
e), T(X)/([Q(x)(x +€)) € k[x]? and by lemma 3. This implies G, N Gs is trivial.

In case 1114 since the extension of constants by ./« leaves us in case 1114, then in order to prove that
G2 NGy is trivial it is enough to check that (o, x(x+e)) #£ 1 and (7, x(X+¢€)) ¢ 1. But (o, X(X+¢e)) £ 1,
since (a, X(x +€)) £ 1 and (m, X(X + €)) + 1, since x(x + &), F/(x(x + &)) & K[x]°.

In case 1112 since the extension of constants by /a leaves us in this case, we have [(7, x+e¢)], [(ra, X+
e)] € Gz. And it remains to show that [(a, X + €)] & Gs. But for any g € {x, x — 7%2u,, x(x — 7¥2u,)}
(o, g(x +€)) # 1 since (a,g(x +€)) £ 1.

In case 1111 the extension of constants by /« leads us to case 1112, since [(7, x+¢€)] € Gs. The same
is true for [(w, x + €’)]. Now it remains to prove that [(7, (X + e)(X + ¢€’))] & Gs. We have

(0, X)y—mkagy ~ (@ X = T2U2)y a7 1 UL (7, (X + €)(X + €))y_rkayy, ~ (7, €€") ~ 1.
Furthermore,
(a, X(X — 7K2UL))x ~ (v, (X — T UL) (X + €)(X + €))x ~ (o, =7 usee’) £ 1

and (m, (X +e)(X + &) ~ (m,ee’) ~ 1. Thus [(7, (X + e)(x +¢€'))] € Gs.

In case 1113 the extension of constants by /« leads us to case I114. So this extension does not split
the algebras (mw, x + €), (m,x +¢’). Let us show that (o, x) # (7, (X +e)(X + €’)). In case k; is odd we
have

(m, (X +e)(X +€))y—rkoy, ~ 1 and (o, X)y—rkoy, 7% 1.

In case ks is even
(m, (X +)(X +€"))y_k+1 ~ 1 and (o, X)y_ kg1 % 1.

Thus [(a, X)] € G1. We have
(m,X) # (m,x+¢€) and (7, X) % (7, x+¢),

since x(x + &), F(X)/(x(x + €)) ¢ K[x]2. Let w be a unit such that (7, X)y_, k1w % 1, then (7, (X + €)(x +
e))x—rkaw ~ 1. This implies [(w, x)] € G1. The remaining possibility is [(m«, X)] € G1. Observe firstly
that (ma, X)_ k1w # 1, hence (ra, X) # (7, (X + €)(x + ¢€’)). Furthermore, if (ra,X) ~ (7, X + €), then
(a,x) ~ (m,x(x +¢e)). But k(1/a)(X, /F(X)) splits («,x) and does not split (7, x(x + €)). Similarly
(ma, X) A (w,x+¢€'), s0 G; N Gy is trivial.

Now pass to remaining case 1115. If g € {x,x — 7k2uy, Xx(x — 7X2u,)}, then (7, g(x +¢€) « 1 by
lemma 3. Thus [(7, X + €)] € Gs. Similarly [(7w,x + €')] € Gs. Let (7,9) ~ (7, (X +e)(Xx +¢’)). On the
other hand, if w is a unit such that (7, X),_ .k 7 1, then since (m, (X + e)(X +€’)),_,x1w ~ 1 We have
g # X. In the same way one can prove that g # x — 7%2u,. Finally, if g = x(x — 7X2uy), then in case
ki = ko for a unit w such that (r, X(X — 72 U32))y_ k1 7 1 We have (7, (X + €)(X + €'))y_ 1y ~ 1 and
in case k; # ka (7, (X + e)(X + €& ))x ~ 1, (m, X(X — 7%2Uu,))x # 1. Thus [(r, (X + €)(X + €'))] & G4. The
theorem is proved.

In case where f(x) is of the form 1V we have the following statement.

Theorem 7 Let C be given by the equation y? = f(x), where f(x) is of form 1V. Then the class of
(m, @) and the classes of the following algebras generate Br C.
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IV1. (m, %), (m,x — 7%2Uuy), (7,X+e1), (m, X+ e5).
V2. (m,X), (m,X+¢€1), (7, X+e2), (a X).

Proof. Observe that G = ([(7, X)], [(7r,X + e1)], [(m, X + €2)], ) is of order 8. First of all x,x +e1,Xx+
82, X(X+8€1), X(X+82), (X+e1)(X+ez), F(X)/X, F(X)/(x+e1), F(X)/(X+e2), F(X)/(x(x+e1)), F(X)/(Xx(Xx+
€2)), F(X)/((x + e1)(X + €2)) ¢ K[x]? and by lemma 3 (7,X) # 1, (m, X +e1) # 1, (7,X + €3) % 1,
(m,x(xX+e1)) # 1, (m,X(X+e2)) £ 1, (7, X+ e1)(X+e2)) £ 1, s0 G is of order 8.

If one of the k; is odd, we have (o, X)x— iy, % 1. If k1 = ko = 0(2), ki < kz and —uzese; € (k*)?,
then k; < ki +1 < kz and (o, X)y_ k+1 2 1, since f(7<1*1) ~ —uieies. Thus in case 1V 2 (a, X) # 1.
Since the extension of constants by \/« leaves us in case 1V, we conclude that [(«, X)] € G.

Consider case 1V 1. If k3 # ko, we have

(7, X(X — T2U2))x ~ (7, (X — T UL) (X + e1) (X + €2))x ~ (7, —Uu1e1€5) & 1.
If ky = ko let w be a unit such that k(w)|k is an unramified prime degree extension and

w(w —Uup) ~
W — Ug ~ eq1€s.

Then (7, X(X — 72U2))x_ k2w 2 1. This implies (7, X) # (7, X — 7K2u,). By lemma 3 the algebra (7, X —
7K2u,) is also non-isomorphic to (m, X +e1), (7, X+ €5), (7, X(X + €2)), (7, X(X + €2)), (7, X(X + €1) (X + €2)).
Finally, let k; # ko. Then

(m, (X — T 2U) (X + 1) (X + €2))x—prrw ~ (M, X(X = TU1))y a2 1
if w is a unit with the above properties and

W ~ ae1er
W —Up ~ €e165.

In case k; = ko we only need to change the latter conditions by

{ wWw —uy) ~ a

W — Uy ~ xe1€s.

In any case (7, X — 752uy) # (m, (X + e1)(X + e2)). This implies [(7,x — 7K2u)] & G and completes the
proof of the theorem.
If £(X) is of the form V we have

Theorem 8 Let C be given by the equation y? = f(x), where f(x) is of form V. Then the class of (7, «)
and the classes of the following algebras generate BrC.

V1. (m,X), (7, x—7K1vy), (m, X +U), (7,X+u—72vy).
V2. (m,X), (m,x—7K1vy), (m,Xx+U), (o, X+ u).

V3. (m,X), (o, %), (m, X+ u), (7, X+ u—7%V,).

V4. (m,X), (a,X), (7,x+Uu), (a, X+ Uu).

Proof. Let I, 12, I3, l4, Is be the different linear monic divisors of f(x). If I # Xx+e we have by lemma 3 in
view of I, F(X)/1; € K[x]? that (=, I;) # 1. By the same reason (m, lilj) # 1 if I # ;. Let now e £ 1, then
(7, X(X = T*V1)) s oy ka2 2 1, since F(—avym+2) ~ ae ~ 1. Thus ife £ 1, then (7, x(x—7*?vy)) 2 1.
The change of variables X’ = x + u leads us to the equation

y2 = X' (X' — 7k2vp) (X — u)(X — u — 7K1V ) (X' + (e — u))
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and we have (7, (x+u)(X+u—7K2v,)) = (7, X' (X’ —7%2v,)), so by the previous arguments (7, (X +u)(x +
u — 72vy)) ¢ 1. Observe also that if e ~ 1, then

It follows by lemma 4 that in case e ~ 1 («, X) ¢ 1. Similarly if e —u ~ 1, then (a, X +u) # 1.

Now, to complete the consideration of case V I we need only to prove that (x, liljlr) ¢ 1, where I;, I, I+
are not equal to each other and to x+e and (7, X(Xx — 7tv1 ) (X + u)(X +u— K2 v)) £ 1 if e £ 1. But the
last statement is equivalent to (m, X +€) »¢ 1 which is valid in view of (7, X+ e)x ¢ 1. As to the previous
one, we have liljly, F(x)/(liljl) ¢ K[X]?, so lemma 3 works.

In case V 2 it is enough to observe that by above arguments the group ([(r, X)], [(7, x—7 V)], [(7, X+
u)]) is of order 8 and the field k(v/7)(Xx, v/f(X)) does not split the algebra («, X + u).

Case V 3 can be considered by analogy with case V 2.

We saw that the group ([(m, X)], [(7, X+ u)]) is of order 4. To prove that ([(«, X)], [(«, X+ u)]) is also
of order 4 we need to check that (a, X(X + u)) # 1. But this is true in view of lemma 4 since

a, X(X+Uu) <&’X>741
ko, VEO)) J, \kOO /T
Finally, since the extension of constants by \/«a leaves us in case V 4 the groups ([(7, X)], [(7, X + u)]) and

([(e, X)), [(ex, x + u)]) have the trivial intersection. The theorem is proved.
In case where f(x) is of the form V I we have

Theorem 9 Let C be given by the equation y? = f(x), where f(x) is of form V1. Then the class of
(m, @) and the classes of the following algebras generate Br C.

VI1. {(m I}, li is a monic linear divisor of f.
V12, {(=, 1)}, li is a monic linear divisor of f, I; # x — 7Ku and (a, X).

Proof. In case VI1 it is enough to check that for any monic linear divisor of f(x) (m, ;) # 1 and
(m lilj) £ 1if i # j. We have that (7, 1;) # 1 by lemma 3. By the same reason (m, lilj) % 1 if
lilj # X(x — 7*u). If I;lj = x(x — 7&u), then (7, X(X — 7¢U))x ~ (7, e162€3) * 1.

In case V2 arguments similar to the previous ones shows that the group H generated by [(~, I;)],
where I; runs through the set of all monic linear divisors not equal to x — 7*u is of order 8. To complete
the consideration of the case let us show that (a, x) # 1. If k is odd we have (o, X)x—.ky 7 1, if not, then
(a, X)x—r # 1, since F(x) ~ n(x — nKu)eseres ~ ejeres ~ 1. Finally, the extension of constants by /o
leaves us in case V 12, so all non-trivial algebras from H are non-trivial after this extension but it is not
the case for («, x). The theorem is proved.

3 Splitting type (1,1,1,2).
This section is devoted to case deg f1 = deg f, = deg f3 = 1, deg f, = 2 and the reduction is bad.
Preliminary results. The evident list of all cases under consideration according to the reduction type
of £(x) is as follows.
1. £(X) = (X2 — 7Ku)(X — e1)(X — e2) (X — €3),
™®u L1, uecOf, k>0,8 #¢g ifi#]j.
1. f(X) = (X% — 7Ku)(x — e)(x — &’)(X — e1),
7ku £ 1, uee,e1 €0, k>0 e=¢ #eéi.
1. F(X) = (X2 — 7U) (X — e1)(X — e2)(X — €e3),
UGO;’;, k >0, 7TkU7(/1, €1=€2=€3¢0.
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IV. f(x) = (X% + ax + b)x(x — 7¢u)(x + e),
u,e € O, k>0, x2+ax+ b is irreducible over k.
V. f(X) = (X2 + ax + b)x(x — 7%1uy) (x — 7K2uy),
uj € Oiz, 0 < k; < ky, and if k; = ko, then Ul # Uz,
X2 + ax + b is irreducible over k.
VI, f(xX) = (X% — 7%u)(x — 7™V)(X + e1)(X + €2),
m™®u £ 1, k,m=>0, u,v,e € O, & # €.
VI f(x) = (x? — 7€u)(x — 7™V)(X + e)(X + ¢'),
m*u £ 1, k,m,1>0, u,v,ecO;, e=¢.
VI f(X) = (X2 — 7Ku)(x — 7M1vy) (X — 7M2v,) (X + ),
7ku £ 1, 0< my <my, k>0, u,vj,ec Of.
IX. F(x) = (X2 — 7u)(x — 7M1 v1) (X — 7™M2V,) (X — 73 V3),
kU £ 1, 0< my <my <mg, k>0, u,vj € Of.
Let us prove firstly some preliminary results.

Lemma 10
| zBl'Cl = 16.

Lemma 11 let u € O; is a unit such that u ;¢ 1, then

i) for any w € Op w+/u~ 1ink(/U) iff w>—u ~1ink,

ii) for any local field k there exists w € O such that w? —u « 1,

iii) for any v € O, there exists w € O such that v> —w € O} and v? —w % 1.

Proof. i) follows from the surjectivity on units of the norm homomorphism Ny, 5, and for ii) and iii)
see [13], lemma 1.

Lemma 12 Let g(x) € k[x] be a monic polynomial, and let either n be odd or deg g(x) be even. Then
for any b € k(C)* the quaternion algebra
(b, g(X))
k(C)

()

To check this fact it is enough to observe that

(58 o (55).

Lemma 13 Let K be an algebraically closed field and f(x), g(x), h(x) € K[x]. Then the system

y? = f(x),
{ e Z a00.

is not isomorphic to the scalar algebra

t2 = h(x)

defines a variety V in P*(K) if and only if all polynomials f(x), g(x), h(x), f(x)g(x), f(x)h(x), g(x)h(x)
and f(x)g(x)h(x) are not in K[x]?.

22



Proof. Consider the homomorphism

¢ KXy, 2,1l = KX, VF(x), V9, vVh(x)),

defined by the rule

Xl—)X,yH\/W,Zl—) g(X),th.
Then the ideal 1 = (y2 — f(x),z% — g(x),t?> — h(X)) € Ker¢. Let F = Fo(X) + F1(X)y + F2(X)z +
Fa(X)t + F4(X)yz + Fs(X)yt + Fg(X)zt + G(X, Y, z,t) € Ker ¢, where G(X,y,z,t) € I. So ¢(F) = Fo(X) +
F1()VT + F2(x),/ + Fa(X)vVh + F4(x)/Tg + Fs(X)\/Th + Fs(x)y/gh = 0. Let us check that the
extension K(x)(y/F(x), v/9(x), /h(X))|K(x) is of degree 8. Indeed, K(x)(y/F(x))|K(x) is of degree 2.

If \/o(X) € KX)(/F(X)), then g(x) = a(x)? + b(x)>F(x) + 2a(x)b(x)/F(x), where a(x),b(x) € K(x).
So a(x)b(x) = 0 and either g(x) = a(x)? or g(x) = b(x)?f(x). And this is impossible in view of

g(X) ¢ K[x]? and F(x)g(x) ¢ K[x]?. Hence K(X)(1/F(X), \/a(X))|K(x) is of degree 4. Let now /h(x) €
KOV T, V(). ie. /h(X) = ao(x) + ai(x)/F(x) + a2(x)1/g(x) + az(x)/F(x)g(x). We have

h = (a3 + a2f + a3g + a3fg) + 2(aoay + axasg) /T + 2(aoa, + a;asf),/g + 2(aoas + a1a,)/Fg. Therefore

apay + axazf =0,

apay + azasg = 0,
apaz + aja, = 0.

We have h(x) € K(X)(1/T(x)g(x)), so that one of a3, az, say, a; is not equal to 0. Then
ap = —apag/ay,
ao(a3g —aj) =0,
ag(asf —aj3) =0,
Furthermore, a3g — aZ # 0, since a; # 0 and g(x) ¢ K[x]2. Then ag = a, = a3 = 0 and /h(x) €
K(X)(1/f(x)). This contradiction proves that the extension
KW/ FX), v9(x), vVh(x)IK(X)

is of degree 8. The evident basis of this extension is 1, \/F(x), 1/9(X), v/h(x), v/ F(X)g(x), v/F(X)h(x),
VI0)h(X), /F(X)g(x)h(x), so Fi(x) =0 for any i and Ker ¢ = 1. Then I is prime and V is a variety.

Lemma 14 Let f(x) = (x2—7Ku)g(x), g(x) € Ok[x] without multiple roots, g(x) ¢ E[x]z, ueOp, k>0,
7¥u # 1 and E = g(0) € O;. Then the following algebra is nontrivial, unramified and not isomorphic to
the scalar algebra (7, @).

1. (—7Eu,x) if k = 1(mod 2).
2. (a,x—72w) if k =0(mod2) and E ~ 1, where w € O}, w? —u # 1.

3. (7,x2 — 7*u) if k = 0(mod2) and E £ 1.

—7Eu, X
(FrEU0x~ (m) ~h

so this algebra is unramified. Let K be an unramified odd degree extension of k such that there exists a
unit 7 € Oy with the property 7 1, g(7) ~ 1 and p(x) = Irrk k(7). Such K exists in view of lemma 6
from the previous section. Then

—7Eu, 7 T, T
(e <K<p>(\/g<r»> ~ (&) #*

The unit w in 2) exists in view of lemma 11. We have

Proof.

k/2
a, X—T W
(a, X— 7Tk/2W)X_7T|</2W ~ ( ) ~

k{x — wk72w)(/ (rkw2 — 7ku)E)
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a, X— 7rk/2W 1
k(x — m%/2w) (/) ’
so the algebra (o, x — 7%/?w) is unramified. Furthermore,

w2 N a, Im -~ ﬂ
(o, X = T W)y3—r (k(\3/ﬂ<X3—7T>( (Wzls_ﬂku)E)> (k(\3/7_r)<X3—7T>)761'

Lemma 2 provides the algebra (7, x?> — 7Xu) to be unramified. Moreover,

T, Q m™,
(7r, x2 — ﬂku)x_ﬂ.k/ZW ~ (k(X _ 7rk/2W>(\/a_E)> ~ <m> # L

To complete the proof it is enough to check that all algebras are not isomorphic to the scalar algebra,
and this is true in view of lemma 12.

Presentation by algebras.

Theorem 10 Let f be as in cases | or I'1. Then the group Br C is generated by the class of the algebra
(7, @) and classes of the following algebras.

e Case I.

1. (eie1e3um, X), (m, X —€1), (7, X—e2), if K =1(mod 2).
2. (a,x—7*2w), (r,x—e1), (r,x—ey), if k =0(mod2), —eeses ~ 1.
3. (7, x2 = 7ku), (m,x—e1), (m,x—ey), if k =0(mod2), —eieses £ 1.

e Case Il.
1. (equm, Xx), (m,x—¢e), (m,x—¢'), ifk=1(mod2), e —e; £ 1.
2. (erum, X), (m,x—¢), (a,x—¢), ifk=1(mod2), e —e; ~ 1.
3. (a,x—72w), (r,x—¢e), (m,x—¢'), ifk=0(mod2), —e; ~1, e —e; % 1.
4. (a,x—7%%w), (r,x—¢e), (a,x—¢e), if k=0(mod2), —e; ~1, e—e; ~ 1.
5. (m, x> — 7Ku), (7,x—¢€), (m,x—¢€), if k=0(mod2), —e1 £ 1, e—ey £ 1.
6. (m,x%—7Ku), (m,x—¢), (a,x—e), ifk=0(mod2), —e; £ 1, e—es ~ 1,

where w € OF, w? —u # 1.

Proof. In case I all algebras (7, x —e;) and (7, (x —e;)(X—¢;)), i # j are unramified and not isomorphic
to (w, @) in view of lemma 2. They are nontrivial by lemma 3.

In case 11 let us prove that if e—e; ¢ 1, then the algebras (7, x—¢), (7, x—¢’) and (7, (Xx—¢€)(x—¢"))
are unramified, nontrivial and not isomorphic to (7,a). If e —e; ~ 1, then the same is true for the
algebras (7,x —€), (a,x—¢e) and (wra,x —e). Indeed, if e —e; # 1, then (7,(X — e)(X — €'))x—e ~
(7, (X% — 7KUY (X — €1))x—e ~ (7, —e1) o 1. Let now e —e; ~ 1, then

_ a,X—¢e

Q, X —8)x—g ~ . 1,

(@ X — s (k<x_a( = ) #
and in view of lemma 4 (o, x — €) £ 1. Finally, after the replacement v = wa of prime element we have
(ma,x—e) = (v,x—e) £ L.

Because of the polynomial f in cases | and 11 satisfies the conditions of lemma 12 it is enough to

prove that algebra from this lemma is not isomorphic to the algebras already considered in the current
proof.
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Consider firstly case 1. If k = 1(mod2), then one can find such wy, w, and ws from Oy (K as above)
that wj ~ 1, wj—ej £ 1, (wj —e1)(wj —e2)(w; —e3) ~ 1. Indeed, for example, in case i = 1 it is enough

to solve the following system
Wy = X2,
y2 = a(x? —e1)

2% = a(x® — e2)(X* — ea),

and lemma 6 works. Let p; = Irrk(w;j). Then for any i we have (—7Eu, X)p, ~ 1, (7, X —€j)p; 7 1 and
(m, (X —e1)(X —€e2))ps # 1.

If E = —ejese3 ~ 1, then the algebra (o, x — 7¢/2w) splits by the extension of constants by \/a but
this is not true for the algebras (7, x —ej) and (7, (X — e1)(X — €2)).

Let k = 0(mod2), —eiese3 4 1, then (m,x% — 7Ku) o« (m,x — &), (m, (X — e1)(X — e2)) in view of
lemma 3.

Consider now case I 1. The extension by /a does not split (—7Eu, x), therefore (—7Eu, X) ¢ (a, X—¢).
Let w € O such thatw ~ 1, w—e ¢ 1and (W—e)(w—e)(w—e1) ~w—e1 ~ 1, p = Irrgp(w).
Then (—7Eu,X)p ~ 1 and (m,x —e), # 1. Changing the prime element v = 7« one can check that
(—7Eu,x) # (ma,x —e). In the same way we have (—wEu, x) # (m,x —¢€’). Let us show finally that
(—7Eu,x) # (r,(x —e)(x —¢€)). If g = Irr(w), where w ¢ 1, w # e and w —e; ~ 1, then
(=7Eu,X)q # 1, (7, (X —€)(X — &'))q ~ (7, (W —e)?) ~ 1.

Let nowk = 0(mod2), E ~ —e; ~ 1. We have (o, x—7K2w) « (7, x—e), (m,x—¢€), (1, (x—e)(x—¢’)),
since the extension of constants by /7 does not split the first algebra but splits the others. After this
extension (ra, X —e) ~ (a, x—¢€). It only remains to check that («, x — 752w) % (a,x—e) ife—e; ~ 1.
It is true since (a, X — 7™2W)ys_, £ 1, but (o, (X —€)(X — &))ya—r ~ 1.

Finally, let k = 0(mod2), —e; # 1. We have (7, (x? — 7€u)(x — ), (7, (X2 — 7Ku)(x — ¢’)) # 1.
Moreover, (r, (X2 — m€u)(x —€)(X — &'))x—e ~ (T, —€1) # 1 if e —e;1 4 1. The extension of constants by
/7 does not split (o, X — €), so that (r, x? — 7Ku) % (a, x — €). After the same extension (ra, X —e€) ~
(a,x—¢€) £ 1,50 (ma, X — €) o (, x? — w¢u). The theorem is proved.

Without loss of generality one can assume that in case 111 f(x) = (x2 — 7€u)(x —e1) (X — €2)(X — e3),
where e; = e, e, =e + 7Ktuy, e3 = e + 7K2Uy, e, u; € Of, 0 < ky < k and if k; = ko, then Uy # Uy.

Theorem 11 Let f be as in case 111. Then the group BrC is generated by the class of the algebra
(7, &) and the classes of the following algebras.

1. (eurm,X), (a,X —e1), (o, X —ep),
if k =1(mod?2), k; =1 (mod?2).
2. (eum,X), (a,x —e1), (w,X—e1),
if K =1(mod2), k; =0(mod2) and either k, =1 (mod2) or k; <k, —u; ~ 1.
3. (eum,X), (m,X—e1), (w,X—¢€2),
if K =1(mod2), k; =k, =0(mod2) and either k; =k, or —uy # 1.
4. (o, x — 7%W), (a,x —e1), (o, X —€2),
if k=0(mod2), —e ~ 1, ky = 1(mod 2).
5. (o, x — 72w), (a,x—e1), (m, X —e€1),

if k=0(mod2), —e ~ 1, ky = 0(mod 2) and either k, = 1 (mod2) or
ki <kp, —up ~ 1.

6. (o, x— 72w), (m,x—e1), (m, X —e),
if k=0(mod?2), —e ~ 1, k; =k, =0(mod 2) and either k; =k, or —uy £ 1.

7. (7, x% — 7Ku), (o, x—e1), (o, X —€3),
if k=0(mod2), —e £ 1, ky = 1(mod 2).
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8. (m,x?—7ku), (a,x—ey), (m,x—e1),

if Kk=0(mod2), —e % 1, ky =0(mod 2) and either k, = 1 (mod2) or
ki <kp, —up ~ 1.

9. (m,x?—7Ku), (m,x—e1), (m,X—ey),
if k=0(mod?2), —e ¥ 1, k; =k, =0(mod 2) and either ky =k, or —uy £ 1,

where w € OF, w? —u # 1.
Let us prove firstly

Lemma 15 In case 111 the following algebras are unramified, nontrivial and not isomorphic to (m, ).
1. (a,x—e1), (a,x—¢€2), (a,(X —e1)(X —ep)), if k; =1 (mod?2).

2. (a,x —e1), (m,x—e1), (am,x—e1), if kg = 0(mod2) and either k, = 1(mod2) or (ko =
O(mod 2), ki <k, and —uy ~ 1)

3. (m,Xx—ey1), (m,X—e2), (r, X—e1)(x—e)), if k1 = ko = 0(mod2) and either ky < k; and —u; ~ 1
or kl = kz.

Proof of the lemma. In 1 we have: (a,X —€1)x—e, % 1, (@, X — €2)x—e, 7% 1, (a, (X — €1)(X — €2))x—e, ~

(@, X — €3)x—e, # 1.
2. Let 9 = e + 7k1w. Then f(9) ~ w — u;. If w satisfies the condition

{W1741,

wW—ug ~1,

then (m,x —e1)p # 1 and (ma, X —e1)p % 1, where p = Irrk(6). Furthermore, in case kz = 1(mod2)
we have (o, X — €1)x—es 7 1 and (a, X — €1)yx_e_rki+1 ~ (o, 7*1) £ 1 since Fe + 7k2*1) ~ —up ~ 1,
otherwise.

Finally, consider subcase 3. Let #; = e + 7*tw;, i = 1,2,3. Then f(6;) ~ wi(wi — u)(Wj — Up),
provided k; = ky. If w; satisfies the conditions
wy % 1,
Wy —ug # 1,
W3 — Uz # 1,

(wy —ug)(wy —uz) £ 1,
Wo(Wo — Up) 7 1,
wz(Ws — ug) # 1,

then f(0i) ~ 1 and (7,x — ej)p; #* 1, where p; = Irrk(6i). Moreover, (7, (X — €i)(X — €j))p, ~
(m, (X% = 7ku)(X — &1))p, ~ (7, X —e1)p, # 1, where {i, ]}, 1} = {1,2,3}.

Let now k1 < k> are even and —uy ¢ 1. Let 6 be as in 2. Then (7,X —e1)p # 1 and (7, (X —e1)(X —
e2))p # 1, where p is as above. We have also (7, X — €2)x—e; ~ (7, —U1) ¢ 1. The lemma is proved.

Now to prove the theorem it is enough to check that the algebra from lemma 12 is not isomorphic to
all algebras from lemma 14 in the corresponding subcases.

Let firstly k = 1(mod2). The extension of constants by \/« leaves us in case 1 of lemma 12, and
in cases 1 and 2 of lemma 13, therefore the algebra (eum, X) does not split by this extension. On the
other hand, all algebras from case 1 of lemma 14 split by it. And in case 2 of this lemma one only
need to prove that (eum, x) # (m,x —e1) and (eum, X) # (wra,X —e1). But if w,0 and p are as in the
proof of this case, then after the extension indicated above (eum, X)p ~ (m,€) ~ 1. On the other hand,
(ma, X —e1)p ~ (m,Xx—e1)p # 1.

Let us take a unit n € O} with the usual properties satisfying the conditionn #e, n £ 1, n—e ~ 1.
Then f(n) ~n—e ~ 1 and (eum, X)q # 1, where g = Irrk(n). We have also (m,x —ej)q ~ 1 and
(m, (X —e1)(X — e2))q ~ 1. Thus case k = 1(mod 2) is considered.

If k is even and —e ~ 1, then for any A € {r, o, ma} (A, X —€i)xz3—r ~ (A,—€) ~ 1, (A, (X —e1)(x —
€1))x3—r ~ 1, but (a,x — 7Tk/2W)X3_7T A1,
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Finally, let k be even, —e £ 1, then (m, X% — 7KU),_ w2y, # 1 and (a, X — €i)y_ 2y ~ 1, (o, (X —
e1)(X — €2))x—nk2yy ~ 1. If p; are the points from the proof of lemma 14 in which the corresponding
algebras are nontrivial, then (7, x? — 7r"u)pi ~ 1 and we are done.

Let us pass to the next two cases.

Theorem 12 Let f be as in cases IV or V. Then the group Br C is generated by the classes of the
algebras (m, o), (7, X% + ax + b), and classes of the following algebras.

e Case IV.

1. (m, %), (7, x— 7Ku), if be % 1.
2. (m, %), (a,x), if be ~ 1.

e Case V.

1. (a, %), (o, x — 7Kruy), if kg = 1(mod 2).
2. (a,X), (m,X%), if kg =0(mod?2) and either k, =1 (mod2) or ki <k, and —bu; ~ 1.
3. (m,X), (m,x—7%uy), if ky = ko = 0(mod2) and either k; = ko or —buy £ 1.

Proof. In case IV (7, X) # 1, (x,X — 7u) « 1 by lemma 3. For the same reason (m,X) 4 1in V.2, V.3
and (m,x — 7ktu1) # 1in V.3. In 1V if be # 1, then for w € O}, we have f(rkw) ~ aw(w — e) and
(7, x(x — 7Tku))|rrK|k(ﬂ.kW) ~ (m,w(w —e)) £ 1, provided w(w —e) £ 1. If be ~ 1, then

a, X a, X
_,T ~ —,_ 76 11
().~ (&)
so (a, X) £ 1. Replacing v = o one can check that (ra, X) # 1.

In case V if ky = 1(mod2), then (o, X)x— iy, #* 1 and (a, X — 7K1u1)y £ 1. Moreover, (o, X(X —
TR )y rauy ~ (@, (X + X+ D)(X = TH2U2) )y pr, ~ (@, B(Ug — T2 TK1Up)Te) o 1.

Now we are in subcase V.2. If ko = 1(mod2), then (o, X)x—rkou, 7 1. In case ko = 0(mod 2) we
have f(7k1*1) ~ —bu; ~ 1 and (a, X)y_u+1 7 1. Replacing the prime element one can check that
(am, X) # 1.

Consider the last subcase in V. We have f(r*rw) ~ bw(w — up)(w — 7%7Kiu,) and (7, x(x —
U1 (raw) ~ (T, W(W = U1)) ¢ 1, provided that

w(w —ug) # 1,
{ b(w — mhe7kKiu,) £ 1.

It remains to prove that the algebra (w, x? + ax + b) is nontrivial and not isomorphic to the algebras
listed above. In case IV we have (r, x2+ax+b) £ 1, (r, x(x2+ax+b)) £ 1, (z, (x—7%u)(x®+ax+b)) £ 1
by lemma 3. In 1V.1 (r, x(x — 7Ku)(x? + ax + b)) » 1 by the same reason. The extension of constants
by /7 leaves us in case 1V.2, so that (m,x% + ax + b) % (o, x). After this extension we also have that
(ra, X) ~ (o, X) o (m, X + ax + b).

Finally, let us compare the algebra (r, x> + ax + b) with the others in case V. First of all, (7, x? +
ax+bh) £ 1 and (r, (X2 + ax + b)x(x — 71u1)) £ 1 by analogy with 1V . After the extension of constants
by \/a we are not in the same case because the polynomial x2 + ax + b splits after this extension. But
the algebra (m,x? + ax + b) is still nontrivial in view of lemma 3. So this algebra is not isomorphic
to (a.x), (o, X — 751u;) and (o, X(x — 7%*u;)). To complete the proof one only need to check that
(m,x? + ax + b) is not isomorphic to (7, x), (7, x) in V.2 and (7, X), (7, x — 7%tuy)) in V.3. In V.2 we
have f(7¥1w) ~ b(w—u1), where w is as above. Let p = IrrK|k(7rk1W). Then (7, X)p ~ (T, X)p ~ (m, W),
(7, X%+ ax + h), ~ (m,b). If we require

b(W— Ul) ~1,
{ bw £ 1,

then (m,X)p ~ (ma, X)p # (7, X% + ax + b)p.
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Consider subcase V.3. Let k; = ko. To prove that (r, X2 + ax + b) « (7, X), (7, X — 7%1u1) we need to

solve the systems
le 7(/ 1, and b(W2 - Ul) 7(/ 1,
(Wi —ug)(wi —up) # 1 Wa(W2 — U2) # 1.

By the same way one can prove (m,x? + ax +b) « (m,X), provided ky < kz. Finally, in this case
(7, (X% + ax + b)(x — 7K1u1))x ~ (, —buy) # 1.

Theorem 13 Let f be as in cases VI or VI1. Then the group Br C is generated by the classes of the
algebra (, «), and classes of the following algebras.

e Case VI. (m,x+e1), (m,Xx+e5).

e Case VII. (m,x+¢) and (a,x+¢e) if —e ~ 1, (m,x+¢') if —e £ 1.

and
1. (a,x? —7Ku) if m > k/2, k = 1 (mod 2).
2. (m,x? —7ku) if m > k/2, k = 0 (mod 4).
3. (nE,x — 72w) if m > k/2, k = 2 (mod 4).
4. (wuveiez, X) if m < k/72, k =1(mod2), m = 0(mod 2).
5. (nE,x — 7*2w) if m < k/2, k = 0(mod 2), m = 1 (mod 2).
6. (a,x—7"™v) if m < k/2, k=m = 1(mod2), uveies ~ 1.
7. (a,x) ifm< k/2, k=m = 1(mod2), uveie, # 1.
8. (m,x2—nku) if m< k/2, k=m = 0(mod?2), —veie, # 1.
9. (a,x—7*2w) if m < k/2, k=m = 0(mod2), —veie, ~ 1,

where w € Of,, w2 —u + 1, E is chosen such that f(7%/?w) ~ 7E, and in case V Il the units e; and e
must be omitted in all algebras and conditions listed above.

Proof. The algebras (7, x +e1), (7, X +e2), (m, (X +e1)(X + e2)) are nontrivial in case V 1. The same is
true for the algebras (w, x +€) and (7, x +¢€’) in case V I1. In the last case we also have

(a,x+€> <&,x+€> ( a, X+e )741
KE) /v \ KX Jaws \kix+e)(/=8)/) "
provided —e ~ 1. Moreover, then the extension by /a does not split (7, x +¢€), so (ra,x +¢€) % 1. If
—e 4 1, then (7, (X + €)(X + &'))xre ~ (1, (X% — 7KUY (X — T™V))xse ~ (7, —€) £ 1.

Let us consider now the remaining algebra simultaneously in both cases.
1. (o, X% = T€U)yx—rmy o 1. Furthermore, (o, X2 — 7Xu) # (7, X + €;), (m, (X + e1)(X + €1)) in case VI
since the last two algebras do not split after the extension by \/a. For the same reason (o, x> — wKu)
(m,x+e), (m,x+¢’), and (ma,x+e) in case VI1. We have also («, X +€)x—my ~ 1, so that (o, x+¢€)
(a, X% — 7u) and (7, (X + €)(X + &"))x—rmy ~ (m,€e") ~ 1, s0 that (o, x? — 7KU) % (7, (X + €)(X + &)).
2. Let w € O such that

w2 —u 41, _ [ e1e2inVl,
{ a(w — vrm—k/2y 4 1, Where a_{ 1, inVII.

Then f(7%/2w) ~ 1 and (7, X% — 7*U)p # 1, where p = Irr (75/2w). Let now wo € O} such that

w3 —u~1,
a(wg —vam 2y ~ 1,
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Then f(7?2w) ~ 1 and (7, x? — 7U)p, ~ 1, where po = Irrp(7?wo). In case e; ~ 1 we have
(m, X2 =7RU)p £ (m,x+ei)p and if &; £ 1, then (7, X2 —7Ku)p, £ (7, X+€i)p,. In any case (m, X2 —mKu) %
(m, x+ej). By the same way one can check that (7, x2—7Ku) « (7, (X+e1)(X+e3)), (7, x+e), (7, x+e)
and (m, (X + e)(x + €’)). Finally, (7, x? — 7%u) # (ra,x +e), (o, X + ) since two last algebras do not
split by /7.

3.

Kk/2 ™, W—,u

(TE, X — W) y2_ky ~ (k(@(D(Xz — 7rku)>> A1,
To finish the consideration of this subcase it is enough to observe that the completion in x? — 7Ku splits
any other algebra from the list.
4. £(0) ~ muvesez, so the algebra (wuveiez, X) is unramified. Let w be from Oy and q = Irr(7™w).
Then f(7Mw) ~ erea(w —vVv) in VI or w—v in VII. Furthermore, (ruve;ez, X)q ~ (wuveiey, w). If we
require w ¢ 1 and ejex(W — v) ~ 1, then (wuveies, X)q ¢ 1. Similarly, if we; £ 1 and ejea(W —v) ~ 1,
then (muvesies, X)q # (m, X + €j)q. By analogy we can prove that (ruvesez, X) is not isomorphic to the
remaining algebras.
5. This case can be considered similarly to case 3.
6. £(0) ~uveie, (or uv inVIIl) ~ 1. Therefore (a, x—7™MV)x ~ (o, 7™) 7 1. The extension by \/a does
not split the algebras (7, X+ €j), (7, X +¢€), (7, x+¢€'), (7, (X +e1)(X+e3)), (ra, x+¢e). So it is sufficient
to check that (o, x — 7™Vv) £ (a, X +e), (7, (X + e)(X + €’)). But this is true in view of (a,x +e)x ~ 1
and (7, (X +e)(x +&'))x ~ 1.
7. The algebra («,x) is unramified since f(0) ~ a. (a,X)x—zmy ~ (a,7MVv) «£ 1. In case VI the
extension by ./« does not split the algebras (7, X + €;j), (7, (X + e1)(x + e2)) since this extension leaves
us in case V1. The same holds for the algebras (7, x + €), (ma, X + €) and (7, x + €’). Indeed, after this
extension (wa, X +e) ~ (m,X +€) £ 1 since we are in V Il again. And (7, x + ¢€’) is also nontrivial after
the extension because of the units e and e’ are symmetrical. Finally, (o, X + €)x—my ~ (a,€) ~ 1 and
(7, (X +e)(X +€&))x—rmy ~ L.
8. f(m/2w) ~ —veje,(W? — u) ~ 1, provided w? — u ¢ 1. Thus (7, X% — 7¢U)y_ w2, # 1. The algebras
(m, (@ =T u)(x + 7)), (7, (* — 7RU)(x + ), (7, (X* — THU)(x + €')), (7, (X* — 7FU)(x +e1)(x +e2)) are
nontrivial by lemma 3. We only need to prove (7, x? — 7ku) £ (7, (X + e)(X + €)), (o, X + &), (7, X + €).
But two last algebras do not split after the extension by /7 because this extension leaves us in case
VII,—e ~ 1. Finally, (7, (X + e)(X + &)y _ 2y ~ 1.
9. f(@*?w) ~ «, so the algebra (a,x — 7%/?w) is unramified. Let q = Irry em(x™ ¥7). Then
(7™M ) ~ —veies ~ 1. Hence

(0 x = 7/2W)g ~ (7&“ ﬁ)@ >> #1

Since the extension by /7 leaves us in the current subcase, in order to complete the proof one only need
to check that (o, x — 7¢/2w) 7 (a, X + €). But this holds since (a, X + €)q ~ (a, €) ~ 1.

Theorem 14 Let f be as in case VI11. Then the group Br C is generated by the classes of the algebra
(7, &), and the classes of the following algebras (I; = x — 7™Miv;).

e (m ), (m,x+e) ife 1.
e (m 1), (a,lp) ife~ 1.

and
1. (o, x? —7Ku) if k/2< my, e ~ 1, k =1 (mod 2).
2. (m,x2—7Ku) ifk/2< my,e~1, k=0(mod2) and —1 ~ 1.
3. (a,x—72w) ifk/2< my,e~1, k=0(mod2) and —1 £ 1.
4. (m,x?>—7nku) ifk/2< my, e 1, k=0(mod2) and —1 1.
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(1) ifk/2< my, e £ 1, k=0(mod2) and —1 ~ 1.
(a, ) ifk/2< my, e £ 1, k=1(mod?2).
(mr, x2 — 7¥u) if k/2 = my and either my < my or vy # Vo.

(7, x? — 7*u) if k/2=my =my, V1 =V, and e(v? — u) # 1.

© ® N o o

(a,ly) ifk/2=my=my, vy =V and e £ 1, v —u £ 1.
10. (a,x—7%2w) ifk/2=my=my, Vi =V, ande~1, v —u~ 1.
11. (o, X2 — 7%u) if my < k/2 < mjy, k = 1(mod 2).
12. (m,x% —7*u) if my < k/2 < mjy, k= 0(mod2) and m; + k/2 = 0(mod 2).
13. (7E,x — 7%2w) if m; < k/2 < my, k =0(mod2) and m; + k/2 = 1 (mod 2).
14. (7E,x — 7%2w) if my, < k/2, my + my = 1(mod 2), k = 0(mod 2).
15. (o, X2 —7*u) if my < k/2, m1 + my = 1(mod?2), k = 1(mod 2) and —evivou ~ 1.
16. (a,x) if my < k/2, my + mz = 1(mod2), k = 1(mod2) and —evivou # 1.
17. (nF,x) if my < k/2, my + mp = 0(mod 2), k = 1(mod 2), where F € O, nF ~ T(0).
18. (m,x? — w*u) if my < k/2, my +m, = 0(mod2), k = 0 (mod 2), evyva £ 1.
19. (o, X — 7%2w) if my < k/2, my + my =0(mod2), k = 0(mod2), evivs ~ 1,
where w € Of;, w? —u # 1 and E is chosen such that f(7/2w) ~ 7E.

Proof. In view of lemma 3 the algebras (x, I1) and (7, I1(x+¢)) are nontrivial. Furthermore, (7w, X+¢€);, £
1, provided e £ 1. After the extension by /a we have (ra,l1) ~ (7, 11) # 1. Finally, f(¥7) ~ e, so in

case e ~1 e

o, JT

(a, 1)xa—7 ~ (W) 7 1.

Consider now the third generator.
1. The algebra (o, x? — 7*u) is nontrivial since (o, x? — 7Ku);, # 1. (o, X? — 7€U)xs—, ~ 1, on the
other hand (., l1)xs—» # 1, therefore these algebras are not isomorphic. The algebra (o, X2 — 7*u) is not
isomorphic to (m,11), (7, 1) because the extension by \/a does not split two last algebras.
2. (m,x? = 7ku);, ~ (7, —u) # 1. By lemma 3 (r, x> — 7Ku) « (=, 11). Since after the extension by /7
one has (ra, 1) ~ (v, 11) « 1, it follows that (7, x? — 7*u) is not isomorphic to these algebras.
3. Because of f(7/?w) ~ « the algebra (o, x—7X/?w)) is unramified. Moreover, (a, X—7%2W))ys_ # 1.
Let g = Irr omk(7®), where s = k/2 +1/3. Then f(7°) ~ 1, therefore

3/myk/2 o/m)s

so (a, X — 7r"/2w)q # (e, 11)q. To complete the consideration of this subcase it is enough to observe that
after the extension by /7 we have (7, 11) ~ 1 # (a,x — 7%?w) and (7a, 11) ~ (a, 11) # (o, x — 7K%w).
4. F(m2w)) ~ e(W? —u) ~ 1 and (7, X? —7XU)y_, kr2, # 1. By lemma 3 (m, x? —7Ku) £ (7, 1), (7, l1(x+
e)). Finally, (7, x? — 7&u);, ~ 1 # (7, X+ €)y,.
5. Let
_ [ 1, ifk=0(mod4),
°= { 2, if k = 2 (mod 4),

4 = Irre am (@ /2+</3). Then f(7/2*</3) ~ 1 and

(00 la)a ~ <ak,(7;g<+;>/s) ~(weomy)
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The algebra («, 1;) is not isomorphic to the remaining algebras since the extension by ./x leaves us in
the current subcase and therefore it does not split this algebra.

6. Since the extension by ./« leaves us in case VIII, the algebras (,11) and (=, 11(x + €)) do not
split by this extension, so they are not isomorphic to (a,l1). Furthermore, if m; < my or vi # vy,
then (o, 1), ~ (o, 7™) and (o, 1), ~ (o, (X2 = 7KU)l(X + €)), ~ (o, 7™ *1). One of these two
algebras is nontrivial. Thus (o, l1) # 1. Let now m1 = my and vo = v, + 77, s > 0,7 € O. Then
(a, 1)1, ~ (o, #™2*+S) and (a, I1), ~ (o, #™*+S*1) so that the algebra (a,l;) is nontrivial again. It
remains to check that (a,11) # (7, X +€). But (m,x+€), £ 1and (7, X+ e), # 1. On the other hand,
among the algebras (a, 1), and (o, 11), a trivial one exists.

7. F(@K2wW) ~ (W? — u)(W — v1)(W — vor™2~™1), If we require

{Wz—uﬁl,

(W —=vy)(w—vorM2=M) oL 1

W € O, W # V1, Va, p = Irr(7¥/2w), then f(7%/2w) ~ 1 and (r,x% — 7ku)p # 1. As we already had
seen above, (mr, X2 — 7Xu) « (7, 11), (=, l1(X + €)) by lemma 3. If

wi—un~1,
(Wo - Vl)(Wo - Vzﬂ'mz_ml) ~ 1,

Wo € Of, Wo # V1,V2, po = Irrc(7?wp), then f(7k2wp) ~ 1 and (r,x% — 75u)p, ~ 1. But
(m, X+ €)p, ~ (m,€) % 1, provided e ¢ 1. Thus in case e % 1 we are done. Case e ~ 1 can be considered
by analogy with subcase 2.
8. Lete £ 1, vi—u ~ 1. There exists w € O; such that w?> —u ¢ 1. So (7, X% — TKU)y_ kr2yy ~
(mr,w? — u) # 1since F(7?w) ~ W2 —u)e ~ 1. Ife ~ 1, V2 —u £ 1, then (m, X2 — 78U)x—rmiy, ~
(m,v2 —u) + 1. Let us check that the algebra (7, x2 — 7Ku) is not isomorphic to the other ones. If e /¢ 1,
then (7, x2 — 7&u) £ (7, l1), (7, 1.(Xx + €)) as above. We also have (7, X2 — 1KU)x—zm1y, ~ (7,VZ —U) ~ 1
and (m, X+ €)x—rm1y, ~ (m,€) 1. Let now e ~ 1. Then one can argue as in subcase 2.
9. Let

_ [ 1, ifk=0(mod4),

- { 2, if k =2 (mod 4),

0 = 7k2(vy + (¥/7)%), 4 = 1Ty zmyk(@). Then £(6) ~ (v —u)e ~ 1 and

o, (Y
e (Sema ) #

(a, 11) # (7, 11), (m,x +€), (7, l1(x + €)) since the extension by /7 leaves us in the current subcase and
therefore it does not split the algebra («, 7).

10. The algebra (o, x — 7?w) is unramified. f(J7) ~ e ~ 1 50 (o, X — 7K2W)ys_. % 1. After
the extension by /7 we are in the current subcase again, therefore it is enough only to prove that
(o, x = 7/2wW) £ (o, 11). To check this fact assume 6o = 7%/2(v1 + ¢/7), o = Irri em(fo). Then
f(0) ~ 1 and

o, (%)k/2+1 _ «, (%klz
(o, 1) go ~ <W> and (o, X — 7/2w)g, ~ (W> :

11. (a,x% —7%u);, ~ (a, ™) # 1. If e ~ 1, then \/a does not split (7,11) and (7a, l1) so that these
algebras are not isomorphic to (a, x2—m*u). Moreover, (o, X2 —7KU)yxa_r % (o, l1)xs—,. Let e £ 1. Then
we have (o, x? — 7&u) # (7, 11), (7, 12(x + €)). Finally, (o, x? — 7%u);, ~ 1, but (7, x +e);, » 1.

12. Let w € Oy such that

—vie(W — vorrM27K/2) £ 1

then F(7%/2w) ~ 1 and (7, X% =75U)1rr,e,, (T/2W) £ 1. If € £ 1, then (7, x2—7*u) £ (, 1), (7, l1(x+€)).
We also have (r,x? — 7ku);, ~ 1 and (7, x +e);, # 1. If e ~ 1, then the extension by /7 leaves us in
subcase 12, so we can argue as in subcase 2.

{Wz—u761,
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13. The algebra (7E, x — 7K/2w) is unramified by the choice of E.

7E, 72(/U—w) N
k(y/U)(x2 — 7ku) (/7 (X2 — 7ku))

(TE, x — 7?W) o ey ~ (

()
k() (v/702 — 7*w)

On the other hand,

m, —mMv;
(7, 11)x2—rky ~ (k(ﬁ)(\/MJ ~

The same is true for the algebras (w, x +¢€), (7, l1.(X + ¢€)), (a, 1) and (7, 7).

14. This case is totally similar to the previous one.

15. f(0) ~ 1, so (a,x® — 7Ku)x ~ (a, ) £ 1. The extension by /o does not split (m,l1), (7a, 1),
(7, l1(x +¢)) in the corresponding cases, therefore (o, x?—7Ku) is not isomorphic to them. If e ~ 1, then
(@, 11)xa—r % (a, X% — 7KU)ys_,. Finally, if e £ 1, then (m, X + €), # (o, X2 — 7&U)y, .

16. £(0) ~ —evyvou ~ . Thus the algebra («, x) is unramified. We have also

(%) N o, VrKku N
P T R (VR0 (2 — kU (v —a O — 7ku))

()
k(/70) (v/ = — 7<u))

As it was already noticed, the other algebras are trivial after completion at x2 — 7*u.
17. The algebra (F, x) is unramified by the choice of F. Let n € O, K be as above, n % 1, n+e~1,

and r = Irrk(n). Then
Fr,n
e~ (T )+

since f(n) ~n+e ~ 1. On the other hand, («, l1)q ~ (a,n) ~ 1 and (7, x+e)q ~ (m,n+e) ~ 1. Let firstly
M1 < My or V1 # V. Then for w € O}, W # V1, Vv, we have f(7™2w) ~ —e(w —vp)(vy —wa™27™M), Let
p = Irrgp(m™2w). Then (m,l1)p ~ (7, (—1)™M2+1(y; — wr™M2—M1)) and (Fm,X)p ~ (m, (—F)™2w). We
require

—e(W — Vo)(vy —waM2TM) ~ 1,
—FM2w(vy —waM27M) £ 1,

Then (7, 11)p # (Fm, X)p. Similarly one can check (ra, 11) o (Fm, X) and (m, l1(X+€)) # (Fm, Xx). Consider
now the case my = my, Vo = vy + 7", r >0, € O. Suppose W € Oy, W # H, S = Irrg(n™(v1 +
7'w)). Then f(z™M2 (v + 7"w)) ~ ew(w — ), (7, l1)s ~ (7, (=)™ " w) and (F7, X)s ~ (7, (—F)Mv1).
If we require
ew(w — ) ~ 1,
{ (—1D)"FMivyw £ 1,

then (m, 11)s # (Fm, X)s. For the remaining algebras the arguments are similar.

18. If w € O;, w? —u # 1, then (7, X% — 7KU),_ w2y £ 1 in view of F(7%2w) ~ evivo(W? —u) ~ 1.
Let » and r be from the previous case, then (m, l1)r # 1, (m, l1(X +€))r £ 1 and (7o, l1)r # 1, but
(m,x? — 7*u), ~ 1. The extension by /7 leaves us in the current case, so it does not split (a, 1),
provided e ~ 1, but it splits (r, x? — 7*u). Finally, (7, X + &), # (m,x? — 7Ku),, ife % 1.

19. F(7*2w) ~ eviva(w? — u) ~ «a, hence the algebra (o, x — 7%/?w) is unramified. If

_ [ 1, if my =0(mod?2),
ST 2, ifmy=1(mod?2),
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then f(x™M2"</3) ~ evivy ~ 1. Assume p = Irry am(7™2*</3). Then

Since the extension by /7 leaves us in case 19, it does not split the algebra (o, x — 7¢/?w). Hence
(a,x — 72w) £ (7, 11), (m,x+¢€), (7, l1(x +e)). Since after this extension (7o, 1) ~ (o, 1), it is
enough to show that (o, x — 7%/2w) o (e, l1), provided e ~ 1. Let po = Irrzmi(r™1/%). Then
f(xM2*+1/3) « 1 as above and

_ a, (Ymm+t a, (Yr)m
o~ (S )~ (i)

Because of m; = m, (mod 2) we have (a, X — 7¢?w)p, % (o, l1)p, and the theorem is proved.
Without loss of generality one can assume that in case 1 X either 0 < k < 4 and k/2 < m; (case
IX.1) ormy =1, k>2 (case 1X.2). Let I; = x—7Kiv;, i=1,2,3.

Theorem 15 Let f be as in case 1X.1 and as soon as m; = my = ma, then vz # vj, i = 1,2. Then the
group Br C is generated by the class of the algebra (7, @) and the classes of the following algebras.

1. (o, x? = 7Ku), (a. 1), (a, lp), if
k =1(mod2), m; = 0(mod 2).
2- (TrE!pW)v (a7 Il)v (a1 |2)7 if
k =0(mod2), m; = 1(mod2).
3. (TrE:pW)v (O[, |2)1 (7T, |2)1 if
k=m; =0(mod2), mi < my, uvy ~ 1.
4. (a,x%—7%u), (o, ), (m, 1), if
k=m; =1(mod2), mi < my, uvy ~ 1.

5. k=m; =1(mod2), and if m; < my, then uvy £ 1.

a) (o, x?—7ku), (7, 11), (o, 1),
ifmy =my, vy =V, and £ = —u(vy —var™ M) ~ 1.
b) (a,x?—7*u), (r,11), (7, 12), otherwise.
6. k=my; =0(mod2), and if m; < my, then uvy £ 1.
a') (T[-E! pW)'l (7T, Il)v (a7 Il)v
ifm1=m2, \712\_/2 and §N1
b) (7E, pw), (7, 11), (=, |2), otherwise,

where w € Oj satisfies the following conditions. If m; > 1, then w € O}, w? —u # 1, E = aw, and
pw = X—aw. If my =1, then

e |[f 1 < my, then
w2 —untl,
w(w —vi) ~ 1.
e If 1 =my < mg, then

(W? — u)(W — v2)w # 1,
(W2 = u)(W — vy)(W — V) £ 1.

{ (W? —u)(w —va)w # 1,
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e If 1 =m, = mg3, then

(W? = u)(w —v1)(W —v3) % 1,
(W? = u)(W — v2)(W — v3) % 1

{ (W2 —u)(w —vi)(w —Vv2) £ 1,

for a suitable unramified odd degree extension K|k, pw = Irrk(mw), E = Nk k(Eo), and Eo € O is
such that f(7w) ~ wEp in K.

It is convenient to divide the proof into several parts. We assume in the following lemmas that all
conditions of the above theorem are satisfied.

Lemma 16 If k = 1(mod2), then the algebra (o, x2 —7*u) is unramified and nontrivial. Otherwise, the
same is true for the algebra (7E, pw), where w and p,, are from the above theorem.

We have (o, x? — 7ku);, ~ (a, 7%) # 1, since k < 2m;, i = 1,2,3. If k = 2, m; > 1, then f(zw) ~
aw(w? — u) ~ 7E and the algebra (7E, x — 7w) is unramified. (7E,x — 7w), ~ (raw, —7w) ¢ 1. Let
now k =2, m; = 1. Then

f(rw) ~ 7(W? — u)(w — vi)(w — 7271y ) (w — 7 yg),
Let w # vy and if m; = 1, then w # vj. Then f(7w) ~ 1Eq, Eo € Oj, where

W2 —u)(w—vy), if 1< my,
Eo={ (W2 —u)(W—vi)(w—va)w, if1=my < ms,
(W2 — u)(W — v1)(W — Vo) (W — V3), if 1=my = m;.

We have

7Eo , Pw
e~ (i)~

since E = Nk k(Eo) ~ Eo in K. So the algebra (7E, pw) is unramified. Let us require (7E, pw)i;, %
1,i=1,2,3. Then
(TE, pw)i; ~ (7, Nk (Eo(W — Vi),

(TE, pw, ~ (7, N (Eo(w — vir™ 1)), i =2,3,

and these algebras are nontrivial iff Eq(w — v1) ¢ 1 and Eo(w — vj) «¢ 1, provided m; = 1 or Eqw £ 1,
provided m; > 1, i = 2,3. It just gives the conditions on w from the theorem. These conditions can
always be satisfied by lemma 6. The lemma is proved.

Lemma 17 If k # my (mod2), then the classes of the algebras (7, «), («, 1), (o, 12) together with the
class of the algebra from lemma 16 give all generators of BrC.

Proof. Let firstly k/2 < my. Then (o, 1), ~ (a, (X% — 7%U)lalz);, ~ (o, 7 Ml (7Mvy)) ~
(o, wla(m™1vy)) and (o, 1)1, ~ (a, lo(m™2vy)). Thus exactly one of the algebras (o, l1), and («, 1),
is nontrivial. Since the algebra from lemma 16 is nontrivial at 11, I, the algebra («, I1) is not isomorphic
to it. Let now k =2, m; = 1. Then (a, 1)1, ~ (o, 7wla(m™2v1)) # (a, 11)1, again.

Consider the algebras (a, I2) and (a, 1112). We have

(OZ, |2)|1 ~ (OZ, |2(7Tmlvl))! (OZ, |2)|2 ~ (OZ, 7Tk+m2|2(7rmlvl))! (O[, |2)|3 ~ (OZ, ﬂ-mz)!

(OZ, |1|2)|2 ~ (OZ, (X2 - 7Tku)|3)|2 ~ (OZ, 7Tk+m2): (O[, |1|2)|3 ~ (OZ, 7Tm1+m2)'

Hence (a,lil2), % (a,lil2)i,. This means that («,l1l2) 4 1 and («,l1l2) is not isomorphic to the
algebra from lemma 16. Moreover, if m; = my (mod 2), then («, 1)1, ~ (o, Tla(7™Mv1)) £ (a,ly)), and
(a, 2, ~ (a, l2(m™Mv1)) ~ (a, ™) £ (a, I2)1, otherwise, since in this case m; < my. The lemma is
proved.

Lemma 18 If Kk = my (mod2), my < my, uvy ~ 1, then the classes of the algebras (w, ), («, 12), (7, 12)
together with the class of the algebra from lemma 16 give all generators of ,BrC.
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Proof. Let = € {1,2}, 7 € Of, 0 = a™(Ym)°r, and p = Irry omk(®). Then F(0) ~ 7K M™uv; ~ 1.
Assume A € {r,a, wa}. Then

and for any A we are always able to find £ and 7 such that (A, I2), # 1. Let now compare the algebras
(A, 12) with the algebra from lemma 16. Assume that ¢ and 7 are such that (A, 1), ~ 1. In view of
k/2 < m; +¢/3 and k/2 < m, we have that the algebra from lemma 16 is nontrivial at p because it is
nontrivial at I,. This completes the proof of the lemma.

Lemma 19 Let k = my (mod2) and if m; < my, then uvy £ 1. Then the classes of the algebras (7, @),
(m, 11), the class of the algebra from lemma 16 and the class of the following algebra give all generators
of BrcC.

L4 (7T, |2), if mi < my orv; # Vo.
. (7T,|2), if my = My, \_/1=\_/2 and§761.
- (a, |1), if mi; = My, \71 = \72 and fN 1.

Proof. In this case k/2 < my. If my < my, then (1), ~ (m,—7%u) and (), ~ (7, —7™vy) ~
(m, —m¥v1). Since uvy £ 1 we have that among the algebras (7, I1);, and (r, I1), there is just one trivial
algebra. So (m, 1) «# 1 and (m, 1) is not isomorphic to the algebra from lemma 16. Let now m; = my
and pj € Of. Then F(#™ i) ~ —u(i — vo)(Hi — V2)(Ki — var™ ™M), If pi = Irrp (@™ i), then
(7, 11)p; ~ (m, (=)™ (uj — v1)). One can find K, gy, and p2 such that f(7™M ) ~ F(7™p2) ~ 1 and
(7 1)py # 1, (m,11)p, ~ 1. Since the algebra from lemma 16 is not trivial at p, we have again that
(m,11) % 1 and (, l1) is not isomorphic to this algebra.

Let us describe the last generator. Consider firstly the case m; < my. Then (7™M ;) ~ —u(Wi —Vv1).
If Wi and p;j are such that —u(ui —vi) ~ 1, i =1,2,3,4, (-1)Mpy ~ 1, (—1)™ps £ 1, uz 4 —u, and
M4 ~ —U, then (7T: I2)p1 ~ (7T! (_1)mlll) ~1, (7T: IZ)pz 76 1, (7T, |1|2)p3 ~ (7T! lls(lls - Vl)) ~ (7'[', _UHB) 76 1
and (m,l1l2)p, ~ 1. Thus (m,12) # 1, (m,12) # (m11), (7, 12) is not isomorphic to the algebra from
lemma 16 and (m, I112) is not.

Let m; = my. Then (x,12) # 1 and (x, l2) is not isomorphic to the algebra from lemma 16 in view
of the symmetry for the algebras (x,11) and (m,12). Let vi # v,. Then one can find pg, o such that
(™) ~ 1, i =1,2and (M1 —Vv1)(M1 —V2) % 1, (M2 —V1)(H2 —V2) ~ 1. This means that (m, I112)p, # 1
and (7T, |1|2)p2 ~ 1.

Let now vo = v1 + 7°7, g = Irr(n™(ve + 7°9)), n € Ok. Then f(z™M (v1 + 7)) ~ E{n(n — 7). If
& # 1, then we require n(n — 7) 1. In this case f(7™M (v + 7°1)) ~ 1, (7, l1l2)q ~ (7, n(n — 7)) # L.
Moreover, (m, l1l2)1; ~ (7, (7M™ Mvg — vp)(7M3 ™Mz — vy)) ~ 1.

Finally, let ¢ ~ 1. After the replacement of prime element v = 7w« one can check that the algebra
(mwa, 1) is nontrivial and not isomorphic to the algebra from lemma 16. To complete the proof it is
sufficient to show that the same is true for the algebra (a,l1). If 6; = 7™ (vq + (7)), i = 1,2,
ti = 1rr amk(0i), then £(0i) ~ & ~ 1, and

o, (%mﬁi)
g ~ | /= | .
N
So among the algebras («, l1)t,, 1 = 1,2 there is exactly one nontrivial algebra. Since the algebra from

lemma 16 is nontrivial at t; and t,, the lemma is proved.

Now the proof of the theorem follows immediately from lemmas 16-19.

Let us consider the remaining subcase of case 1X.1. In this subcase one can assume that f(x) =
(X2 = T*U) (X — 7T™V) (X — 7™V ) (X — TMVR), Vi =V + 7S, 7 € OF, 1 =1,2,0< s; < s and if s; = sp,
then 71 # 7. Let | =x—7aMv, |; = x —7™Mv;, and

[ wm, ifk/2< my,
£= (u—v?)71, otherwise.
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Theorem 16 Let f be as in case 1X.1, m; = my; = mg, Vi = V, = v3. Then the group BrC is
generated by the class of the algebra (7, @) and the classes of the following algebras.

e A= (o, x?—7Ku), if k=1 (mod?2).
e A= (rE,x—nw), if k=2,

where w € Of,, w? —u £ 1,
E = aw,ifm>1,
T aw—v),ifm=1,
and

1. (a, 1), (e, 12), if
k+m+s; =1(mod?2).

2. (m, 1), (=, 1), if
k+m+s; =0(mod2), s =s;.

3. (m, 1), (=, 1), if
k+m+s; =0(mod2), s; < sp, £ # 1.

4. (m, 1), (o, ), if
k+m-+s; =0(mod2), s; < sp, £~ 1,

Proof. If k is odd, then (o, x>—7*u); % 1 and (o, x> —7*u)y, # 1, i = 1,2. Let k = 2. Then f(aw) ~ 7E
and the algebra A is unramified. We also have (7E, x — 7w); ~ (m,w? — u) % 1. By the same argument
(mE,x —7w);, ¢ 1. So A is nontrivial at I, 11,1, in any case.

Observe that (a, 1)) ~ (a, 7%F51%52) (o, 1)1, ~ (o, 7™+52), (o, D1, ~ (ar, #™+52), (v, 1)) ~ (or, 7™+S2),
(a, 1)1, ~ (o, 79), (a, 1)1, ~ (@, 7™*51). Let k+ m+s; = 1(mod2). Then among the algebras («, 1),
and (a, I), there exists exactly one nontrivial algebra, so that («, 1) # 1 and (a, 1) £ A. The same is true
for the algebras («, I1);, and (o, 11)1,. Finally, (a, 1) ~ (o, 75r*S2*%1) and (a, 1), ~ (o, 751+52),

Let now K+ m+s; =0(mod 2), 0; = 7™M (v + 7%n;), mi € O, pi = Irrk(9i),

s [ —uifk2<m,
~ 1 v2—u, otherwise.

Then
o(ni — ), if sy < sy,

f(0i) ~ { oni(ni — 1) (i — 72) otherwise.

Let us require (6;) ~ 1, then (m, 1)y, ~ (7, (—1)%7i). One can check that Ap; # 1. There exist 1,72
such that (=1)%n; # 1, (=1)%n2 ~ 1. Then (7, 1)p, # 1 and (7, 1)p, # Ap,. Consider the case s; = s,.
We have (7, 11)p, ~ (, (=1)%(ni — 71)). One can always find an element 7; such that

{ (=K — 1) ~ 1,
S(—1)*m(n —m) ~ 1

DX —m) #1,  _
{ S(=1)%na(n2 — 72) # 1 == (m, l1)p, # 1.

{ 227?373—_7;—)1)767611’ == (7, 11)ps # (7, 11)ps-

== (7T, Il)p1 7(/ Apl'

5(,,74 _ 7_2) ~ 1 == (7T, Il)p4 7[/ Ap4 ® (7T, Il)pA'

Let now k+m +s; = 0(mod2), s; < s, £ ## 1. Consider the algebra (m,13). If v/ = v + 7527,, then
f(x) = (X% — 7Ku)(x — 7™V ) (X — 7™V + 751 7)) (X — 7™ (V' + 75273)). So (m,12) = (7, 1") A 1, A since

{ na(na — 1) ~ 1,
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we are in the case k + m + s; = 0(mod 2) again. Furthermore, (, ), ~ (r, (x™*S171)?) ~ 1, therefore
(7, 112) £ A. We have also (m, 1) ~ (7, &) # 1.

Finally, let K+ m+s; = 0(mod2), s; < s, £ ~ 1. If 6 = 7™(v + 751 (I7)Y), qi = Irrcemc(0i),
i=1,2, then f() ~ ¢ ~1and

a, (s/ﬂm+sl+i
(00 Des ~ ( I

Thus (a, 1) £ 1, A. To finish the proof one only need to check that (7o, 1) o 1, A. But it is evident after
the replacing the prime element by v = ar.

), Ag # 1.

Theorem 17 Let f be as in case 1X.2 Then the group Br C is generated by the class of the algebra
(7, &) and the classes of the following algebras.

1. k/2 < my. Two generators are (a,l1), («,12). The third one is

a) (m,lp) if k =1(mod?2),
b) (7E,x— 7%/2w) otherwise.
2. my < k/2 < mg. Two generators are (o, 1), (a,l2). The third one is
a) (a,x?—7ku) if k = 1 (mod 2),
b) (m,13) if k=0(mod2), m, + k/2 = 1(mod 2),
c) (rE,x — 7¢?w) if k = 0(mod 2), m, + k/2 = 0 (mod 2),
3. m3 < k/2 and if my, = mg = 1,then vz # vy, V3 # Vo. Two generators are («,l1), («,l2). The
third one is
a) (7E,x — 7K2w) if my + m3 = k = 0(mod 2),
b) (o, x — 7%2w) if my + m3 = 1(mod2), k = 0(mod2) and —viv,v3 ~ 1,
c) (m,x%2 —aku) if my+ mz=1(mod2), k =0(mod2) and —viVvavs % 1,
d) (o, X% — 7Ku) if my + mz = 0(mod2), k = 1(mod2) and uvyvovs ~ 1,
e) (f(0),x), otherwise.
4. my=mz=1< k/2,vi =vi+75i7, i=2,3,s, <szandifs; =s;, then 7, # 73. Two generators
are
a) (a,l1), (a,lp) if s, = 0(mod2),
b) (m, 1), (7, 1o) if s, = s3 =1 (mod 2),
¢) (m 1), (a.ly) if s, =1(mod2), s, < sz and —m ~ 1,
d) (m, 1), (7, 13) if s, =1(mMod2), s, < sz and —7» # 1.

The third one is

a) (a,x?—7ku), if k =1(mod2), uv; ~ 1,
B) (a,Xx), if k=1(mod?2), uvy # 1,

7) (7E,x — 7%2w), if k = 0(mod 2),

where w € Of,, w? —u % 1, and E € Oj; can be found from the condition f(7%/?w) ~ rE.

Proof.
1. We have (Oz, |1)|2 ~ (a,—7TV1) A~ 1, (a, |2)|1 ~ (Oz,ﬂ'Vl) 41 and (a, |1|2)|1 ~ (a, (X2 - 7'l'kU)|3)|1 ~
(cv, (mv1)?mve) 4 1.
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Assume firstly k = 1(mod2). Suppose ¢ € {1,2}, ¢ = ma(mod2), § = a(¥7)*M2" and p =
Irr zm(®). Then 3k/2 < vy (3 (0) < 3my. Let uvy ~ 1. Then we have f(¢) ~ uvy ~ 1. Thus

e~ (i) ~ <Ifma<§) oL

So (m,12) # 1. If now uvy is arbitrary, then after the extension by \/a we are still in subcase 1.a and
uvy ~ 1, therefore the algebra (=, 1) is nontrivial again and it does not split by /a. Hence (7, 12) #
(O[, Il)! (O[, IZ)! (Oé, |1|2).

Let now k = 0(mod 2). We have

(TE, x — 7°W) iy ~ (W) 21

Since (o, li)x2e—zku ~ 1 and (o, 1112)x2—xy ~ 1, we are done.

2. (o, 1)1 %1, (o, l1l2)1, 1. If my > 1, then (a, o), # 1. If me =1, then (o, l2)1, # 1. Let us find
the last algebra. Consider the case k = 1(mod?2). (o, x? — 7ku)j, 4 1. We have also (a, x? — 7*u);, ~
1, (av. l1ly)y, 4 1. Ifeither my > 1or Vi # Vo, then (o, 11)1, # (a, x2—7Ku),, and (a, I2)1, # (o, X2—7*u)y,.
Let my, = 1 and vy = v,. Suppose 6 = /7. Then f(6) ~ vivo ~ 1. So

«, —7mV1

e~ (e

) 41, (o lp)xene # 1

but
(o, X2 = 7¢U)ye_ra ~ (av, 0%) ~ 1.

Let now k =0 (mod2) and m, + k/2 = 0(mod 2). Then

(TE, X = 72 W)y iy ~ (k(\%\gg—\/fku» o

To complete the consideration of subcase 2.c it is enough to observe that all other algebras split at
X2 — 7rku.

Finally, if m, +k/2 = 1 (mod 2), then f(7%?w;) ~ vavo (W — u)(w — 7™ 7%/2y3), where w; € O} and
Wi # Vg, provided mg = k/2. For pi = Irr(7*/?w;) we have (m, I3)p, ~ (m, (—1)K/2(w — 7M7K/2y3)).
Let us require

(—DR2(wy — MM 2vg) L 1, [ (D)2 (wp — 73 TR 2vg) ~ 1,
{ (—D)K2vvo (W2 — u) £ 1, { (—D)X?vvo(W3 —u) ~ 1.

Then (m,13)p, # 1, (m,13)p, ~ 1. Furthermore, the algebras (, 11)p, and (m, 11)p, are either both trivial
or both nontrivial. The same is true for the algebras (m, 12)p,, (7, 12)p, and for the algebras (7, l112)p,,
(m,1112)p,. So (m, 13) is not isomorphic to (7, ;) and (m, I112).
3. We have (o, l1)1; # 1, (a, 1215 % 1 and (a, l1l2)1, # 1. 1f mz +mg and k are even, then one can argue
as in subcase 2.c.

Let my + mz = 1(mod2), k = 0(mod2) and —vi1vavz ~ 1. Then f(7K2w) ~ —vivovaz(W? — u) ~ a,
so the algebra (o, x — 7%/?w) is unramified. Then f(6;) ~ 67 ~ 1 and

, Oi
(= A, ~ (k(g%xpo) ’

therefore there is just one nontrivial algebra among («, X — wklzw)pi, i = 1,2. In since the algebras
(o, 11)p,, (@, 11)p, are either simultaneously trivial or simultaneously nontrivial, we have (o, X — 7%/2w)
(o, I1). By analogy (cr, x — 752w) £ (a, 1), (., I115).

Let now —vivovs ¢ 1. We have F(7K?w) ~ —vivovas(W? —u) ~ 1 and (m, X% — 75U)y_ w2y ~
(m,w? —u) % 1. For any i (m,x? — 7¥u)), ~ 1. On the other hand, (a, 1)1, # 1, (o, l112)1, # 1 and either
(OZ, |2)|1 7(' lor (a7 |2)|3 7(' 1.
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The case of even k is done. Let k be odd. Then f(0) ~ uvivovan™2+™Ms If we are in subcase 3.d, then
f(0) ~ 1 and (a, X2 — 7&u)x ¢ 1. Moreover, (o, x2 — 7%u) % (., 1;), (e, 1112) as in the previous subcase.
Finally, in 3.e the algebra (f(0),x) is unramified. Assume firstly that m, + mz = 0(mod2), so

f(0) ~a, VU
«, v/7u
(20 (k(\/ﬁx—a(xz —wku») o

On the other hand,

, —7mV
(0, 1) s ey ~ ( RN >> ~ 1 and (@, 1)xe— iy ~ (@, 1112)xe— ey ~ 1.

k(y/mu){(—a(x? — wku)

Let now m; + m3 = 1(mod2). To finish the consideration of case 3 it is sufficient to prove that the
algebra (muvivyvs, X) does not split after the extension by /«a. This extension leaves us in subcase 3.e,
so we can assume that —1 ~ u ~ v; ~ 1. If 0 = 7™M /7w and p = Irry 3ok (0), then

I, w
00~ (i) #*
since () ~ —vivovz ~ 1.

4. Consider case s; = 0(mod2). We have (a, 1), ~ (a, 752%) «£ 1, (o, 1)1, ~ (a,752*1) £ 1, and
(OZ, |1|2)|2 ~ (OZ, |3(X2 - WkU))'z ~ (OZ, 7TSZ+1) 76 1.

If s = s3 = 1(mod?2), let §; = w(v1+7%2;), Ui € Ok, pi = Irrk (@), then F(6i) ~ Hi(Ui — 72) (i —
73),

Tl ~ [ — B ) )y~ [ i T2
T\ kGAODe) )T T KGO e )

(, 1112)p, ~ M) |
P\ KG/F@) (i)

{Hl?él, {Hz‘ﬁ?‘l, {Hs(“s‘ﬁ)?‘l,
(M —72)(Ha—73) #1, | Me(M2—T3) #1, | Hs— 731,
then (7,11)p, # 1, (7, 12)p, # 1, and (7, l112)p, # 1.

Let s; be odd, s; < sz and 6 = 7w(vy + 7%2), B € Ok, p = lrrk(0), then £(O) ~ p— 72,
(m,11)p ~ (7, ). If

If we require

{u%l,
u_7_27('1!

then (7, 11)p # 1. Suppose n = w(vy + 752 /m), q = Irrk(wﬂ))lk)(n). In this case f(n) ~ —m and

provided —7m> ~ 1. After replacing the prime element v = 7o we have —75 = —ma 5271 ~ 1, therefore we
are in the same subcase, hence (7o, l1) = (v, 11) £ 1. Let now —7, £ 1. The replacement vj = v; + 75373
leaves us in the current subcase, so (m,13) ~ (7, 17) £ 1. (7, lils), ~ (7, I, ~ (7, —72) £ 1.

So, two generators are found. To find the third one we can argue just by the same way as in subcase
3. To complete the proof it remains only to show that the third generator does not belong to the group
generated by the first two ones. This is true for the algebra from «), because it is trivial everywhere in
this proof, where the algebras from the group, generated by algebras a)-d) are nontrivial. Finally, the
algebras from /3 and ) are nontrivial at x? — 7Ku, but the algebras from a)-d) are trivial there. The
theorem is proved.
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4 Splitting type (1,2,2).

This section is devoted to case deg f1 = deg f, = 2, deg f3 = 1 and the reduction is bad.
The evident list of all cases under consideration according to the reduction type of f(x) is following
(FX) = (2 —m™u)((x —a)®2 = &)(x —e), k>0, ue O, adec O, 7ku,d £ 1).

I.k=0,aeMy, 6 €0}, U=5.

Il. k=0, 6§ € O, ecO.

1. k=0, 6§ € O, e € M.

IV. k=0, 0 €My, acOf, ecOf, aFe k<v().
V. k=0, 6e M, ac Of, e e M.

VI. k=0, § € Mg, a€ M, e O, k<v().

VII. k>0, 6 € My, a€ M, e € Mg, k<v(5).

Lemma 20
| BrC|=s8.

Theorem 18 Let f be as in case I. Then the group Br C is generated by the classes of the algebras
(7, @), (m,x?—u) and the class of the following algebra.

1. (m,x—¢), if either e € O}, 2 —u £ lor e € My, =1 ~ 1.
2. (a(x? — u),x — w), otherwise,
where w € OF, w? —u # 1.
Remark 1 The algebra (a(x? — u), x — w) does not split by any quadratic extension of scalars.

Proof of the theorem. The algebra (7, x2 — u) is nontrivial by lemma 3. We have also

(w,x—e)xz_u~< T, vuTe ),Dek*.
k(vU)(x% = u)(y/D(x* — u))

The last algebra is nontrivial iff \/u—e £ 1 in k(;/u). And this is true if either e € O}, e —u % 1 or
e € My, —1 ~ 1. The algebra (7, (x?> — u)(Xx — €)) is nontrivial by lemma 3 again.

Consider now the algebra A = (a(x?—u), x—w). It is unramified because Ax—w ~ ((W2—u), X—w) ~
1. Let 0 = (1 + /m)y/uand p = Irr sz myk(®). Then £(0) ~ /u—e ~ 1, provided we are in subcase

2. SO
o (ST ) - (Grvom)

On the other hand,

o=y~ () 1

The theorem is proved.

Theorem 19 Let f be as in cases Il or 111. Then the group -Br C is generated by the class of the
algebra (7, «) and the classes of the following algebras.

e Case |. The first algebra is (7w, x —¢e) and the second one is

1. (e€um, ), if k = 1(mod2).
2. (m,x%2 = 7Ku), if k =0(mod2) and ef 1.
3. (a,x—7?w), if k =0(mod2) and e¢ ~ 1.

40



e Case Il (e =7Mv).
1. (7, x —7™V), (7, x? — 7*u), if m < k/2, m,k = 0(mod 2) and either ¢&v % 1 or m = k/2.
2. (1, x—71™V), (a,x — 72w), if m < k/2, m,k = 0(mod?2), &v ~ 1 and m < k/2.
3. (7, (x—a)?—9), (atnm,x— 7%2w), if m < k/2, k =0(mod2), m = 1(mod?2),

_ [ v, ifm<k/2,
1 v—w, if m=k/2.

(m,x — 7™V), (a, x? — 7¥u), if m < k/2, m,k = 1(mod2), —¢uv ~ 1.
(m,x = 7™V), (a, X), if m < k/2, m,k =1(mod2), —€uv £ 1.

(m,x = 7™V), (=€uvr,x), if m <k/2, k=1(mod2), m = 0(mod 2).
(7, x —7™V), (a,x? —7Ku), if m>k/2, k = 1(mod 2).

(7, X —7™V), (7, %% —7*u), if m > k/2, k = 0(mod 4).

(m, (x — @)% = 6), (—&wam, x — 7K2w), if m > k/2, k = 2 (mod 4).

© ®© N o ok

where w € Of,, w2 —u # 1 and

¢ = o, if ae My,
~ 1 §—a?, otherwise.

Proof. In 1l and 11l (m,x—¢€) % 1 by lemma 3.
In 11.1 we have f(0) ~ —efum, so the algebra (—efum, X) is unramified. Let 7 € O} such that K|k is an
unramified odd degree extension and the following conditions hold:

T %1,
T—en~1,
(r—a)>—6~1.

Such K and 7 exist in view of lemmas 5 and 6. Let p = Irrk (7). Then f(r) ~ 1. Thus

mw, T—E€

(m, X—¢€)p ~ <W> ~1and (—efum, X)p ~ (%) % 1.

Consider subcase 11.2. We have f(wrk/?) ~ ef(w? —u) ~ 1, so (m, X% — 7¢U)y_, w2y, # 1. Finally,
(m, X —e) % (7, x2 — 7¥u) by lemma 3.

If we are in 11.3, then f(w7r"/2) ~ «, so that the algebra («, x —wz*’?) is unramified. Let e € {1,2}, e =
k/2(mod2), § = 7/271( )7 and p = 111 gmk(0). Then £(0) ~ e ~ 1 and

k2 a, T2 Ym)®
(oo x =W ( KT D) )7”'

To prove (m, X —e€) % (o, Xx—wr*’?) it is enough to observe that the extension by /7 leaves us in subcase
11.3, hence this extension does not split the algebra (o, x — wr/?).

In 111 the algebras (7, x — 7™v) and (, (X — a)®> — §) are nontrivial.

111.1. Since F(7%/2w) ~ &v ~ 1, provided m < k/2, then (r, X% — 7KU)y_ sz, 2 1. Let now k/2 = m.

Then we require
2 —U~ Q,
V=1~ af,

T € Ok, K|k is unramified of odd degree, then f(x*/27) ~ 1 and (m, X2—7KU) | (rksz -y o 1. Furthermore,
(m, X2 = 7)) @ (1, x — 7™V) ~ (7, (x —a)2 — &) £ 1.

111.2. F(7K2w) ~ «, so that («, x — 7¢/?w) is unramified. Now we can argue as in 11.3.

111.3. In view of F(7?w) ~ &n(w? — u)r the algebra A = (én(w? — u)m, x — 75/2w) is unramified.

T, W—y/Uu .
Pt <k<ﬁ><xz—wku><¢m>> PR O
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On the other hand,

IS T, = ~
(7T',(X a) 5)x —mku (k(\/a)<xz_7rku>(\/m>> 1

111.4. We have f(0) ~ —¢uv. Thus (a, x?> — 7Ku)x ¢ 1. Moreover, although the extension by /o leads
us to case (1,1,1,2), it does not split the algebra (, x — 7™Vv). Therefore (o, X2 — 7Ku) o (m, x — 7™V).
111.5. f(0) ~ «, so the algebra («, X) is unramified. (a, X)x—-mv 2 1. The further arguments are similar
to the previous subcase.

I11.6. The algebra A = (—{uvr,X) is unramified. Let 6 = 7M1, 7 € Ok, p = Irrg(f). Then
T(0) ~ &(v— 1) and Ap ~ (m, 7). If we require

{7'761,
Ev—r1)~1,

{1278

then Ap ¢ 1. And if we require

Ev—1)~1,

then Ap o4 (m,x — ™V), since in this case (m, X —7™V)p ~ (7, =£).

111.7. (a,x? — 7€U)x—-my o 1. Moreover, the extension by \/a does not split the algebra (7, x — 7™V).
111.8. We have f(75/27) ~ —¢7r(72 —u). If 72 —u £ Land —¢7 £ 1, then (mr, X2 — 7KUY | iz gy # 1o
111.9. F(7K2w) ~ —¢war, so the algebra A = (—¢éwam, x — 75/2w) is unramified. Finally,

T, W— /U
(k(ﬁxxz — mku)(D(x2 — 7T"U))> #L

Ase_ iy ~

but

7, =¢
(m, (X = )" = Ok ~ (kwwxz — < u)(DOE — wku») ot

The theorem is proved.

Theorem 20 Let f be as in case 1V. f(x) = (x — e)(x? — 7¥u)((X — v)?> — 7™y), e,u,v,y € Of, V #
~v, 0 <k < m. Then the group BrC is generated by the classes of the algebra (r, @) and the classes of
the following algebras. The first algebra is

1. (m,x—e), ifk=0(mod2), —e £ 1.

2. (a,x— 7K2w), if k = 0(mod2), —e ~ 1.

3. (nue,x), if k = 1(mod?2).

The second one is

a. (m,(x—v)?—7aMy), ifm=0(mod2),v—e %1
b. (. x—v—a"27), ifm=0(mod2),v—e~ 1.
c. (m(e —Vv)y,x—v), if m=1(mod 2),

where w, 7 € O, W2 —u % 1, 72—~ £ 1.

Proof. Ifk = 0 (mod2), then f(7/?w) ~ —eq. In case 1 we have f(7%/?w) ~ 1 and (7, X—€)y_ kr2y ~
(,—e€) + 1. In addition let us consider the algebra (7, x2—=Ku). It is also nontrivial at this place. Indeed,
(1, %% — 7KUY sz, ~ (m, W2 —U) £ 1.

In case 2 f(7K/2w) ~ « and the algebra (o, x — 7%/2w) is unramified. Now one can prove (o, X —
7K/2w) £ 1 by analogy with the theorem 19, subcase 11.3.
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Let now k =1(mod2), pu € O, K be as above and

{ M ~ aue,

u—H~ au.

Assume 0 = /7kp € K(/7R) and q = Irre mm k(). Then £(6) ~e(u — pw)m ~ ep(u — ) ~ 1 and

e~ (i )~ (o) 1

After replacing X’ = x —v we have
F(xX') = (X' — (e = V(XY = 7™ N((X' — (—v))* — 7*u).

The above arguments gives that the algebras from items a, b, ¢ are unramified and nontrivial. (Because
nowhere in this arguments we used that k/2 < m.) To finish the proof it is enough only to check, that
these algebras are not isomorphic to the algebras from items 1, 2, 3 in the corresponding subcases.

1.a. We have (7, X —€) ® (7, (X — V)% — 7M7) ~ (7, x? — 7¥u) # 1.

2.b. If A'is the algebra from 2 and A’ is the one from b, then A, » 1 and Ag ~ (a,—V) ~ 1, where p is
constructed by analogy with the proof of theorem 19, subcase 11.3..

1.h, 2.a. In view of symmetry one need to consider only one case, say, 2.a. In this case for p as above
Ap £ 1, but (7, (X = V)2 = 7My)p ~ (m,V?) ~ 1.

3.a. (mue, X)q # 1, but (7, (X — V)2 = 7M7) ~ 1.

3b. Ay~ (a,—v) ~ 1.

3.c. Finally, we have

ey (=), v (Te—V)y, —VY
(m(e = V)7, X =V)q ( KM@ ) ( K/ @ ) 1,

and this completes the proof.

Theorem 21 Let f be asincase V. f(x) = (Xx—V)?—7M)(x—7"§)(x2—7Ku) v,7.6,u € Oy, m,r k>
0, 7™y, 7€u £ 1. Then the group -Br C is generated by the classes of the algebra (7, ) and the classes
of the following algebras.

The first algebra is

i) (7, (x—V)2—71M%), if m=0(mod2), v # 1.
i) (o, x—v—7a"2w), ifm=0(mod2), v ~ 1.
iii) (—vym, X —v), if m =1(mod2).

The second one is

. (a,x—7"9), if k/2<r, k=1(mod?2).

b. (m,x— "), if k/2 <r, k=0(mod4).

jo}]

c. (r(r? — uym, x— 7K/27), if kK/2 <r, k = 2(mod 4).

d. (wéu,x), if k/2>r, k=1(mod2), r =0(mod?2).

e. (m,x—7"6), if k=0(mod2), r =0(mod2) and either k/2=r or k/2>r, —§ £ 1.
f. (. x—7K?7), if k =0(mod2), r =0(mod2), k/2>r and —§ ~ 1.

g. (am,x—7K?7), if k=0(mod2), r =1(mod2), k/2 >,

L[ -, k2>,
§390 7=5—a2 ifk2=r.
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h. (a,x—x"4), ifk=1(mod2), r=1(mod2), k/2>r and fu ~ 1.
k. (a,x), if k=1(mod2), r =1(mod2), k/2 > r and Ju £ 1,
where w, 7 € O, W2 —~ # 1, 72 —u # 1.

Proof.

i. F(x™2wW + V) ~ v(W? —u) ~ 1, 50 (7, (X = V)% = 7™) gy —pmraw % 1.

ii. F(7™2w + V) ~ v(w?2 —u) ~ «, so the algebra (o, x — v — 7™2w) is unramified. We have also
f(v + I7m) ~ 1, therefore

(rmiew=) **

iii. f(v) ~ —vyx, (—vym, X — V) is unramified. As usual, let y € Oy satisfy the conditions

(., Xx—=v— 7Tm/2W)(x—v)3—7r ~

{ X ~ —avy,
X—7~—a.

Let 0 =v+ /7™y, q = Tk mpk(0). Then F(8) ~ xv(x —~) ~ 1, hence

v vy (VX VX
(Fvrm X = Vi <K<m)<q>>7”'

a (a4, X = 1" ) x—rrs ~ (a, (X = V)? = 7M7) (X2 = TKU)x—rr5) ~ (@, —7*U) £ 1.
b. We have f(um*/2) ~ —p(u? — u) for some p € Oy Thus (7, X — T 0)yrr(unkszy ~ (7, 1) % 1, provided

{u%L
u—p2 21

c. F(7%21) ~ ram. Furthermore,

@amx—wﬁﬂrkhwhﬂ“(k@2§&;:§iw>lﬁL

d. Let v € O} satisfy the conditions
v ~ adu,
v—Uun~ —qu,
and t = Irr( my(Vrkr). Then f(Vrkv) ~ —dv(v — u) ~ 1, so that

vou, /v
(méu, X)¢ ~ (W) A 1.

e. If k/2=r, then F(7X/2)) ~ (A — §)(A\% — u) for some X € Oj. Moreover, if s = Irri(7</2)), then

(m,x—7"6) ~< T A9 )
! T AKGWO=H0Z=u)s) )

If we require

A—8 41,
AN —ugl,

then (m,x — w"d)s « 1.
Let now k/2 > r. We have f(7%/27) ~ —=6(r?2 —u) ~ 1. S0, (7, X — 7" 6)y_ kr2, ~ (7, —6) * 1.
f. f(7%27) ~ =5(r%2 — u) ~ « and the algebra (o, x — 7K/27) is unramified. To prove (o, x — 7K/27) £ 1
one can follow the proof of theorem 19, subcase 11.3.
g. By analogy with subcase ¢ we have (o, X — 7%/27) e _ iy # 1.

44



h. £(0) ~ 7K*Téu ~ 1, therefore (o, X — 7" 8)x % 1.
k. £(0) ~ 7K*"5u ~ «, hence the algebra (o, x) is unramified. Finally, (a, X)x—xrs % 1.

Now, to complete the proof one only need to check that the algebra from i)-iii) is not isomorphic to
the algebra from a)-k). Note, that in all subcases a)—k) the nontriviality of the corresponding algebra is
showed by the completion of this algebra at the place with prime element | € k[x] such that | = Irr(0), 6 €
My, Thus, in i) and ii) we have (r, (x—Vv)2=7™7); ~ (7,v?) ~ 1 and (o, x—v—n""2w); ~ (a, =V) ~ 1.
The nontriviality of the algebra (—v~m,X) from iii is proved by the completion at g = 1rr( (0,
0 =v+ /mMx. Any algebra from a)-k) completed in g can be obtained from some algebra over k by
extending of scalars. So it is trivial at g, since the extension k(,/mx) splits any algebra over k. The
theorem is proved.

Consider the next case.

Theorem 22 Let f be as in case V1. F(X) = (x —e)(x2 — 7¥u)((x — 7™Vv)2 — 776), u,v,5,e € O;, 0 <
m,0 <k < r, 7Ku, 76 « 1. Then the group BrC is generated by the class of the algebra (r, o) and the
classes of the following algebras. B

Let if k,r = 1(mod2), then 2m < k, and if k = r = 0(mod 2), 2m > k, then u # §. Then the first
algebra is

i. (<E,x), if k = 1(mod?2).
ii. (m,x%—7ku), if k=0(mod2) and —e » 1.
iii. (o, x— 7%2w), if k = 0(mod 2), either k <r or k =r >2m, and —e ~ 1.

iv. (a, Irr(@*23)), if k =0(mod2), k =r < 2m, —e ~ 1, where 3 € O} and

o 82—, if kK <2m,
(5 “)"{ (B—v)2—6, ifk=2m,
The second one is
a. (nF,x—7a"™V), if r = 1 (mod 2).
b. (m,(x—7MVv)2 — 7"§) if r = 0(mod 2) and
e k =r and either k < 2m or —e ¢ 1,
e2m<k<rand —e £ 1,
e 2m =k <r and —e(v? —u) ¢ 1,
e k<r,k<2m, k=0(mod2), and ue % 1.
c. (a,x—7aMv—7"27) if r =0(mod2) and

e k=r=>2m, —e ~ 1,

2Zm<k<r and —e ~ 1,

2m =k <r and —e(v®> —u) ~ 1,
k<r,k<2m, k=0(mod2), and ue ~ 1.

d. (UeNk (72 = &), Irr(r™V + 7724)), if r = 0(mod 2), k < r,k < 2m and k = 1 (mod 2), where
~v € O, K|k is of odd degree and unramified,

1 ,ifam<r,
V2 =8t vZ—4¢ ,if2m=r,

-5 ,if2m>r.

Otherwise we have
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[N

. (7, X2 = 7Ku), (a(x? — 7ku), 7K2(x — 7K2w)), if k = r = 0(mod 2), 2m >k, U = J.

N

. The first algebra: (euw, ), the second one: either (a, x2 — 7Xu), provided —ued ~ 1, or (a, X — 7™V)
otherwise, if kK,r=1(mod2), k<2m <rr.

3. The first algebra: either (o, x> — 7*u), provided —ued ~ 1, or (a,x) otherwise, the second one:
(mue,x — %), k/2<s<r/2,ifk,r=1(mod2), k<r<2m.

4. The first algebra from 3, and (x, —7u(x? — 7Ku)), if k =r = 1(mod?2), k < 2m.

where E,F,w,tau € O} can be found from the conditions f(0) ~ 7E, f(z™V) ~ 7F, w? —u £ 1,
2 =541

Remark 2 The algebra (a(x% —7*u), 7¢2(x — 7%/2w)) from 1. does not split by any quadratic extension
of scalars.

Proof of the theorem.
i. If pe O, then

f(\/ﬂTu)N{ —e(u—u)(u—7) , ifk=r<2m,

—ep(n —u) , otherwise.
Let t = Irrc( mmk(v/7*W). If Ep £ 1in K and f(y/75u) ~ 1 in K, then

Ep, J7q
we0n~ (it ) #

The conditions on K and p always can be satisfied, provided that in case k = r < 2m we have u # 5.
ii. We have

—e(¢2 — u), ifk<rork=r=>2m,
f(r2¢) ~ —e(£2 — u)(¢? - 9), if k=r<2m,
—e(2—u)((¢—Vv)?—9), ifk=r=2m.

Thus if Kk < r or k = r > 2m, then (r,x° — Fku)x_wk/zw 2+ 1. Let now k = r < 2m. Then (m, x> —
wku),rrKlk(Fk/ZQ %1, provided 2 —u X land 2 —6~1lifk<2m, (£ —Vv)> -5~ 1ifk =2m.

iii. To prove (o, x — 7K/27) £ 1 one can follow the proof of theorem 19, subcase 11.3.

iv. From the conditions on 3 we have the algebra to be unramified. The nontriviality can be proved as
in iii.

a. Similarly as in subcase i for t = Irre( mmk(@), 0 = 7™v + /77 we can find K and p such that
(7F,x — 7MV)¢ o 1. Indeed,

—ep(u — 9), if 2m <k,
&) ~ uep(u — 9), if 2m, r >k,
—ep(u—0)(v2 —u), ifk=2m<r,

and the conditions f(#) ~ 1 and Fu +¢ 1 can be satisfied in some unramified extension K|k of odd degree.
b,c. By replacing x’ = x — x™v case k = r is reduced to ii and iii. Furthermore,

1, if 2m <k,
f(r™V + 727) ~ —ea x vZ—u, if2am=k,
—unk, if 2m < k.

So, in b the algebra (7, (X — 7™V)2 — 77 6)y_.my+.rs2, is NONtrivial, and the algebra from c is unramified.
The nontriviality of the last algebra can be checked by analogy with the proof of theorem 19, subcase 11.3.
Indeed, this algebra is nontrivial at Irry sz k(6), where 6 = 7™v + 77272 (Yr)°, ¢ € {1,2}, ¢ =
r/2 (mod 2).

d. We have f(z™Vv + 77/27) ~ uen(y? — §). Since K|k is of odd degree 72 — § ~ Nk x(7? = §) in K, so
that the algebra A = (UeNk k(72 = 0)7, ITTk (7™ + 77/27)) is unramified. Let p € Oj,, K'[k is of odd
degree and unramified such that

{ M A ue(y® — 9),

H—uz —u(* = 9).

46



Let t = Irrk:( mmk(v/7W). Then f(y/7Ku) ~ —ep(u —u) ~ 1 and

KK/ (/) () KK (/a0

Let us check now that the algebra A from i — iv is not isomorphic to the algebra B from a)-d).
Let firstly k and r be odd. Then 2m <k, A = (xE, X), and A¢ ~ 1. On the other hand,

F, —aMv
Bt ~ (7F, X — 7™V); ~ (ﬂi_) ~1.
e & K (/M) (t)
Let now k be odd, r be even. We have
2m,,2
(7) Cifom <k,
K(y/TR)(t)

7, ™€ .
(W) , otherwise

In ¢ we have B = (a, x — 7™v — 7/2§) and 2m < k. So

Be ~ (7, (X — 7™V)2 — 77 6)¢ ~ ~ 1.

a, =MV
Bt~ | —0——+ | ~1
‘ (K@mmm>
Finally, if case d takes place, then 2m > k and

B 9 K/ ~ <U6(~/2—5)7T, \/wkp> N ( auep, /TH ) o1

KK’ (yam (t) KK'(/7R)(t)

KK'(/mm) )
since from the proof of i) we have aueu ~ 1.
Conversely, let k be even and r be odd. From the proof of a) By # 1, t = Irrk zpk(0), 0 =
7™V + /771 . On the other hand, if A = (7, x? — 7Ku), then

2my,2 _ Kk
AtN<7r,7r Y 7ru>N1
K(y/TR)(t)
in view of min{2m, r} < min{r, m + r/2}. For A = (o, x — 7%/?w)

a, ™MV — 7K2y
Acr ( K/ ) ~

provided that if k = 2m, then w # v.

Finally, let k and r be even. The extension by /7 leaves us in case V I. Moreover, if the algebra
(o, x—7%’2w) is nontrivial (subcase iii)), then it does not split by this extension, since we are still in iii).
The same is true for the algebras from iv) and c¢). So it is enough to prove that in ii),b) (m,x —¢€) % 1,
and in iii), c) (a,x — 7?w) « (o, x — 7™V — 77/27). Case iv),c) is impossible.

In ii),b) we have (7, X — €)|rr(zks2gy ~ (m, =€) ¢ 1. Consider now iii),c). Then —e ~ 1. If k =,
then k > 2m. For # from the proof of iii) satisfying the conditions # = 7%?~Y(¥m)°, ¢ € {1,2},
e =m+k/2(mod 2) we have (q = 11y 37 k(0))

3 m—1 Y, m
(a,x — 2w)q ~ (%) and (o, x — 7™V — 1727)q ~ (%) ’

S0 Aq ¢ By.
Let now k < r. Case 2m < k is similar to the previous one. In case 2m = k consider § = 7™v +
a2 (), e € {1,2}, e = k/2+r/2(mod 2). Then

NP N G0 i L omy_ ey (@ (YD
o=t~ (G ) and ooy =afin ~ (S ).
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Finally, in case 2m > k let # = 7%/2(:¢/r). We have

) o, ()2 e a, (Ym)k/2+t
(a, X 7Tk/2W)q ~ (W) and (a,x—7"v—r /2T)q ~ (W) '

Consider now cases 1-4 step by step.
1. There exists a € Oy, such that a% —4u £ 1. If p = Irr( mK(m<?(a + U)), then

2_ Kk T,at 2\/G>
T, X2 =1 U)p ~ [ e |,
( w~ (R
since f(7X/2(a+ U)) ~ —e(@® + 2a,/u)? ~ 1 in k(y/U). So, (7, x% —75u), # 1.
Furthermore, (a(x? — 7Ku), 7K/2(x — 72W)), _ sz, ~ ((W? —u), 72 (x — 7K/?w)) ~ 1, so that this
algebra is unramified. Let us prove the nontriviality. Suppose 6 = (1 + ¥/m)7*/2,/u € k(,/U, ¢/x) and
q=1Irr(9). Then 6% — 7Ku ~ (§ — 7™Vv)? — 76 ~ 7 in k(y/u). Therefore f(4) ~ 1 and

adT, Wk/z((l + e/ﬂﬂklz u— 7rk/2W)>

(a(x® = 7€u), 72 (x — 7/2w))q ~ ( k(v/u, ¥/m)(q)

~ ()

Thus /a does not split the algebra. To check that /7 (and \/7a) does not split it, one only need to
observe that this extension leaves us in subcase V I.1.

2. The first algebra is unramified and nontrivial by analogy with subcase i). We have f(7™v) ~ —ued.
If —ued ~ 1, then (o, X2 — U)x—rmy 7 1. Otherwise, the algebra (o, x — 7™v) is unramified. Moreover,
(a, X)y2—rku ~ (a, 4/mu) £ 1. Finally, the extension by /a leaves us in subcase V 1.2, therefore it does
not split the first algebra.

3. If F(0) ~ —ued ~ 1, then (o, X2 —7Ku)x £ 1. If —ued # 1, then («, x) is unramified and (ov, X)y2— kg ~
(a, /7U) £ 1. Let 0 = (B — /a)/m, where 52 —a £ 1, = Irf( 5 3mk(0). Then £(0) ~ 1 and

N
k(v 7(0) )7”'

4, (x,—mu(x® — 7€u))x ~ (X, ™*1u?) ~ 1, so the second algebra B is unramified. To prove that B is
nontrivial let us do it for the algebra B’ = B @ k(C)(y/). If § = 7%/ € K(/7R), U € O, K is of odd
degree and unramified over k( /), then £() ~ (u— u)(u — ¢) and

B! ~ UL
1rr(6) K(\/ﬂ)(ﬂ)“rr(e)) .

Anyway, we can find such K and g that uy—u~pu—48 # 1, U# {, 5_;& K. Then B;rr(g) 1. Case V1 is
considered.
It is convenient to divide the last case into several parts.

(mue, X — 71%)q ~ (

Lemma 21 Let case V Il take place, i.e.
f(x) = (x — 7€) (%% — 7¥u)((x — 7™V)2 — 775),

where e,u,v,§ € O, s,k,m,r >0, 7Ku,7"6 £ 1,k < r. Then the following subcases do not intersect
and cover case V I1.

VIl;. s=1, k>1andif m=1, thenv #e.
VIl{. s=1,k>1, m=1,andv=e.

VIl,. s>2, k>4, m=1.
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VIl;. 1<k<3and k < 2s.

Proof. If s> 1, m > 1, and k > 3, then one can use replacement x = x'7?, y = y’'=n°.

Theorem 23 Let f be as in case V I1;. Then the group -Br C is generated by the class of the algebra
(7, &) and the classes of the following algebras. B

Let if k = 1(mod2), then 2m < k, and if k = r = 0(mod2), 2m > k, then u # §. Then the first
algebra is

i. (—malNk k(e —7/2717),p), if k = 0(mod 2),

where 7 € O such that K|k is of odd degree and unramified, p = IrrK|k(7rk/27-) and 7 satisfies the
conditions: (72 —u) % 1, (1) ~ 1,

1, ifk<ror2m<r,
o(X) = x2—46, ifk=rand2m>r,
(x—Vv)2—¢, ifk=r=2m.

ii. (o, x?—7Ku), if k = 1(mod2) and uei) ~ 1, where

1, if 2m <,
)= vZ—¢, if2m=r,
-9, if 2m >r, r is even.
iii. (a,Xx), if k=1(mod2) and uey £ 1.
The second one is
a. (—=m(u2 = S)x(WNL k(e —va™™t — ur™271) @), if r = 0(mod 2),

where p € Of such that L|k is of odd degree and unramified, g = I'rr j (z™v+7"/2l) and p satisfies
the condition: (U2 — &) # 1 if k is even, and (u? — 8)x (1) + 1, otherwise,

1, if 2m <k,
vZ—u, if2m=k<r,
x(X) = —u, if2m >k, k<r,
x2—u ,if2m>k=r,

(X+Vv)2—u, ifk=r=2m.

b. (a,(x—7™Vv)2 —7%6), if r = 1(mod2) and (e — 7™ V) x (1) ~ 1.
c. (a,x—a™v), if r =1(mod2) and 5(e — 7™ 1v)x () # 1.

Otherwise we have

1. The first algebra is from ii) or iii), and the second one is (—wued, x — 7™v), if k,r = 1(mod?2),
k<2m<r.

2. The first algebra is (—wued, X), the second one is either (a,x? — 7*u), provided ue ~ 1 or (a,Xx —
7*+172) "provided ue £ 1, if k,r=1(mod2), k <r < 2m.

3. If k=1(mod2), r =0(mod2), and 2m > k, then the first algebra is from ii) or iii), and the second
one is
- (m, (x — 7™V)? — "§) in the following cases:
1. 2m <r and ue £ 1.
2.2m=r, ue ¢ 1, and v2 —§ ~ 1.
3.2m=>r,ue 1, and =1 % 1.
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- (m,t) in cases
1.2m=r,ue~1, and v> — 6 £ 1.
2.2m=>r,ue~1,and -1 ~ 1,
where t = 111 mm(VTEW), K is as above, w € Oy \ (O%)?, and —e(w —u) % 1 in K.
- (o, Irr @™V + 772))) in cases
1.2m<r,ue~1. v2—§ % 1.
2. 2m>r, ue ¢ —1,

where \ € Oy, and A2 —§ # 1 in case 2m < r, A2 —§ ~ —1 in case 2m > r. Note that if
2m < r, then one can suppose K =k, and if 2m > r, then this is true as soon as k # Fs.

- (a, Irr(m™n)) if 2m = r and ue ~ v2 — §, where n € O, ue((n — v)? — §) # 1.

4. (—r(e—7K"2w), x—7K2w), (a(x®—7Ku), nk2(x —7*2w)), w?—u « 1, if k = r = 0(mod 2), 2m > Kk,
u=¢andif k=2, thene?—u ~ 1.

5. (m,x —me), (r,x2—7Ku), ifk=r=2,m>1, U= and €2 —u £ 1.
6. If k = r = 1(mod?2), 2m > k, then the first algebra is (x, —7u(x? — 7¥u)) and the second one is

- (—mued, x), if U # 6.
- (o, X2 — 7ku), if U= 6 and either —ue ~ 1 or 2m = k + 1.
- (a, Irr mmk(®)), 0 = Vaku(l + /mu), if u = 5, —ue £ 1, and 2m >k + 1.

Remark 3 The algebra (a(x? — 7Ku), 7%/?(x — 7K/2w)) from 4 does not split by any quadratic extension
of scalars.

Proof of the theorem.

i). In view of f(7%/27) ~ —ra(e — 7%/?7) in K the algebra is unramified. We also have (—ma Nk k(e —
T/2717), P)x—re ~ (—maN(e — 7%/2717), T, (me — 7%279))(—raN (e — 7%/2717), 7N (we — 7K/27)) £ 1.
ii), iii). £(0) ~ ue, so in iii) the algebra («, X) is unramified. Moreover, in ii) we have (a, X2—7Ku)y # 1
and in iii) (o, X)x—me % 1.

a). F(x™V + 172p) ~ —m(e — 7™ v — 227 1) (U2 — §)x (W), so the algebra is unramified. If k is even,
then

k/2 —my, /2, A
<—7f04><<u>l\'uk<e—wr”“l—wf’z—lu),q)xz_wkuN(LHWr S u)).

K(/a) (2 — 7ku)(,/C (& — 7Fu))

The latter algebra is nontrivial if and only if x(u) is not a square in L. We also have (—n(u? —
S)X(WNL k(e = va™ ™ = 77271), Q)x—re ~ (=7 (W? = S)X(WN (e — va™ ™ — x™/27p), TT, (we — 7™ —
772pM) ~ (7, (U2 = 8)x (1)), and this algebra is nontrivial iff (2 — §)x (W) is not a square in L. Anyway,
the algebra from a) is nontrivial.
b), ¢). We have f(7™v) ~ §(e — 7572v)x (1) and (o, X — T™V)x—re % 1.

Let us check now that the algebra from i), ii), iii) is not isomorphic to the algebra from a),b),c) in
the corresponding subcases.
1). Let firstly k,r = 1(mod2). We have (o, x? — 7€U)x—zmy ~ 1 % (a, (X — 7™V)? — 7" 6)x—rmy.
Furthermore,

a, \/mu y
k(y/7u)(x2 — wku) (/D (X2 — 7ku))

(OZ, X)XZ—TrkLI ~ (

but

- N a, —7Mu ~
(O[, X—m V)Xz—ﬂ'ku <k(\/ﬁ)<xz — 7Tku>(\/m)> -
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Similarly one can check that (o, (X — 7™V)2 — 7" 0)y2—.«, ~ 1. Finally, we obtain
(0. X = V) (x—amvy2—rrs ~ (o, V7o) 4 1, and (a, X% — Wku)(x_,rmv)z_wr(; ~1.

2). k=0(mod?2), r = 1(mod2). Then the algebra from i is nontrivial at x — 7e, but (a, (x — 7™v)? —
7" 8)x—re ~ 1. Moreover,
k/2—1

(—maNkkE—m 7), P) (x—rmvyz—nrs ~

—saN (e — 7%/2717) [[,(=mv + Vrrs — 7i2r)
K(V@8) (X — 7™V)2 — 77 §)(/C((X — 7™V)2 — 775)) |

One can choose 7 such that if 2m = k, then 7 # v. For this 7 the latter algebra is trivial in view of

Vi (r™Mv — 7%/279) < r/2. On the other hand, (o, X — 7™V) (x—rmyyz—nrs % 1.

3). k=1(mod?2), r = 0(mod2). The algebra from a) is nontrivial at x — e, but (a, x? — 7Xu) is trivial

at this place. We also have (o, X)y2_,k, 7 1 and

(_7T06N|_|k(e - Vﬂ-m_l - ﬂ-r/z_lu)! q)XZ—ﬂ'kU ~

k(y/7Tu)(x2 — wku)(y/D (X2 — wku))

—au(e —vr™ 1), —xMv o1
k(y/7u)(x2 — wku) (/D (X2 — wku))

(—au(e —vr™ ), TL(V7ku — 7™My — wrlzpk)> N

4). k,r =0(mod2). We have

(~maNie(® = 7272, D)oy < T 10 V0 ) .

k(Va)(x? = mku)(/C (x* — mku))

This algebra is nontrivial since 72 —u ¢ 1 in K. So the algebra from i) is nontrivial either at x — e or at
x?—m*u. But the algebra from a) is nontrivial at one of these places, and trivial at the other. Therefore,
these algebras are not isomorphic.

Consider the remaining cases.
1. Let w be a unit from a sufficiently large unramified extension K of odd degree over k, such that

W oL —ued,
W— U~ —&,
and t = 1 mwyk(V7w). Then f(v7kw) ~ —e(w —u) ~ 1 and
_  m —wued , \/TW
(—rued, X —"V)¢ ~ <7K(\/W)<t> ) # 1.

To finish the proof of this subcase it is enough to check that the extension of scalars by /a does not split
algebra (—wued, x — x™Mv). Indeed, this extension leaves us in subcase V 11.7.
2. All algebras are unramified. Since f(7<*1/2) ~ ue we obtain (x* — 7u),_, a2 ¢ 1. Furthermore,

— /2y o, v
(o, x—m Ix2—rku (k(\/ﬁ)<xz_7rku>(\/m)> #* 1.

The nontriviality of the algebra (—mued, X) can be checked similarly as in the previous subcase. Finally,
the extension by /a leaves us in the same subcase, so it does not split the latter algebra.

3. The nontriviality of algebras from ii) and iii) was already shown. Let firstly 2m < r. Then f(z™v +
772)) ~ ue(\? = 6), so if ue ~ 1, A2 —=§ £ 1, then (a, lrr(z™v + 77/26)) is unramified. In this case the
first algebra is (o, x~7*u), it is trivial at x — e, but (o, Irr(7™V + 7726))x—re * 1.
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If ue £ 1, then F(xMv+7"/2)\) ~ 1, provided A\>—§ £ 1. Therefore (7, (X—=7Y)2=7"8) | rr(rmyrrrzny 7
1. The first algebra is («, X), (&, X)x—re 7 1. On the other hand, (7, (X — 7¥)2 — 7" 0)x—ne ~ 1.

Let now 2m = r. We have f(7™n) ~ ue((n — v)? — §), so algebra (a, Irr(z™n)) is unramified. It is
nontrivial at x — we. Since ue(v? — §) ~ 1, the first algebra is trivial at x — re.

If ue £ 1,v2—6 ~ 1, then (7, (x—7MV)? — 7" 0irr(=my) 7 1. In this case the first algebra is nontrivial
at x — we, and this is not true for the second one.

Suppose ue ~ 1 and v2 — § £ 1. We have f(v/7kw) ~ —e(w — u) ~ « in K(,/7W). So

and algebra (m,t) is unramified. It is not isomorphic to («a,x) at x — we. It is easy to check that
f(7™~1/3) ~ ue ~ 1. Hence (x, t).rrk( gy (T13) (¥m,w) £ 1.

Finally, let 2m > r. One can consider this case by analogy to the previous ones.
4. We have f(7K2w) ~ —r(e — 7%~2w) and a((7*/?w)? — 7%u) ~ 1, so the both algebras are unramified.
(—m(e — 772), x — 7?W)2_ iy, ~ (m,W — /U) £ 1. Let us check that the second algebra is nontrivial,
not isomorphic to the first one, and does not split by any quadratic extension of the scalars. To prove
this it is sufficient to show that

B = (a(x® — 7€U), 7/%(x — 7/2W)) @xcy k(YT VA)(C) # 1.

Assume v = /7, 0 = vK,/u(l +v). Then £(#) ~ 1 in view of § = u+ v?'u,1 > 0 and if k = 2, then

e— /U1 Thus
v, w—,/u
Bx—g ~ 1.
xo (k(ﬁ, VR (x— e>) *
5. In this case (7, X — m€)xe—r2y ~ (7,8 —/U) % 1 and (7, X? — 7%U)x—re ~ (7, 8% — U) 2 1. Moreover,
((m, X — m€) g (7, X2 — m2U))x—re ~ (T, (X — T™V)? — T )x—re ~ (7,82 — ) £ 1.
6. We have (x, —ru(x®—7Xu))x ~ (X, 7*1u?) ~ 1, therefore the algebra (x, —ru(x?—=¥u)) is unramified.
Let K, w, and t be as in subcase 1, but

uew(w — §) £ 1,
{ —u(w—u) «£ 1.

Then f(v/7kw) ~ —ew(w — u)(w — §) ~ 1 and

(X, —mu(x® — 7€u))¢ ~ (

/TW, —u(w—u)) 21,

K(/7w(t))
Consider the second algebra. For u # 5 one always can find w and K such that
—uedWw o4 1,
—ew(w —u)(w—0) ~ 1.

Then f(V7kw) ~ 1 and (—7ued, X)¢ ~ (—uedw, ,/7W) + 1. So the second algebra is nontrivial. We also
can find such K, w, and t that
W ~ —ued,
{ W —u ¢ —u,

W — 4 ¢ —9.
For such w the first algebra is nontrivial at t and the second one is trivial at t.
Let now U = ¢ and 6y, = VaKu(l + /muw). Then F(Ay) ~ —ew(uw — 7M~K+D/2) (if 2m =k + 1 let
uw # V). In case 2m > k + 1 we have f(6y) ~ —ue ~ 1 for any w, and otherwise we can find w such
that f(6w) ~ 1. Thus for q = I'rr (. mm)k(fw)

a, 2w/Tu
(o, X2 — 78U)g ~ (W) 41
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Let u= g, 2m >k + 1, and —ue ¥ 1. Then for 6 = 6,,, K = k,w = 1 we find () ~ —ue ~ « and
the algebra («a, q) is unramified.

(@.0) a, (Vrku — vrku(l + y/7u))(Vrku + vVrku(l — /7u)) 21
y 2 _rky .
o k(v/mu) (/D2 — 7Ku))
Both algebras (o, x? — 7Ku) and («, q) are not isomorphic to the first algebra from the list. Indeed, the

extension by +/« leaves us in the current case and subcase. So it does not split the first algebra.
The theorem is proved.

Theorem 24 Let f be as in case V111, i.e.
f(X) = (x— mv(l + 7' 7)) — 7Ku) (X — 7v)2 — 776), 1<k <r, 7€u, 76 £ 1.

Then the group BrC is generated by the class of the algebra (m, «) and the classes of the following
algebras.
The first algebra A is

i . (rE(w),x —7*2w), if k = 0 (mod 2),
i . (o,x?—7Ku), if k=1(mod2) and uv ~ 1,
iii .(a, %), if k=1(mod2) and uv £ 1,

where w € OF, w2 —u £ 1, and

E(W)_ —v, ifk>2, 1, ifr>2,
T\ w—v, ifk=2, w—v)2—3 ifr=2. [

The second algebra B is

a . (a,x—mv),
if r=1(mod2), | =0(mod2), 7véé £ 1, where

(1 ifk>2,
$=0 v2—uifk=2.

b . (o, (Xx—7V)? —7"6),
if r=1(mod2), | =0(mod2), v ~ 1.

c . (wvoéT&, X — 7v),
ifr,=1(mod2),2l+2<r.

d . (maNkik((M<H),p),
if either r, =0(mod2), 2l +2 <r, or r =2(mod4), 21 +2 > r, where

1, ifk>2, —vrif2l+2<r,
nx)=< vi—-uifk=2<r, Cx)={ x—vr, if2l+2=r,
(x+Vv)2—9¢, ifk=r=2, x, if21+2>r,

v € Oj, K|k is of odd degree and unramified, p = Irrgp(mv + 77/27), 42 =6 # 1, and if r = 2,
then (y+Vv)2—u~ 1.

e . (m, (x—7v)? —71"0),
if r=0(mod2), | =1(mod?2), and either 2l +2 =r or 2l +2 <r and —7v¢ ¢ 1.

f. (a,x—7nv—7""2p),
if r=0(mod2), | =1(mod2), 2l +2 <r, and —7v& ~ 1, where g € O} and p? — 6§ # 1.
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g . (m, (x—av)? —7"s),
ifr=0(mod4), 21 +2>r.

h . (o, (Xx—7Vv)% —776),
ifr,=1(mod2), 21 +2>r.

Note that in d) if r > 2, then one can assume K =k, p = x — v — 77/27,

Proof.
i). We have f(7%2w) ~ 7E(w), so A is unramified.

A2 ky ™~ TF,W_\/U 761
Xx2—mku k(\/U)<X2 _ﬂku>(m) .

ii),iii). Then £(0) ~ uv, so (a,x?>—7u)x # 1 in case uv ~ 1, and («, x) is unramified otherwise. Finally,
(0t Xy 7 1.
It easy to check that f(rv) ~ 7"*1*17v5¢ and for even r and arbitrary p € Oy f(zV + 77/2p) ~

(H2 = Sy ymmine e /2),
a. We have B(x—rv)2—rrs ¢ 1 and

(0 X)xrvyerrs ~ <#;r<v>> ~1,

«a,
T Y (RTY I

k(v7d)(...)
(WE(W)! X = Wk/zW)(X—ﬂ'V)Z—wré ~ <5E(VIZ()\,/%<_ W;(/2W> ~ 1,

so A« B.

b. f(fv) ~ 1, therefore By ¢ 1. On the other hand, (o, X2 — 7€U)x—»v ~ 1. For the remaining A we
have Ayz_ «, 7 1, but Bye_ «, ~ (a, (7p)?) ~ 1.

c. Let 6 = 7v+V/a" . Then £(0) ~ —vréA(\ — 6) in K(V7A). Birrgey ~ (VOTEN, V7). The conditions
—VTEANA — 6) ~ 1 and véTEX £ 1 can be satisfied in a sufficiently large unramified extension of odd
degree of k. Thus B ¢ 1. We have also (a, X)1rr(ay ~ (@, 7V) ~ 1, (o, X% = 7KU)yrrey ~ (v, (7V)2) ~ 1,
and (TE(W))irry ~ (AE(W), 7v — 75/2w) ~ 1. So A  B.

d. B is unramified since f(nv + 7727) ~ an(y)¢(y)x.

T, HU(W"—\/S)> L1

B —7 Z_ﬂ.r(; ~
G ( k(Va)(...)
The algebras («, X), (o, X2 — 7%u) split by /3, so they are not isomorphic to B. Finally, (7E(w),x —
T2W) (x—pvyz—rrs ~ (m, 1V — 72w + 17/21/5). If r > 2, then the latter algebra is trivial, and A % B
again. Let Kk = r = 2. Then Ase_,2y # 1 and Byer2y ~ (7, [[,(77 + Vv — U)) ~ 1 in view of
(y+Vv)2—u~1linK.
e. In e) and f) we have
—vr, if2l+2<r,
Fov -+ 772 ~ (2 = oymucu~ =0 { 1 RS0

If either 21+ 2 = r or —7v¢ o 1, then there exists g € Of such that u?> —§ £ 1 and f(7v + 77/2p) ~ 1.

For such W we have By (y+rrrzpy ~ (1, W2 —0) o 1. Since r > 21+2 > 4, then Bx ~ 1 and Byz_ .k, ~ 1.
So B ¢ A.
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f. In this case f(zv + 77/2l) ~ «, so B is unramified. Let § = 7v(1 + 7'*/3) € k(TI), TT = 7. Then
() ~ —7vE@AF8/8v2 — 17 §) ~ 1.

a, TRy — g2y a, [131+4
Brerey ~ ( K {1rr(@)) ) - <W) o

Moreover, A £ B. Indeed, if k is even, then By=_,«, ~ 1 since B splits by 1/u, and if k is odd, then
(a, x? — 7TkU)|rr(9) ~ 1. Finally, for odd K (a, X)y2—xy 7% 1 and Bye_ ky ~ (a, —7v) ~ 1.

g. Let p € O such that p2 — 6 £ 1, un(u) # 1. Then f(av + 7™2p) ~ 1 and Byrr(ryanrrzyy # 1.
But By ~ 1, s0 B # (a, x? — 7Xu). The remaining algebra A is not trivial at x> — 7¥u, but Byz_ «, ~
(z, (V75U — 7v)2 — 778) ~ 1 since r > 2.

h. Bx—mv+niry ~ (. 7®*2v272) — 7§ £ 1. We have also Bx ~ (a,7?v?) ~ 1. If k is odd, then

Byz—ky ~ (a, (V7Ku—nv)? — 7"6) ~ 1 since r > 2. Finally, if k is even, then B,z__«, ~ 1 in view of B

splits by \/u.
Consider the next case.

Theorem 25 Let £ be as in case V115, i.e.
f(X) = (x = 7%e) (X2 — T*U)((Xx — 7V)2 — 7"8), s>2 4<k<r, nfu,x"8 1.

Then the group BrC is generated by the class of the algebra (7, «) and the classes of the following
algebras.
If 2s <k, then the first algebra A is

1. (a,X), if kK,s=1(mod2) and ue £ 1.
2 . (a,x%?—7ku), if k,s = 1(mod2) and ue ~ 1.
3 . (—mae,x — 72w), if k = 0 (mod 2), s = 1(mod 2), where w € O;;, w? —u 7 1.
4 . (m,x?—7Ku), if kK,s=0(mod2) and —e 1.
5 . (a,x— 7K2w), if k,s =0(mod2) and —e ~ 1, w2 —u £ 1.
6 . (uem, Xx), if k=1(mod2), s = 0(mod?2).
If 2s > k, then the first algebra A is
7 . (a,x? = 7ku), if k = 1 (mod 2).
8 . (aé(w)m, x — 7K2w), if k = 2 (mod4), w? —u % 1,
09 = { W s =k 48
9 . (m,x2 —7%u), if k = 0 (mod 4).
And the second algebra B is
a . (a,x—nv), if r=1(mod2), —vo £ 1.
b . (a,(x—7v)2 —=x"6), if r=1(mod2), —v§ ~ 1.
¢ . (mraw,x —mv —772p), if r = 0(mod 2), where p € O}, % — 6§ £ 1.

Proof. Let 2s < k. We have f(0) ~ uer®*s, f(nv) ~ —vén"™1. If k is even and w? — u ¢ 1, then
f(7*2w) ~ —eans. If r is even and p? —§ £ 1, then F(av + 77/2p) ~ var.
1. (O[, X)X_ﬂ-se 7(/ 1.
2. (o, X% — iUy £ 1.
3. (—mae, X — T2W)x—rse o 1.
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4, (7T, X2 — 'ﬂ'ku)x_ﬂ.k/ZW A4 1.
5. F(rS*1) ~ —mSe ~ 1, 50 (ar, X — T2W) 5 sv1 ~ (a, 75F1) £ 1.
6. F(/7%7) ~ —ey(y —u) in k(\/77). SO (ue, X)lrr(\/m) ~ (uev, \/77) # 1, provided v € Oj satisfies
the condition v £ ue, vy — u % —u.
Let now k < 2s. If k is even and w2 — u £ 1, then f(7K2w) ~ 7&2ag(w).
7. (o, X% — m¢U)x—rse 2 1.
8. (a€(W)m, X — T2W)yo_ 1y, # 1.
9. Let y € O, 72 —u £ 1, and £(y) # 1. Then f(7*/29) ~ 1 and (m, X2 = 7KU) pp(rirz .y 2 L.
a. (a,X—TV)(x—mv)2—zrs % 1. On the other hand, A—rv)2—zrs ~ 1.
b. (o, (X —7V)? — 1)x—rmv % 1. A o B since B is trivial at all the places from 1-9, at which A is
nontrivial.
¢. (mrav, X = 7V = 772 ) (x—rvyz—mrs ~ (7, L — V&) # 1. On the other hand, Axx—rvyz—zrs ~ 1.
The theorem is proved.

Let us pass to the last case.

Theorem 26 Let T be as in case V113, i.e.
f(X) = (X% — 7€u)(x — 7%e)((x — 7™V)? — 7" §),

where k € {1,2,3}, k < 2s, k < r, 7™€u, 76 « 1. Then the group BrC is generated by the class of the
algebra (7, «) and the classes of the following algebras.
The first algebra A is

i. (a,x?—7m*u), if k =1 (mod?2).
ii. (rE(w),x—7w), if k =2, where w? —u £ 1,

az if r>2, _
ar(x> =08 ifr=2,m>1,u#0
X, ifr=2,m=>1,u=94¢

ar((x—v)2—9¢), ifr=2,m=1.

E(X) =

1. If r <2s, r < 2m, then the second algebra B is

a. (o, (x—7™Vv)? — 779), if r = 1(mod 2).
b. (7, (x — m™V)? —x76), if r = 0(mod2), k +r/2 = 0 (mod 2).

C. ("Nk(S(W), IrrK|k(7rmv + 7™2W)), if r = 0(mod2), k + r/2 = 1(mod?2), and ifk =r=
2,m > 1, then u # §. Here p € O, K]k is of odd degree and unramified, pu? — 6 £ 1.
k = r = 2, then the additional condition on p is

we—un~1, ifm=>1,
(H+V)2—u~1, ifm=1.

Note that if K = r = 2 does not hold, then one can assume K = k.
. —u, ifk<r,
S(X) =a{ §,+It/2r::‘;n:,— . } x2—u, ifk=r<2m,
; v (x+Vv)2—u, ifk=r=2m,
2. Ifk <2m <r, m <s, then the second algebra B is
a. (avém,x —7™v — 72p), if m+k = 1(mod2), r = 0(mod2), where u?> — § £ 1 and
—u, if 2m >k,
e={

vZ—u, if 2m =Kk.
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b. (=évém,x — ™), if m+k=0(mod2), r =1(mod?2).

c. (a,(x—71"Vv)2—7"6), if m+k,r=1(mod2) and —évé ~ 1.

d. (a,x—=7"Vv), ifm+k,r=1(mod2) and —vé # 1.

e. (m,(x—71™Vv)2 —7'6), if m+k,r =0(mod?2), vé = —uv £ 1.

f. (a,x— 7™V —7"2p), ifm+k,r=0(mod2), vé = —uv ~1, p2—4§ £ 1.

3. Let2s <r, s<m, and if s =m, then v # e. The second algebra B is

a. (uoym,Xx — ™M), if k+s=0(mod2), r = 1(mod 2).

b. (a,x—7"Mv), if K+s,r=1(mod?2), Yud # 1.

c. (o,(x—7™V)2—7"6), ifk+s,r=1(mod2), Yus ~ 1.

d. (—ruop(u), x — 7™v — 77/2p), if k +s =1 (mod2), r = 0(mod2), where p2 — § ¢ 1 and
—e, ifs<m, 2s<r,
v—e, ifs=m, 2s<r,

V() = X—e, ifs<m, 2s=r,
X+v—e, ifs=m, 2s=r,

if 2s < r, then ¢/(x) = ¢ does not depend on Xx.
e. (r,(x—71"Vv)2 —7"6), if k+s,r=0(mod2), 2s<r, —urp # 1.
f. (o, Xx—7Mv—7"2p), ifk+s,r=0(mod2),2s<r, —uh ~1, p2 —6 £ 1.
g. (m,x—7%), ifk+s,r=0(mod2), 2s =r.
4. If 2m <k (i.e. m=1, k=3, s > 2), then the second algebra B is
a . (mav,x—av—x"2n), r =0(mod2), p2 — 6 £ 1.
b. (a,(Xx—7Vv)2 —x"6), r =1(mod2), —vé ~ 1.
c. (a,x—mv), r=1(mod2), —vé »# 1.

5. Ifk<2m=2s<r,e=v(l+x'7), | >0, then the second algebra B is

a. (a,x—am), ifk+m+I,r=1(mod2), —uvré £ 1.

b. (o, (x—7™V)2 —774), if k+m+1,r=1(mod2), —uvré ~ 1.

c. (m,(x—7"™V)2—=7"8), if m+1<r/2, kK+m+1,r=0(mod2), and either m+1 < r/2, uvr £ 1,
orm+1|=r/2.

d. (a,x—7"v—7"2p), ifm+1<r/2, k+ m+1,r=0(mod2), and uvr ~ 1. p2 —§ £ 1.

e. (—muvrd, X —7™v), ifm+1<r/2, k+ m+1=0(mod2), r=1(mod?2).

f. (7T (W), x—7™v—7"2p), if m+1 < r/2, k+m+1 =1(mod?2), r = 0(mod2), where p2—¢ £ 1,

and
avtu, ifm+1<r/2,

T = { —au(X—vr), ifm+1=r/2.

9. (—rupe, X —7Mv —772p), if m+1>r/2, k+r/2=1(mod2), r = 0(mod2).
h. (r,(x —7™V)2 — 7%6), if m+1>r/2, k+r/2,r =0(mod2).
j. (o, (X—=7™)2 = 7"8), if m+1>r/2, r =1(mod2), k+ |+ m =0(mod?2).

6. Ifk=r=2, ms>2, u=J, then the second algebra B is

a. (m,x?—m*u), if =1 ~ 1.
b. (a(x? — 7%u),x — 7w), if =1 £ 1, where w? — u £ 1.
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Proof.
i),ii). (a, X% — 78U)x—rse 7 1, provided k is odd. Otherwise we have f(7w) ~ 7E(w), so A is unramified.

Moreover,
T, W—+/U
E(W), X — TW),2_ ~ 1.
e x=memna~ (i o) "
l.a. Bx—zse ~ (a,7") # 1. If K is odd, then (AR B)y2 _ky ~ (X—75€)y2_ky ~ (o, /7U) £ 1,50 A £ B.
Let k is even. Then By2_,x, ~ 1, and A £ B again.
1.b. If r is even, then f(#™v + 77™2p) ~ 7K*7/2S(). In case 1.b) one can find K, p such that S(u) ~ 1
and P2 — § ¢ 1. Therefore Byyr(rmyanrrzyy ~ (m, U2 = 6) o 1. For odd k Axe_ry ~ (o, /70) £ 1, but
By2z_ky ~ 1. Let k be even. Then r/2 is even, so r > k and Byz_,«, ~ 1. Anyway, A « B.
1.c. We have B(x—rmy)2—rr5 7 1. On the other hand, for odd k A myy2—rr5 ~ 1. Let K is even. If
r=>2, then Ax—rmvy2—qrg ~ (m,—7W) ~ 1. Letk =r =2.

7 L+ 7™ — V)Y
sz"fk“”( k(D) ) L

Thus, A £ B.

It is easy to check that in 2) f(z™Vv) ~ —mm +k + rd¢v and for even r F(z™v + 77/2p) ~ (U2 —
§)éva™+K  Moreover, E(W) ~ aw, since K < r. S0 in 2) Ax—rse % 1 and Az_x, in case i) as well as in
case ii).

2.a. Let firstly m be even and k be odd. Then Byz_,«x, ~ (y/7U, —av) and Bx—zse ~ (7, —V). There is
exactly one nontrivial algebra among two last algebras. So B £ 1 and A « B.

Let now m be odd and k be even. Then Bx—,se ~ (avém, —7Vv) ~ (m, a&). Furthermore, the algebra
By2_ .y is nontrivial iff the algebra (7, §) is nontrivial over k. Thus, B % 1, A « B again.

2.b. Assume 0 = 7™V + 7T\, A € O, P = 1Ty (/o (0). We have F(0) ~ VEA(A — 6) in K(VTA).

8, ~ (m —5v§>\> |

K(/7A)(p)

One always can find K, A such that Bp % 1. If k is odd, then A, ~ (a, 7) ~ 1 over K(v/7)\) and A % B.
Let k be even. Ap ~ (adw, 7™V + /77X — 7w) ~ 1.

2.c. Bx—;my 7¢ 1. In addition, Bx—,se ~ 1, 50 A £ B.

2.d. If k is odd and m is even, then Byz_,«x, ~ (,/7U) % 1 and Bx—zse ~ (o, 7™) ~ 1. Otherwise,
Bx—rse % 1 and Byo_ x, ~ L.

2.e. Let p% —6 o 1, then F(z™v + 7™/2) ~ 1 and By rr(rmynrrzpy 7% 1. Bx—rse # 1.

2f. Assume IT = /m, 0 = 7™v + a1, and p = Irrgank(0). We have £(0) ~ 1, By ~ (a,II7™),
Bx—rse ~ (a, ™). There is exactly one nontrivial algebra among the two last algebras. On the other
hand, Ax—rse # 1 and A, 7 1. Indeed, if k is odd, then Ay ~ (a, —7Ku) and Ap ~ (cwr,—7W). SO
B «£1and B « A.

In 3) F(z™V) ~ 7K S5y and F(r™V + 71720) ~ —7KFSup(u) (U2 — 6), provided r is even. If k
is odd, then Ao ky ~ (o, /mwu) £ 1. If k is even, then Ax_ se ~ (raw,—7w) % 1. Anyway, A is
nontrivial at two these places. On the other hand, Ax— my)2—rrs ~ 1.

3.a. This case can be considered by analogy with 2.b).
3.b. We have B(X_ﬂ-mv)z_ﬂ-r(; 7(/ 1 and A(X_ﬂ-mv)z_ﬂ-r(; ~ 1.
3.c. B £ 1since Bx—my £ 1, and B £ A in view of Byx—,se ~ 1.
3.d. Bx—rmy)z—zrs ~ (m, L — V) # 1, provided p? —§ £ 1. So B £ 1, A.
3.e. For p? — 6 £ 1 f(x™v + 772p) ~ 1 and By my—nrrzy % 1. Bx—rse ~ 1.
3.f Let 6 = ™V +7SII' € k(IT), T = /7, pi = Irran (i), i = 1,2. Then £(6;) ~ —rXurSy(x?T1%' —
m0) ~ —uyp ~ 1 and By, ~ (a,n°II') over K(IT). So there is exactly one nontrivial algebra among
Bp;, i =1,2. On the other hand, A, ¢ 1. Therefore, B # 1, A.
3.9. Let i = 7%vi, 7i € Ok, 7i 7€, Gi = Irr(ni), i =1,2. Then

2 _ i >

Fm) ~ —ut = e){ z“l/i —%)Zlf—m& i:,m =s. }
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We require v, —e % yo —e and f(n;) ~1,i =1,2. Then By, ~ (7, (—1)°(yi —e)) and Ag; ~1,i=1,2.
Since there is exactly one nontrivial algebra among Bg,, i = 1,2, B ¢ 1, A.

In 4) we have f(av) ~ —vér™*1 and f(xv + 772p) ~ v(u? — §)x, provided r is even. In this case
A= (a,x?—73u) and Ax—rse % 1, Axa—ray # 1
4.a. By_yse ~ (qum,—7V) £ 1, Byo .k, ~ 1,50 that B £ 1, A.
4.b. B £ 1 inview of Bx—y ¢ 1, and B £ A since By—,se ~ 1.
4.c. Finally, in this case Bx—,se % 1 and Byz— 3, ~ 1.

In 5) F(7MV) ~ =M+ *+ryyrs and if r is even, then

KMy ifm+ 1l <r/2,
f(r™V + 7720) ~ (2 —0) ¢ =K MU= vr), ifm+1=1r/2,
—7K*¥ 2, ifm+1>r/2.

We have also Ax—rse ¢ 1 and Aya_ .« # 1.

5.a. B(X_ﬂ-mv)z_ﬂ.r(; 76 1 and A(X_ﬂ.mv)z_ﬁr(; ~ 1.

5.0. By_rmy % 1, Bye— iy ~ 1.

5.c. If m+1 < r/2, then f(z™v + 77/21) ~ 1, provided u?> — § # 1. Otherwise, f(7™v + 77/2p) ~
(u% = &)(vr — W), and we always can find such K, p that f(z™v + 77/2p) ~ 1 and p? — § ¢ 1 again.
Anyway, By rr(rmyarrrzpy # 1. B £ Alin view of Byo iy ~ 1.

5.d. Let 6; = 7™V + 7™M DIT, p; = Irrgq(6i), i = 1,2. Then £(6i) ~ uvr ~ 1 and By, ~ (a, IM**H),
So there is exactly one nontrivial algebra among By, i = 1,2. On the other hand, Ay, » 1. Therefore,
B £1,A.

5.e. Let 0 =7Mv+ V7' A e K(V/7A) and p = Irr(d). Then £(0) ~ uvrA(A — §) and

B ~ VI, —\uvtd
i KWTNp) )

One always can choose K and A such that By o¢ 1. Furthermore, B % A since Ap ~ 1.
5.f. F(xMv+7"2p) ~ 7T (1), so B is unramified. Ax—rmvyz—zrs ~ 1, DUt Bx—rmyy2—rrs ~ (, H—1/3) o
1.
5g B(x—wmv)z—ﬂ-rd 7(/ 1 and A(X_ﬂ.mv)z_ﬂr(; ~ 1.
5.h. In view of fF(7™Vv + 7™2n) ~ —up(u? — &) we can find p such that f(z™v + 7/2u) ~ 1 and
(% = 8) £ 1. Then Bypp(zmyarrrzyy 7 1. Moreover, Bye i, ~ 1.
5.j. Bx—rse ~ (a, ") o 1. Finally, B £ A since Ayz— «y ~ 1.
6. A= (7w,X — W), W2 — U % 1. S0, Aok, # 1 and Ax_rse ~ (W, —7w) ~ 1. Let —1 ~ 1. Then
Bx—nxse ~ (m,—U) % 1. Thus, B £ 1, A. Let now —1 £ 1. In this case Byx—ny ~ (a(W? —u),Xx —7w) ~ 1,
so B is unramified. Finally, Bx— se ~ (—ua, —7w) £ 1.

The theorem is proved.

5 Splitting type (1,4).

This section is devoted to case deg f1 = 4, deg f, = 1 and the reduction is bad.
In our further considerations we will need lemmas from the previous sections.

Lemma 22 | BrC| = 4.

So it is enough to find one unramified and nontrivial algebra that is not isomorphic to scalar algebra
(m, ). This algebra is not isomorphic to (7, ) by lemma 12.

Lemma 23 By an appropriate replacing of the variable x the polynomial f can be reduced to the form
f(x) = g(X)(x —7'e), 1 > 0,e € O, g is irreducible, and either
1. g(x) = (x? — u)? + tMvx + "6, or
1. g(x) = x* + 7Kkux? + 7™vx + 776,
where k,m,n >0, u,v,d € Of, and in case | u & (O})?.
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Proof. Since g(x) is irreducible, then by Hensel’s lemma we have only the following two possibilities
for g(x). B B
1. g(x) = (x* + px +0q)?, p,q € k, p? —4q & k2,
1. g(x) = (x—7)*, v € k.

In the second case one can assume that v = 0, i.e. g(x) = x*+ax®+bx?+cx+d, a,b,c,d € M.
Moreover, by replacing x — X — a/4 we can remove the monomial ax3. B B
_In the first case the same replacement gives (x?> + px + q)?> = x* +bx? +cx+d, sop =0, b = 2q,
d = g?. Suppose b = —2u, U = —q, then d = u?+ X\, A € My, and g(x) = (x> —u)? +cx+ \. The lemma
is proved.

Theorem 27 Let the curve C correspond to case | from lemma 23. Then the following algebra A is
nontrivial, unramified, and not isomorphic to the scalar one. (We define A = g(y/u) = 7#Mv/u+ 7"§ €

k(vU)).
1. v(A) =1(2), rA&(/u) ~ 1 in k(y/u), where

§(X)={ X, if 1 >0,

Xx—e, ifl =0.

A= (m,x%2 —u).
2. V(A) = 1(2), TAE(VU) # 1.

A= (a(x?—u),m(x—0)), BEO;, % —uxl.
3. v(A) =0(2), {(Vu) # 1 in k().

A= (m,x—ne).

4. V(A) =0(2), &(V/U) ~ 1.
A = (ap(x),x = ), where p = 1Ty /gy (0), 0 = VU(l +7°w), w € Oy o such that p+ 4uPw? ¢
O;(\/G) \ (O;(\/G))z, A = 7%,

Proof.
1. We have f(,/u) ~ A&(y/u), so A is unramified. Let K]k be unramified extension of odd degree and

1 € O such that
{ () ~ 1,

n?—u 1.
Then f(n) ~ &£(n) ~ 1 and

2
T, —u
Alrrgum ~ <W) 7 1.
2. We have Ax—s ~ (a?, m(x — 3)) ~ 1 and

AL N( X2 —u, (3 — /) )Nl
T k(O (/AEV)) (X2 — u)

since A¢(y/u) ~ w(8 — y/u) in k(y/u).

Thus, A is unramified. If n € O satisfies the conditions

{ £() ~ 1,

n”?—u~1,
then f(n) ~ &(n) ~ 1 and

2 _ —
AIrI’K|k(7’I) ~ (a(n Ii)<’7r>(77 6)) ~ (OZ, 7T) 7(’ 1.
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3. Let y,s, 6, p be from item 4 of this theorem. Then g(#) ~ p + 4u?w? % 1, and F(0) ~ g(0)¢(y/U) ~ 1.
So
(7 6 —nle (7 5(\/ﬁ)>
Fo ( k(D) (P} ) (k<m<p> 1

4. In view of ap(B) ~ a(B — /U — 75/uw)(3 + /U + 75,/uw?) ~ a(3? —u) ~ 1 we have Ax—g ~ 1.
Furthermore, f(0) ~ p + 4uw? £ 1, therefore f(9) ~ 53— /u in k(y/u) and

A < p,B— U ) 1
"\ k(O FO) P)

Thus A is unramified. We prove its nontriviality. Assume that ( = /u(1 +1I) € k(v/u,II), 1T = 7.
Then f(¢) ~ (U2(2 + )22 + 72Sp)¢(y/u) ~ 1 and

ap(Q), (=6 P, B—u
Ao~ ()~ (ke y) *
since p(¢) ~ (¢ — 0)(¢ — 67) ~ 2,/u(Ily/u — wSwy/u) ~ L.
The theorem is proved.
Let us pass to case 1. It is convenient to introduce the following notations.

K — 34 k—2d, 42 —3d —4d d
o|_mm{2 3 4} zU3 h(t) = t* + 7% 729ut2 + 7" 3yt + 7" 745 € k(7 D[H].

Then for a suitable unramified K|k of odd degree and w € O we have
g(7w) ~ 7*h(w) ~ h(w) € Ol*<(wd)'
In addition, E(t) € E[t] is a monic polynomial which is of degree 4 and does not coincide with t*.

Theorem 28 Assume we are in case Il, d < I, and E(t) & E[t]z. Then the following algebra A is
unramified, nontrivial, and not isomorphic to the scalar one.

1. de 2z, A= (x,x—7'e).
2. del1+2Z, A= (m Irr(r®w)), w € O such that

§(w) £ 1, _ [ x, ifd<l
{ hw) £ 1, “Where 5(")‘{ x—e, ifd=1,

de2/3+Z, A= (m,x—7'e).

> W

de1/3+Z, A= (m I ymk(n®w)), K and w are from 2.
5.dc1/4+ZU3/4+Z, A= (a,x—7'e).
6. de 1/2+ Z, A= (_7T| I’I’K(ﬁ)lk(wdw),a:r), w € Of, , h(W) 7(’ 1.

Proof. Since h(t) ¢ Kk[t]2 the equation y2 = ah(t), a € k* gives a variety in A%(ks).

Therefore by Leng-Weil theorem for any N € N there exists a sufficiently large extension K|k such
that |V (K)| > N. So there exists Wi € K, i = 1,2 such that h(W;) ~ 1, h(Wy) % 1 in K. After lifting
K to K and W; to w; € O (K= K, Wi = Wi) we have h(w1) ~ 1, h(w,) + 1. If w is required to have
some additional property (for example £(w) +£ 1), then one can consider a variety V in A3(ks)

y2 = ah(t),
{ 72 = a&(t) (lemma 6).
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1. Let K, w be as in item 2 of this theorem. Then f(7%w) ~ h(w)¢é(w) ~ 1, so

Alrr(wdw) ~ <K7T#(W)>> 7(“ 1.

(Irr(m9w)

2. F(79w) ~ h(w)é(w)r ~ m, so A is unramified. We have also

Acme~(m ] 'e=7"W)) ~ (7, Nk (EW))) # L.

ceG(K|K)

3. f(7%W) ~ wh(w) in K(&7). Let w, h(w) # 1, then

4. f(x%w) ~ 7wh(w) ~ 7 and A is unramified.

Ao~ (m [ 0 =7W7)*)xomie ~ (7, —7Nkp(W)) o 1.
oeG(K|K)

5. In this case n = 1(2) and d = n/4 < min{k/2,m/3,1}. Let d < d’ < min{k/2,m/3,1}, d’ € Q such
that d = p/q, p.g € N, (p,q) = 1, p,q = 1(2). Under these assumptions f(z9 §) ~ 7(P*nD/a - 1 jn
k(7'/9). Therefore

1/q
d’ o, T
Aprrgrar sy ~ (@m0 ) ~ (WM) # 1

6. We have
Ax ~ (—m H —r2d(w)?, az) ~ 1.

f(7w) ~ r9wh(Ww) ~ awr? in k(/7), hence

—rlrr(m%w), awrd )

K(/D(/TEwW))!(...)

Thus, A is unramified. It is nontrivial in view of f(72/7) ~ 7?/7 — 7le ~ 1 in k(x/7), so

— U( 4/7 _ 2d(Wo)2) , 2/7 _71_1/7 ,
e~ () ~ (=)

AI rr(nmdw) ™ (

The theorem is proved.

Theorem 29 Let case Il take place and d > I, E(t) & E[t]z. Then the following algebra A is unramified,
nontrivial, and not isomorphic to the scalar one.

1. 1=0(2), de (1/3)Z, —e ~ 1.
A = (o, Irrg(m@w)), h(w) £ 1.

2.1=0(2),de (1/3)Z, —e # 1.
A= (a, x4 —7P), where | <p/g<d, p,ge N, (p,q) =1, p,g=1(2).
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3. 1=0(12),n=1(2). (Thisis always true ifd e 1/4+Z U3/4 + Z).
A = (—noe, X).
4. 1=012),n=0(2),de 1/2+Z, —de £ 1.
A = (o, X).
5.1=012),n=0(2),de 1/2+ Z, —de ~ 1.
A = (o, 1T (W), h(w) £ 1.
6. 1=1(2), n=1(2), —de ~ 1.
A= (a,x —7'e).
7.1=1(2), n=1(2), —de £ 1.
A = (o, X).
8.1=1(12),n=0(2),de (1/3)Z.
A= (_Oéeﬂ', |rrK(ﬂ.d)|k(7TdW)), h(W) 7[/ 1.
9.1=1(12),n=0(),de 1/2+ Z.
A = (—nde, X).

Proof.
1. f(7%W) ~ h(w)(—7'e) ~ «, so A is unramified. f(7P/9) ~ —z'e ~ 1. Then

a, [1, (@79 — x9w?) a, nt/d

2. F(7P/9) ~ —e, so A is unramified. Moreover, f(r9w) ~ —eh(w) ~ 1, so that

—P

3. f(0) ~ —nde, i.e. Ais unramified. Let 7 € O, 7 # 1, T—e ~ 1. Then f(x'7) ~ 7 —e ~ 1 and
Alrrntry ~ (—mde, a'r) ~ (7, 7) £ 1.

4. £(0) ~ —de, so that A is unramified. If w satisfies h(w) » ¢, then f(z9w) ~ —eh(w) ~ 1. We have

d
d o, TW
Alrremp(TW) ~ <W<>> ~ (o, V) 2 1.
. In this case f(7W) ~ « and £(0) ~ 1. Then A is unramified and Ay ~ (a, —72%w) £ 1.
CF0) ~ 1, A~ (o, —7") £ 1
Axrie ~ (a,7') # 1.
. F(m9W) ~ —aen, i.e. A is unramified. A,_ 1o ~ (—aem, me) £ 1.
. Let§ = 7972 /rw € K(,/aw). Since d € 1/2+Z, then d < m/3, h(yW) ~ w2+7K=2dyw+7"~4d5 =
O(w), and f(#) ~ —hP(w)we. Note that in view of h(t) = h°(t?) we have h°(t) ¢ k[t]?>. So the condition

w % —de,
ho(w) 7 &

T©O© © ~N o u
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can be satisfied in a suitable K. Under these conditions we have () ~ 1 and

e~ (S )~ (i)

Thus, case E(t_) & E[tl2 is completely considered. Let us make the form of polynomial g(t) more
precise, provided h(t) € K[t]?. If x* + 7k=2dux? + 7m=3dyx + 7n=4d§ = (x? + az + )?, then o = 0,
am—3dy = Q, rk—2dy = 23, and 7445 = 32, 3 € k*. Then n = 2k, m > 3k/2, d = k/2 € (1/2)Z,
§ =72+ 757, u= =27, 7,7 € O, s> 0. So g(x) has the following form.

g(x) = (X% — 77)? + 7Mvx + 72K*S7,

Let A = g(y/7%y) = 7%*Sr + 7™y /7Ky € k(y/7%v). Note that one always can suppose V(A) =
min{2k+s, m+k/2}. Indeed, let v(A) > min{2k+s, m+k/2}. This means thatk = 0(2), v = 2 € (O})?,
2k+s=m+k/2 and 7 +Vv;3 =0. Then 7 —Vv3 # 0, and replacement 3 by —/3 gives us the required A.
Moreover, if k = 0(2), then equality v(A) = 2m —k (or v(A)/2 —k = m — 3k/2) is impossible. Indeed,
then 2m —k < m+ k/2, m < 3k/2.

From now on we will consider only such g(x) and A.

Theorem 30 Let d <. Then the following algebra A is unramified, nontrivial, and not isomorphic to
the scalar one.
1. k=0(Q),7y=3 A~7198~a.
A= (m,x—ne).
2. k=0(2),y=0% A~798~7p, peO.
A= (a,x—7'e).
3. k=0(2),y=/ A~793~1.
Let = 7981 + n"w), r = min{v(A)/2 — k,m — 3k/2}, w € O} such that ¢(w) € O \ (O))?,
where
(x) = 4v?x2 + 1, if v(A)/2—k <m—3k/2
O =1 4922 + vfx, if v(A)/2—k > m —3K/2,
A=Ay, and p = ITrrg ().
Then A = («, p).
4. k=0(2), v= 2 Ar93 ~a,d=1(2).
A= (a,x—793).
5. k=0(2),y=8 Ar8~a,d=0(2), 3~ 1.
A= (a,x—793).
6. k=0(2),v=0% An98~a,d=0(2), 5+ 1.
A = (o, It comk(8)), where 0 = 795(1 + ¢/7).
7. k=0(2), v= 2, An98 ~ 7p, V(A) = 1(2).
A= (nfu,x —796), A =av®y,
8. k=0(2), v= 3% An98 ~ 7p, v(A) = 0(2).
A = (nfa,p), p is from item 3.
9. k=1(2), m+k/2<2k+s,yMv ~ 1.
A= (a,x—7'e).

64



10. k=1(2), m+k/2<2k+s, y"v £ 1.
A = (a,x? — 7Ky).
11. k=1(2), m+k/2> 2k +s.
Let = /7Ky(1 + ((/7T7)°W) € K(/77), W € O} such that 4(4y5"2w? + 1) € Oy \ (O)?,
q = Irremmik(9)-
Then A = (az, q(0)q(x)).
12. k=0(2), v #1,v(A)=0(2),d=1(2), -1 ~ 1.
Let similarly as in item 3 6 = wd\/T/(1+7rrw) e Ky, we O**<(\/7) such that ¢(w) ¢ 1 in K(,/7),
p= IrrK(ﬁ)|k(9)-
Then A = (7, p(X)).
13. k=0(2),7 %1, v(A)=0(2),d=1(2), -1 £ 1.
Let p be as in item 12, p € Of, p2 —~ ¢ 1.
Then A = (ap(x), x — 7).
14. k=0(2),v#1,v(A)=0(2),d=0(2), -1 £ 1.
A = (ap(x),x — w9u), p and p are as in 13.
15. k=0(2), v #1,v(A)=0(2),d=0(2), -1~ 1.
A= (m,x—n'e).
16. k=0(2), v £1,v(A)=1(2),d=0(2), p~ 7 in k(\7), A=A
A= (m,x% — k7).
17. k=0(2), 7 #1,v(A)=1(2),d=0(2), u %\~
A= (a(x® =), m(x — 7)), n € OF, n* =~ # L.
18. k=0(2), 7 #1,v(A)=1(2),d=1(2), -1 ~ 1.
A = (m,p(X)), p is as in item 12.
19. k=0(2),7#1,v(A)=1(2),d=1(2), -1 £ 1.
A = (ap(x),x — w9n), p is from item 12, n € O, > —~ # 1.
Proof.
1 f(793) ~ A8 ~ 1, 50 Ay_rag ~ (m,798) # 1.
2. Ax—rag ~ (a, mB) % 1.

3. f(@) ~ 9(9)0 ~ 9(9) ~ 47r2k+2r’y2W2(1+7TrW/2)2+7TV(A)L1+7rm+d+rVﬂW ~ 4’Y2W2+7T2[(V(A)/2_k)_r]p.+
a(M=3k/2=ryBw ~ ¢(W) ~ a. Thus A is unramified. Let ¢’ = 793(1 +1I) € k(IT), II = =, p’ = Lrr(@’).
Then f(el) ~ g(el) ~ 4,\/2 + WZ[(V(A)/Z—k)—l/B]u + 7r(m—3k/2)—1/3 ~1, and

A~ [ [T, camn (@A +10) — 796(1 + 7'w?))
" k() (')

) ~ (o, TI) £ 1.

4. f(796) ~ «, s0 A is unramified. A,_ 1o ~ (o, 796) o 1.
5. Let ¢, p’ be from item 3 of this proof. Then f(¢') ~ 1 and Ay £ 1.

6. F(0) ~ g(@) (x93 —7'e) ~ 195 ~ a, A is unramified. Let 0, p be as in 3. Then f(0) ~ ap(w) ~ 1 and
Ap 1.
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7. £(79B) ~ muB, A is unramified. If n € O satisfies the conditions n ~ 1, 1 # E n— 0B # 1, then
f(n9n) ~ 7% ~ 1L and Ayrrrayy ~ (78,1 — B) # 1.

8. £(0) ~ g(0)795 ~ wBH(w), so A is unramified.

As—rie ~ (maf, [] (x'e =796 + 7"W))) ~ (w3, —7f) 2 1.

oceG

9. f(\/7y) ~ Ay/7Ky ~ yMv ~ 1 in k(,/77). Therefore

o, \/ﬂ
Aoy ~ (k(mxxz—wkw) #

10. £(1/7%7) ~ a, A is unramified. Ay_1e ~ (a, —7%7y) % 1.

11. We have g(0) ~ 75(475*?W? + 1) ~ a, then f(0) ~ af.
A is unramified. Indeed, Ay ~ (az,q(0)?) ~ 1 and

A N( af, 4(0)g )N
A\ K/ (Vab)(g)

A o (7, ) in view of (7, a)x—r1e 7 1, but Ay 1e ~ (an'e, q(0)?) ~ 1. Finally,

since vk(q(0)) = 1 (2).
12. £(0) ~ 7\/79(0) ~ m, A is unramified.

Acmie~(m, ] =vAG=rvA) ~ (7, =) # L.

ceG(K|K)

13. p(r?p) ~ [T,(M— v+ /7)) ~ W2 — 7 ~ a, 50 that Ay, ~ (@, X — %) ~ 1.
f(0) ~ 79(0)\/7 ~ (L — /) ink(,/7). Then

A ( op, w(k = /7) )
P\ KGDWTO) )

Thus, A is unramified.

Ax_rie ~ (andﬂ—wdf) —n9W) ~ (7, —a7) # 1.

14. £(0) ~ g(f) ~ u—./7, hence A is unramified. Let ¢’ = 79, /7 (1+II), II = 7. Then F(0') = g(¢’) ~ 1

and
A [Lecawmo(/T = (M) + Iy = Wy)77") , W=7
Irrgan, 5 (0) ™ k(H, \/A_/)< ) > ~
(Mg
(k(n, ﬁ)(--->> oL
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15. £(0) ~ g9(0)\/7 ~ 1, then

o () 74

16. f(7%,/7) ~ 7 /7 ~ m, Ais unramified. Let ¢ € O, (> —v £ 1, ( ~ 1. Then f(z9() ~ g(x9() ~ 1

and @
T -
Alrr(ﬂ-d() ~ (W) 7é 1.

17. Ax—ray ~ (a?, m(x — 79n)) ~ 1.

A ( X2 =Ky, w(n = /7) ) 1
T k(A SFE A (X2 — k)

because f(74,/7) ~ TU/7 ~ 7(n — /7), i.e. A is unramified.

o, T
Ag ~ [ —— 1.
(k(wl/x)) 7
It remains to prove that A % (m, ). Choose ¢ as in 16. Then A p(ac) ~ (a(¢?—7),...) ~ 1. On the
other hand, (7, @)yrr(racy # 1.

18. £(0) ~ 7\/79(0) ~ m, A is unramified.

Accpe~(m T —#UA A+ aW)) ~ (x,—7) £ L.
oceG(K(yMIk)
19. We have

Ageran ~(x=7n0  J[ =D A+7W)) ~ (x=7%,an? =) ~1,
oeG(K(ﬁ)|k)

£(6) ~ 7/79(0) ~ (1 — v/7) in k(7). S0
Ap~< p, (/7 =) )wl,

k(D70 = v ))P)

i.e. A is unramified. To prove the theorem it is enough to check that A is nontrivial.

Acae~(a [ —mGA7Q+7W),—n%) ~ (—ary, —mn) # 1.
aeG(K(yMIk)

Theorem 31 Let d > | and if d = I, 75y = (798)2 € k2, then b # &. Assume

§(X)={ —e, ifd>1,

X—e, ifd=1
Then the following algebra is unramified, nontrivial, and not isomorphic to the scalar one.

1. 78y = @98)2 ~ 1, v(A) =0(2), 1 =0(2), £(B) # 1.
A= (r,x—n'e).
2. %y ~1,v(A) =0(2), 1 =0(2), £(B) ~ 1.
A = (a, p(X)), where p is defined in item 3 of the previous theorem.
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3. 8y ~1,v(A)=0(2), 1 =1(2).
A = (mag(B), p(x))-
4. ™y ~ 1, v(A)=1(2), | =1(2), u~ &(B), where A = 7V,
Let T = ¢/7, t€ {1,2}, t=d (2), & = n9p(1 — ITtaB) € k(10), p’ = Irr ().
Then A = (7€(5), p'(X)).
5. 18y ~ 1, v(A) =1(2), | =1(2), U &(B).
A= (o, x — 19p).
6. 7y ~1,v(A)=1(2), 1=0(2).
A = (rpg(B), x — m0).
7. k=1(2), v(A) =0(2) in k(/), —ey' ~ 1.
Let 0 = \/7%v(1 + (,/m7)"'W) € K(,/77), w € Oj such that g(¢) ~ a in K(,/77), p = Irr(0).
Then A = (a, p(Xx)).
8. k=1(2), v(A) =0(2) in k(/), —ey' # 1.
Let ¢ = \/mky(1+ &77) € k(&/m7), q = Irr(9).
Then A = (a, q(X)).
9. k=1(2), v(A) =1(2).
A= (pﬂ(k—l)/zx, _Wﬁ/(xz _ 7rk'y)), p= _evl+m+(k—1)/2_

10. k=0(2), 7 #1,v(A)=0(2), 1=1(2), I =d, &(y) # 1in k(7).
Let 0 =79,/7(1+ 7'w), w € Oj (/5 such that g(6) € Oy (- \ (Oy
Then A = (7, p(X).

11. k=0(2), v #1, v(A)=0(2), 1 =0(2), I =d, () # 1 in k(/7).

A= (m,x—ne).

(m)z, p=1Irr9).

12. k=0(2), v # 1, v(A) =0(2), £&(/7) ~ 1 in k(,/7) (the last condition always holds if | < d).
A = (ap, 79 (x — 193)), where 8 € O}, 32 —~ # 1, p is from item 10.

13. k=0(2), 7 £ 1, V(A) = 1(2), W £(/A) in k(7).
A = (a(x? — 7Ky), 719+ (x — 793)), where 3 € O}, 32 —~ # 1.

14. k=0(2), 7 £ 1, V(A) = 1(2), u ~ £(7) in k(y3), 1 =0(2).
A= (m,x% — k7).

15. k=0(2), v £ 1, V(A) =1(2), p~ (/) ~ 1, 1 =1(2).
Let 1= 7, ¢ ==9,/4(1+1n), n € Ox(vm \(o;(m)z, 4= I, ;K@)
Then A = (7, q(X)).

16. k=0(2), v £ 1, v(A) =1(2), p~ (V) £ 1, 1=1(2).

A= (m,x—ne).
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Proof.
1. If 6, p are the same as in item 3 of the previous theorem, then g(0) ~ « and f(6) ~ ar'é(3) ~ 1, so

Ap ~ (T, £(8) # 1.
2. £(0) ~ a, Ais unramified. Let ¢’ = 7z9p(1 +1I%), IT = ¢/m, t € {1,2}, t £ d(2), p’ = Irrm ().
Then f(0) ~ £(8) ~ 1 and
(o I +11%) — 7951 + WrW”)]> N (a , Hd”)
Ao~ ( () ) Kmey) ”

3. A is unramified because of f(0) ~ ma&(5). We have also

Asrie ~ (mal(B), [ [(r'e = 7981 + x"W7))) ~ (rat(B), —7£(B)) # L.

4. F(n96) ~ AT'E(B) ~ 1, F(8') ~ 7&(3), so that A is unramified. If x> =1, y is a primitive root, then

5
Ax—rag ~ (@), [ [(x8 — 7981 = T aB))) ~ (TTE(B), T a)) £ 1.

i=0
5. F(798) ~ a, A is unramified. A,_ 1. ~ (a, 7'E(3)) # 1.
6. F(r93) ~ mu&(B). Find n € Of satisfying the following conditions
0% B,
n—e~1,
n# 1, ifl <d,
n—0B41, ifl =d.
Then f(nr') ~ (n—e)g(nm') ~ 1 and Ajrrgyety ~ (rpé(B),n — 791 6) £ 1.
7,8. In these cases we have | <d, de 1/2+ Z.
£(0) ~ 9(0)(—7'e) ~ —er' v in K(/77),
f(0') ~ g(@)(—n'e) ~ —ey! in K(/77).
If —e7' ~ 1, then A = (a,p) is nontrivial and p(0") ~ [T, comuo(VTY (A + §77) — /7y (1 +
(VTN W) (VT + g77) + /7L + (1) (77) W) ~ 277, i.e.
o, oy >
Ag~ | —=—— 1.
o+~ (xcomom) *
Let now —ey! % 1. Then A = (a, q) is unramified and q(f) ~ —2,/77. So Ap £ 1.
9. A ~ (prk=D2x (—77)?) ~ 1.

A ( —(X% =), pyTy )
X2—mky © —— .
k(vTN(/ F(/T*9)) (x2 = 7)

Since v(A) = 1(2) in k(/77), then 2k +s < m+k/2 and A ~ 7Mv/7Ky ~ yM*+&K=D72y m2in k(,/77).
So f(\/nKy) ~ py/m7 in k(/77) and Ay2_ ., ~ 1. Thus A is unramified. Furthermore,

A o ﬂ,p,\/(k—l)/z .
°° k(,/17X)
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If I =0(2), then choose n € Oj satisfying the conditions

n—en~1,
1o py D2,
Then f(a'n) ~ (pr D2y, —ry (7' — 1K) ~ (m, pny ~D’2), i.e. among the algebras Ao, Ajrr(ain

there is exactly one nontrivial. Therefore A £ 1, (7, «).
Let now | = 1(2). One can find n € O such that

”/_ana
n~ —€e.

Then we have f(y/7Kn) ~ —r'e ~ —ne ~ 1 in K(/77) and

P e VT P i U de) A N ( VT Y )741
Irr(\/wkn) K(W)( . > K(\/ﬁx . > .

On the other hand,
™, «

Dy~ (ki) =

10,11. Since f(9) ~ 7'¢(\A)6, 0 € O;}(m \(O*K(m)z, then in 10 A is unramified and in 11
T, W'&(ﬁ))
Ap~ | ——— 1.
P ( KGnm )7

Moreover, in the first case Ay_ 1, ~ (7,62 —7) # 1.
12. p(r9B) ~ (3% =~ ~ «, therefore Ay ag ~ 1. £(0) ~ g(O)é(y/T)n' ~ on', § £ 1in k(,/7). Then

A <p, H*f‘(#*ﬁ—#‘ﬁ)) N < p. (3= v ) o
P K(y/7)(V7'6)(p) K (y/7)(V/716)(p)
So, A is unramified. We have also

a, 7T|+d d
A ~ <W>  Ax—rte ~ (o, ),

the latter equality because of p(n'e) ~ 1. If | = 1(2), then exactly one among these algebras is nontrivial,
so A %1, (m, ).
Let | = 0(2). Suppose ¢ = =4, /4(1+1I), I = ¥x. Then £(¢') ~ £(,/7) ~ 1 and

p@) ~ [ [ VAL + 1) = ()7L + 7"w)) ~ 1.

We have
H!ﬁ_ﬁ

Attt i) ~ (W) L

Note, that (7, «) is trivial at this place.
13. Ag—gag ~ (@2,..) ~ L. F(z9/7) ~ 71 ué (/7). then

A (Xz_wk% 7T|+d+1(7rd\/'\_/—7rdﬁ)) 1
T\ k(AR A (X2 — k)
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i.e. A is unramified.

1, I<d
Ao ~ (aaﬂ-H—d_‘_l)a Ax—rle ~ (OZ{ e2 — Vs I=d } ,ﬂ-d+1> .

If | = 1(2), then we have just one nontrivial algebra, therefore A « 1, (7, «). The same is true in case
|l =0(2), &(/7) # 1, since then | =d and e —~ £ 1. Let | =0(2), &(/7) ~ 1. For the ¢’ from the
previous item we have

A G T Ut O N L el Vi AU
Irficcn, ymi(6) k(I 7)(...) k(L 7). - ) .

14,15,16. (x4, ~ 7" 1uc(yy) ~ 7 I po~ (/7). | = 0(2) (case 14), then (m,x* — 7*u) is
unramified. If p ~ £(,/7), | =1(2), then f(/7kv) ~ 1 and

T, ©'¢(/7)
K(y/7)(x2 — mky

provided £(y/7) # 1 (case 16). In case 15 we have

>) ~ (S A1,

I
(7T, X = 7€) x2rkny ~ <

2 2
ax®v) ~ [[*vA = 24vAl + X)) (/A + 78 AL + X Tn%)) ~ [ [ x'Tin ~ 7,
i=0

i=0

where 3 =1, x is a primitive root. So

T,
Ao~ (e o) 1

To complete the proof one only need to check that A ¢ 1 in case 14 and A is nontrivial in 15. In these
cases F(0') ~ 7r'§(\/7). Then f(#') ~ 7 in 15 and A is unramified. If case 14 takes place and | < d, then
f(0') ~ —e ~ 1in k(,/7). Therefore

m, Ty(1 +1In)? — *y 1T, 7
Aa ( k(T 2)(q) ) <k(H,7)<Q>>761'

Finally, let | = d. Assume ¢ € Oj such that ( # &, (—e~1,and (2 —~ £ 1. Then f(r9¢0) ~(—e~1
and AlrrKlk(ﬂ—d() ~(m, =) £ L

Theorem 32 Letd =1, 7%y = (793)? € k?, and e = 3+ 7", n > 0, § € O}.

Let firstly v(A) = 0(2) and § = 793(1 +7"w), w € Oj¢ such that ¢(w) € Oy \ (O)?, p = Irr(9),
r = min{v(A)/2 — k,m — 3k/2} (see theorem 30, item 3). Then the following algebra A is unramified,
nontrivial, and not isomorphic to the scalar one.

Lr<n r+d=1(2). A= (aNkkxW))r,p(x)), where

[ px, ifr<n,
X(X)_{ﬁx—é, if r=n.
r<n, r+d=0(). A= (x,x—n%).
r>n,n+d=1(2). A= (—nda, p(x)).
r>nn+d=0(2), =5 £ 1. A= (x,x—n%).

o k0 w DN

r>n,n+d=0(2), =0 ~1. A= (a,pX)).
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Let now v(A) = 1(2), A = 7V(®)u. Then the following algebra A is unramified, nontrivial, and not
isomorphic to the scalar one.

6. N+d=1(2), —ud # 1. A= (a,x—79p).

7.n+d=1(), —ud ~ 1. A= (o, x—7%).

8. Nn+d=0(2), n<r. A= (—udr,x— 79p).
9

.n+d=0(), n>r. A= (—mpa,x —793(1 + 7"w)), where w € O;; such that § — Bw « 1. (If there
is no such w in k, then A = (=mpua, I (793(1 + 7"w))), w € OF)

Proof. Let v(A) =0(2). Then

a9 ax(w), if r <n,

f(6) ~ Ol(ﬂ'dﬁ(l + 7r"W) - Wd(ﬁ + 7'('”5)) ~ { _ﬂ_d+na5, if r >n,

X(W) ~ Nk e(x(w)) in K.
So, in cases 1,3,5 the algebra A is unramified.
In 4 f(0) ~ —ad ~ 1, then

A 7, 798 + 7"w) — 79(3 + 7"6)
" ( K{p)

) ~ (m, —7"*45) £ 1.

In 2 £(#) ~ ayx(w). System
{ p(w) £ 1,
x(w) £ 1

is always solvable in a sufficiently large extension K|k. For such w and p we have

Ap ~ (m, 7931+ 7w) — 793 + 7"6)) ~ (7r ’ X(W)> *1

K{p)
In 1,3
v —7d*+'N w)), r < n,
ple) ~ 7% [ ("0 —a"pw) ~ { 2, erlkn(_X( D=
oeG(K|K)
Then in

1. Ax—rae ~ (@Nkk(x(W)) 7, =Nk i (x(W))) # 1.

2. Ax—pde ~ (—mda, wd) # 1. Thus, for case v(A) = 0(2) it is enough to check that in 5 A % 1. To
do this, assume ¢ = 798(1 +1I%) € k(II), I = ¢/m, t € {1,2}, t £ d(2), p' = Irreank(@). Then
(') ~g(®) ~1and

p@)~ [ @@+ =76 +r"w)) ~ x?pI",

seG(K|K)

So,
a, Hd+t)
Ay ~ | ——— 1.
o~ (i) *

Consider now case v(A) = 1(2). We have f(793) ~ —nV(&) y79* 35 ~ —pdrd*n+1, therefore in 6 A
is unramified and in 7 f(793) ~ 1, Ay rag ~ (a, 797™) £ 1. Furthermore, in 6 A is nontrivial. Indeed,
then Ay, ae ~ (a, 79%7) £ 1.

In 8 f(793) ~ —pomd*™*1 and A is unramified. Let r = min{v(A)/2 — k,m — 3k/2} € (1/2)Z,
0 = 1981 + (—apdn) w) € K((—apdr)"), w e O:(((—auéﬂ')r)’ P = Mk (—aus=)r)k(0). Then

9(9) ~ 472(_aM5)2rW2 + ﬂ_v(A)—zk—zru + Fm_sklz_zrVBW(—Ozu(sﬂ')r,
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F0) ~ 005 + w(-apsny ™)~ @ { T8

Moreover,
Ao ~ ( —pom , 79 B(—apdn)" ) .
K ((—ausm)")(/F(0))(p)
If re Z, then

A (w, (—a)r(u5)dﬂW>_
’ K(/FO)(p)

One always can find K, w such that f() ~ 1 and w £ (—a)"(ud)?3. Then we have A, # 1.
Consider r € 1/2 + Z. In this case

pr< a, v/—audn )

K(V/=audm)(\/(0))(p)

In addition, f(0) ~ —5(47?(—aud)* w? + ). So, Ay # 1, provided f(0) ~ 1.

9. Since v(A) = min{2k +s,m + k/2}, then v(A) < m + n + k/2. Suppose fy = 793(1 + 7"w).
9(0o) ~ P @2r"W + 72"W?)2 + gV(A) 72Ky 4 pm=3k/24ny gy In view of v(A) — 2k < m — 3k/2 + n and
v(A)—2k < 2n (the latter inequality holds because of v(A)/2—k < r < n) we have g(6p) ~ wu. Therefore
T(0) ~ mu(Bw — &) and A is unramified. Finally, Ax— de ~ (—muc, d — fw) £ 1.

The theorem is proved.
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