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Abstract. We study exterior powers of classes of symmetric bilinear forms in the Witt-
Grothendieck ring of a field of characteristic not equal to 2, and derive their basic prop-
erties. The exterior powers are used to obtain annihilating polynomials for quadratic
forms in the Witt ring.
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1. Introduction

Throughout this paper, K will be a field of characteristic different from 2.

It is well-known that given a finite-dimensional K-vector space V and a non-negative
integer k we may define ΛkV , the k-fold exterior power of V . Then the ring of isomorphism
classes of finite-dimensional K-vector spaces under direct sum and tensor product is a λ-
ring, with the exterior powers acting as the λ-operations. The exterior powers and the
related symmetric powers are in fact functors on the category of K-vector spaces and
K-linear maps, special cases of the Schur functors (see, for example, [3] or [4]).

The concept of exterior power of a symmetric bilinear form is defined in Bourbaki (see
[2, Ch. 9 eqn. (37)]). In [10], Serre remarks that the Grothendieck group of the category
of finite rank Z-symmetric bilinear modules is a λ-ring using exterior powers, but the
subject does not appear to have been treated in detail in the literature. In this paper we
establish the basic facts about the exterior powers of a symmetric bilinear form, including
formulas for their classical invariants, and apply these to deriving annihilating polynomials
in the Witt ring. We work interchangeably with K-quadratic spaces and K-symmetric
bilinear spaces to achieve as much simplicity as possible; all results carry across, by the
correspondence in characteristic not equal to 2.

2. Notation

For the definitions of such terms as bilinear and quadratic forms, isometry, the Witt-
Grothendieck ring, Witt ring, etc., see, for example, [9].

We will denote by Ŵ (K)+ the commutative cancellation semi-ring of isometry classes of
symmetric bilinear forms under orthogonal sum and tensor product, and let the Witt-

Grothendieck ring Ŵ (K) be the Grothendieck completion of Ŵ (K)+. Then the Witt

ring W (K) is the quotient of Ŵ (K) by the ideal generated by hyperbolic spaces.
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Throughout, juxtaposition will denote—according to context—a (tensor) product of forms
ϕψ = ϕ ⊗ ψ = ϕ · ψ, or a scalar multiple of a form: if ϕ = 〈a1, . . . , an〉, then λϕ =
〈λa1, . . . , λan〉. We will use a cross to denote an integer times a form, i. e. n × ϕ means
the orthogonal sum of ϕ with itself n times.

For the definitions of k-fold exterior power and symmetric power of a finite-dimensional
vector space V see, for example, [4] or [3].

3. Exterior and symmetric powers of symmetric bilinear forms

Let V be a vector space of dimension n over K. Recall that if k is a non-negative integer,
then the k-fold exterior power of V , ΛkV , has dimension

(
n
k

)
, where we take

(
n
k

)
to be 0

for all k > n. In particular, if {v1, . . . , vn} is a basis for V , then a basis for Λ
kV is given

by the set of k-fold wedge products {vi1 ∧ · · · ∧ vik : 1 ≤ i1 < · · · < ik ≤ n} and there are(
n
k

)
such expressions.

Definition 3.1. Let ϕ : V × V −→ K be a bilinear form and let k be a positive integer
not greater than n. We define the k-fold exterior power of ϕ,

Λkϕ : ΛkV × ΛkV −→ K,

by

Λkϕ(x1 ∧ · · · ∧ xk, y1 ∧ · · · ∧ yk) = det(ϕ(xi, yj))1≤i,j≤k.

We define Λ0ϕ := 〈1〉, the identity form of dimension 1. For k > n we define Λkϕ to be
the zero form, since ΛkV = 0 for all k > n.

It is easily seen that Λkϕ is a bilinear form, and is symmetric if ϕ is symmetric. Also
Λ1ϕ = ϕ.

If q is the quadratic form associated to ϕ, we write Λkq for the quadratic form associated
to Λkϕ.

Remark 3.2. Similarly, given any positive integer k, we may define another bilinear form,
the k-fold symmetric power of ϕ, on the k-fold symmetric power of V ,

Skϕ : SkV × SkV −→ K,

by

Skϕ(x1 · · · xk, y1 · · · yk) = per(ϕ(xi, yj))1≤i,j≤k,

where · is the multiplication in the symmetric algebra of V and per is the permanent of
the matrix (ϕ(xi, yj)).

In fact, given any partition π of k, we may define an associated “Schur power” of ϕ in a
similar fashion. Results on these other powers will appear in a future paper.

Remark 3.3. Let ϕ : V × V −→ K be a symmetric bilinear form on V and let G be a
group acting on V . Then G acts on ΛkV also, via

g(v1 ∧ · · · ∧ vk) = (gv1) ∧ · · · ∧ (gvk).

Thus if V is a representation module for G, so is ΛkV .
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Suppose that ϕ is a G-form, that is, for all v, w ∈ V and all g ∈ G, ϕ(gv) = ϕ(v) (e. g. for
G a subgroup of the orthogonal group O(ϕ)). Then an easy computation shows Λkϕ is a
G-form also.

4. Diagonalisation of an exterior power

Proposition 4.1. Let V be a vector space of dimension n over F and let ϕ = 〈a1, . . . , an〉
be a diagonalisation of a symmetric bilinear form on V . Let k ≤ n. Then Λkϕ is a
symmetric bilinear form of dimension

(
n
k

)
and has a diagonalisation of the form

Λkϕ = ⊥
1≤i1<···<ik≤n

〈ai1 · · · aik〉.

In particular,

Λk(n× 〈1〉) =
(
n
k

)
× 〈1〉.

Proof. Let {v1, . . . , vn} be an orthogonal basis for V , with ϕ(vi, vi) = ai for i = 1, . . . , n
and ϕ(vi, vj) = 0 for i, j ∈ {1, . . . , n}, i 6= j.

Let k ≤ n. Since {vi1 ∧ · · · ∧ vik : 1 ≤ i1 < · · · < ik ≤ n} is a basis for ΛkV , we have
immediately that the form Λkϕ has dimension

(
n
k

)
.

Let vi1 ∧ · · · ∧ vik and vj1 ∧ · · · ∧ vjk be two basis elements of Λ
kV , and consider

Λkϕ(vi1 ∧ · · · ∧ vik , vj1 ∧ · · · ∧ vjk) = det(ϕ(vil , vjm))1≤l,m≤k.

Firstly suppose the {vil}l=1,...,k and {vjm}m=1,...,k are the same set of k vectors. Then linear
independence of the basis gives il = jl, l = 1, . . . , k and using orthogonality of {v1, . . . , vn}
we get

Λkϕ(vi1 ∧ · · · ∧ vik , vi1 ∧ · · · ∧ vik) = det(ϕ(vil , vim))1≤l,m≤k

= ϕ(vi1 , vi1) · · ·ϕ(vik , vik)

= ai1 · · · aik .

Next suppose the {vil} and {vjm} are not the same set of vectors. Choose a vjm which is
not in {vil}l=1,...,k. Then by orthogonality of the basis {v1, . . . , vn} of V , the jm

th column of
the matrix (ϕ(vil , vjm))1≤l,m≤k will be a zero column. Thus Λ

kϕ(vi1∧· · ·∧vik , vj1∧· · ·∧vjk),
the determinant of this matrix, will be 0. This completes the proof.

Remark 4.2. Note that if ϕ is a hyperbolic form then Λkϕ need not be hyperbolic. This
is easily seen from the above expression for dimension, since a hyperbolic form must have
even dimension.

For example, consider the hyperbolic forms ϕ = 2×〈1,−1〉 of dimension 4, ψ = 3×〈1,−1〉
of dimension 6. Then Λ3ψ = 10×〈−1, 1〉 is hyperbolic, while Λ2ψ has dimension

(
6
2

)
= 15

and so cannot be hyperbolic. Also Λ2ϕ = 〈−1, 1,−1,−1, 1,−1〉 has anisotropic part
(Λ2ϕ)an = 〈−1,−1〉, of even dimension.

Thus, though ϕ and ψ are Witt equivalent (in fact ϕ ∼ ψ ∼ 0), Λkϕ and Λkψ are not in
general Witt equivalent, so Λk is not well-defined on elements of the Witt ring. However,
Corollary 6.8 later shows that Λk is well-defined on elements of the Witt-Grothendieck
ring. For this reason we restrict ourselves to elements of the Witt-Grothendieck ring
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Ŵ (K) when considering exterior powers, though some results in Ŵ (K) may be carried
over to W (K).

Remark 4.3. Note that if ϕ is an isotropic form of dimension n ≥ 2, then Λkϕ will also
be isotropic for 0 < k < n. For, ϕ will contain a hyperbolic plane and so ϕ ' ϕ′ ⊥
〈1,−1〉 for some symmetric bilinear form ϕ′ = 〈a1, . . . , an−2〉. Then for any a1, . . . , ak−1 ∈
{a1, . . . , an−2}, the subform 〈a1 · · · ak−1,−a1 · · · ak−1〉 of Λ

kϕ will be hyperbolic (see [9,
Corollary I.4.6(iii)]) and so Λkϕ will be isotropic. In fact, there will be a hyperbolic
plane for all such choices of a1, . . . , ak−1 and so the Witt index of Λ

kϕ will be at least(
n−2
k−1

)
.

Remark 4.4. If ϕ is an anisotropic form then Λkϕ need not be anisotropic. To see this, let
K be a field of u-invariant u = 4 (recall that the u-invariant of a field K is the maximal
dimension of an anisotropic form over K). For example, we may take K to be a local
field (of characteristic not equal to 2), or a non-real algebraic number field, or a p-adic
field. Let ϕ be of dimension 4 over K and anisotropic. Then Λ2ϕ has dimension

(
4
2

)
= 6

and so must be isometric since u < 6. The same argument works for any field with finite
u-invariant u > 2 and any anisotropic form ϕ of dimension u, since

(
u
2

)
> u for all positive

integers u > 3.

Remark 4.5. Note that non-isometric forms may have isometric k-fold exterior powers.

For example, let ϕ = 〈1, 2, 3〉, ψ = 〈1, 6, 3〉 over a field K in which 3 is not a square (such
as Q). Then ϕ and ψ are not isometric, since their determinants in K̇/K̇2 are 6 and 2,
respectively, and these differ by a factor of 3.

However, Λ2ϕ = 〈2, 3, 6〉 ' 〈6, 3, 2〉 = Λ2ψ.

Corollary 4.6. Let ϕ be a symmetric bilinear form of dimension n over K. Then

(a) Λnϕ = 〈detϕ〉 and

(b) Λkϕ = (detϕ) Λn−kϕ, 0 ≤ k ≤ n.

Remark 4.7. Corollary 4.6 gives us a “duality principle” for exterior powers of a symmetric
bilinear form.

5. Determinant of an exterior power

Proposition 4.1 also allows us to easily compute the determinant of Λkϕ in terms of the
determinant of ϕ.

Proposition 5.1. Let ϕ be a symmetric bilinear form of dimension n. Then

det(Λkϕ) = (detϕ)

(
n−1
k−1

)
.

In particular, for k = 2,

det(Λ2ϕ) = (detϕ)n−1.

Proof. Write ϕ = 〈a1, . . . , an〉 in diagonal form. Then by Proposition 4.1,

det(Λkϕ) =
∏

1≤i1<···<ik≤n

ai1 · · · aik ,
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There are
(
n
k

)
terms in the product, each term being itself a product of k of the ai and an

easy computation shows

det(Λkϕ) = (a1a2 · · · an)

(
n−1
k−1

)

= (detϕ)

(
n−1
k−1

)

which completes the proof.

Corollary 5.2. Let k ≥ 1 and let ϕ be a symmetric bilinear form. Then ϕ is non-singular
if and only if Λkϕ is non-singular.

Proof. ϕ is non-singular if and only if detϕ 6= 0. By Proposition 5.1 this is equivalent to

det(Λkϕ) = (detϕ)

(
n−1
k−1

)
6= 0 ⇐⇒ Λkϕ is non-singular.

6. Functorial properties of Λk

Let V denote the category whose objects are finite-dimensionalK-vector spaces and whose
morphisms are K-linear maps. It is well-known that the Schur functors (see [3, Appendix
A2], [4, Lecture 6]), of which Λk and Sk are examples, are functors on V . In this section
we show that Λk is in fact a functor on the category of finite-dimensional K-symmetric
bilinear spaces (equivalently finite-dimensional K-quadratic spaces). We first define some
terms.

Definition 6.1. Let B, the category of K-symmetric bilinear spaces, be the cat-
egory whose objects are finite-dimensional K-symmetric bilinear spaces and whose mor-
phisms are isometries.

Remark 6.2. It is easy to see that this category is well-defined: if f ∈ HomB((V, ϕ), (W,ψ))
and g ∈ HomB((W,ψ), (U, χ)) then ϕ = ψ ◦ f and ψ = χ ◦ g, so ϕ = χ ◦ g ◦ f and
g ◦ f ∈ HomB((V, ϕ), (U, χ)); further, the composition of bijective maps is bijective.

Remark 6.3. Except in cases where confusion is possible, we drop the ◦ notation for
composition of morphisms henceforth.

We state some facts which we require (see e. g. [3, A2.2(a), A2.3(e)]).

Proposition 6.4. If f : V −→ W is a linear map, then Λkf : ΛkV −→ ΛkW is a linear
map and Λkf(v1 ∧ · · · ∧ vk) = fv1 ∧ · · · ∧ fvk.

Moreover, if f has matrix A with respect to bases {v1, . . . , vn} and {w1, . . . , wm} of V
and W respectively, then Λkf has matrix whose entry corresponding to the basis elements
vi1∧· · ·∧vik and wj1∧· · ·∧wjk is the determinant of the submatrix of A involving columns
i1, . . . , ik and rows j1, . . . , jk.

Proposition 6.5. If f is an injective K-linear map, then Λkf is also an injective K-
linear map.

Proof. Suppose that V and W are K-vector spaces of dimensions n and m respectively,
and that f : V −→ W is an injective K-linear map, so that n ≤ m and rank f = n. Then
any matrix for f will have dimV = n linearly independent columns.
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Choose a basis {v1, . . . , vn} for V , and complete (if necessary) {fv1, . . . , fvn} to a basis
{fv1, . . . , fvn, wn+1, . . . , wm} for W .

Then the matrix for f with respect to these bases is(
In

Om−n,n

)

where the upper block is the n× n identity matrix In and the lower block is the (m−n)×n
zero matrix Om−n,n (possibly not present i. e. if m = n).

We first look at the case where k ≤ n.

Consider ΛkV with basis {v1 ∧ · · · ∧ vk, . . . , vn−k+1 ∧ · · · ∧ vn} of order
(
n
k

)
(all choices of

k out of the n vectors vi) and extend the set {fv1 ∧ · · · ∧ fvk, . . . , fvn−k+1 ∧ · · · ∧ fvn} to
a basis for ΛkW .

We observe that the determinant of the submatrix of In involving columns i1, . . . , ik and
rows j1, . . . , jk is 1 if {i1, . . . , ik} = {j1, . . . , jk} and 0 otherwise. Then by 6.4 we have
that the matrix of Λkf with respect to the above bases for ΛkV and ΛkW is the

(
m
k

)
×
(
n
k

)

matrix (
I
O

)

where the upper block is the
(
n
k

)
×

(
n
k

)
identity matrix and the lower block is the((

m
k

)
−
(
n
k

))
×
(
n
k

)
zero matrix (not present if m = n).

This matrix clearly has rank
(
n
k

)
, so Λkf is injective as required, when k ≤ n.

If k > n, then ΛkV = {0}, so Λkf : ΛkV −→ ΛkW is trivially injective, and we are
done.

Corollary 6.6. If f is a bijective K-linear map, then Λkf is also a bijective K-linear
map.

Proof. The statement follows by taking m = n in the proof of Proposition 6.5.

Theorem 6.7. Λk : B −→ B is a (covariant) functor.

Proof. From the definition of Λk, if (V, ϕ) ∈ ObB then (ΛkV,Λkϕ) ∈ ObB.

Next, if f : (V, ϕ) −→ (W,ψ) is a morphism in B then Λkf : (ΛkV,Λkϕ) −→ (ΛkW,Λkψ)
is a morphism in B.

For, if ϕ = ψ ◦ f with f bijective, then for all v1, . . . , vk, w1, . . . , wk ∈ V ,

Λkϕ(v1 ∧ · · · ∧ vk, w1 ∧ · · · ∧ wk) = det(ϕ(vi, wj))1≤i,j≤k

= det((ψ ◦ f)(vi, wj))1≤i,j≤k

= det(ψ(fvi, fwj))1≤i,j≤k

= Λkψ(fv1 ∧ · · · ∧ fvk, fw1 ∧ · · · ∧ fwk)
6.4
= Λkψ(Λkf(v1 ∧ · · · ∧ vk)︸ ︷︷ ︸

∈ΛkW

,Λkf(w1 ∧ · · · ∧ wk)︸ ︷︷ ︸
∈ΛkW

)

= Λkψ ◦ Λkf(v1 ∧ · · · ∧ vk, w1 ∧ · · · ∧ wk),
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giving Λkϕ = Λkψ ◦ Λkf , and Λkf is bijective by Corollary 6.6.

Further, if f ∈ HomB((V, ϕ), (W,ψ)) and g ∈ HomB((W,ψ), (U, χ)) are morphisms in B,
so gf ∈ HomB((V, ϕ), (U, χ)), then

Λkf : (ΛkV,Λkϕ) −→ (ΛkW,Λkψ),

Λkg : (ΛkW,Λkψ) −→ (ΛkU,Λkχ)

and Λk(gf) : (ΛkV,Λkϕ) −→ (ΛkU,Λkχ)

are all morphisms in B. By [3, page 591], the Schur functors, in particular Λk, act in
afunctorial way on linear maps, so the composition property Λk(gf) = ΛkgΛkf holds.

Finally, if (V, ϕ) ∈ ObB, let id(V,ϕ) be the identity map, whose matrix with respect to
any basis of V is In where n = dimV . Then id(ΛkV,Λkϕ) := identity map on Λ

kV (with

matrix I(nk)
with respect to any basis of ΛkV ) is clearly Λk(id(V,ϕ)), by Proposition 6.4.

This completes the proof.

Corollary 6.8. If (V, ϕ) and (W,ψ) are isometric symmetric bilinear spaces, then
(ΛkV,Λkϕ) and (ΛkW,Λkψ) are also isometric symmetric bilinear spaces.

Remark 6.9. One can also define two other categories, with more morphisms than B.

Let Bn be the category whose objects are those of B and whose morphisms are K-linear
maps f : (V, ϕ) −→ (W,ψ) such that ϕ = ψ ◦ f .

Let Bi be the category whose objects are those of B and whose morphisms are injective
morphisms of Bn.

Clearly Bi and B are subcategories of Bn, but not full subcategories. The above results
also hold for Bn and Bi, and each Λ

k is a functor on both Bn and Bi.

7. Algebraic properties of exterior powers

We derive some basic properties of Λk: how it behaves with respect to scalar multiplica-
tion, orthogonal sum and tensor product of forms.

Proposition 7.1. Let ϕ be a symmetric bilinear form over K, let α ∈ K and let k be a
positive integer. Then

Λk(αϕ) = αkΛkϕ =

{
αΛkϕ if k is odd;
Λkϕ if k is even.

Proof. Let ϕ, α and k be as in the statement. Suppose that ϕ acts on a vector space V
and let x1, . . . , xk, y1, . . . , yk ∈ V . Then

Λk(αϕ)(x1 ∧ · · · ∧ xk, y1 ∧ · · · ∧ yk) = det(αϕ(xi, yj))1≤i,j≤k

= αk det(ϕ(xi, yj))1≤i,j≤k

= αkΛkϕ(x1 ∧ · · · ∧ xk, y1 ∧ · · · ∧ yk),

completing the proof.

Remark 7.2. Proposition 7.1 says that Λk is k-homogeneous with respect to scalar mul-
tiplication.
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Proposition 7.3. Let ϕ and ψ be symmetric bilinear forms over K and let k be a positive
integer. Then

Λk(ϕ ⊥ ψ) = ⊥
i+j=k

Λiϕ · Λjψ.

Proof. This follows from Proposition 9.3 below.

Corollary 7.4. Let ϕ1, . . . , ϕm be symmetric bilinear forms over K and let k be a positive
integer. Then

Λk(ϕ1 ⊥ · · · ⊥ ϕm) = ⊥
i1+···+im=k

Λi1ϕ1 · · ·Λ
imϕm.

Proof. Use Proposition 7.3 and induction on m.

Lemma 7.5. Let (V, ϕ) be a symmetric bilinear space over K of dimension n. Then
ϕ2 = n× 〈1〉 ⊥ 2× Λ2ϕ.

Proof. Let ϕ = 〈a1, . . . , an〉. Then

ϕ2 = 〈a1, . . . , an〉 ⊗ 〈a1, . . . , an〉 = ⊥
1≤i,j≤n

〈aiaj〉

=

(

⊥
1≤i≤n

〈aiai〉

)
⊥

(

⊥
1≤i<j≤n

〈aiaj〉

)
⊥

(

⊥
1≤i<j≤n

〈ajai〉

)

= n× 〈1〉 ⊥ 2× Λ2ϕ

which completes the proof.

Proposition 7.6. Let (V, ϕ) and (W,ψ) be symmetric bilinear spaces over K of dimen-
sions n and m respectively. Then

Λ2(ϕψ) = m× Λ2ϕ+ n× Λ2ψ + 2× Λ2ϕΛ2ψ

Proof. Let ϕ = 〈a1, . . . , an〉 be a diagonalisation of ϕ. Then

Λ2(ϕψ) = Λ2(〈a1〉ψ ⊥ · · · ⊥ 〈an〉ψ)

= Λ2(a1ψ ⊥ · · · ⊥ anψ)

= ⊥
i1+···+in=2

Λi1(a1ψ) · · ·Λ
in(anψ) by Corollary 7.4

= Λ2(a1ψ) ⊥ · · · ⊥ Λ
2(anψ) ⊥ ⊥

1≤i1<i2≤n

a1ψa2ψ

= a21Λ
2ψ ⊥ · · · ⊥ a2nΛ

2ψ ⊥ ψ2 ⊥
1≤i1<i2≤n

a1a2 by Proposition 7.1

= n× Λ2ψ ⊥ ψ2Λ2ϕ

and substituting ψ2 = m× 〈1〉 ⊥ 2× Λ2ψ using the last Lemma gives the result.

Remark 7.7. Similar formulas may be proven for higher exterior powers Λk(ϕψ) and for
exterior powers of exterior powers using the polynomials in Definition 9.6 and the results
of Corollary 9.11 and Example 9.12 in the next section.
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8. Pfister forms and exterior powers

Recall that for a1, . . . , an ∈ K
∗, we can define the n-fold Pfister form

ψ = 〈〈a1, . . . , an〉〉 :=
n⊗

i=1

〈1, ai〉 = ⊥
all subsets

{i1,...,ik}⊆{1,...,n}

〈ai1 · · · aik〉

Thus

ψ = 〈〈ϕ〉〉 =
n

⊥
k=0

Λkϕ

where ϕ = 〈a1, . . . , an〉. If ϕ is a form on V then 〈〈ϕ〉〉 is naturally a form on Λ(V ), the
exterior algebra of V , viewed as a vector space.

Remark 8.1. Corollary 6.8 and the last fact give a quick way of seeing that if ϕ1 is
isometric to ϕ2, then 〈〈ϕ1〉〉 is isometric to 〈〈ϕ2〉〉.

Noting that the Clifford algebra of ϕ, C(ϕ) =⊥
n
k=0 Λ

kV as vector spaces, it is reasonable
to look for a connection between C(ϕ) and 〈〈ϕ〉〉.

Recall that the standard involution on C(ϕ) is the involution σ which is the identity on
V , with σ(xy) = σ(y)σ(x) for all x, y ∈ V . An easy induction shows that for all positive
integers m, σ(x1 · · · xm) = σ(xm) · · · σ(x1).

Then the involution trace form on C(ϕ) associated to σ is the map

TC(ϕ) : C(ϕ)× C(ϕ) −→ K : (x, y) 7−→ TC(ϕ)(x, y) := TraceC(ϕ)/K σ(x)y.

Proposition 8.2. With the notation above,

TC(ϕ) = 2
n〈〈ϕ〉〉 =

{
〈〈ϕ〉〉, for n even;
2〈〈ϕ〉〉, for n odd.

Proof. Pick an orthogonal basis {v1, . . . , vn} for V such that ϕ(vi, vi) = ai for i ∈
{1, . . . , n}. Then a basis for C(ϕ) is given by the set of 2n products

B = {vi1 · · · vik : 1 ≤ i1 < · · · < ik ≤ n, 0 ≤ k ≤ n} = {vε11 · · · v
εn
n : εi = 0, 1, i = 1, . . . , n}.

We have that for all distinct x, y ∈ B, with x = vε11 · · · v
εn
n ,

σ(x)x = σ(vε11 · · · v
εn
n )v

ε1
1 · · · v

εn
n

= vεn
n · · · v

ε1
1 v

ε1
1 · · · v

εn
n

= vεn
n · · · v

ε2
2 ϕ(v1, v1)

ε1vε22 · · · v
εn
n

= ϕ(v1, v1)
ε1ϕ(v2, v2)

ε2 · · ·ϕ(vn, vn)
εn

= aε11 a
ε2
2 · · · a

εn
n

which is a scalar, and conversely, by linear independence, σ(x)y is not a scalar. Thus, left
multiplication by σ(x)y will move any element z of B to a scalar multiple of a different
element of B. It follows that the matrix for left multiplication by σ(x)y will have all zeros
on the main diagonal and so be of trace zero; while the matrix for left multiplication by
σ(x)x will be the scalar matrix aε11 a

ε2
2 · · · a

εn
n I2n which has trace 2naε11 a

ε2
2 · · · a

εn
n .

Hence, as a form, TC(ϕ) has diagonalisation ⊥
n
k=0 2

nΛkϕ with respect to the basis B,
completing the proof.
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9. Properties of Ŵ (K) as a λ-ring

Definition 9.1. A pre-λ-ring R is a commutative ring with identity, and with unary
operations λn : R −→ R, for n = 0, 1, 2, . . . such that for all x, y ∈ R:

(i) λ0(x) = 1;

(ii) λ1(x) = x;

(iii) λn(x+ y) =
n∑

i=0

λi(x)λn−i(y).

An equivalent definition is: for x ∈ R, consider the formal power series in the variable t
defined by

λt(x) = λ0(x) + λ1(x)t+ λ2(x)t2 + · · ·

Then the conditions are that:

(i)′ λ0(x) = 1;

(ii)′ λ1(x) = x;

(iii)′ λt(x+ y) = λt(x)λt(y).

Definition 9.2. Let R be a pre-λ-ring. An element x ∈ R is of finite degree n if λt(x)
is a polynomial of degree n, i. e. λi(x) = 0 for all i > n but λn(x) 6= 0. R is finitary if
each element of R is a difference of elements of finite degree.

Proposition 9.3. The Witt-Grothendieck ring Ŵ (K) under the operations of orthogonal
sum and tensor product forms a pre-λ-ring with the exterior powers Λk acting as the
λ-operations.

Proof. We show that (i), (ii) and (iii)′ of Definition 9.1 above hold. First, Corollary 4.6(a)
and the definition of Λ0ϕ to be the identity form imply (i) and (ii).

From the definition of a Pfister form we have, for b1, . . . , bn+m elements of a field L, that

〈〈b1, . . . , bn, bn+1, . . . , bn+m〉〉 = 〈〈b1, . . . , bn〉〉 ⊗ 〈〈bn+1, . . . , bn+m〉〉 (∗).

We work over the field K(t) of rational functions in t. Given forms ϕ = 〈a1, . . . , an〉,
ψ = 〈an+1, . . . , an+m〉 over K, consider the forms 〈ta1, . . . , tan〉, 〈tan+1, . . . , tan+m〉 over
K(t). Then

〈〈ta1, . . . , tan〉〉 = 1 + tϕ+ t
2Λ2ϕ+ · · ·+ tnΛnϕ = λt(ϕ).

Similarly, we have that 〈〈tan+1, . . . , tan+m〉〉 = 1+ tψ+ t
2Λ2ψ + · · ·+ tmΛmψ = λt(ψ) and

〈〈ta1, . . . , tan+m〉〉 = 1 + t(ϕ + ψ) + · · · + tmΛm(ϕ + ψ) = λt(ϕ + ψ). Then applying (∗)
above shows that λt(ϕ+ ψ) = λt(ϕ)λt(ψ), which is just (iii)

′ of Definition 9.1.

The equivalence of this to (iii) proves Proposition 7.3.

Remark 9.4. Each element of Ŵ (K)+ is of finite degree, the degree being its dimension,

since Λiϕ = 0 for all i > dimϕ but Λdimϕϕ = 〈detϕ〉. Thus Ŵ (K), whose elements are

formal differences of elements of Ŵ (K)+, is a finitary pre-λ-ring.

Remark 9.5. Recall that the kth elementary symmetric function of symbols x1, . . . , xn
is ak =

∑
1≤i1<···<ik≤n

xi1 · · · xik .
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Definition 9.6. Let ξ1, . . . , ξq and η1, . . . , ηr be indeterminates. Define bn and cm, where
n,m ∈ {1, 2, 3, . . . }, by

1 + b1t+ b2t
2 + · · · =

q∏

i=1

(1 + ξit),

and

1 + c1t+ c2t
2 + · · · =

r∏

j=1

(1 + ηjt).

Then the bn are the elementary symmetric functions of the ξi and the cm are the elementary
symmetric functions of the ηj. We define polynomials in the bn and cm as follows. Let

Pk(b1, . . . , bk; c1, . . . , ck) := coefficient of t
k in

∏

i,j

(1 + ξiηjt)

and

Qk,l(b1, . . . , bkl) := coefficient of t
k in

∏

1≤i1<···<il≤q

(1 + ξi1 · · · ξilt).

Then Pk and Qk,l are integer polynomials independent of q and r provided both q, r ≥ k
in the case of Pk, and q ≥ kl in the case of Qk,l. Being integer polynomials, they are
well-defined over any ring with 1, in particular the Witt and Witt-Grothendieck rings.

Definition 9.7. A λ-ring is a pre-λ-ring R in which (see [6, page 13])

(i) λt(1) = 1 + t;

(ii) λk(xy) = Pk(λ
1x, . . . , λkx;λ1y, . . . , λky), for all x, y ∈ R, k ≥ 0;

(iii) λl(λk(x)) = Qk,l(λ
1x, . . . , λklx), for all x ∈ R, k, l ≥ 0.

Proposition 9.8 ([6], page 17). Let R be a pre-λ-ring in which

(i) λt(1) = 1 + t;

(ii) each x ∈ R is a finite sum x =
∑

±xi, where each xi has degree one;

(iii) the product of two elements of degree one is again of degree one.

Then R is a λ-ring.

Comment 9.9. For a general result on when a pre-λ-ring is a λ-ring, see [1, page 392].
For further details on λ-rings and related topics, see Lectures V and VI of [1].

Corollary 9.10. The Witt-Grothendieck ring Ŵ (K) is a λ-ring, where the kth λ-operation
is defined to be the kth exterior power Λk.

Proof. We verify that the hypotheses of Proposition 9.8 hold. For (i), we have that

λt(〈1〉) = Λ0(〈1〉) + Λ1(〈1〉)t+ Λ2(〈1〉)t2 + · · ·

= Λ0(〈1〉) + Λ1(〈1〉)t since Λk(〈1〉) = 0 for all k ≥ 2

= 〈1〉+ 〈1〉t by Definition 3.1

as required.
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(ii) follows from the Diagonalisation Theorem (see [9, Theorem I.3.5] — every symmetric
bilinear space is an orthogonal sum of one-dimensional symmetric bilinear spaces), and

the construction of Ŵ (K) as formal differences of elements of Ŵ (K)+.

(iii) is clear because 〈a〉〈b〉 = 〈ab〉 for all a, b ∈ K.

Corollary 9.11. Let Pk and Qk,l be the integer polynomials in Definition 9.6. Then, in

the Witt-Grothendieck ring Ŵ (K),

(i) Λk(ϕ⊗ ψ) = Pk(Λ
1ϕ, . . . ,Λkϕ; Λ1ψ, . . . ,Λkψ), for all ϕ, ψ ∈ Ŵ (K), k ≥ 0;

(ii) Λl(Λk(ϕ)) = Qk,l(Λ
1ϕ, . . . ,Λklϕ), for all ϕ ∈ Ŵ (K), k, l ≥ 0.

Example 9.12. The following formulas hold in any λ-ring and in particular, in the Witt-
Grothendieck ring.

λ2(xy) = x2 λ2y + y2 λ2x− 2λ2xλ2y(1)

λ3(xy) = x3 λ3y + y3 λ3x+ 3λ3xλ3y + xyλ2xλ2y − 3xλ2xλ3y − 3yλ2y λ3x(2)

λ2(λ2(x)) = λ3xλ1x− λ4x(3)

λ2(λ3(x)) = λ6x− λ5xλ1x+ λ4xλ2x(4)

Definition 9.13. Given λ-rings R and S, a λ-ring homomorphism is a ring homo-
morphism f : R −→ S such that

λn(f(x)) = f(λn(x)) for all x ∈ R and all n ≥ 0.

A λ-ring endomorphism is a λ-ring homomorphism f : R −→ R.

Remark 9.14. As in [6, pages 9–10], given a λ-ring R and x ∈ R written as a sum of n
elements of degree 1, x = x1 + · · · + xn we may regard the k

th λ-operation λk as the kth

elementary symmetric function ak =
∑

1≤i1<···<ik≤n
xi1 · · · xik of the xi. Recall that the

(symmetric) power sums sj are defined in terms of the ak via Newton’s formulas

sj = sj−1a1 − sj−2a2 + · · ·+ (−1)
j−2s1aj−1 + j(−1)

j−1aj

and solving for ak by Cramer’s rule as in [6, page 36] gives

k! × ak = det




s1 1
s2 s1 2 0
s3 s2 s1 3
...

. . . . . . . . . . . .

sk−1 sk−2
. . . s2 s1 k − 1

sk sk−1 . . . s3 s2 s1




(∗).

Definition 9.15. Let R be a λ-ring, let x ∈ R and let k be a positive integer. We define
the kth Adams operation, Ψk, by

Ψk(x) := sk(x).

Remark 9.16. Alternatively, (see [5, Definition 12.2.1]) we may define

Ψt(x) =
∑

k≥1

Ψk(x)tk
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by the relation

Ψ−t(x) = −
t

λt(x)

d

dt
λt(x).

This definition leads to Newton’s formulas (see [5, Theorem 12.2.5]):

Ψk(x) = λ1(x)Ψk−1(x) + · · ·+ (−1)k−2λk−1(x)Ψ1(x) + k(−1)k−1λk(x).

Remark 9.17. Thus equation (∗) in Remark 9.14 becomes, for x ∈ R,

k! × λk(x) = det




Ψ1(x) 1
Ψ2(x) Ψ1(x) 2 0

Ψ3(x) Ψ2(x) Ψ1(x)
. . .

...
. . . . . . . . . . . .

Ψk−1(x) Ψk−2(x)
. . . . . . Ψ1(x) k − 1

Ψk(x) Ψk−1(x) Ψk−2(x) . . . Ψ2(x) Ψ1(x)




Proposition 9.18 ([6], page 48). Let R be a λ-ring. Then each Adams operation is a
λ-ring endomorphism of R. In particular, Ψ1 = λ1 = the identity function on R.

Lemma 9.19. Let k be a positive integer, let 〈a〉 be a 1-dimensional symmetric bilinear

form and consider the λ-ring Ŵ (K), equipped with Adams operations derived from the
λ-operations Λk. Then

Ψk(〈a〉) =

{
〈1〉, for k even;
〈a〉, for k odd.

Proof. First note that Ψ1(〈a〉) = 〈a〉 since Ψ1 is the identity function by Proposition 9.18.

Next, by Remark 9.16, for any k > 1 we have

Ψk(〈a〉) = 〈a〉Ψk−1(〈a〉) + Λ2(〈a〉)Ψk−2(〈a〉) + · · ·+ (−1)k−1Λk−1(〈a〉)〈a〉+ k(−1)kΛk(〈a〉).

Now every term except the first involves a Λj(〈a〉) for some j ≥ 2, and so is zero, since
Λj(〈a〉) = 0 for all j ≥ 2. Thus we get

Ψk(〈a〉) = 〈a〉Ψk−1(〈a〉) for all k > 1

and an easy induction starting from the first note above gives

Ψk(〈a〉) = 〈a〉k.

Since 〈a〉〈a〉 = 〈1〉 ∈ Ŵ (K), the result follows.

Proposition 9.20. Let n and k be positive integers and let ϕ be an n-dimensional sym-

metric bilinear form. Then, in the the λ-ring Ŵ (K),

Ψk(ϕ) =

{
n× 〈1〉, for k even;
ϕ, for k odd.

Proof. Let ϕ = 〈a1, . . . , an〉. Since, by Proposition 9.18, Ψ
k is a λ-ring endomorphism of

Ŵ (K) for all positive integers k, we may write

Ψk(ϕ) = Ψk

( n

⊥
i=1

〈ai〉

)
=

n∑

i=1

Ψk(〈ai〉)
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and the result follows from Lemma 9.19.

Remark 9.21. For convenience, we will usually write n for the element n × 〈1〉 of the

Witt-Grothendieck ring Ŵ (K). Then Proposition 9.20 says that

Ψk(ϕ) =

{
n, for k even;
ϕ, for k odd.

Remark 9.22. Clearly the dimension of a form (see Remark 9.4) extends to a homomor-

phism deg : Ŵ (K) −→ Z. Using this, and the fact that Ψk is a λ-ring endomorphism, we
can extend Proposition 9.20 as follows.

For any element x = ϕ− ψ ∈ Ŵ (K) where ϕ, ψ ∈ Ŵ (K)+, and any positive integer k:

Ψk(x) = Ψk(ϕ)−Ψk(ψ) =

{
degϕ− degψ = deg x, for k even;
ϕ− ψ = x, for k odd.

10. Exterior powers and annihilating polynomials

Definition 10.1. We define two (n+ 1)× (n+ 1) matrices Mn(t) and Nn(t) as follows:

Mn(t) =




t 1
n t 2 O

t n t
. . .

...
...
...
. . . n− 1
n t n

∗ t n t



, Nn(t) =




t 1
n t 2 O

n− 1 t
. . .

. . . . . . n− 1
O 2 t n

1 t



.

We also define

Dn(t) = detMn(t)

and

Tn(t) = detNn(t).

Remark 10.2. Applying Proposition 9.20 to the determinant in Remark 9.17 we have that,
for a λ-ring R and x ∈ R,

(n+ 1)! × λn+1(x) = det




x 1
n x 2 O

x n x
. . .

...
...
...
. . . n− 1
n x n

∗ x n x



= Dn(x).

Lemma 10.3. The determinants Dn(t) and Tn(t) are equal.

Proof. We may use elementary row operations rowi −→ rowi− rowi−2, for i = 3, . . . , n+1
to convertMn(t) to Nn(t). Since adding a multiple of one row to another does not change
the determinant, we have that detMn(t) = detNn(t) as required.

Lemma 10.4. The determinant Dn(t) is equal to (t
2 − n2)Dn−2(t).



Exterior powers of symmetric bilinear forms 15

Proof. We use elementary column operations coli −→ coli− coli+2, for i = 1, . . . , n− 1 to
convert Mn(t) to



t 1
n− 2 t 2 O

n− 3 t
. . .

. . . . . . n− 3
O 2 t n− 2

1 t

0 0
0 0
...

...
...

...
0 0

n− 1 0
0 · · · · · · · · · · · · · · · · · · · · · · · · · 0
0 · · · · · · · · · · · · · · · · · · · · · · · · · 0

t n
n t




which we see is just



Nn−2(t)

0 0
...

...
0 0

n− 1 0
0 · · · 0
0 · · · 0

t n
n t



.

Thus detMn(t) = detNn−2(t)(t
2 − n2) which is detMn−2(t)(t

2 − n2) by Lemma 10.3 and
the proof is complete.

Definition 10.5. Let n be a positive integer. Define the polynomial pn ∈ Z[t] by
pn(t) = (t− n)(t− n+ 2) · · · (t+ n).

So, for n even,

pn(t) = t(t2 − 22) · · · (t2 − n2),

and, for n odd,

pn(t) = (t
2 − 12)(t2 − 32) · · · (t2 − n2).

We note that for n even, pn is an odd polynomial, and for n odd, pn is an even polynomial.

Lemma 10.6. The polynomials pn satisfy the following recurrence relation:

pn(t) = (t+ n)pn−1(t− 1) for all positive integers n.

Proof. An easy exercise.

Proposition 10.7. The polynomial pn(t) is equal to the determinant Dn(t) of the matrix
Mn(t).

Proof. We verify the result by induction on n in steps of 2. The result is clear for n = 1
and n = 2. For n > 2, Lemma 10.4 gives us that

Dn(t) = (t2 − n2)Dn−2(t)

= (t2 − n2)pn−2(t) (by the induction hypothesis)

= pn(t),

which completes the proof.
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Theorem 10.8. Let (V, ϕ) be a symmetric bilinear space of dimension n. Then

(n+ 1)! × Λn+1ϕ = pn(ϕ) in Ŵ (K).

Proof. We know by Corollary 9.10 that Ŵ (K) is a λ-ring. By Remark 10.2,

(n+ 1)! × Λn+1ϕ = Dn(ϕ)

and by Proposition 10.7, since Dn(t) = pn(t) this becomes

(n+ 1)! × Λn+1ϕ = Dn(ϕ) = pn(ϕ),

completing the proof.

Remark 10.9. In fact for any element x ∈ Ŵ (K) of positive degree n we have

(n+ 1)! × Λn+1x = pn(x) in Ŵ (K).

Corollary 10.10. Let (V, ϕ) be a symmetric bilinear space of dimension n. Then

pn(ϕ) = 0

i. e. the polynomial pn annihilates ϕ in Ŵ (K).

Proof. By Definition 3.1, we have that the (n+ 1)th exterior power of an n-dimensional
symmetric bilinear form ϕ is zero. Then Theorem 10.8 gives

pn(ϕ) = (n+ 1)! × Λ
n+1ϕ = (n+ 1)! × 0 = 0

which completes the proof.

Corollary 10.11. Let (V, ϕ) be a symmetric bilinear space of dimension n. Then the
polynomial pn annihilates the Witt class of ϕ in W (K).

Proof. This follows since the projection map π : Ŵ (K) −→ W (K) is a ring homomor-

phism and 0Ŵ (K)

π
7−→ 0W (K).

Remark 10.12. Corollary 10.11 was first proven in [7]. Other proofs have since appeared,
see, e.g. [8], also a quick proof due to Leung is given in [7].

Definition 10.13. We define a more general determinant, Dk
n(t), as follows:

Dk
n(t) := det




t 1
n t 2 O
t n t 3
...
...
...
...
. . .
t k − 1

∗ n t k
t n t




.

Lemma 10.14. We have the following recurrence relation:

Dk
n(t) = tDk−1

n (t)− k(n− k + 1)Dk−2
n (t)

Proof. An easy computation of the determinant Dk
n(t) along the rightmost column.



Exterior powers of symmetric bilinear forms 17

Remark 10.15. When k = n we get pn(t) = Dn(t) = Dn
n(t). Note that D

k
n(t) 6= pk(t) when

k 6= n.

Example 10.16. We easily work out that

D0
n(t) = t

D1
n(t) = t2 − n

and we can then work out all of the Dk
n(t) and thus all of the D

k
n(ϕ) using the recurrence

relation Lemma 10.14.

Proposition 10.17. For a symmetric bilinear form ϕ of dimension n, we have

(k + 1)! × Λk+1ϕ = Dk
n(ϕ) = ϕDk−1

n (ϕ)− k(n− k + 1)Dk−2
n (ϕ)

and

pn(ϕ) = Dn(ϕ) = Dn
n(ϕ) = ϕDn−1

n (ϕ)− nDn−2
n (ϕ).

Proof. This follows from Remark 9.17 and Lemma 10.14.

Corollary 10.18. Let ϕ be a symmetric bilinear form of dimension n and let k ≥ n.
Then

Dk
n(ϕ) = 0.

11. Signature of an exterior power

Throughout this section, K will be an ordered field, and P will be an ordering of K.
The notation pn(t) and D

k
n(t) will continue to denote the polynomials defined in 10.5 and

10.13 respectively. The notation signP (ϕ) or sign(ϕ) will denote the signature of ϕ with
respect to P .

Proposition 11.1. Let (V, ϕ) be a symmetric bilinear space of dimension n and signature
sign(ϕ) = r, and let k be a positive integer. Then

sign(Λkϕ) =
Dk−1

n (r)

k!

and, in particular, k! divides Dk−1
n (r) for any positive integer k.

Proof. This follows from Remark 10.2 and the facts that Ŵ (K) is a λ-ring and that

sign : Ŵ (K) −→ Z is a ring homomorphism. We are justified in dividing Dk−1
n (r) by k!

since the signature of any form must be an integer.

Example 11.2. Let ϕ be a symmetric bilinear form of dimension n = 8 and let k = 5.
Then Λkϕ has dimension

(
8
5

)
= 56. In this case Dk−1

n (t) = t(t4 − 60t2 + 584), an odd
polynomial.

Now the possible signatures of any form are all congruent to its dimension modulo 2. Let
r = signP ϕ, so possible values of r are −8,−6,−4,−2, 0, 2, 4, 6, 8. These give the possible
values of signP (Λ

kϕ), using Proposition 11.1.

r = 0 gives 1
5!
D4
8(0) =

0
120
= 0.

r = 2 gives 1
5!
D4
8(2) =

720
120
= 6.
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r = 4 gives 1
5!
D4
8(4) =

−480
120

= −4.

r = 6 gives 1
5!
D4
8(6) =

−1680
120

= −14.

r = 8 gives 1
5!
D4
8(8) =

6720
120
= 56.

Since Dk−1
n (t) is odd, the other possible signatures are −6, 4, 14 and −56. Only forms

with these nine signatures can possibly be exterior powers over ordered fields.

Corollary 11.3. If (V, ϕ) is a symmetric bilinear space of dimension n and signature r,
then r is a root of the polynomial Dk

n(t) for all positive integers k ≥ n.

Proof. This follows from Proposition 11.1 and Corollary 10.18.

Proposition 11.4. Let n, k be positive integers. Then the polynomial Dk
n(t) is monic.

Further,

Dk
n(t) is

{
even if k is odd;
odd if k is even.

Proof. First note degDk
n(t) = k + 1 which is of opposite parity to k.

We proceed by complete induction on k. Fix n. By Example 10.16 D0
n(t) = t and

D1
n(t) = t2 − n so the result is true for k = 0 and k = 1.

Suppose the result is true for 1, 2, . . . , k − 1. The recurrence relation in Lemma 10.14 is

Dk
n(t) = tDk−1

n (t)− k(n− k + 1)Dk−2
n (t).(5)

Comparing degrees in (5) shows that

leading term of Dk
n(t) = t(leading term of Dk−1

n (t))

so Dk
n(t) is monic by the induction hypothesis.

Moreover, Dk−1
n (t) has opposite parity to Dk−2

n (t) by the induction hypothesis, so the
parity of tDk−1

n (t) is equal to the parity of Dk−2
n (t). Thus the parity of the right hand

side of (5) is that of Dk−2
n (t), and this is the parity of Dk

n(t), completing the proof.

Corollary 11.5. Suppose k is an odd positive integer, and ϕ is a symmetric bilinear form
with signP ϕ = 0. Then signP (Λ

kϕ) = 0.

Proof. Since k is odd, Dk−1
n (t) is an odd polynomial by Proposition 11.4. Thus

Dk−1
n (0) = Dk−1

n (−0) = −Dk−1
n (0) which implies Dk−1

n (0) = 0.

Then by Proposition 11.1, signP (Λ
kϕ) = Dk−1

n (0)/k! = 0 as required.

Proposition 11.6. Suppose that k is an even positive integer, and ϕ is a symmetric
bilinear form with signP ϕ = 0 (so n := dimϕ is even). Then

signP (Λ
kϕ) =




0 if n < k;

(−1)k/2
(
n/2

k/2

)
if n ≥ k.
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Proof. The result for n < k follows since dimΛkϕ = 0. Also, by Proposition 11.1,

signP (Λ
kϕ) =

1

k!
Dk−1

n (signP ϕ)

which in this case is

1

k!
Dk−1

n (0) =
1

k!
(constant term of Dk−1

n (t)).

For simplicity of notation, let m = n/2 and l = k/2. We use the recurrence relation in
Lemma 10.14 for k − 1,

Dk−1
n (t) = tDk−2

n (t)− (k − 1)(n− k + 2)Dk−3
n (t),

with t = 0 to get

Dk−1
n (0) = −(k − 1)(n− k + 2)Dk−3

n (0) = · · ·

= −(k − 1)(n− k + 2)
(
− (k − 3)(n− k + 4)

)(
· · ·
)(
− 3(n− 2)

)(
− 1(n)

)

= (−1)l
l−1∏

j=0

(2j + 1)(n− 2j)

Now by Proposition 11.1, when n ≥ k we have

sign(Λkϕ) =
Dk−1

n (sign(ϕ))

k!
=
1

k!
Dk−1

n (0)

=
1

k!
(−1)l

l−1∏

j=0

(2j + 1)(2m− 2j)

and writing k! = (2l)! =
∏l−1

j=0(2j + 1)(2j + 2) gives

sign(Λkϕ) = (−1)l
l−1∏

j=0

(2j + 1)(2m− 2j)

(2j + 1)(2j + 2)

= (−1)l
l−1∏

j=0

m− j

j + 1

= (−1)l
(
m

l

)

which completes the proof.

Corollary 11.7. Let ϕ be a hyperbolic form. Then Λkϕ is hyperbolic if and only if k is
an odd number.

Proof. Each entry in the diagonalisation of Λkϕ is a product of +1’s and −1’s and so
is either +1 or −1. Hence Λkϕ is hyperbolic precisely when the number of −1’s is the
same as the number of +1’s, that is, precisely when signP (Λ

kϕ) = 0 (with respect to any
ordering P ).

Now signP ϕ = 0 since ϕ is hyperbolic, so the result follows from Corollary 11.5 and
Proposition 11.6.
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Proposition 11.8. Let ϕ be a hyperbolic form of dimension n = 2m, so ϕ = m×〈1,−1〉
and let k = 2l be an even positive integer, with k ≤ n. Then

signP (Λ
kϕ) = (−1)l

(
m

l

)

That is, Λkϕ has a Witt decomposition

Λkϕ =

(
m

l

)
× 〈(−1)l〉 ⊥

1

2

((
n

k

)
−

(
m

l

))
× 〈1,−1〉

Proof. Let ϕ be a hyperbolic form of dimension n = 2m and let k = 2l be an even positive
integer, with k ≤ n; thus l ≤ m. As in Corollary 11.7, each entry in the diagonalisation
of Λkϕ is either +1 or −1. Each pair 〈1,−1〉 gives a hyperbolic plane, and the unpaired
entries left over give the other part: there are | signP (Λ

kϕ)| unpaired entries.

From the proof of Proposition 11.6, since n and k are both even,

signP (Λ
kϕ) = (−1)l

(
m

l

)

so the other part of Λkϕ is
(
m
l

)
× 〈(−1)l〉 and the result follows.

Remark 11.9. In fact, over any fieldK of characteristic different from 2, the k-fold exterior
power of ϕ = m× 〈1,−1〉 will have diagonalisation

Λkϕ =

(
m

l

)
× 〈(−1)l〉 ⊥

1

2

((
n

k

)
−

(
m

l

))
× 〈1,−1〉

but the
(
m
l

)
× 〈(−1)l〉 summand need not always be anisotropic.

12. Hasse invariant of an exterior power

We denote by (α, β) or (α, β)K the quaternion algebra defined by α and β ∈ K. Let B(K)
be the subgroup of exponent 2 of the Brauer group Br(K) of Brauer-equivalence classes of
central simple K−algebras (see [9, Corollary 2.13.2]). Recall that (· , ·) : K̇×K̇ −→ B(K)
is a (Steinberg) symbol: it is bimultiplicative and (α, 1− α) = 1 for all α ∈ K, α 6= 0, 1.

Definition 12.1. Let (V, ϕ) be a K-quadratic space with ϕ = 〈a1, . . . , an〉. For n > 1
the Hasse invariant s(ϕ) of ϕ is defined by the formula

s(ϕ) =
∏

1≤i<j≤n

(ai, aj) ∈ B(K)

and for n = 1 we define s(ϕ) = 1. It can be shown (see [9, Remark 2.12.5]) that s(ϕ) is
independent of the diagonalisation of ϕ.

Theorem 12.2. Let (V, ϕ) be a quadratic space of dimension n and determinant d, and
let k be a positive integer. Then the Hasse invariant of Λkϕ is

s(Λkϕ) = s(ϕ)g(d,−1)e

where

g =

(
n− 2

k − 1

)
, e =

((n−1
k−1

)

2

)
.
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Proof. Let ϕ = 〈a1, . . . , an〉 be of dimension n, and let d := detϕ = a1 · · · an. Then the
kth exterior power of ϕ is the form

Λkϕ = ⊥
1≤i1<···<ik≤n

〈ai1 · · · aik〉,(6)

which has dimension
(
n
k

)
. The Hasse invariant of a quadratic form ψ = 〈b1, . . . , bm〉 is

s(ψ) =
∏

1≤i<j≤m

(bi, bj)(7)

which is a product of
(
m
2

)
terms.

To find the Hasse invariant for ψ = Λkϕ we need a well-ordering on terms of the form
ai1 · · · aik . We define a lexicographic well-ordering on such terms as follows. Given multi-
indices i = (i1, . . . , ik) and j = (j1, . . . , jk), we say

i = j if il = jl, for l = 1, . . . , k;

i < j if il < jl, and the l
th position is the first position where i and j differ;

i > j otherwise.

We write ai for ai1 · · · aik using this multi-index shorthand. Then the Hasse invariant of
Λkϕ is

s(Λkϕ) =
∏

i<j

(ai, aj) =
∏

(i1,...,ik)<(j1,...,jk)

(ai1 · · · aik , aj1 · · · ajk).(8)

From Equation 6 and Equation 7, this has

((n
k

)

2

)
terms in the product. Since (· , ·) is

bimultiplicative, each term (ai1 · · · aik , aj1 · · · ajk) can be written as

(ai1 , aj1)(ai1 , aj2) · · · (aik , ajk)

which is a product of k2 terms of the form (ap, aq). Thus s(Λ
kϕ) is a product of

N := k2
((n

k

)

2

)

terms of the form (ap, aq). Let the number of occurences of (a1, a1) be e.

Since ϕ ' 〈aσ(1), . . . , aσ(n)〉, for any permutation σ on n letters, Corollary 6.8 and [9,
Corollary 2.11.11] show that for each i ∈ {1, . . . , n}, there will be e terms of the form
(ai, ai) in s(Λ

kϕ). Thus there will be N − ne terms of the form (ai, aj) for fixed distinct
elements i and j of {1, . . . , n}. Since there are

(
n
2

)
ways of choosing distinct i and j from

{1, . . . , n}, we see that for given i and j with i 6= j, there are

f :=
N − ne(

n
2

)

terms of the form (ai, aj) in s(Λ
kϕ).

It remains to determine e. To do this, we establish how many entries in the diagonalisation
of Λkϕ contain a1 in the product ai1 · · · aik . Let ai1 · · · aik be an entry containing a1. Then
a1 appears as the first term, that is, i1 = 1 and ai1 · · · aik = a1ai2 · · · aik . Now a1 can
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appear at most once in an entry in Λkϕ, so the other k − 1 of the ai in the product are
chosen from the remaining n− 1 elements of {2, . . . , n}. This choice can be made in

M :=

(
n− 1

k − 1

)

ways. Given a term a1ai2 · · · aik , Equation 8 and the lexicographic well-ordering show
that it will contribute one term (a1, a1) to the Hasse invariant for each entry a1aj2 · · · ajk
coming after it in the diagonalisation. The first entry a1a2 · · · ak in Λ

kϕ will have M − 1
entries after it containing a1, the second will have M − 2 entries after it containing a1,
and so on. Then the number of terms (a1, a1) in s(Λ

kϕ) is

(M − 1) + (M − 2) + · · ·+ 2 + 1 =
M−1∑

i=1

i =
M(M − 1)

2
=

(
M

2

)
.

Thus

e =

(
M

2

)
=

((n−1
k−1

)

2

)

and ne = n
(
M
2

)
.

A straightforward computation with binomial coefficients shows

N = k2
((n

k

)

2

)
= n2

(
M

2

)
+
n(n− k)

2
M.

It follows from another easy computation that

f =
N − ne(

n
2

) = 2

(
M

2

)
+

(
n− 2

k − 1

)
.

Since there are f copies of (ai, aj) for each i, j ∈ {1, . . . , n} with i 6= j, Equation 7 gives

s(Λkϕ) = s(ϕ)f

(
n∏

i=1

(ai, ai)

)e

= s(ϕ)f (a1 · · · an,−1)
e = s(ϕ)f (d,−1)e.

Because symbols (a, b) have order 2 in the Brauer group, we are only interested in the
parity of f , which is the same as that of

g :=

(
n− 2

k − 1

)

since g ≡ f (mod 2). Then

s(Λkϕ) = s(ϕ)g(d,−1)e

and the proof is complete.

Corollary 12.3. Let (V, ϕ) be a quadratic space of dimension n and determinant d. Then
the Hasse invariant of Λ2ϕ is

s(Λ2ϕ) = s(ϕ)n(d,−1)(n−1)(n−2)/2
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which gives the following table:

n (mod 4) 0 1 2 3
s(Λ2ϕ) (d,−1) s(ϕ) 1Br(K) s(ϕ)(d,−1)

Proof. This follows immediately from Theorem 12.2 on noting that when k = 2, M =(
n−1
1

)
= n − 1, so e =

(
M
2

)
= (n − 1)(n − 2)/2; and g =

(
n−2
1

)
= n − 2 ≡ n (mod 2).

To construct the table, we note that e is even if 4 divides n− 1 or n− 2, i. e. if n ≡ 1, 2
(mod 4); otherwise e is odd.
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