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Abstract

Let F be a field and p a prime number. The p-symbol length of F ,
denoted by λp(F ), is the least integer l such that every element of the
group K2F/pK2F can be written as a sum of ≤ l symbols (with the
convention that λp(F ) = ∞ if no such integer exists). In this article,
we obtain an upper bound for λp(F ) in the case where the group
F×/F×p

is finite of order pm. This bound is λp(F ) ≤ m
2 , except for

the case where p = 2 and F is real, when the bound is λ2(F ) ≤ m+1
2 .

We further give examples showing that these bounds are sharp.

1 Introduction

Let F be a commutative field. Let F× denote the multiplicative group of F .
We recall the definition of the groups KnF (n ≥ 1) of Milnor K-theory, as
defined in [15]. K1F stands just for the multiplicative group F× in additive
notation. In order to distinguish between addition in K1F and in F , we
write {x} ∈ K1F for x ∈ F×, so that we have {x} + {y} = {xy} in K1F
for x, y ∈ F×. For n ≥ 2, the group KnF is defined as the quotient of the
group (K1F )⊗n modulo the subgroup generated by the elementary tensors
{x1} ⊗ · · · ⊗ {xn} ∈ (K1F )⊗n where x1, . . . , xn ∈ F× and xi + xi+1 = 1 for
some i < n.

Let now be n ≥ 1 and let H denote the group KnF or some quotient of it.
For x1, . . . , xn ∈ F×, we denote the canonical image of {x1} ⊗ · · · ⊗ {xn} ∈
(K1F )⊗n in H by {x1, . . . , xn} and we call such an element a symbol in H.
This notation differs from Milnor’s original one where the same symbol is
denoted by l(x1) · · · l(xn). Obviously, H is generated by its symbols. Note
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further that the zero element of H is a symbol. We may then ask whether
there exists an integer l ≥ 0 such that every element of H can be written as
a sum of l symbols. If this is the case then we denote by λ(H) the least such
integer l; otherwise we set λ(H) := ∞. We call the value λ(H) ∈ IN0 ∪ {∞}
the symbol length of H.

Quotients of KnF of particular interest are KnF/l KnF where l is a pos-

itive integer; we shall abbreviate this quotient by K
(l)
n F . In the case where

l = 2, we may also use Milnor’s notation knF for KnF/2 KnF .

Let now p be a prime number. We define λp(F ) := λ(K
(p)
2 F ) and call

this the p-symbol length of the field F .
Lenstra showed that if F is a global field, then K2F consists of symbols

(cf. [10]); it follows then that λp(F ) = 1 for all primes p. The same is true
if F is a local field. Whether the rational function field in two variables over
the complex numbers F = C(X,Y ) also satisfies λp(F ) = 1 for all primes p
is a striking open question; at least for p ≤ 3 the answer is positive, by a
theorem of Artin (cf. [1]). A recent result of Saltman implies that λ2(F ) = 2
if F is the function field of a curve over a q-adic local field where q 6= 2 (cf.
[19]).

In this article, we establish an upper bound for λp(F ) under the assump-
tion that F×/F×p is finite and we show further that it is generally the best
possible.

Theorem 1.1. Suppose that |F×/F×p| = pm where m ∈ IN. Then

λp(F ) ≤







[

m
2

]

if p 6= 2 or if F is nonreal,
[

m+1
2

]

if F is real and p = 2.

Here we use the notation [x] for the integral part of x ∈ R. Recall that
the field F is nonreal if and only if −1 is a sum of squares in F .

The proof of Theorem 1.1 is divided into several parts, which will occupy
the next two sections. In Section 2, we relate the K-groups modulo p to
certain exterior power spaces and, under the condition that p 6= 2 or that
−1 is a square in F , we deduce the estimate λp(F ) ≤ [m

2
] from a known

fact on alternating spaces (2.3). In a similar way we get the weaker bound
λp(F ) ≤ [m+1

2
] for p = 2 (2.8). We will therefore be left with the task to

exclude that λ2(F ) be equal to m+1
2

unless F is a real field. This will be done
in the third section by an argument involving quadratic form theory (3.5).

Finally we show in the fourth section that in all cases, according to
whether F is real or not and whether p equals 2 or not, the estimate stated
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above is best possible (4.2). To do so, we give examples where F is a field
containing a primitive p-th root of unity, such that |F×/F×p| = pm and
such that there is a simple F -division algebra which is a product of l symbol
algebras of degree p, where l = [m+1

2
] if p = 2 and if F is real and where

l = [m
2
] otherwise; the existence of such a division algebra implies indeed that

λp(F ) ≥ l. We will further apply a similar argument to show that for the
rational function field in m + 1 variables over a field F containing a primi-
tive p-th root of unity, we always have λp(F (X0, . . . , Xm) ) ≥ m (4.5). This
improves the bound λp(F (X0, . . . , Xm) ) ≥ [m+1

2
], shown in [7, Proposition 3]

(under a stronger hypothesis).

2 K-groups modulo p and exterior powers

Let k denote a commutative field, V a vector space over k and n a positive
integer. Let ΛnV denote the exterior power of degree n over V . This is a
vector space over k generated by elements v1∧· · ·∧vn, where v1, . . . , vn ∈ V ,
subject to the relations of k-multilinearity as well as to the relation that
v1 ∧ · · · ∧ vn = 0 whenever vi = vi+1 for some i < n. An element of ΛnV
which is of the shape v1 ∧ · · · ∧ vn is called a pure n-vector.

Suppose now that V has finite dimension m. There exists a least integer
N such that every element of ΛnV is a sum of N pure n-vectors. If the
dimension of V is m then we denote this integer by N(k; m,n) (since it
depends only on k, n and m). For n = 2 a classical result tells us that
N(k; m, 2) = [m

2
], independently of the field k (cf. [3, §5, Corollaire 2]).

Let p be a prime number and n a positive integer. Let Fp denote the

finite field with p elements. The group K
(p)
n F , associated to the field F , is

endowed with a natural structure as a vector space over Fp. Note that for

m ∈ IN, equality |F×/F×p| = pm means that K
(p)
1 F as a vector space over

Fp has dimension m.
Let x1, . . . , xn be elements of F×. If xi = xi+1 for some i < n then

{x1, . . . , xn} = {x1, . . . , xi,−1, xi+2, . . . , xn} in K
(p)
2 F by [15, Lemma 1.2]; in

particular, this symbol is of order at most 2. Suppose now that −1 ∈ F×p
,

that is either p 6= 2 or p = 2 and −1 ∈ F×2
. This implies that any sym-

bol in K
(p)
n F with a repeated coefficient is zero. Therefore, if −1 ∈ F×p

then the natural Fp-homomorphism (K
(p)
1 F )n −→ K

(p)
n F induces a natu-

ral Fp-homomorphism Λn(K
(p)
1 F ) −→ K

(p)
n F which maps a pure n-vector

{x1} ∧ · · · ∧ {xn} to the symbol {x1, . . . , xn} and which is therefore surjec-
tive. From this we conclude:
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Lemma 2.1. Suppose that p 6= 2 or that −1 ∈ F×2
. If |F×/F×p| = pm then

λ(K
(p)
n F ) ≤ N(Fp; m,n). ¤

Unfortunately, the exact value of N(Fp; m,n) is not known in general
when n ≥ 3 (cf. [6] on this problem and approximative results). We may
further observe that the bound in (2.1) is best possible for all m,n and p.

Indeed, one will have λ(K
(p)
n F ) = N(Fp; m,n) if −1 ∈ F×p

, |F×/F×p| = pm

and if the natural Fp-homomorphism Λn(K
(p)
1 F ) −→ K

(p)
n F is bijective, and

examples where these conditions hold will be given in (2.5).

Proposition 2.2. Suppose that p 6= 2 or that −1 ∈ F×2
. The following are

equivalent:

(i) for any n ≥ 2, the natural Fp-homomorphism Λn(K
(p)
1 F ) −→ K

(p)
n F is

an isomorphism;

(ii) the natural Fp-homomorphism Λ2(K
(p)
1 F ) −→ K

(p)
2 F is an isomor-

phism;

(iii) whenever a, b ∈ F× are such that the symbol {a, b} ∈ K
(p)
2 F is zero

then the elements {a} and {b} in K
(p)
1 F are Fp-linearily dependent;

(iv) for any a ∈ F× \ F×p
there exists r ≥ 0 such that ar(1 − a) ∈ F×p

.

Proof: The implications (i ⇒ ii ⇒ iii ⇒ iv) are obvious.
Assume now that (iv) holds. Then it follows for n ≥ 2 that a pure n-

vector {x1} ∧ · · · ∧ {xn} ∈ Λn(K
(p)
1 F ) is zero as soon as xi + xi+1 = 1 for

some i < n. Since this corresponds to the defining relation for K
(p)
n F as

a quotient of (K
(p)
1 F )⊗n, we conclude that the natural Fp-homomorphism

Λn(K
(p)
1 F ) −→ K

(p)
n F is bijective. This shows that (iv) implies (i). ¤

In the case where p 6= 2 and F contains a primitive p-th root of unity, the
conditions (i)–(iv) are satisfied if and only if F is a p-rigid field, as defined
in [23, p. 772].

Proposition 2.3. Suppose that |F×/F×p| = pm, and further that p 6= 2 or
that −1 ∈ F×2

. Then

(a) every element of K
(p)
2 F is a sum of [m

2
] symbols,

(b) every element of K
(p)
m−1F is a symbol,

(c) K
(p)
n F = 0 for any n > m,
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(d) the equivalent conditions in (2.2) hold if and only if K
(p)
m F 6= 0, and in

this case one has K
(p)
m F ∼= Z/p Z.

Proof: (a) By (2.1) every element of K
(p)
2 F can be written as a sum of

N(Fp; m, 2) symbols, and this number is known to be equal to [m
2
].

(b) It is easy to see that N(k; m,m−1) = 1 for any field k. Therefore

λ(K
(p)
m−1F ) ≤ 1 by (2.1).

(c) K
(p)
n F can be considered as a quotient of the space Λn(K

(p)
1 F ), which

vanishes as soon as n exceedes m, the dimension of K
(p)
1 F .

(d) Since K
(p)
1 F is of dimension m, one has Λm(K

(p)
1 F ) ∼= Z/p Z. There-

fore the first condition in Proposition 2.2 implies that K
(p)
m F ∼= Z/p Z.

Assume now that the equivalent conditions in Proposition (2.2) do not
hold for F . In particular, since (iii) does not hold, there are a1, a2 ∈ F×

Fp-linearly independent modulo p-th powers such that {a1, a2} = 0 in K
(p)
2 F .

We may choose a3, . . . , am ∈ F× such that {a1}, . . . , {am} form an Fp-basis

of K
(p)
1 F . Then the pure n-vector {a1}∧· · ·∧{am} in Λm(K

(p)
1 F ) is nonzero,

while the symbol {a1, . . . , am} in K
(p)
m F is zero. Hence the natural surjection

Λm(K
(p)
1 F ) −→ K

(p)
m F is not injective. As Λm(K

(p)
1 F ) ∼= Z/p Z, it follows

that K
(p)
m F = 0. ¤

Lemma 2.4. Suppose p 6= 2 or that −1 ∈ F×2
, and that F is p-henselian

with respect to a discrete valuation v with residue field F̄ with char(F̄ ) 6= p.
If the equivalent conditions in (2.2) hold for F̄ then they hold for F as well.

Proof: Since F is p-henselian and p 6= char(F̄ ), we know that for any u ∈ F
with v(u) = 0 we have u ∈ F×p

if and only if u ∈ F̄×p. We show that
Condition (iv) in (2.2) holds for the field F if it holds for F̄ .

Let a be an element of F which is not a p-th power in F . We are looking
for an integer r such that ar−ar+1 is a p-th power in F . Using that −1 ∈ F×p

and possibly replacing a by −a−1, we may assume that v(a) ≥ 0. If v(a) > 0
then ar − ar+1 is a p-th power if and only of ar is a p-th power, hence we are
done with r = p. On the other hand, if v(a) = 0 then we saw that a cannot
be a p-th power in F̄ ; hence, by hypothesis, there exists r ∈ Z such that
ar(1 − a) is a p-th power in F̄ and it follows that ar(1 − a) is a p-th power
in F . ¤

Examples 2.5. In each of the following cases, the field F satisfies the equi-
valent conditions of (2.2):

• F = C((X1)) . . . ((Xm)) where C is an algebraically closed field,
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• F = R((X1)) . . . ((Xm)) where p 6= 2 and R is a real closed field,

• F = F is a non-p-adic m-dimensional local field, i.e. there exists a
sequence of fields F0, . . . , Fm = F where F0 is finite with char(F0) 6= p
and, for 1 < i ≤ m, the field Fi is complete with respect to a discrete
valuation with residue field Fi−1.

Indeed, this follows from the basic case m = 0, using the above lemma. Note
further that |F×/F×p| = pm in the first two cases. In the third case one has
|F×/F×p| = pm+1 if p divides (char(F0) − 1) and |F×/F×p| = pm otherwise.

The remainder of this section together with the following section are
devoted to study the case where p = 2. Then, without the hypothesis that
−1 ∈ F×2

, we cannot relate K
(p)
n F to the exterior power space Λn(K

(p)
1 F )

over Fp, as we did before. We therefore are going to define a kind of ”twisted
exterior power space” over the field with two elements.

In the sequel, the letter k will only be used to denote the Milnor K-groups
modulo 2 of a field, that is knF = K

(2)
n F (n ≥ 0).

Let V be a vector space over the field F2, ε a fixed element of V and n a
positive integer. We shall write Λn

ε V for the vector space over F2 generated
by elements v1 ∧ · · · ∧ vn, with v1, . . . , vn ∈ V , subject to the relations of
multilinearity and symmetry (i.e. v1 ∧ · · · ∧ vn does not depend on the order
of the coefficients vi) and further to the relation that v1∧· · ·∧vn = 0 whenever
vi+1 = vi +ε for some i < n. Note that if ε = 0, then Λn

ε V is just the exterior
power space ΛnV .

We call pure n-vectors in Λn
ε V the elements of the form v1 ∧ · · · ∧ vn.

From now on we restrict to the case where n = 2. For given x ∈ V , we shall
say that a pure 2-vector is of the shape x∧ ∗ if it can be written as x∧ y for
some y ∈ V .

Lemma 2.6. Let V be a vector space over F2 with a special element ε ∈ V .
Let ξ be an element of Λ2

εV and let v1, . . . , vl, w1, . . . , wl ∈ V be such that
ξ = v1 ∧ w1 + · · · + vl ∧ wl.

(a) If v is a nontrivial sum of some of the elements v1, . . . , vl then ξ can
be written as a sum of l pure 2-vectors where the first is of the shape
v ∧ ∗.

(b) If v is a nontrivial sum of some of the elements v1, . . . , vl, w1, . . . , wl

then ξ can be written as a sum of l pure 2-vectors where the first is of
the shape v ∧ ∗ or (v + ε) ∧ ∗.

(c) If v1, . . . , vl, w1, . . . , wl, ε are linearly dependent then ξ can be written
as a sum of l pure 2-vectors where the first is of the shape ε ∧ ∗.
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Proof: (a) If l = 1 this is trivial. In the case l = 2 one uses the equality
v1 ∧w1 + v2 ∧w2 = (v1 + v2)∧w1 + v2 ∧ (w1 + w2). The general case follows
from this by induction on l.

(b) Using the relations vi ∧wi = wi ∧ vi = (vi + wi + ε)∧wi, one readily
sees that the statement follows from (a).

(c) Suppose that v1, . . . , vl, w1, . . . , wl, ε are linearly dependent. Then
one of the elements 0 and ε can be written as a nontrivial sum of some of the
elements v1, . . . , vl, w1, . . . , wl. Observing that a pure 2-vector of the shape
0 ∧ ∗ is zero, hence equal to ε ∧ 0, we conclude by (b) that ξ can be written
as a sum of l pure 2-vectors where the first is of the shape ε ∧ ∗. ¤

Proposition 2.7. Let V be a vector space over F2 of dimension m and let
ε ∈ V . Then any element of Λ2

εV is a sum of [m+1
2

] pure 2-vectors. If ξ ∈ Λ2
εV

is not a sum of [m
2
] pure 2-vectors, then ξ = ε∧ε+v1∧w1+· · ·+vn∧wn, where

v1, w1, . . . , vn, wn ∈ V and 2n+1 = m; moreover, under these circumstances,
(v1, w1, . . . , vn, wn, ε) is a basis of V .

Proof: Suppose that ξ ∈ Λ2
εV is a sum of l but not of l − 1 pure 2-vectors

where l > m
2
. In a representation ξ as a sum of l pure 2-vectors, the 2l

coefficients are necessarily linearly dependent. By (2.6(c)), we may write
ξ = ε∧w+ξ′ with w ∈ V and with ξ′ ∈ Λ2

εV equal to a sum of l−1 symbols.
Assume that w is different from ε. Then the subspace of V generated by the
coefficients of any representation of ξ′ as a sum of l−1 pure 2-vectors contains
one of the elements 0, ε, w and w + ε. Using the fact that 0 ∧ ∗ = ε ∧ 0, It
follows from (2.6(b)) that ξ′ can be written as a sum of l − 1 pure 2-vectors
where the first one is of the shape x ∧ y with y ∈ V and x equal to one of
the elements w, ε and w + ε. Now ε ∧ w + x ∧ y cannot be equal to a pure
2-vector, since otherwise ξ would be equal to a sum of l − 1 pure 2-vectors.
Hence, by the relations in Λ2

εV , we must have x = w + ε and therefore
ε ∧ w + x ∧ y = ε ∧ (x + ε) + y ∧ x = ε ∧ ε + (y + ε) ∧ x.

From this we conclude that we can write ξ = ε∧ε+v1∧w1+· · ·+vl−1∧wl−1

with v1, w1, . . . , vl−1, wl−1 ∈ V . Since ξ is not a sum of less than l pure 2-
vectors, we conclude from (2.6(c)) that v1, w1, . . . , vl−1, wl−1, ε are linearly
independent. Then, since 2l − 1 ≥ m, these elements form a basis of V , in
particular, if we put n := l − 1, then 2n + 1 = m. ¤

Since k1F has an obvious structure of a vector space over F2, we may
apply the above results to k1F together with the special element ε := {−1}.
By the relations defining knF , there exists a surjective F2-homomorphism
Λn

{−1}
(k1F ) −→ knF which maps a pure n-vector {x1} ∧ · · · ∧ {xn} to a

symbol {x1, . . . , xn}. From this together with the last proposition we obtain
immediately:
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Corollary 2.8. Suppose that |F×/F×2| = 2m. Then every element of k2F
can be written as a sum of [m+1

2
] symbols. ¤

Remark 2.9. Note that (2.1) and (2.8) immediately imply following weaker
version of Theorem 1.1: if |F×/F×p| = pm then

λp(F ) ≤







[

m
2

]

if p 6= 2 or −1 ∈ F×2
,

[

m+1
2

]

if p = 2 and −1 /∈ F×2
.

In order to establish Theorem 1.1 entirely, it remains to show that we have
λ2(F ) ≤ [m

2
] for any nonreal field F with |F×/F×2| = 2m. This will be

accomplished with (3.5).

3 K-groups modulo 2 and quadratic forms

For the following definitions and facts, we suppose that the characteristic of
F is different from 2. We shall use the standard notations in quadratic form
theory as established in [8] and [20]. However, we use a different convention
for Pfister forms: if a1, . . . , an ∈ F× then 〈〈a1, . . . , an〉〉 will denote the n-fold
Pfister form 〈1,−a1〉 ⊗ · · · ⊗ 〈1,−an〉. Let W (F ) denote the Witt ring of F
and IF the fundamental ideal consisting of the classes of quadratic forms of
even dimension. Let further InF := (IF )n and ĪnF := InF/In+1F for any
n ≥ 0. The ideal InF is additively generated by the n-fold Pfister forms over
F .

Milnor has defined for any n ≥ 1 a homomorphism sn : knF −→ ĪnF ,
mapping a symbol {x1, . . . , xn} to the class of the Pfister form 〈〈x1, . . . , xn〉〉
and determined by this property. Milnor showed that s2 : k2F → Ī2F
is an isomorphism [15, Theorem 4.1.]. It has been proven recently that
sn : knF −→ ĪnF is an isomorphism for any n ≥ 1 [18, Theorem 4.1].

We write ±F×2
:= F×2 ∪ −F×2

. Recall that F is a real euclidean field,
if F×2

is an ordering of F , i.e. if F is real and F× = ±F×2
.

Proposition 3.1. Suppose that |F×/F×2| = 2 and n ≥ 2. If F is nonreal
then knF = 0, otherwise F is real euclidean and the unique nonzero element
in knF is {−1, . . . ,−1}.

Proof: By the hypothesis we have F× = F×2 ∪ aF×2
for some a ∈ F×.

Suppose that knF is nontrivial. It is obvious that then the unique non-
zero element of knF is the symbol {a, . . . , a}, which can also be written as
{−1, . . . ,−1, a}. As this symbol is nontrivial, −1 cannot be a square and a
cannot be a sum of two squares in F . Hence aF×2

= −F×2
and −1 is not
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a sum of two squares. Therefore, F× = ±F×2
and every sum of two squares

is again a square in F . We conclude that F is a real euclidean field. To
complete the proof we remind that, if F is any real field then the symbol
{−1, . . . ,−1} ∈ knF is nontrivial. ¤

In the sequel we will focus on the study of k2F . If ϕ is a quadratic form in
I2F then we write ϕ̄ for its class in Ī2F . The following statement is folklore,
at least in the context where k2F is replaced by Br2(F ), the 2-torsion of the
Brauer group of F , and s2 : k2F → Ī2F by the inverse of the homomorphism
c : Ī2F → Br2(F ), induced by the Clifford invariant (cf. [5, Lemma 2.2.] and
the references given there). We wish to give a self-contained proof here in
our setting, where the statement does not depend on Merkurjev’s result [11]
that c : Ī2F → Br2(F ) is an isomorphism.

Lemma 3.2. Suppose that char(F ) 6= 2. Let m ≥ 1 and ξ ∈ k2F . A neces-
sary and sufficient condition that ξ be a sum of m symbols is that the class
s2(ξ) ∈ Ī2F contain a quadratic form of dimension 2m + 2.

Proof: We first prove by induction on m that the condition is necessary. We
write ξ = ξ′ +{a, b} where ξ′ ∈ k2F is a sum of m−1 symbols and a, b ∈ F×.
Now, if m = 1 then we have ξ′ = 0 and ξ = {a, b}, hence s2(ξ) = 〈〈a, b〉〉,
and the dimension of 〈〈a, b〉〉 is 4 = 2m + 2. Suppose now that m > 1. By
induction hypothesis we have s2(ξ

′) = ϕ′ for a quadratic form ϕ′ of dimension
2(m−1) + 2 = 2m. We decompose ϕ′ into ϕ′′ ⊥ 〈r〉, where ϕ′′ is a quadratic
form of dimension 2m − 1 and r ∈ F×. As s2({a, b}) = −r〈〈a, b〉〉 we obtain
s2(ξ) = s2(ξ

′) + s2({a, b}) = ϕ′ ⊥ −r〈〈a, b〉〉. But ϕ′ ⊥ −r〈〈a, b〉〉 is Witt
equivalent to ϕ := ϕ′′ ⊥ 〈ra, rb,−rab〉. Therefore we have also s2(ξ) = ϕ,
with dim ϕ = 2m + 2.

To show that the condition is sufficient, we use again induction on m. Let
ψ be a quadratic form in I2F of dimension 2m + 2 such that s2(ξ) = ψ. We
decompose ψ into ψ′ ⊥ 〈c, d, e〉 with ψ′ a quadratic form of dimension 2m−1
and c, d, e ∈ F×. Since ψ is Witt equivalent to ψ′ ⊥ 〈−cde〉 ⊥ e〈〈−ce,−de〉〉,
we have

s2(ξ) = ψ′ ⊥ 〈−cde〉 + e〈〈−ce,−de〉〉 = ψ′ ⊥ 〈−cde〉 + s2({−ce,−de}) .

We write ξ = ξ′ + {−ce,−de}, with ξ′ ∈ k2F . Since s2 is an isomorphism,
it follows that s2(ξ

′) = ψ′ ⊥ 〈−cde〉, where the quadratic form ψ′ ⊥ 〈−cde〉
has dimension 2m = 2(m − 1) + 2 and trivial discriminant. Hence, if m = 1
then ψ′ ⊥ 〈−cde〉 must be the hyperbolic plane, thus ξ′ = 0 by injectivity of
s2 and ξ = {−ce,−de}. If m > 1 then by induction hypothesis ξ′ is a sum
of m − 1 symbols, which implies that ξ is a sum of m symbols. ¤
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Lemma 3.3. Suppose that char(F ) 6= 2. Let a ∈ F×. If a can be written
in F as a sum of three squares (or less), then there exists b ∈ F× such that
{−1,−1} = {−a,−b}.

Proof: If a is a sum of three squares in F , then there is some b ∈ F× such that
〈〈−1,−1〉〉 = 〈1, 1, 1, 1〉 = 〈1, a, b, ab〉 = 〈〈−a,−b〉〉; hence s2({−1,−1}) =
s2({−a,−b}) and thus {−1,−1} = {−a,−b}, by injectivity of s2. ¤

Proposition 3.4. Suppose that |F×/F×2| = 2m where m > 1 and that there
is an element ξ ∈ k2F which cannot be written as a sum of [m

2
] symbols.

Then there exist a1, b1, . . . , an, bn ∈ F×, where 2n + 1 = m, such that

ξ = {−1,−1} + {−a1,−b1} + · · · + {−an,−bn}.

Furthermore, given any such representation of ξ as a sum of n symbols, the
elements {−1}, {a1}, {b1}, . . . , {an}, {bn} form an F2-basis of k1F and none
of the elements a1, b1, . . . , an, bn is a sum of squares in F .

Proof: By (2.3, a) and by the hypothesis on ξ, the element −1 cannot be a
square in F , in particular, char(F ) 6= 2.

Let θ be an element of Λ2
{−1}

(k1F ) which maps to ξ under the canonical

homomorphism Λ2
{−1}

(k1F ) −→ k2F . The hypothesis implies that θ is not

a sum of [m
2
] pure 2-vectors in Λ2

{−1}
(k1F ). Since k1F has dimension m,

we conclude by (2.7) that m is odd and that θ is a sum of m+1
2

pure 2-
vectors where the first one is {−1} ∧ {−1}. Hence we may choose elements
a1, b1, . . . , an, bn ∈ F×, where 2n + 1 = m, such that

θ = {−1} ∧ {−1} + {−a1} ∧ {−b1} + · · · + {−an} ∧ {−bn}.

Further, using {−1}+{−x} = {x} in k1F for any x ∈ F×, we conclude from
the second part of (2.7) that an F2-basis of k1F is given by the elements
{−1}, {a1}, {b1}, . . . , {an}, {bn}.

From the above representation of θ we obtain immediately that

ξ = {−1,−1} + {−a1,−b1} + · · · + {−an,−bn}.

The proof will be complete if we can show for any l ∈ IN and any representa-
tion of ξ as above, that none of the elements a1, b1, . . . , an, bn can be a sum
of l squares in F . Suppose that this statement is true for a certain positive
integer l. To show that it still holds after replacing l by l+1, we may assume
that a1 is a sum of l + 1 squares in F , in order to derive a contradiction.
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Since {−1,−1} + {−a1,−b1} cannot be equal to a symbol, a1 cannot be
a sum of three squares in F by Lemma 3.3, hence l ≥ 3. By our assumption
we may write a1 = c + e with elements c, e ∈ F×, where c is a sum of two
squares and e is a sum of l − 1 squares in F .

As l − 1 ≥ 2, the element e is not a square in F . Since there exists an
element of F which is a sum of l + 1 but not of l squares in F , the form
l × 〈1〉 over F is necessarily anisotropic. It follows that e /∈ −F×2

. As a1 is
not a sum of l squares in F , we also obtain that e /∈ a1F

×2
. Further, by the

equality a1 = (a2
1 − ea1)/c and since c is a sum of 2 squares in F while this is

not the case for a1, we see that −ea1 is not a square in F , i.e. e /∈ −a1F
×2

.
Until here we have shown that e /∈ ±F×2 ∪ ±a1F

×2
.

In k2F we have the equality {−a1, e} = {−c, a1e}. Since c and e are
sums of l squares in F , we get from the induction hypothesis that the symbol
{−a1,−b1} cannot be equal neither to {−a1,−e} nor to {−a1, e}. Hence the
pure 2-vectors {−a1} ∧ {−eb1} and {−a1} ∧ {eb1} in Λ2

{−1}
(k1F ) are both

nonzero. From this we conclude that e /∈ ±b1F
×2 ∪ ±a1b1F

×2
.

Since {−1}, {a1}, {b1}, . . . , {an}, {bn} form an F2-basis of k1F , we may
write e = xy where x ∈ ±F×2∪±a1F

×2∪±b1F
×2∪±a1b1F

×2
and where y is

equal to 1 or to a nontrivial product of some of the elements a2, b2, . . . , an, bn.
Since e /∈ ±F×2 ∪ ±a1F

×2 ∪ ±b1F
×2 ∪ ±a1b1F

×2
as we have shown above,

we have y 6= 1. Therefore (2.6,b) shows that in Λ2
{−1}

(k1F ) the element

{−a2} ∧ {−b2} + · · · + {−an} ∧ {−bn} can be rewritten as a sum of (n − 1)
pure 2-vectors where the first is of the shape {±y} ∧ {∗}. Hence we may
suppose that a2 = ±y. By the relations in Λ2

{−1}
(k1F ) and since e = xy and

x ∈ ±F×2 ∪±a1F
×2 ∪±b1F

×2 ∪±a1b1F
×2

, we can rewrite {−a1}∧{−b1}+
{−a2} ∧ {−b2} as a sum of two pure 2-vectors which is either of the shape
{−a1} ∧ {∗} + {±e} ∧ {∗} or of the shape {−a1} ∧ {±e} + {∗} ∧ {∗}. So
we may actually suppose that e is equal to one of ±b1 and ±a2. However,
by the induction hypothesis, neither b1 nor a2 can be a sum of l squares in
F . Hence e is equal either to −a2 or to −b1. In particular, since a1 = c + e
where c is a sum of 2 squares in F , the quadratic form 〈1, 1,−a1,−b1,−a2〉
is isotropic.

We put ζ := {−1,−1} + {−a1,−b1} + {−a2,−b2} ∈ k2F . In Ī2F we
compute

s2(ζ) = 〈〈−1,−1〉〉 + (−1) · 〈〈−a1,−b1〉〉 + (−1) · 〈〈−a2,−b2〉〉
= 〈1, 1,−a1,−b1, a1b1,−a2,−b2, a2b2〉 .

By the above, the 8-dimensional form 〈1, 1,−a1,−b1, a1b1,−a2,−b2, a2b2〉 is
isotropic, hence Witt equivalent to a 6-dimensional form ϕ. Then s2(ζ) = ϕ,
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thus ζ is equal to a sum of two symbols by (3.2). But then ξ can be written
as a sum of n < m

2
symbols, in contradiction to the hypothesis. ¤

Corollary 3.5. If F is a nonreal field such that |F×/F×2| = 2m then every
element of k2F can be written as a sum of [m

2
] symbols.

Proof: For m = 1 this is clear by (3.1). Assume that m > 1 and that there
exists an element in k2F which cannot be written as a sum of [m

2
] symbols.

Then we must have −1 /∈ F×2
by (2.9), and by the last proposition there

exist elements in F which are not sums of squares. Therefore F is real. ¤

The last corollary completes the proof of Theorem 1.1 (see 2.9).

If the field F is nonreal, then one denotes by s(F ) the least positive integer
s such that −1 is a sum of s squares over F , otherwise one puts s(F ) := ∞.
The invariant s(F ) is called the level of F . By a famous result due to Pfister,
the integers occurring as the level of some field are precisely the powers of 2.
However, it is still an unsolved problem whether there is a nonreal field F of
level greater than 4 which has finite square class group F×/F×2

. (For further
information on this problem, see [2] and the references given there.) If the
answer to this question turned out to be negative then one could simplify
the proof of Proposition 3.4.

We will see in the next section that, whenever there exist fields of finite
level s and with finite square class group, then for m sufficiently large there is
such a field L such that, in addition to s(L) = s, one has |L×/L×2| = 2m and
λ2(L) = [m

2
] (see Corollary 4.3). This shows in particular that the estimate

given in Corollary 3.5 is generally the best possible.

4 Symbols and central simple algebras

Let p be a prime number. We suppose for the moment that the field F
contains a primitive p-th root of unity ω; in particular, char(F ) 6= p. Given
a, b ∈ F× we denote by (a, b)F,ω the central simple F -algebra of degree p
generated by two elements α and β which are subject to the relations αp = a,
βp = b and βα = ωαβ. We call this a symbol algebra of degree p over F . In
the case p = 2, we have ω = −1 and, hence, we recover the definition of an
F -quaternion algebra; we then write (a, b)F instead of (a, b)F,−1.

Let Br(F ) denote the Brauer group of F and by Brp(F ) its p-torsion

subgroup. There exists a canonical group homomorphism K
(p)
2 F −→ Brp(F )

which maps a symbol {a, b} ∈ K
(p)
2 F , with a, b ∈ F×, to the class of (a, b)F,ω
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in Brp(F ). By the Merkurjev–Suslin theorem (cf. [14] or [13]), this is actually
an isomorphism, but we shall not use this fact in the sequel.

Lemma 4.1. Suppose that F contains a primitive p-th root of unity. Let
a1, b1, . . . , an, bn ∈ F×. If (a1, b1)F,ω ⊗F · · ·⊗F (an, bn)F,ω is a division algebra

then the element {a1, b1} + · · · + {an, bn} in K
(p)
2 F cannot be written as a

sum of less than n symbols.

Proof: We put ξ := {a1, b1} + · · · + {an, bn}. Let D denote the central F -
division algebra whose class in Br(F ) is the image of ξ under the canonical

homomorphism K
(p)
2 −→ Brp(F ). If ξ is a sum of m symbols in K

(p)
2 F , then

the degree of D is at most pm. On the other hand, if (a1, b1)F,ω ⊗F · · · ⊗F

(an, bn)F,ω is a division algebra, then it is F -isomorphic to D, which then
must be of degree pn. These facts together imply the statement. ¤

Theorem 4.2. Suppose that char(F ) 6= p and that |F×/F×p| = pn. Let
m ≥ 2n − 1 and L := F ((X1)) . . . ((Xm−n)). Then |L×/L×p| = pm and

λp(L) =







[

m
2

]

if p 6= 2 or if F is nonreal,
[

m+1
2

]

if p = 2 and F is real.

Proof: It is well-known that |L×/L×p| = pm−n · |F×/F×p| = pn To prove
the remaining claims we may assume that m is equal either to 2n − 1 or
to 2n. Indeed, if m > 2n then we replace n by n′ := [m

2
] and F by

F ′ := F ((X1)) . . . ((Xn′−n)), observing that |F ′×/F ′×p| = pn′
and that L is

the iterated power series field in m − n′ variables over F ′.
Let ω denote a primitive p-th root of unity. Recall that F (ω)/F is a

field extension of degree dividing p − 1. Therefore any irreducible poly-
nomial of degree p over F will stay irreducible over F (ω). For any a ∈
F× \ F×p

, the polynomial Xp − a is irreducible over F [9, Chapter VIII,
Theorem 9.1.], hence also over F (ω). This shows that the canonical homo-
morphism F×/F×p −→ F (ω)×/F (ω)×

p
is injective. The hypothesis therefore

implies |F (ω)×/F (ω)×
p| ≥ pn.

By Kummer theory (cf. [9, Chapter VIII, § 8], for example), we may

choose elements a1, . . . , an ∈ F× such that F (ω, a
1/p
1 , . . . , a

1/p
n ) is an extension

of F (ω) of degree pn. Note that L(ω) = F (ω)((X1)) . . . ((Xm−n)).
We assume now that m = 2n. By [22, Proposition 2.10], the central

simple L(ω)-algebra (a1, X1)L(ω),ω ⊗L(ω) · · · ⊗L(ω) (an, Xn)L(ω),ω is a division

algebra. Therefore, the element {a1, X1}+ · · ·+ {an, Xn} in K
(p)
2 L(ω) is not

a sum of less than n symbols. It follows that in K
(p)
2 L this element cannot be
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a sum of less than n symbols either. This together with Theorem 1.1 shows
that λp(L) = n = [m

2
] = [m+1

2
].

Assume next that m = 2n− 1 and that p 6= 2 or F is nonreal. The same
argument as before shows that the element {a1, X1} + · · · + {an−1, Xn−1} ∈
K

(p)
2 L is not a sum of less than n−1 = [m

2
] symbols. This together with (1.1)

yields λp(L) = [m
2
].

In the remaining case, F is a real field, p = 2 and m = 2n − 1. We
may then choose the elements a1, . . . , an ∈ F× as above in such a way that
a1, . . . , an−1 become squares in some real closure E of F . The F -quaternion
algebra (−1,−1)F does not split over the field F (

√
a1, . . . ,

√
an−1), which is

contained in E. Hence, by [22, Proposition 2.10], the product of quaternion
algebras (−1,−1)L⊗L (a1, X1)L⊗L · · ·⊗L (an−1, Xn−1)L is a division algebra.

So, by (4.1), the element {−1,−1} + {a1, X1} + · · · + {an−1, Xn−1} ∈ K
(p)
2 L

cannot be written as a sum of less than n symbols. By (1.1) we conclude
that λ2(L) = n = [m+1

2
]. ¤

Corollary 4.3. Suppose that char(F ) 6= 2 and that |F×/F×2| = 2n. Let
m ≥ 2n − 1 and L := F ((X1)) . . . ((Xm−n)). Then |L×/L×2| = 2m, s(L) =
s(F ) and

λ2(L) =







[

m
2

]

if F is nonreal,
[

m+1
2

]

otherwise.

Proof: It is well-known that L has the same level as F ; the rest of the
statement is contained in the theorem. ¤

Examples 4.4. In each of the following situations, L is a nonreal field with
|L×/L×2| = 2m and λ2(L) =

[

m
2

]

.
(1) L = C((X1)) . . . ((Xm)), where m ≥ 0. The level of L is 1 in this case.
(2) L = F3((X1)) . . . ((Xm−1)), where m ≥ 1 and where F3 denotes the

field with three elements. In this case, s(L) = 2.
(3) L = Q2((X1)) . . . ((Xm−3)), where m ≥ 5 and where Q2 is the field of

dyadic numbers. On the other hand, a direct but tedious calculation shows
that one has λ2(F ) = 1 for any field F of level 4 with |F×/F×2| ≤ 24. (This
can also be seen from [21].)

The key idea in the proof of the following statement goes back to Naka-
yama [17].

Proposition 4.5. Suppose that F contains a primitive p-th root of unity ω.
Let L be an extension of F (X0, . . . , Xm) contained in F (X0)((X1)). . .((Xm)).
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There is a tensor product of m symbol algebras of degree p over L which is a
division algebra. In particular, one has λp(L) ≥ m.

Proof: We choose distinct monic irreducible polynomials f1, . . . , fm ∈ F [X0].
They represent Fp-linearly independent classes in F (X0)

×/F (X0)
×p

. Hence,
[22, Proposition 2.10] implies that (f1, X1)L,ω ⊗

L
· · · ⊗

L
(fm, Xm)L,ω is an

central division algebra over L = F (X0)((X1)). . .((Xm)). It is now clear
that the same holds if L is any subfield of F (X0)((X1))· · ·((Xm)) containing
F (X0, . . . , Xm); in particular, λp(L) ≥ m, by (4.1). ¤

In view of the inequality of the proposition, it seems natural to ask:

Question 4.6. Let m be a positive integer, p a prime, and C an algebraically
closed field with char(F ) 6= p. Let F = C(X0, . . . , Xm) be the rational func-
tion field in m variables over C. Do we have λp(F ) = m?

Assume now that m = 1. Already here, the problem is unsolved and very
interesting. Showing that λp(F ) = 1 would imply, via the Merkurjev–Suslin
Theorem, that any central division algebra over F = C(X0, X1) of exponent
p is cyclic (equivalently, a symbol algebra of degree p). This is true at least
for p ≤ 3 (cf. [1]). By a very recent result of de Jong, any central division
algebra of exponent p over F is of degree p (cf. [4]), but it is not presently
known whether such an algebra is necessarily cyclic when p ≥ 5.

An important and rather open problem in the study of symbol lengths is
their behaviour under field extensions. First of all, it would be interesting to
know whether λp(L) < λp(F ) is possible for a prime p and a finite extension
L/F of degree prime to p (cf. [7, Conjecture 3] for p = 2). Furthermore,
no upper bound is known for λp(L) in terms of λp(F ) and the degree of the
(finite) extension L/F .

To finish, let us indicate what can happen with respect to the latter
problem in the case p = 2. In our examples, the base field F will have finitely
many square classes. A far more systematic discussion of the behaviour of
the 2-symbol length λ2 under field extensions L/F of degree 2 and 3 can be
found in [16].

Examples 4.7. (1) Let F0 be the quadratic closure of Q and L0/F0 an
extension of degree 3. For given m ≥ 0, let F = F0((X1)) . . . ((Xm)) and
L = L0((X1)) . . . ((Xm)). Then one has [L : F ] = [L0/F0] = 3 and it turns out
that λ2(F ) =

[

m
2

]

, by (4.2), whereas λ2(L) = m.
As for the last claim, one may argue as follows. By [8, Chapter VII, Ap-

pendix, Corollary 3], L0 has infinitely many square classes. Let a1, . . . , am ∈
L×

0 be F2-independent in L×

0 /L×

0
2
. Then [22, Proposition 2.10] shows that

15



(a1, X1)L⊗L
· · ·⊗

L
(an, Xn)L is a division algebra. Using (4.1), it follows that

λ2(L) ≥ m. On the other hand, any sum of m + 1 symbols in k2L can be
written as a sum of one symbol defined over L0 and with m other symbols;
however, k1F0 = 0 and [L0 : F0] = 3 imply that k2L0 = 0, by [12, Lemma 2],
because k1F0 = 0 and [L0 : F0] = 3. One conludes that λ2(L) = m.

(2) Let F0 be a nonreal field such that |F×/F×2| = 2m for given m ≥ 1,
and such that k2F0 = 0. Let L0/F0 be a quadratic extension. Then it

follows from [8, Chapter VII, Theorem 3.4.] that |L×

0 /L×

0
2| = 22m−1. We

put F = F0((X1)) . . . ((Xn−m)) and L = L0((X1)) . . . ((Xn−m)) for given n ≥
3m − 1. Then [L : F ] = [L0 : F0] = 2, and (4.2) yields λ2(F ) = [n

2
] and

λ2(L) = [n+m−1
2

]. In particular, for n = 3m − 1 we get λ2(F ) = [3m−1
2

] and

λ2(L) = 2m − 1, so λ2(L) = 4λ2(F )+(−1)m

3
.
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[22] J.-P. Tignol. Algèbres indécomposables d’exposant premier. Adv. in
Math., 65(3):205–228, 1987.

[23] R. Ware. Galois groups of maximal p-extensions, Trans. Amer. Math.
Soc., 333(2):721–728, 1992.

Karim Johannes Becher, Universität Konstanz, Fachbereich Mathematik und
Statistik, D204, 78467 Konstanz, Germany; e-mail: becher@maths.ucd.ie
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