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JÖRG WINKELMANN

Abstract. We investigate properties of generically choosen finitely
generated subgroups of real Lie groups. In particular we ask whether
discreteness is generic.

1. introduction

In this article we investigate generic subgroups of Lie groups. In
particular we ask the following question:

Given a Lie group G and a natural number n, when is it true,
that n generically choosen elements g1, . . . , gn will generate
a discrete subgroup of G ?

More precisely, given a topological group G we define a subset
�

n of
the n-fold product space Gn = G × . . . × G by�

k(G) = {(g1, . . . , gk) � Gk : � g1, . . . , gk � is a discrete subgroup of G}

A complete description of these sets
�

k is available only for rather spe-
cial cases. It is easy to obtain such a description for abelian connected
Lie groups. For semisimple Lie groups already the description of

�
2 is

rather complicated. A complete description has been achieved only for
the case SL(2, R). For SL(2, C) there are partial results, in particular
the famous inequality of Jørgensen.

In this article we do not look for a complete description of
�

k. Here
we concentrate on the question:

Given a Lie group G and a number k � N, under which con-
ditions on G and k are

�
k or Gk \

�
k are sets of measure zero

(with respect to the product measure of the Haar measure
of G).

(The sets
�

k are always measurable, see prop 2.)
For

�
1 we have precise criteria answering these questions in depen-

dance on the topological properties of the Cartan subgroups of G.

Theorem 1. Let G be a connected real Lie group.
Then the set

�
1 has positive measure if and only if G admits a Cartan

subgroup with non compact connected components.
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The set G\
�

1 has positive measure if and only if G admits a Cartan
subgroup with compact connected components.

If G contains both Cartan subgroups with compact connected compo-
nents and Cartan subgroups with non compact components, then both�

1 and G \
�

1 are sets of infinite measure.

We discuss compactness resp. non-compactness of Cartan subgroups
in some detail, because the size of

�
1 depends on these properties.

Let G be a connected real Lie group, R its radical and S = G/R.
Cartan subgroups with compact connected components are necessar-
ily compact (prop. 8). The existence of a compact Cartan subgroup
implies that the center of S is finite (by prop. 7) and that G/G � is
compact (lemma 9).

For general k there is a strict dichotomy depending on whether S is
compact or not.

Theorem 2. Let G be a connected real Lie group, R ist radical, N its
nilradical and S = G/R.

If S is non-compact, then both
�

k and Gk \
�

k are of infinite measure
for all k > 1.

If S is compact, then there exists a natural number � G such that
Gk \

�
k has measure zero for all k ��� G and

�
k has measure zero for

all k > � G.
Furthermore the number � G has the following properties:

• � G = 0 if G is compact.
• � G � 1 unless G is nilpotent.
• � G � dimG/G� .
We also derive some related results concerning density of generic

subgroups.

Theorem 3. Let G be a connected semisimple linear algebraic group.
Then for every k 	 2 there is a subset Zk 
 Gk of measure zero
such that for every g = (g1, . . . , gk) � Gk \ Zk the group � g1, . . . , gk �
generated by g1, . . . , gk is Zariski dense in G.

Theorem 4. Let G be a connected semisimple real Lie group.
There exists an open neighbourhood W of e in G and for every k 	 2

a subset Zk 
 W k of measure zero such that � g1, . . . , gk � is dense in G
for all (g1, . . . , gk) � W k \ Zk.

In particular, for every connected semisimple Lie group S there do
exist two elements g1, g2 � S such that g1 and g2 generate a dense
subgroup of S. This may be regarded as a Lie analog for a theorem in
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the theory of finite simple groups which states that every finite simple
group is generated by two elements ([1]).

This paper is organized as follows: First we provide some examples,
and introduce some basic facts and notations. We show that

�
k is al-

ways measurable. We prove that under certain assumptions invariant
sets of positive measure are automatically of infinite measure. Inves-
tigating Cartan subgroups we derive our above mentioned results on�

1. Subsequently we prove the theorem on
�

k (k 	 2) using a variety
of �
����������� t techniques ranging from Zassenhaus neighbourhoods over
amenable groups to proximal elements.

1.1. Proof of the main results. The first two statements of Theo-
rem 1 follow from prop. 5, prop. 9 and prop. 10. If G contains both
Cartan subgroup with compact connected components and Cartan sub-
groups with non compact connected components, then prop. 6 implies
that G/R is non-compact. This allows us to invoke cor. 1 in order to
conclude that both

�
1 and G \

�
1 have infinite measure.

Theorem 2: For S non compact the statement follows from cor. 6 and
cor. 7 combined with cor. 1. If S is compact and positive dimensional
then

�
k(G) is a set of measure zero for all k 	 2 by prop. 11. Theorem 1

combined with prop. 6 implies that either
�

1(G) or G \
�

1(G) is a
set of measure zero for S compact and positive dimensional. If G is
solvable, but not nilpotent, then the assertions of the theorem follows
from prop. 6 combined with prop. 12. For nilpotent G the theorem
follows from prop. 14 and prop. 15. Finally, the assertion that � G = 0
for compact G follows from cor. 3.

Theorem 3 follows from prop. 16.
For every connected semisimple Lie group S the adjoint representa-

tion Ad has the property that Ad(S) is linear algebraic and the kernel
(which is the center of S) is discrete. Together with prop. 17 and
lemma 16 this implies theorem 4.

2. Examples of
�

k

For abelian and certain nilpotent connected Lie groups an explicit
description is easy.

Example 1. Let G = (Rd,+). Then
�

k is the set of all (v1, . . . , vk)
such that dimQ � v1, . . . , vk � Q = dimR � v1, . . . , vk � R. In particular

�
k is

of measure zero for k > d and Gk \
�

k is of measure zero for k � d.

Example 2. Let G = (S1)
n

with S1 = {z � C � : |z| = 1}, let E denote
the set of all roots of unity, i.e., z � E if zN = 1 for some N � N and
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let Gtors = En. Then
�

k = Gk
tors for all k � N and

�
k has measure

zero for all k � N.

Example 3. Let V be a real vector space with antisymmetric bilinear
form B(·, ·). The associated Heisenberg group G is V × R as manifold
with the group structure given by (v, x)·(w, y) = (v+w, x+y+B(v,w)).
Then the group generated by two elements (v, x) and (w, y) is

{(nv + mw,nx + my + (nm + k)B(v,w) : n,m, k � Z}.

Hence Gk \
�

k has measure zero for k = 1, 2. On the other hand, if
(vi, xi)i � I is a family of elements in G, then the group generated by
these elements contains 2B(vi, vj) for all i, j � I. This implies that

�
k

is of measure zero for k > 2.

Example 4. Let g be the four dimensional nilpotent Lie algebra given
by [X1,X2] = X3 and [X1,X3] = X4.

Then
�

k is a set of measure zero for all k 	 2 for the associated
simply-connected Lie group.

Based on free Lie algebras, for every k � N it is possible to construct
a nilpotent Lie group such that

�
k is of positive measure.

For semisimple Lie groups there are many partial results.

Example 5. There is a complete description of
�

2 for SL(2, R), ob-
tained by J. Gilman ([6]).

Example 6. For SL2(C) there is the famous inequality of Jørgensen
([8]): If (A,B) � �

2 for G = SL2(C) � S̃O(3, 1), then either the
inequality

|(tr A)2 − 4| + | tr(ABA−1B−1) − 2| 	 1

is fulfilled or A and B generate a subgroup of very special kind, called
“elementary” subgroup. It is easily verified that the set of all (A,B)
generating an elementary subgroup is a set of measure zero. Thus
Jørgensen’s inequality implies that G2 \

�
2 is of positive measure for

G = SL2(C). Results generalizing Jørgensen’s inequality have been
obtained for SO(n, 1) (n arbitrary), see [3],[5],[11].

Example 7. Let G be a compact Lie group. Every discrete subgroup
of G is finite. Hence

�
1(G) = Gtors = {g � G : gn = e � n}.

If G is connected or nilpotent, then µ � � 1(G)) = µ(Gtors) = 0 (see
corollary 3 and lemma 5 below).

If G is neither connected nor nilpotent, then Gtors may be a set of
positive measure. For instance, consider the compact solvable group
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�
0

0
�

−1 :
� � S1 � 0

�
−1

−
�

0
:
� � S1 .

This compact group has two connected components and g2 = e for
every element g in the connected component not containing the neutral
element.

3. Infinity of volume

In order to show that certain sets have infinite volume with respect
to Haar measure, we proceed as follows: We first show that these sets
have positive measure. Then we apply a proposition to be deduced
in this section which implies that often sets of positive measure in Lie
groups have automatically infinite measure if they are invariant under
conjugation.

Lemma 1. Let V be a ���! #" variety defined over R, U a unipotent
group acting on V morphically (also over R) and µ a U(R)-invariant
probability measure on V (R) of Lebesgue measure class.

Then µ is supported in the fixed point set V U (R).

Proof. If V U $= V , then there exists an R-regular function f on V such
f $� R[V ]U but such that U stabilizes the vector space M spanned by
f and R[V ]U . For every one-parameter-subgroup % t of U there is a
U -invariant regular function g = g& such that %'�t f = f + tg. Then f/g
is an R-regular map from Vg = {g $= 0} to R which is equivariant for
R acting on V via % t and on itself by addition. Now every U -invariant
subset of Vg is mapped surjectively onto R. Hence Vg can not carry any
non-trivial U -invariant finite measure. Therefore µ must be supported
inside the intersection of the zero sets of all the g& . This intersection
is again an (*)+�,� U -variety, but of strictly smaller dimension that V
(unless V = V U). Arguing by induction, we may therefore deduce that
the support of µ must be contained in V U .

Proposition 1. Let G be a connected real Lie group and R its radi-
cal. Assume that there exists a probability measure µ on G which is
invariant under G acting on itself by conjugation.

Then G/R is compact or µ is concentrated on R.

Proof. Assume that G/R is not compact. Then there exists a real
simple Lie group S0 with trivial center and a surjective Lie group ho-
momorphism - : G . S0. The measure µ on G induces a probablity
measure µ0 on S0 via µ0(A) = µ(- −1(A)) for A 
 S0. Note that S0 is
linear algebraic, because it is simple and center-free. Hence S0 is an
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(/)0�
� R-variety. Thus we may invoke the above lemma and conclude
that the support of µ0 is concentrated at the intersection of the fixed
point sets of all unipotent subgroups of S0 acting on S0 by conjugation.
Since S0 is simple and non-compact, it is generated by its unipotent
subgroups. Hence this intersection is simply the center of S0, i.e. µ0 is
concentrated at {e}. Thus the support of µ is contained in R.

Corollary 1. Let G be a connected real Lie group G with radical R,
k � N, µ the product measure of the Haar measures on Gk and E 
 Gk

a measurable set which is invariant under the diagonal G-action on Gk

via conjugation. Assume that G/R is not compact.
Then either µ(E) = 0 or µ(E) = 1 .

Proof. Assume the contrary, i.e., the existence of such an invariant set
E with 0 < µ(E) < + 1 . Since E is invariant and of finite volume, it
follows that conjugation by an element of G can not change the volume,
i.e., G must be unimodular. Hence the Haar measure is invariant under
conjugation.

Now let 2 1 : Gk . G denote the projection onto the first factor. We
define a probability measure 3 on G by 3 (X) = µ(2 −1(X) 4 E). Note
that R $= G and therefore µ(R × Gk−1) = 0, implying 3 (R) = 0 Thus 3
is a probability measure on G which is invariant under conjugation and
such that 3 (R) = 0. This contradicts the preceding proposition.

4. Preparations

In this article, Fn always denotes the free group with n elements 5 i.
There is a natural map % : Fn × Gn . G defined as follows: To every
element x = (g1, . . . , gk) � Gk we associated a group homomorphism6

x : Fn . G induced by
6

x : 5 i 7. gi. We define % (5 , x) =
6

x(5 ).
Furthermore, for every R � Fn we define a continuous map 8 R : Gk . G
via 8 R(x) =

6
x(R).

Proposition 2. Let G be a topological group fulfilling the second axiom
of countability.

Then
�

k(G) is measurable (with respect to the Borel algebra gener-
ated by the topology) for all k � N.

Proof. Note that x = (g1, . . . , gk) $� �
k �9� the subgroup generated

by the gi is not discrete and that this condition is equivalent to the
property that e is not an isolated point in the group generated by the
gi.

Let (Vj)j � J be a neighbourhood basis of the topology of G at e. By
assumption J may be choosen to be countable.
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Then

Gk \
�

k = 4 j � J
�

R � Fn
8 −1

R (Vj \ {e})

Since both J and Fn are countable, it follows that
�

k is measurable.

Subgroups of discrete groups are again discrete. Hence
�

k+l 
 �
k ×

Gl for all k, l � N, implying the observation stated below.

Observation. If
�

k is of measure zero, then
�

l is of measure zero for
all l 	 k.

Real Lie groups are intrinsically analytic, i.e., they admit a struc-
ture as a real analytic manifold such that the maps defining the group
structure are real analytic. Furthermore, every continuous group ho-
momorphism between real analytic Lie groups is automatically real
analytic. This is useful for our purposes, since the identity principle
for real analytic maps has the following consequence:

Lemma 2. Let f : M . N be a real analytic map between connected
real analytic manifolds. Assume that f has maximal rank somewhere.

Then f−1(S) is of measure zero for every subset S 
 N of measure
zero. (where the measure is defined with respect to (otherwise arbitrary)
everywhere positive volume forms on M and N .)

Corollary 2. Let G be a connected Lie group, S a subset of measure
zero and

Ŝ = {g � G : gn � S � n � N}.

Then Ŝ is a set of measure zero.

Proof. For every natural number n the map
6

n : g 7. gn = g · . . . · g is a
real analytic map which has maximal rank at e. Thus Ŝ = �

n � N

6
−1
n (S)

is a countable union of sets of measure zero and therefore itself a set
of measure zero.

Corollary 3. Let G be a connected Lie group.
Then Gtors = {g � G : gn = e � n} is a set of measure zero.

Lemma 3. Let H be a connected nilpotent Lie group. Then there exists
a unique maximal compact subgroup K 
 H. Furthermore K is central
in H.

Proof. Let K be a maximal compact subgroup. The adjoint represen-
tation of K on Lie(H) is completely reducible. Combined with Ad(g)
being unipotent for all g � H this implies that K is central in H.
Uniqueness of K follows from K being central, because maximal com-
pact subgroups in a connected Lie group are all conjugate.
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Lemma 4. Let G be a connected Lie group and H a connected normal
compact nilpotent Lie subgroup.

Then H is central in G.

Proof. The complete reducibility of representations of compact groups
implies that there exists an Ad(H)-stable vector subspace V 
 LieG
such that LieG = V : LieH as a vector space. Since V is Ad(H)-
stable, it is clear that [V,LieH] 
 V . On the other hand, [V,LieH] 

LieH, because H is normal. Thus [V,LieH] = {0}.

Complete reducibility of representations of compact groups can also
be used to deduce that a compact connected nilpotent Lie group is
necessarily commutative. Together with [V,LieH] = {0} this implies
that H is central.

Lemma 5. Let K be a compact nilpotent Lie group and Ktors its set
of torsion elements.

Then Ktors is a set of measure zero.

Proof. For every every natural number n 	 2 the set

{g � K : gn = e}

is a closed real analytic subset of K. Therefore either Ktors is a set of
measure zero, or Ktors contains a whole connected component of K.

Let C denote the connected component of the center of K0. Since K
is nilpotent, this is a positive dimensional group, i.e. C � (S1)g with
g > 0. Since C is central in K0, there is an action of the finite group
K/K0 on C. Again using the fact that K is nilpotent it is clear that
this action must be trivial, i.e., C is central in K. Let %;� C \ Ctors.
Now for any k � K both elements k and k % are contained in the
same connected component of K and they cannot be simultaneously
torsion elements. Therefore no connected component of K is contained
in Ktors.

5. Relations

We start by introducing some notation.

Definition. Let G be a group and k a natural number. An element
R � Fk is called a relation for v = (g1, . . . , gk) if 8 R(v) = e.

An element R � Fk is called a general relation for G if 8 R < e.
The set of all general relations for G is denoted by Rk(G) = Rk.

For example, 5 1 5 2 5 −1

1 5 −1

2 is a general relation for every commutative
group. Actually, a group G is commutative if and only if Rk = F �k for all
k where F �k denotes the commutator group of Fk. Similarily, properties
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like being m-step nilpotent or m-step solvable can be translated in
conditions on Rk(G).

Lemma 6. Let G be a group and k a natural number. Then Rk(G) is
a normal subgroup of Fk.

Proof. If A,B � Fk, then 8 ABA−1(x) = 8 A(x) 8 B(x) 8 A−1(x). Hence
8 ABA−1 < e if and only if 8 A < e.

Therefore Rk(G) is normal in Fk.

We will show that generic k-tuples (g1, . . . , gk) have no relations
except the general relations of the ambient Lie group.

Definition. Let G be a group. Then we define = k as the set of all
(g1, . . . , gk) � Gk for which there are more relations than the general
relations of the group G.

Proposition 3. Let G be a connected Lie group and k � N.
Then = k is a subset of Gk of measure zero.

Proof. Let S = Fk \ Rk(G). Then 8 A : Gk . G is a non-constant real
analytic map for every A � S. It follows that

= k = �
A � S 8 −1

A (e)

is a set of measure zero, because S is a countable set and 8 −1

A (e) is of
measure zero for every A � S.

Thus a generic finitely generated subgroup of a connected Lie group
fulfills no relations except the general relations of the ambient Lie
group. It is therefore useful to determine the general relations for Lie
groups.

Lemma 7. Let G be a connected Lie group. Then G is commutative
resp. nilpotent resp. solvable if and only if every subgroup with two
generators has the respective property.

Proof. The statement is trivial concerning commutativity. In respect
to solvability it follows from the “Tits alternative” (see [15]). Thus we
only have to show, that given a non-nilpotent connected Lie group G,
there exists a subgroup with 2 generators which is not nilpotent. Since
G is not nilpotent, Ado’s theorem implies that there is an element v in
the Lie algebra Lie(G) such that ad(v) is not nilpotent. Let W be an
irreducible ad(v)-sub module of Lie(G) on which ad(v) is not trivial.
Then either W is real one-dimensional and ad(v)(w) =

�?>
for w � W

with
� � R \ {0} or V is real two-dimensional. In both cases it is easy

to check that exp(v) and exp(w) generate a non-nilpotent group for
every w � W .
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Corollary 4. A connected Lie group G is solvable resp. nilpotent resp.
commutative if and only if F2/R2(G) has the respective property.

In contrast, for non-solvable Lie groups there are no general relations.

Proposition 4. Let G be a connected Lie group and assume that G is
not solvable. Then Rk(G) = {e} for all k � N.

Proof. Consider the adjoint representation Ad : G . GL(LieG). Since
G is a central extension of Ad(G) by the center of G, non-solvability of
G implies that Ad(G) is also non-solvable. Due to “Tits-alternative” it
follows that for every k � N the group Ad(G) contains a free subgroup
with k generators. This subgroup can be lifted to a subgroup of G
(because of its freeness). It follows that Rk(G) = {e}.

Lemma 8. Let G be a positive-dimensional Lie group. Then Rk(G) is
contained in the commutator group F �k of Fk for every k.

Proof. The Lie group G must contain a one-parameter subgroup. Such
a one-parameter subgroup is isomorphic to R or R/Z. Both contain
subgroups isomorphic to Zk for every k.

Corollary 5. Let G be a positive-dimensional abelian connected Lie
group.

Then Rk(G) = F �k for every k � N.

6. Cartan subgroups

We recall the notion of Cartan subalgebras and Cartan subgroups
for arbitrary Lie groups. As standard references we use [2] and [13].

Definition. Let g be a finite-dimensional Lie algebra over a field k.
A Lie subalgebra h is called Cartan subalgebra if it is nilpotent and
equals its own normalizer (i.e. [x, a] � h @ a � h implies x � h.)

A Cartan subgroup H of a group G is a maximal nilpotent subgroup
such that NG(I)/I is finite for every normal subgroup I of H with H/I
finite.

Since Cartan subgroups are maximal nilpotent, and nilpotency is
inherited by the closure of a subgroup in a topological group, it is
clear that Cartan subgroups are closed for any topology compatible
with the group structure. For instance, considering Zariski topology it
follows that in an algebraic group every Cartan subgroup is an algebraic
subgroup.

Every Lie algebra contains Cartan subalgebras. More precisely, an
element x in a Lie algebra g is called regular if the multiplicity of 0
as root of the characteristic polynomial of ad(x) is minimal. Regular
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elements form a dense open subset of the Lie algebra. For every regular
element x the vector subspace

{v � g : ad(x)n(v) = 0 � n}

is a Cartan subalgebra. Conversely, every Cartan subalgebra arises in
this way.

For a connected Lie group G every Cartan subgroup is a closed Lie
subgroup such that the corresponding Lie subalgebra of Lie(G) is a
Cartan subalgebra. Conversely, given a Cartan subalgebra of the Lie
algebra of a Lie group G, there always exists a Cartan subgroup H of
G whose Lie algebra is the given Lie subalgebra of Lie(G).

There is also a notion of regular elements for Lie groups: An element
g in a Lie group G is called regular, if the multiplicity of 1 as root of the
characteristic polynomial of Ad(g) is minimal. This definition implies
immediately that the set of all non regular elements in a connected Lie
group constitutes a nowhere dense real analytic subset. In particular
this is a set of measure zero. For a regular element g in a connected
Lie group G the weight space of 1

g1 = {v � LieG : (Ad(g) − I)N(v) = 0 � N}

is a Cartan subalgebra of LieG and the corresponding Cartan subgroup
of G can be described as the set of all elements x � G such that Ad(x)
stabilizes g1 and preserves the weight space decomposition of LieG
with respect to the ad(g1)-action on LieG (see [12]). Evidently this
Cartan subgroup contains the element g with which we started. Thus
every regular element in a connected Lie group is contained in a Cartan
subgroup. This implies the subsequent statement.

Proposition 5. Let G be a connected Lie group and W the union of
all Cartan subgroups of G. Then G \ W is a set of measure zero (with
respect to the Haar measure of G).

Lemma 9. Let G be a connected Lie group. Let Gk be the k-th derived
group (i.e. G0 = G and Gk+1 = [G,Gk] for all k � N) and G � = 4 kG

k.
Then every Cartan subgroup of G maps surjectively on G/G � .

Proof. This is an immediate consequence of the fact for every Cartan
subgroup H the associated Lie algebra Lie(H) can be described as

{v � g : ad(x)n(v) = 0 � n}

for some regular element x � G.

Cartan subgroups behave nice under central extensions.
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Lemma 10. Let G be a Lie group, C a connected central subgroup of
G and H an arbitrary subgroup of G.

Then H is a Cartan subgroup of G if and only if the following two
conditions are fulfilled:

1. C 
 H and
2. H/C is a Cartan subgroup of G/C.

Proof. Centrality of C implies that H is maximal nilpotent if and only
if C 
 H and H/C is maximal nilpotent in G/C. Connectedness
of C implies that C 
 I for every subgroup of finite index I of H
provided C 
 H. Hence the assertion is an easy consequence of the
definition.

Proposition 6. Let G be a connected Lie group and R its radical.
Assume that G/R is compact.

Then all the Cartan subgroups of G are conjugate.

Proof. We may consider Lie algebras instead of Lie groups, since there
is a one-to-one correspondance between Cartan subgroups of G and
Cartan subalgebras of LieG. Let Lie(Hi) (with i = 1, 2) be Car-
tan subalgebras of LieG. Then (Lie(Hi) + LieR)/Lie R are Car-
tan subalgebras of LieG/Lie H ([4]) and they are conjugate, because
G/R is compact. Thus there is no loss in generality in assuming
Lie I = LieH1 +LieG = LieH2 +LieR. Now LieHi 
 Lie I 
 LieG
implies that both LieHi are Cartan subalgebras in Lie I. On the other
hand Lie I is solvable. Therefore the Cartan subalgebras of Lie I are
conjugate ([2], VII. $3, thm. 3). Hence LieH1 and LieH2 are conju-
gate.

Lemma 11. Let G be a connected Lie group and H a Cartan subgroup.
Then �

g � G gH0g−1 is a subset of G of positive measure.

Proof. By [2], Ch.VII, §4, lemme 3 and prop. 7. this set contains an
open set.

Lemma 12. Let G be a connected Lie group and H a Lie subgroup.
Assume that dimNG(H0) − dimH > 0.

Then

A = �
g � G gHg−1

is a set of measure zero.

Proof. Note that NG(H0) = {g � G : Ad(g)(LieH) = LieH}. Hence
N = NG(H0) is closed (even if H is not). Then 2 : G . G/N is
a locally trivial fiber bundle. Let (Ui)i be a countable family of open
subsets of G/N which cover all of G/N and such that there are sections
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A
i : Ui . G. Let M be the disjoint union of all Ui. Then M × H

is a manifold with countably many connected components such that
dimM < dimG and such that there exists a surjective �
����������� tiable
map f : M . G with f(M) = A, namely f(u, h) = A

i(u) B A i(h)−1 for
u � Ui and h � H. It follows that A has measure zero.

7. Compactness of Cartan subgroups

Proposition 7. Let S be a connected semisimple Lie group and H a
Cartan subgroup. Assume that the center of S is infinite.

Then the connected components of H are not compact.

Proof. Let Z denote the center of S, let S0 = S/Z and let K0 be a max-
imal compact subgroup of S0. Then K0 = A ·U where U is semisimple,
A is central in K0, and A 4 U is finite. Now K0 is a deformation retract
of S0, hence 2 1(S0) �C2 1(K0). As a compact semisimple group, U has a
finite fundamental group. Therefore the image of the group homomor-
phism i � : 2 1(A) . 2 1(S0) induced by the inclusion map i : A . S0

is of finite index in 2 1(S0). Since D : S . S0 is an infinite covering, it
follows that there is a 1-torus S1 � A1 
 A such that D −1(A1) has a
connected component isomorphic to R.

Now, if H 
 S would be a Cartan subgroup with compact connected
component, then D (H) would have compact connected components,
too. In this case D (H) would have to be a compact Cartan subgroup
of S0 and be conjugate to a Cartan subgroup of K0. Hence D (H)
would contain a conjugate of A and therefore H would contain a closed
subgroup isomorphic to (R,+). Thus there can not exist a Cartan
subgroup of S with compact connected components.

Proposition 8. Let G be a connected Lie group and H a Cartan sub-
group.

Assume that H has compact connected components.
Then H is compact.

Proof. Every compact connected normal nilpotent Lie subgroup of G
is central (lemma 4) and therefore contained in every Cartan subgroup
(lemma 10). Hence we may divide G by any such subgroup and there-
fore without loss of generality assume that G contains no compact
connected normal nilpotent Lie subgroup.

Let Z denote the center of G. Its connected component is contained
in H, hence Z0 is compact and by the assumption we just made we
derive Z0 = {e}, i.e., Z is discrete.

Let N be the nilradical of G and C a maximal compact subgroup of
N . Connectedness of N implies connectedness of C. Hence lemma 3
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implies that C is characteristic in N and therefore normal in G. Thus
C = {e}, since we assumed that G contains no compact normal con-
nected nilpotent Lie subgroup. It follows that N is simply-connected.
Since every Cartan subgroup maps surjectively on G/G� , compact-
ness of a connected component of a Cartan subgroup implies that
G/G�E� R/(G�
4 R) is compact. Hence N 
 G� . Since G�F4 R 
 N for
every connected Lie group G, it follows that N = G�F4 R.

We will now discuss the adjoint representation of G. Its kernel is
the center Z of G. Since the center is discrete, the fibers of ad are
discrete. Now Ad maps G�/4 R to a unipotent subgroup of GL(LieG).
Thus Ad(N) is simply-connected and closed in GL(Lie G). This implies
that Z 4 N = {e} and that ZN is closed in G. Using compactness of
R/N it follows that R 4 Z is finite.

Now let us consider the projection 2 : G . G/R. The Lie algebra of
2 (H) is a Cartan subalgebra of Lie(G/R) ([4]). Hence the semisimple
Lie group G/R contains a Cartan subgroup with compact connected
component. By the preceding proposition it follows that the center
of G/R is finite. Therefore 2 (Z) is finite and consequently Z itself is
finite.

Because H is a Cartan subgroup and ker(Ad) = Z is central, it is
clear that Ad(H) is a maximal nilpotent subgroup of Ad(G).

The group U = Ad(G�G4 R) = Ad(N) is a unipotent subgroup of
GL(LieG), hence algebraic. Let A denote the normalizer of U in
GL(LieG). Then A is algebraic and U 
 Ad(G) 
 A. The quo-
tient group A/U is algebraic and the projection D : A . A/U is an
morphism of algebraic groups. Now D (Ad(G)) is compact and there-
fore algebraic. It follows that Ad(G) = D −1(D (Ad(G))) is algebraic, too.
The Zariski closure of the nilpotent group Ad(H) in Ad(G) is likewise
nilpotent. But Ad(H) is maximal nilpotent. Hence Ad(H) is an alge-
braic subgroup of GL(Lie G). Together with the finiteness of Z this
implies that H has only finitely many connected components. Thus
compactness of the connected components of H implies compactness
of H.

Remark. For a Cartan subgroup H with non-compact connected com-
ponents it is possible that H has infinitely many connected components.
For instance G0 = SL(2, R) contains a Cartan subgroup H isomorphic
to the multiplicative group R � . If 2 : G . G0 denotes the universal cov-
ering, then 2 −1(H) is a Cartan subgroup of G which has infinitely many
connected components, because H is simply connected while 2 1(G0) � Z

is infinite.
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8.
�

1 and the structure of Cartan subgroups

Proposition 9. Let G be a connected Lie group, H a Cartan subgroup
with non compact connected components, and H = �

g � G gHg−1.
Then µ �IHJ4 � 1) > 0 and µ �IH \

�
1) = 0.

Proof. Let K be a maximal compact subgroup of H0. Then K is nor-
mal in H0 (lemma 3) and S = �

g � G gKg−1 is a set of measure zero

(lemma 12). Note that {gn : n � Z} is compact for all g $� �
1. This

implies that for every g �KH \
�

1 there exists a natural number such
that gn � S. Now cor. 2 implies that H \

�
1 has measure zero. On

the other hand H has positive measure by lemma 11. Thus HL4 � 1 has
positive measure.

Proposition 10. Let G be a connected Lie group, H a Cartan sub-
group with compact connected components and H = �

g � G gHg−1.
Then µ �IHJ4 � 1) = 0 and µ �IH \

�
1) > 0.

Proof. From prop. 8 it follows that H is compact. Hence for every
g �MH the generated group {gn : n � Z} is contained in a compact
subgroup of G. Thus H+4 � 1 
 Gtors implying that H+4 � 1 has measure
zero (corollary 3).

9. Zassenhaus neighbourhoods

We recall the existence of “Zassenhaus neighbourhoods”.

Definition. Let G be a Lie group. An open neighbourhood U of the
neutral element e is called Zassenhaus neighbourhood if the following
assertion is true:

For every discrete subgroup N of G the intersection NO4 U is contained
in a connected nilpotent Lie subgroup of G.

Theorem 5 (Zassenhaus, see [18],[9]). Every Lie group contains Zassen-
haus neighbourhoods.

This has the following consequence:

Corollary 6. Let G be a connected Lie group which is not nilpotent
and n 	 2. Then there exists an open neighbourhood Wk of (e, . . . , e) in
Gk and a subset = k 
 Wk of measure zero such that � x � is not discrete
for any x = (g1, . . . , gk) � Wk \ = k.

Proof. Let U be a Zassenhaus neighbourhood and Wk = U × . . . × U .
Let = k be defined as in def. 5. Then � x � is not nilpotent for x � Wk\ = k,
since � x � � Fk/Rk(G) for x $�P= k and Fk/Rk(G) is not nilpotent for a
non-nilpotent Lie group G. On the other hand, U being a Zassenhaus
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neighbourhood implies that � x � is nilpotent for x � Wk 4 � k. Hence
Wk \ = k 
 Gk \

�
k.

10. Amenable Lie groups

A topological group is called amenable if it admits a “left invariant
mean” (see [7] for more details of this definition and basic properties
of amenable topological groups). Compact and solvable topological
groups are amenable as well as extensions of solvable by compact topo-
logical groups. Closed subgroups of amenable groups are amenable.
Free discrete groups are not amenable.

Proposition 11. Let G be a connected Lie group, R its radical and
assume that G/R is compact, but not trivial.

Then
�

k is of measure zero for all k 	 2.

Proof. Since G is an extension of a solvable group by a compact one,
it is clear that G and every closed subgroup of G must be amenable.
On the other hand Rk(G) = {e}, because G is not solvable. Since free
groups are not amenable, it follows that � x � can not be closed in G for
x $�!= k. Therefore

�
k is contained in = k and has measure zero.

11. Solvable Lie groups

Proposition 12. Let G be a connected solvable Lie group. Assume
that G is not nilpotent.

Then
�

k is of measure zero for all k 	 2.

Proof. Let N be a non-nilpotent discrete subgroup of G. Then its com-
mutator group NQ� is contained in the commutator group G� of G. Let
N denote the universal cover group of G� , 2 : N . G� the natu-
ral projection, and N 1 = 2 −1 �RNQ� ). Since N is nilpotent and simply-
connected, the exponential map exp : Lie(N) . N is a �
�9����S/T0S/�IU
phism. It is known that for every discrete subgroup N 1 
 N the preim-
age exp−1 �RN 1) 
 LieN spans a finite-dimensional Q-vector W subspace
of LieN . The N,UV(/W�X���S*� on G by conjugation preserves NQ� . Hence there
is an induced action on N and Lie(N) = Lie(G� ), for simplicity de-
noted by Ad. Evidently Ad �INEY stabilizes W . Since N is not nilpotent,
the Ad �RNEYIUZ(*W�X[�9S/� on W can not be unipotent, i.e., there must be an
element \P�CN such that Ad(\ ) considered as Q-linear endomorphism
of the Q-vector space W has a non zero eigenvalue

�
. This number

�
is contained in an algebraic extension field of Q. As a consequence one
of the eigenvalues of Ad(\ ) considered as a R-linear transformation of
Lie(N) must be a non-zero algebraic number. However, the set of all
algebraic numbers in C is countable, hence this set has measure zero.
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From this fact it is easily deduced that a generic finitely generated
subgroup is not discrete.

12. Proximal elements

Proximal elements where utilized by Tits in proving what is now
commonly called the “Tits alternative”. Their usage is based on a
freeness condition. As explained in [17] this criterion can be modified
to check for freeness and discreteness.

Observation. Let X be a topological space, G a topological group act-
ing continuously on X.

Assume that there exist families of open subsets (V +

i )i � I, (V −
i )i � I of

X with i � {1, . . . , k} such that the closures of all these open sets are
compact and mutually disjoint. Furthermore let p � X be an element
not contained in the closure of any of these open sets.

Let W denote the set of all k-tuples x = (g1, . . . , gk) � Gk such that

gi(p) � V +

i(1)

g−1

i � V −
i(2)

gi(V̄
+

j
� V̄ −

j ) 
 V +

i(3)

g−1

i (V̄ +

j
� V̄ −

j ) 
 V −
i(4)

gi(V̄
+

i ) 
 V +

i(5)

g−1

i (V̄ −
i ) 
 V −

i(6)

for all i, j � I, i $= j.
Then

1. W is an open subset in Gk,
2. For every x = (g1, . . . , gk) � Gk the group � g1, . . . , gk � is a free

and discrete subgroup of G.

The openness of W follows form the simply fact that

{g � G : g(K) 
 H }

is open in G for every compact subset K 
 X and every open subset
H 
 X.

Furthermore the construction ensures that \ (p) is contained in the
union A of the closures of the sets U+

i and U−
i with i running through

I for every non-trivial expression of the form

\ = gn1

i1
· . . . · gnN

iN
.

It follows that no such expression is trivial (because \ (p) � A $] p)
and no sequence of such expressions converges in G to e (because no
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sequence in A converges to p, since A is closed and p $� A). Therefore
the generated subgroup of G is free and discrete.

The following existence result is taken from an earlier paper of the
author, see [17].

Proposition 13. Let S be a connected non compact semisimple linear
algebraic group (defined over R or C).

Then for every k � N there exists an action of S on a projective
space X, a point p � X and families V +

i and V −
i as required in the

above observation such that this open set W is non empty.

Corollary 7. Let G be a connected Lie group and k � N. Assume that
G contains a non compact semisimple Lie subgroup.

Then there exists an open subset U of Gk such that u1, . . . , uk gen-
erate a free discrete subgroup of G for all u = (u1, . . . , uk) � Gk.

Proof. Let R denote the radical. Then 2 : G . G/R restricted to S
induces a group homomorphism S .^2 (S) with discrete fibers. Com-
pact semisimple Lie groups have finite fundamental groups, therefore
non-compactness of S implies that G/R is non compact. It follows that
Ad(G/R) is a non compact semisimple linear algebraic group. Thus we
can apply the preceding proposition to Ad(G/R).

13. Nilpotent Lie groups

Proposition 14. Let G be a connected nilpotent Lie group and assume
that

�
k has positive measure. Then Gk \

�
k has measure zero.

Proof. Let K be a maximal compact subgroup of G. Then K is central
in G (lemma 3) and G/K is a simply-connected nilpotent Lie group.
Hence G/K admits a unique structure as a real unipotent linear alge-
braic group.

Let _ = Fk/Rk(G) and
� �k be the set of all (g1, . . . , gk) � Gk such

that the group generated by the gi is isomorphic to _ and such that
in addition the group generated by the gi has trivial intersection with
K. Then

� �k \
�

k is a set of measure zero. If
�

k has positive measure,
then

� �k is not empty, and there is an embedding i of _ into U = G/K
as a discrete subgroup. By Malcev theory there is a real algebraic
subgroup V of U such that i �R_`Y = V (Z). Furthermore every group
homomorphism from _a� V (Z) to U is induced by an algebraic group
homomorphism of V to U which in turn corresponds to a Lie algebra
homomorphism from Lie V to LieU . Thus we obtain amap 3 : Fk .
Fk/Rk(G) = _P. Lie V . Choose a finite set % 1, . . . , % d � Fk such that
the 3 ( % i) constitute a vector space basis of Lie V (This can be done,
since i �I_`Y is cocompact in V .).



GENERIC SUBGROUPS OF LIE GROUPS 19

Now for every g = (g1, . . . , gk) � Gk, we obtain a group homomor-
phism from _ = Fk/Rk(G) to U which is induced from a Lie algebra
homomorphism from Lie V to LieU . Thus the subgroup of U gen-
erated by the giK in U = G/K is discrete and isomorphic to _ if
and only the associated Lie algebra homomorphism is injective. The
latter is condition expressible in determinants of images of the 3 ( % i).
Therefore the projection of

�
k in (G/K)k contains the complement of

a closed real algebraic subvariety of (G/K)k. It follows that Gk \
�

k

has measure zero.

Proposition 15. Let G be a connected nilpotent Lie group and assume
that

�
k has positive measure.

Then dimG/G� 	 k.

Proof. We may divide G by its maximal compact subgroup C (which
is normal in G, see lemma 3) and thereby assume that G is simply-
connected. In this case G carries the structure of a real unipotent
group in a natural way.

By assumption there is a discrete subgroup N 
 G with NL� Fk/Rk(G).
Then rankZ �RN / N � ) 	 k by cor. 5. Using “Malcev theory” ([10]) it fol-
lows that there is a connected Lie subgroup H 
 G such that H/ N is
compact and dimH/H � = rankZ �IN / NQ� ) 	 k.

Now G/G� is a real vector space, and, due to the genericity of N
we may assume that the real vector subspace of G/G� spanned by the
image of N is of real dimension min{dimG/G� , k}.

Assume dimG/G� > k. Then the image of N generates G/G� as a real
vector space. It follows that H maps surjectively onto G/G� . However,
for a subgroup H of a nilpotent group G the equality HG� = G already
implies H = G. Thus

dimH/H � = dimG/G� > rank
Z

�IN / N � ) = dimH/H �
which is absurd.

14. Density results

Lemma 13. Let S be a connected semisimple linear algebraic group.
Let H denote the set of all elements g � S such that the Zariski-closure
of {gn : n � Z} is a Cartan subgroup of S.

Then S \ H is a set of measure zero.

Proof. For every semisimple element g of S the Zariski closure of {gn :
n � Z} is a commutative reductive algebraic group. Cartan subgroups
of semisimple linear algebraic groups are connected commutative reduc-
tive algebraic groups. Commutative reductive algebraic groups have
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only countably many algebraic subgroups. Every connected commuta-
tive reductive algebraic subgroup of S is conjugate to a subgroup of a
Cartan subgroup of S. Now fix a Cartan subgroup T of S. If g is a
semisimple element of S such that the Zariski closure of {gn : n � Z}
is not a Cartan subgroup, then a power gn is conjugate to an element
in a proper algebraic subgroup of T . Now lemma 2 combined with
lemma 12 implies the statement together with the fact that the set of
all non-semisimple elements of S is contained in an algebraic subvariety
of S.

Lemma 14. Let S be a connected semisimple linear algebraic group
and T a Cartan subgroup. Then there exists a subset CT of measure
zero such that for every g � S \ CT the group generated by T and g is
Zariski dense in S.

Proof. It is well-known for every non-zero weight the weight space of
Ad(T ) acting on LieS is one-dimensional. This implies that every Lie
subalgebra of LieS containing Lie T is a direct sum of Ad(T ) weight
spaces. It follows that there exist only finitely many connected Lie
subgroups of S containing T .

A semisimple Lie group has no normal subgroups except for the
products of its simple factors. For this reason a connected Lie sub-
group H of S containing T is not normal in S (unless H = S). Hence
NS(H) $= S for such H. Therefore

CT = �cb NS(H0) : H0 connected, T 
 H0}

is a finite union of proper submanifolds of S and thus a set of measure
zero. Now CT contains every closed Lie subgroup H with T 
 H 
 S.
Hence for every g � G \ CT the subgroup of S generated by T and g is
Zariski dense (in fact dense) in S.

Proposition 16. Let S be a connected semisimple linear algebraic group.
Then there exists a subset W 
 S × S such that S × S \ W is a set of
measure zero and for every (g1, g1) � W the subgroup of S generated
by g1 and g2 is Zariski dense in S.

Proof. Let T be a Cartan subgroup, N its normalizer in S and H and
CT as in the preceding lemmata. Let 2 : G . G/N denote the natural
projection and let A : G/N . G be a measurable section. Let T0 be the
set of all elements in T which are not contained in any proper algebraic
subgroup of T . Then there is a measurable bijection

6
: G/N ×T0 . H

given by
6

: (x, t) 7. A (x) · t · A (x)−1.
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Let 5 : Hd. G/N be defined by the composition of
6

−1 with the
projection on the factor G/N . Define

W = {(g1, g2) � S × S : g2
$�e5 (g1) · CT · 5 (g1)

−1}.

Then S × S \ W is of measure zero, because CT is of measure zero
in S and 5 is a measurable map. Furthermore (g1, g2) � W im-
plies that 5 (g1)g1 5 (g1)

−1 generates a Zariski dense subgroup of T and
5 (g1)g2 5 (g1)

−1 $� CT . Then 5 (g1)g1 5 (g1)
−1 and 5 (g1)g2 5 (g1)

−1 generate
a Zariski dense subgroup of S. Since

x 7.f5 (g1) · x · 5 (g1)
−1

is an automorphism of S as algebraic group, this is equivalent to the
assertion that g1 and g2 generate a Zariski dense subgroup of S.

Lemma 15. Let G be a semisimple linear algebraic group. Let G =g
i � IGi be the representation of G as product of its simple algebraic

subgroups. Assume that H 
 G is a subgroup of G which is dense in
the Zariski topology and such that 2 J (H) is not discrete for any subset
J h I where 2 J denotes the natural projection 2 J : G . g

i � JAd(Gi).
Then H is dense in G (in its ij�lknmpo?qlrts topology).

Proof. Let H̄ denote the closure of H with respect to the uv(/w
x��
S/���
topology. By assumption H is not discrete. Hence dim H̄ > 0. The
connected component H̄0 is normalized by H. However, the normalizer
of H̄0 equals the set of all g � G for which Ad(g) stabilizes the vector
subspace Lie(H̄) of LieG. For this reason, the normalizer of H̄0 in G is
an algebraic subgroup of G. Since H is contained in this normalizer, it
follows that the normalizer equals the whole group G, i.e., H̄0 is normal
in G. Thus H̄0 =

g
i � I\KGi for some subset K 
 I. But this implies

that there is a morphism with finite fibers from H̄/H̄0 to
g

i � KAd(Gi).
Since H̄/H̄0 is discrete, it follows that K must be empty. This implies
H̄ = G.

Proposition 17. Let S be a connected semisimple linear algebraic group.
Then there exists an open neighbourhood W of (e, e) in S ×S and a set
of measure zero _ 
 S × S such that g1, g2 generate a dense subgroup
of S for all (g1, g2) � W \ _ .

Proof. Choose an open neighbourhood V of e in S in such a way that
2 J(W ) is contained in a Zassenhaus neighbourhood of SJ for all J 
 I.
Let _ 1 be the set of all (g1, g2) such that there exists an i � I such
that 2 1(g1), 2 i(g2) do not generate a free group in Ad(Si). Let _ 2 be
the set of all (g1, g2) such that the generated subgroup is not Zariski
dense. Let _ = _ 1

� _ 2.
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Lemma 16. Let G be a connected semisimple Lie group, Z a discrete
central subgroup and H an arbitrary subgroup in S.

Then H is dense in S if and only if ZH is dense in S.

Proof. The closure H̄ is evidently normalized by H and therefore nor-
malized by ZH and its closure ZH = S, i.e., H̄ is a closed normal
subgroup of S. Now S/H̄ is a semisimple Lie group, but the image of
Z in S/H̄ is dense and central. A topological group with a dense cen-
tral subgroup is necessarily commutative, because the center is closed.
Thus we arrive at a contradiction unless H̄ = S.
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