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Let D be an F-central division algebra of degree n. We define D to be quasi-
crossed product (QCP for short) if it contains a maximal subfield L with a
chain of fields F G K C L such that K/F is Galois and L/K is abelian
Galois. If L = K, then D is crossed product. Also, D is said to be soluble
QCP if Gal(K/F) is soluble. We also recall that a subgroup G of D* is
irreducible if the F-linear hull of G, F|G]| = D. Irreducible soluble subgroups
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Abstract

Let D be a finite dimensional F'-central division algebra, and G be
an irreducible subgroup of D* := GLi(D). Here we investigate the
structure of D under various group identities on G. In particular, it is
shown that when [D : F] = p?, p a prime, then D is cyclic if and only

if D* contains a nonabelian subgroup satisfying a group identity.
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of the multiplicative group of a divison ring were first studied by Suprunenko
in [11]. Assume that D is a noncommutative finite dimensional F-central
division algebra. It is clear that D* is an improper irreducible subgroup of
D*. More generally, if N is a noncentral normal subgroup of D*, then, by
Cartan-Brauer-Hua Theorem, N is irreducible. But N cannot satisfy a group
identity since it is known that N contains a noncyclic free subgroup [3] . So,
we are interested in proper irreducible subgroups of D* that are not normal.
To construct such subgroups of D*, take a basis {¢; }1<;<, of D/F and consider
the subgroup G = (g;,1 < i < n). Since G is finitely generated it is not normal
in D* (cf. [6]) and we clearly have F[G] = D. Therefore, we can always find
nonnormal proper irreducible subgroups in D*. We shall see later on that if a
nonnormal proper irreducible subgroup G of D* satisfies a group identity, then
we may be able to determine some information about the structure of D. For
example, it is shown that if D* contains an irreducible subgroup satisfying a
group identity, then D is QCP. In particular, when [D : F] = p?, p a prime,
any nonabelian subgroup of D* is irreducible. In this case, it is proved that D
is cyclic if and only if D* contains a nonabelian subgroup satisfying a group

identity.

2 Notations and conventions

Let D be a division ring with center F' and GG be a subgroup of D*. We denote
by F[G] the F-linear hull of G, i.e., the F-algebra generated by elements of
G over F. We shall say that G is irreducible if D = F|G]. For any group G
we denote its center by Z(G). Given a subgroup H of G, Ng(H) means the
normalizer of H in G, and (H, K) the group generated by H and K, where
K is a subgroup of G. We shall say that H is abelian-by-finite if there is an
abelian normal subgroup K of H such that H/K is finite. H is called center-
by-finite if H/Z(H) is finite. Let S be a subset of D, then the centralizer of S

in D is denoted by Cp(S). For results related to central simple algebras see
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3 Irreducible Subgroups of D*

This section deals with a few results on division algebras whose multiplicative
groups contain certain subgroups. Using these results we eventually prove
our main theorem which asserts that if D* contains an irreducible soluble
subgroup, then D is QCP. We then examine the structure of division algebras
whose multiplicative groups contain irreducible abelian-by-finite subgroups.
Using the results, it is shown that if D has a nonzero characteristic and D*
contains an irreducible subgroup satisfying a group identity, then D is QCP.
Finally, a criterion is given for a division algebra D of prime degree to be cyclic.
To be more precise, it is shown that D is cyclic if and only if D* contains a
nonabelian subgroup satisfying a group identity. We begin our study with the

following lemma, for a proof see [2].

LEMMA A. Let D be a finite dimensional F-central division algebra. If D

1s soluble crossed product, then D* contains an irreducible soluble subgroup.
We shall also need the following easy lemma from group theory.

LEMMA 3.1. Let G be a group in which Z(G) is a maximal abelian normal
subgroup. Then Z(G/Z(G)) is trivial.

PROOF. Assume on the contrary that € G\ Z(G) with Z(G)x € Z(
Using the fact that for any element y € G we have Z(G)ry = Z(G)
obtain yxy~tx~! € Z(G). Thus, for any y € G we have yaxy~' € (Z(G), ).

G/Z(G)).

yxr, we

Hence, (Z (@), x) is an abelian normal subgroup of G properly containing Z(G).

This contradiction completes the proof. O
We are now in a position to prove the following:

THEOREM 3.2. Let D be a noncommutative finite dimensional F'-central
division algebra. Assume that D* contains an irreducible soluble subgroup.
Then there exists an irreducible soluble subgroup S and a noncentral abelian
normal subgroup A of S such that S/A is finite.

PrROOF. By Lemma 3 of [5], we know that any soluble subgroup S of D*

is abelian-by-finite, i.e., there is an abelian normal subgroup A in S of finite



index. We may take in our considerations A maximal when we deal with
irreducible subgroups of D* which are clearly nonabelian. Hence, to prove the
theorem we must show that there exists an irreducible soluble subgroup S that
is not center-by-finite. On the contrary, assume that the set > of all irreducible
soluble subgroups of D* are center-by-finite. Since D is of finite dimension
over F' we may view D* as a linear group in GL,(F), where n = [D : F/,
and consequently each element of ¥ is a linear group. Thus, by Huppert-
Zassenhaus Theorem (cf. [1, p. 104]), the soluble length [ of each element
H € ¥ is at most 2n. Using this fact and Zorn’s Lemma, we conclude that
every element of ¥ is contained in a maximal element of ¥. Let G be a
maximal element of Y. It is clear that F* C (. By our assumption F* is
a maximal abelian normal subgroup in G of finite index. We claim that if
N is normal in G, then Z(F[N]) = F. Using the fact that G normalizes N
we conclude that G normalizes F[N]. Obviously Z(F[N])*G is an irreducible
soluble subgroup of D*. Also it is easily seen that Z(F'[/N])* is a normal abelian
subgroup of Z(F[N])*G of finite index. Therefore, by our assumption we have
Z(F[N]) = F. Now, G/F* as a soluble group must contain a nontrivial abelian
normal subgroup. Let N/F* be a maximal abelian normal subgroup of G/F™*.
We claim that Cq(N) = F*. To see this, put M = NCg(N). If M = N, then
Ce(N) € N and hence Cg(N) = Z(N) = F*. Now suppose that M # N.
Considering the fact that M is normal in G and that N/F* is a maximal
abelian normal subgroup of G/F*, we conclude that M/F* is not abelian. The
group M /N is a nontrivial soluble subgroup of G/N. Thus, by looking at the
derived series of M /N we can find a nontrivial abelian normal subgroup T'/N
of M/N such that T is normal in G. By the choice of N/F*, we obtain that
T/F* is not abelian. Therefore, there exist z,¢ € T such that ztz='~! & F*.
Using the definition of M, we can find n,m € N and p,q € Cg(N) such

1 1 1

1t_1 m-1 =

that z = np, t = mq. Therefore, we have ztz~ = npmgp_'n"lq”
nmn~'m™pgp~'q~!. On the other hand we have ztz='t~! € N since T/N is
abelian. Thus, pgp~t¢~* € N and hence pgp~tq~* € NNCq(N) = Z(N) = F*.
Now, using the fact that N/F* is abelian we obtain nmn~'m~! € F* and so

ztz7'! € F*. This contradiction shows that if N/F* is a maximal abelian
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normal subgroup of G/F*, then Cg(N) = F* which establishes the claim.
Now, set D; = F[N] and, by the above observation, we note that Z(D;) = F.
Since G normalizes D we see that for any ¢ € G we may define a natural
homomorphism f, : D1 — Dy, given by f,(x) = gxg™!, for any = € D;.
Hence, by Skolem-Noether Theorem there is an element a, € D7 such that
fg = fa,- If u,v € Dy satisfy f, = f,, then for any € Dy we have uzu™" =
vrv~!. Therefore, u='v € Z(D;) = F, which shows that u, v are equal modulo
F*, ie., F*u = F*v. Now, for any x € D, we have grg~' = agva,’,
hence by = a;'g € Cp(D;). The fact that b, commutes with a, implies that
F*b,. We
claim that both A, B are groups. To see this, it is enough to show that for
any g, h € G we have F*a,1 = F*a,', F*apay = F*apg, F*bg1 = F*b, !, and
F*bpbyg = F*byg. We have by = a,'g. For any 2 € Dy, Ja (@) = for(z) =
9 trg = (aghy)'x(aghy) = a;'way = f,-1(x). Therefore, F*a,' = Fra,-1.

Also we have f,, (x) = frg(x). Hence fo, (x) = hgrg'h™" = hagra;'h™" =

-1
g

shows that A is a group. Next considering the fact that a, € Dy and b, €

and

ag, g, and b, pairwise commute. Set A = UgeG F*ay, and B = UgeG

apayra a,;l = (apag)z(anay) ™t = fana, (x). Therefore, F*ay, = F*apa, which
Cp(D1) we obtain byby = bya,'g = a; brg = a;laglhg = (apay) thg. Thus,
since A is a group we conclude that F*byb, = F*(apa,) ‘hg = F*a,;glhg =
F*byg, F*b ' = Fra,g~" = F*ag_}lg_l = F*b,-1. Therefore, B is also a group.
We claim that B is a soluble group that is normalized by G. To see this,
consider the epimorphism 0 : G — B/F* given by 6(g) = F*b, for all g € G.
Hence B/F* as a homomorphic image of a soluble group is soluble, and so B
is also soluble. Furthermore, since a, € Dy and B C Cp(D,) for any g € G
we have gBg~! = agbngglagl = agBa;1 = B, which establishes our claim.
Therefore, BG is an irreducible soluble subgroup of D*. By maximality of
G we conclude that B C G. Now, we have B C Cp(D;) NG C Cg(Dy) =
Ce(N) = F*. Since g = azb, we obtain G C Dy and hence D; = D, ie,, N
is irreducible. By our assumption we conclude that F* is a maximal abelian
normal subgroup of N. Therefore, by Lemma 3.1, Z(N/F*) is trivial, which

is a contradiction and so the result follows. O



To prove our main theorems, we shall need the following results, for a proof

see [2].

LEMMA B. Let D be a finite dimensional F'-central division algebra. Sup-
pose that K is a subfield of D containing F. If G is an irreducible subgroup of
D* such that K* < G, then K/F is Galois and G/Cq(K*) ~ Gal(K/F).

LEMMA C. Let D be a finite dimensional F'-central division algebra and let
G be an irreducible subgroup of D*. If K is a subfield of D containing F such
that |G : Cq(K*)] = [K : F], then Cp(K) = F[Ce(K™)].

THEOREM D. A noncommutative finite dimensional F'-central division al-
gebra D s abelian crossed product if and only if there exist an irreducible
subgroup G of D* and an abelian normal subgroup A of G such that G/A is

abelian. Equivalently D* contains an irreducible metabelian subgroup.

We are now prepared to prove one of our main results of this section in the

following form:

THEOREM 3.3. Let D be a noncommutative finite dimensional F-central

division algebra. If D* contains an irreducible soluble subgroup, then D is

soluble QQCP.

PROOF. As in Theorem 3.2, assume that X is the set of all irreducible
soluble subgroups of D*. It is clear that every element of ¥ is contained in
a maximal element. Suppose that G is a maximal element of . It is easily
checked that F*G € X, and by maximality of G we have F*G = G. Hence
F* C G. Now, by Theorem 3.2, there exists an irreducible soluble subgroup S
of D* containing a noncentral abelian normal subgroup B of finite index. Put
T = F(B)*S. Since S normalizes B one can easily show that 7" is an irreducible
soluble subgroup of D*. Therefore, T" is contained in a maximal element G of
Y. Now, by Lemma 3 of [5], there exists a maximal abelian normal subgroup
Ain G of finite index. It is clear that [F'(A)* : F*] is infinite since otherwise F’
would be a finite field (cf. [4, p. 213]), hence by Wedderburn’s Theorem, we
conclude that D is a field, a contradiction. Therefore, G/F* is infinite. Since

A is a maximal abelian normal subgroup of finite index in G we conclude



that F* # A. Set K = F(A). One may easily show that G C Np-(K*) and
that K*G is an irreducible soluble subgroup of D*. Therefore, by maximality
of G we have K* C (. Thus, A C K* < (G, which shows that A = K*.
Now, by Lemma B, K/F is Galois and G/Cg(K*) ~ Gal(K/F). Therefore,
K/F is a soluble Galois extension. If Cp(K) = K, one may easily conclude
that K is a maximal subfield of D, hence L = K and so D is a soluble
crossed product division algebra. So, we may assume that Cp(K) # K. By
Lemma C, we conclude that F[Cq(K*)] = Cp(K). Put D; = Cp(K). We
have F[Ce(K*)] = Dy, hence D; contains an irreducible soluble subgroup.
On the other hand by Centralizer Theorem we have Z(D;) = K. Now, by
Lemma 11 of [11] D} contains an irreducible metabelian subgroup. Therefore,
by Lemma D, we conclude that D; is an abelian crossed product division
algebra. Thus, there exists a maximal subfield L of D; such that L/K is
abelian Galois. Now, K/F is Galois and Gal(K/F) is soluble. To complete
the proof, it is enough to show that L is a maximal subfield of D. To see
this, we have Cp(L) C Cp(K) = Dy, and hence Cp(L) C Cp, (L) = L, which
completes the proof of the theorem. O

As a special case of Theorem 3.3, we obtain the following corollary, which

is the main result of [7].

COROLLARY 3.4. Let D be an F'-central division algebra of prime degree

p. Then D is cyclic if and only if D* contains a nonabelian soluble subgroup.

PROOF. the "only if” part is clear with Lemma A. By Theorem 3.3, D
is soluble QCP. Thus, there exists a noncentral subfield K such that K/F is
Galois and Gal(K/F) is soluble. Now, for dimensional reasons, the proof is

complete. O

The next result establishes the structure of division algebras whose multi-

plicative subgroups contain irreducible abelian-by-finite subgroups.

PROPOSITION 3.5. Let D be a noncommutative finite dimensional F'-

central division algebra. Assume that D* contains an irreducible abelian-by-
finite subgroup G. If CharF =p > 0, then D is QCP.



PROOF. By our assumption, there exists an abelian normal subgroup A
in GG of finite index. Since G is nonabelian we may take A maximal. We now
divide the proof into two cases:

Case 1: Suppose that A is noncentral in GG. Therefore, A is also noncentral
in D*. Set H = F(A)*G. Since G normalizes A one can easily see that H
is an irreducible abelian-by-finite subgroup of D*. Let K = F(A). It is clear
that H/K* is finite and K # F. By Lemma B, we conclude that K/F is
Galois and H/Cy(K*) ~ Gal(K/F). If Cp(K) = K, we conclude that K is
a maximal subfield of D and L = K, hence D is QCP. So, we may assume
that Cp(K) # K. Now, using Lemma C, we obtain F|Cy(K*)] = Cp(K). Set
Dy = Cp(K). We have that Cy(K*)/K* is a finite group. On the other hand
by the Centralizer Theorem, we have Z(D;) = K*. Hence Z(Cyx(K*)) = K*.
Now, by group theory, we know that the derived group Cy(K*) is a finite
group (cf. [9, p. 443]). On the other hand CharF' = p > 0. Now, by a theorem
of [4, p. 204], we conclude that C(K*)" is cyclic. Therefore, D} contains an
irreducible metabelian subgroup. Hence, by Theorem D, we conclude that D,
is an abelian crossed product division algebra. Thus, there exists a maximal
subfield L of D; such that L/K is Galois and Gal(L/K) is abelian. Now, we
have Cp(L) C Cp(K) = Dy, and so Cp(L) C Cp,(L) = L, which shows that
L is a maximal subfield of D. Therefore, D is QCP.

Case 2: Assume that A = Z(G). Since G is irreducible we conclude that
Z(G) is central in D*. Because A is maximal in G we conclude that every
abelian normal subgroup of G is contained in F*. Now, we know that G/Z(G)
is finite and hence the derived group G’ is a finite group (cf. [9, p. 443]). On
the other hand, charF = p > 0, by a theorem of [4, p. 204], we conclude
that G’ is cyclic. Therefore, G is an irreducible soluble subgroup of D* and by
Theorem 3.3, we obtain that D is QCP, which completes the proof. O

COROLLARY 3.6. Let D be a noncommutative finite dimensional division
algebra of nonzero characteristic. If D* contains an irreducible subgroup sat-

1sfying a group identity, then D is QCP.

PROOF. Suppose that G is an irreducible subgroup of D* which satisfies a



group identity. Let {g1,...,9,} C G be a basis of the vector space D over the
field Z(D) and set Gy = (g1 ... ¢gn). Then G, is an irreducible subgroup of D*,
which is finitely generated and satisfies a group identity. By Tits’ Alternative
(cf. [12, p. 150]), we conclude that G is soluble-by-finite. Now, Lemma 3 of
[5] implies that G is abelian-by-finite. Therefore, by Theorem 3.5, the result
follows. |

Finally, using above results, a criterion is given for cyclicity of a division
algebra of prime index in terms of subgroups of D*. This criterion includes

those given in [7] and provides us with various conditions on D to be cyclic.

THEOREM 3.7. Let D be a finite dimensional F-central division algebra
of prime degree p. Then D is cyclic if and only if D* contains a nonabelian

subgroup satisfying a group identity.

PROOF. One way is clear from Lemma A. On the other hand, assume that
D* contains a nonabelian subgroup G satisfying a group identity. We may
view G as a linear group over F. By a result of Platonov (cf. [12, p. 149]), we
may conclude that there is a soluble normal subgroup S of finite index in G.
If S is nonabelian, the result follows from Corollary 3.4. So we may assume
that S is abelian. Set T = F*G and A = F*S. It is easily seen that A is a
normal abelian subgroup of finite index in 7. We may take A maximal in 7.
Two cases may occur:

Case 1: If A = F*, then T'/F* is a nontrivial finite subgroup of D*/F*
and the result follows from the Theorem of [7].

Case 2: If A # F*, then K = F[A] is a maximal subfield of D. Since A
is normal in 7', by Lemma B, we conclude that K/F' is Galois and it is clear

that K/F is cyclic which completes the proof.
O

The above result provides us with various cyclicity conditions on subgroups
of D*. There are some conditions on subgroups of D* that imply those sub-
groups satisfy a group identity. We collect some well-known ones in the fol-

lowing;:



COROLLARY 3.8. Let D be an F-centeral division algebra of prime degree

p. Then D is cyclic if either of the following conditions holds:

(a) D* contains a nonabelian soluble subgroup.

(b) D* contains a nonabelian subgroup of a bounded exponent.

(c) D* contains a nonabelian finite subgroup.
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