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1 Introduction

In [Phe00] Thanases Pheidas proves, what he calls, existential divisibility lemmas for K =
Fq(z) where q is a prime congruent to 3 mod 4 and for K = Q. Let R be the set of primes
p in Z, respectively in Fq[t], such that −1 is not a square in the residue field of p. The
existential divisibility lemmas state the existence of an existential formula φ(x, y) such that:
if φ(x, y) holds for x, y ∈ K \ {0} then for all primes p ∈ R for which vp(x) is odd it follows
that vp(xy−2) > 0.

Actually putting extra local conditions on the elements x (conditions in the point at infinity
in the function field case and in the real prime and the prime 2 in case K = Q) the truth of
φ(x, y) for x, y ∈ K∗ is equivalent to the statement: for all primes p ∈ R for which vp(x) is
odd it follows that vp(xy−2) > 0.

The formula φ(x, y) expresses “almost” that all poles of x in R, with odd multiplicity, are
poles of y.

These existential divisibility lemmas play a role in strategies to obtain undecidability results
for the existential theory of the field K. In [Phe91] Pheidas proved that the existential theory
of Fpn(t) is undecidable. His proof worked for all odd primes p. Videla ([Vid94]) extended
this result to rational global function fields of characteristic 2. Shlapentokh ([Shl96]) showed
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that the existential theory of global function fields of characteristic not 2 is undecidable and
finally in her thesis ([Eis03]) Kirsten Eisenträger completed the results by proving the same
result for global function fields in characteristic 2. This is essentially the (negative) solution
of Hilbert’s 10th problem for global function fields.

One of the main open questions directly related to Hilbert’s 10th problem is whether or not
the existential theory of Q (or more general of any number field) is decidable or undecidable.
In [Phe00] a program to come to a uniform way to attack Hilbert’s 10th problem for global
fields is described. This program generates a series of “possible facts” (cf. [Phe00, sections
3 and 4]), two of which are related to the existential divisibility lemma and one of them
is forced into the strategy by the fact that the existential divisibility lemma as proved by
Pheidas uses the set of primes p for which −1 is not a square in the residue field of p.

In view of this Thanases Pheidas and Gunther Cornelissen raised the question to what extent
the existential divisibility lemma holds. For which sets of primes does it hold? Why does the
condition in the prime 2 occur? Can the lemma be generalized to all global fields?

Together with Karim Zahidi the second author worked out a more general version of the
existential divisibility lemma. Namely for K = Q and for a set of primes that are inert in a
quadratic extension of Q. This result was presented at the Oberwolfach meeting on Hilbert’s
10th problem in January 2003 (cf. [VZ03]).

In this paper we generalize the existential divisibility lemma to all global fields K (of charac-
teristic not 2), and for all sets of primes that are inert in a quadratic extension L of K. We
first prove the direct generalisation of Pheidas’ existential divisibility lemma, with conditions
in the real primes and in the primes ramifying in L. In the last section we remove all these
conditions and prove:

Let K be a global field and R(L/K) be the set of primes which are inert in a quadratic
extension L of K. Then there is an existential formula Ω(x, y) which is equivalent with the
formula

∀r ∈ R(L/K) :
(
vr(x) odd → vr(xy−2) > 0

)

2 Preliminaries

Our discussion of the existential divisibility lemma relies on facts about norms and norm
groups of quadratic extensions of local and global fields. We use the Hasse–Minkowski local–
global principle and Hilbert’s reciprocity law. In this section we give a survey of these facts,
for more details and proofs we refer to the literature (e.g. [O’M63]).
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We start fixing terminology and notation. Throughout the paper K will be a global field of
characteristic not 2, so it is either a number field or the function field of a curve over a finite
field Fq with q odd. L will be a quadratic extension of K.

With MK we denote the set of all “primes” p of K. In the number field case the finite or non-
archimedean primes correspond (one to one) to (equivalence classes of) discrete valuations of
K and the infinite or archimedean primes correspond (one to one) to the different embeddings
of K in the complex numbers. In the function field case all the elements of MK correspond
(one to one) to (equivalence classes of) discrete valuations on K. With every element of MK

there corresponds a normalized absolute value | |p on K, we let Kp denote the completion of
K with respect to this absolute value.

If p is a non-archimedean prime, then Kp is the fraction field of a complete discrete valuation
ring Op and its maximal ideal is a principal ideal. A generator for this ideal is called a
uniformizing element. We can choose such a uniformizing element in the base field K and
denote it with πp. The quotient ring Op/(πp) is a finite field Fp, the residue field of the prime
p. The discrete valuation associated with a non-archimedean prime p will be denoted with
vp and we normalize it by vp(πp) = 1. We use the analogous terminology and notation for
primes P ∈ ML.

All absolute values | |p extend to the quadratic extension L/K in different ways, depending
on the prime p. The possible extensions correspond to what is called the splitting behavior
of the prime p in L. For a quadratic extension we have the following possibilities (in the
number field case we distinguish between non-archimedean and archimedean primes, in the
function field case points 4 and 5 are empty):

1. p is a non-archimedean prime and L ⊗K Kp
∼= Kp × Kp. In this case there are two

primes P1,P2 in ML lying over p, LP1

∼= LP2

∼= Kp and FP1

∼= FP2

∼= Fp. We say that
the prime p is completely split in L.

2. r is a non-archimedean prime and L⊗K Kr is a quadratic field extension LR over Kr and
[FR : Fr] = 2. In this case there is only one prime R in L lying over r, the uniformizing
element πr of Or is also a uniformizing element of OR. The prime r is said to be inert
in L.

3. s is a non-archimedean prime and L ⊗K Ks is a quadratic field extension LS over Ks

and [FS : Fs] = 1. Here we also have a unique prime S in L lying over s, but the
uniformizing element πs of Os is not a uniformizing element of OS. We have π2

S = wπs

with w a unit in OS. The prime s is said to ramify in L.

4. a is an archimedean prime and L⊗Ka
∼= Ka ×Ka, the archimedean prime a is said to

split in L.
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5. c is an archimedean prime and L⊗K Kc is quadratic extension LC of Kc. Note that this
case can only occur if Kc

∼= R and we have LC
∼= C, the archimedean prime c does not

split in L.

We can now partition the set of primes MK according to the splitting behavior in the
quadratic extension L:

P (L/K) = {p ∈ MK | p is a non-archimedean prime, completely split in L}
R(L/K) = {r ∈ MK | r is a non-archimedean prime, inert in L}
S(L/K) = {s ∈ MK | s is a non-archimedean prime, ramified in L}

As(L/K) = {a ∈ MK | a is an archimedean prime, split in L}
Ans(L/K) = {c ∈ MK | c is an archimedean prime, not split in L}

In the number field case we sometimes need to refer to all archimedean primes therefore we
define A(L/K) = As(L/K)∪Ans(L/K). In the function field case the sets A(L/K), As(L/K)
and Ans(L/K) are empty.

The sets S(L/K), As(L/K) and Ans(L/K) are finite. The sets P (L/K) and R(L/K) are not
empty, Chebotarev’s density theorem yields that these sets are infinite and both have density
1
2
. (An other consequence of Chebotarev’s theorem states that the set of primes P (L/K)

that split completely determine uniquely the (Galois) extension L/K.)

The strong approximation theorem [Neu92, page 204] implies

Proposition 1. Let T be a finite set of primes in K such that A(L/K) ⊂ T . Let at ∈ K for
t ∈ T . Choose a prime p0 not in T . Then for all ε > 0 there exists an element x ∈ K such
that

|x − at|t < ε for all t ∈ T and |x|q ≤ 1 for all q ∈ MK \ (T ∪ {p0})

As an immediate consequence of this one has

Corollary 2. Let T , p0 6∈ T and at ∈ K be as in the preceding proposition. Then there exists
an element a ∈ K such that

vt(a) = vt(at) for all t ∈ T \ A(L/K)

sign(a) = sign(at) for all t with Kt
∼= R

and

vq(a) ≥ 0 for all q ∈ MK \ (T ∪ {p0})
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Let σ ∈ Gal(L/K) be the non-trivial automorphism of L fixing K. The norm map NL/K :
L∗ → K∗; z 7→ zσ(z) defines a quadratic form on the two dimensional vector space L over
K. If L = K(α) then we can write this form as x2 + TrL/K(α)xy + NL/K(α)y2 with respect
to the basis {1, α} for L over K. Here TrL/K(z) = z + σ(z) stands for the trace map.

Facts. We will denote this quadratic form with N and we have the following facts (cf. [O’M63]
and [Sch85]):

1. For all p ∈ P (L/K) the quadratic form N has a non-trivial zero over Kp, it follows
from this that every element of Kp is represented by N .

2. For all r ∈ R(L/K) the norm form N has no non-trivial zero over Kr. The elements
of Kr represented by N are exactly the norms of the extension LR/Kr, where R is the
unique prime in L lying over r. The norm map NLR/Kr

is surjective on units Ur in Or

and the uniformizing element πr is not a norm. It follows that an element x ∈ Kr is a
norm if and only if its valuation vr(x) is even (we recall that vr is the discrete valuation
associated to r and normalized by vr(πr) = 1).

3. For all s ∈ S(L/K) the norm form N has no non-trivial zero over Ks. Again the
elements represented by N are the norms of the extension LS/Ks, where S is the
unique prime in L lying over s. The image NLS/Ks

(US) of the group of units in OS is
a subgroup of index 2 in the group Us of units in Os. It follows that NLS/Ks

(LS) is a
subgroup of index 2 in Ks, since NLS/Ks

(πS) = uπs for some unit u in Os.

4. For primes a ∈ As(L/K) we have the same as completely split primes, namely that
every element of Ka is represented by N .

5. If c ∈ Ans(L/K), the norm form N has no non-trivial zero over Kc. The elements
represented by N are the norms of the extension LC = C over Kp = R. So these are the
elements represented as sums of 2 squares in R, which are exactly the positive elements
in R.

For inert primes r ∈ R(L/K) we need slightly more than the fact that the norms in Kr are
the elements of even valuation.

Lemma 3. Let r ∈ R(L/K) be an inert prime and R the unique prime in L lying over r.
Let α ∈ OR be such that OR/(πR) = FR = Fr[α] =

(
Or/(πr)

)
[α], with α the reduction of

α mod R. Then
vr(NLR/Kr

(
x + yα)

)
= min(vr(x

2), vr(y
2))

for x, y ∈ Kr.
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Proof. Because r is inert, we may replace vr with vR in the statement.

Note that σ ∈ Gal(L/K) extends to a generator of Gal(LR/Kr), so

vR

(
NLR/Kr

(x + yα)
)

= vR

(
(x + yα)(x + yσ(α))

)
= 2vR(x + yα)

It remains to prove that vR(x + yα) = min(vR(x), vR(y)).

The hypotheses imply that vr(α) = 0, since α is non-zero in FR. If vr(x) 6= vr(y), the
properties of discrete valuations immediatly give us vR(x + yα) = min(vR(x), vR(y)).

Now suppose vR(x) = vR(y) = m for a certain integer m. Then we have x = πm
r x0 and

y = πm
r y0, with x0 and y0 elements of Or having valuation 0.

Since {1, α} is a basis for FR over Fr, we have that x0 + y0α = x0+y0 α is a non-zero element of
FR, so vR(x0+y0α) = 0. Hence vR(x+yα) = vR

(
πm

r (x0+y0α)
)

= m = min(vR(x), vR(y)).

Information on the global norm group NL/K(L∗) ⊂ K∗ can be obtained from Hilbert’s reci-
procity law as expressed by the exact sequence (cf. [Rei75] and [O’M63])

0 → 2Br(K) →
⊕

p∈MK

2Br(Kp)
∑

invp→ Z/2Z → 0 (1)

Here 2Br(F ) denotes the two component (the elements of exponent two) of the Brauer group
of the field F . The elements of the Brauer group of F are classes of central simple algebras
over F , the group law is induced by the tensor product of algebras. In the case of local and
global fields (of characteristic not 2) the (non-trivial) elements of the two component of the
Brauer group are given by quaternion division algebras, which in turn can be represented by
symbols (a, b) with a, b non-zero elements of the field. The symbol (a, b) corresponds to the
quaternion algebra with basis {1, i, j, k} satisfying i2 = a, j2 = b, ij = −ji = k = ab. If one
is not familiar with the theory of Brauer groups, it is enough to know that the subgroups of
elements of exponent 2 are generated multiplicatively by these symbols modulo the following
relations (cf. [Sch85])

• (ab, c) = (a, c)(b, c) and (a, bc) = (a, b)(a, c)

• for all a 6= 0, 1; (a, 1 − a) = 1.

Remark. This is true for the two component of the Brauer group of any field (of characteristic
not equal to 2) by a theorem of Merkuriev. For local and global fields one has moreover that
the product of symbols is equal to a symbol, this fact does not hold in general.
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The following facts are important for us:

Proposition 4 ([Rei75, section 31]). Over a local field Kp there exists a unique quaternion
division algebra Hp, so 2Br(Kp) ∼= Z/2Z.

This element Hp is split over any quadratic extension E of Kp, i.e., Hp⊗Kp E is a full matrix
algebra over Kp and is therefore trivial in Br(Kp).

In the exact sequence (1) presenting Hilbert’s reciprocity law the maps invp : 2Br(Kp) →
Z/2Z are defined by invp(Hp) = 1 ∈ Z/2Z, proposition 4 says that invp is an isomorphism.

Proposition 5 ([Rei75, Theorem 30.4]). Let F be a field, char(F ) 6= 2. A quaternion
division algebra H over F is represented by a symbol of the form (a, b) with a ∈ F ∗ \ F ∗2 if
and only if H ⊗ F (

√
a) is trivial in 2Br(F ). If a ∈ F ∗ \ F ∗2 then a symbol (a, b) is trivial in

2Br(F ) if and only if b ∈ NF (
√

a)/F (F (
√

a)∗).

The second part of this proposition together with Hilbert’s reciprocity law yield the Hasse
norm theorem for quadratic extensions L/K. This theorem states that an element in K is a
norm of an element in L if and only if it is a norm locally everywhere. More generally the
following holds for quadratic forms over global fields:

Theorem 6 (Hasse–Minkowski, [Sch85]). A quadratic form Q over a global field K has
a non-trivial zero in K if and only if it has a non-trivial zero in Kp for all p ∈ MK.

An element x in a global field K is represented by a quadratic form Q over K if and only if
x is represented by Q over Kp for all p ∈ MK.

Let 2Br(L/K) be the kernel of the natural group morphism 2Br(K) → 2Br(L). Clearly
for any element ω in this kernel we have invp(ω) ≡ 0 mod 2 for p ∈ P (L/K) ∪ As(L/K).
Hilbert’s reciprocity law together with the approximation theorem allows us to give different
parameterizations of the finite subgroups of 2Br(L/K). We will use this in section 4.

Let Q be a finite set of primes satisfying

S(L/K) ∪ Ans(L/K) ⊆ Q ⊆ R(L/K) ∪ S(L/K) ∪ Ans(L/K)

Denote with 2BrQ(L/K) the subgroup of 2Br(L/K) defined by

2BrQ(L/K) = {ω ∈ 2Br(L/K) | invl(ω) ≡ 0 mod 2 for all l ∈ MK \ Q}

Hilbert’s reciprocity law gives a one-to-one correspondence between 2BrQ(L/K) and the set
{Q0 ⊆ Q|#Q0 even}. This correspondence is given by

ω 7→ Qω = {q ∈ MK | invq ω ≡ 1 mod 2}
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The latter is a subset of Q by the definition of 2BrQ(L/K).

Let T be a finite subset of primes in R(L/K) \ Q, and fix a ∆ ∈ K∗ for which L = K(
√

∆).
Take an ω ∈ 2BrQ(L/K), then ω is of the form (∆, λ) with λ ∈ K∗. We claim that we may
choose λ such that vr(λ) ≥ 0 for all r ∈ R(L/K) and vt(λ) = 0 for all t ∈ T . To see this,
we note that for t ∈ T we have invt(ω) ≡ 0 mod 2, so λ is a norm of LT/Kt and vt(λ) is
even. Now we apply the approximation theorem (corollary 2) with p0 ∈ P (L/K) to find an
element c ∈ K∗ such that

vr(c) ≥ −vr(λ)

2
for all r ∈ R(L/K)

vt(c) = −vt(λ)

2
for all t ∈ T

Since ω = (∆, λ) = (∆, c2λ), we may replace λ by c2λ to obtain the desired conditions.

By choosing one such λ for every ω ∈ 2BrQ(L/K), we obtain a set ΛQ,T (L/K) parametrizing
the elements of 2BrQ(L/K), we have:

Lemma 7. Let Q, T and ΛQ,T = ΛQ,T (L/K) be as above.

There is a one-to-one correspondence between ΛQ,T and the subsets of Q with an even number
of elements, given by

λ 7→ Qλ = {q ∈ Q | invq(∆, λ) ≡ 1 mod 2}

Conversely for every subset Q0 of Q with #Q0 ∈ 2Z there is a unique λ ∈ ΛQ,T determined
by the fact that λ is a norm of LQ/Kq, where Q ∈ ML and q is the prime in K lying under
Q, if and only if q 6∈ Q0.

Proof. Except for the last statement this follows from the contruction of the set ΛQ,T . The last
statement follows from the fact that invl(∆, λ) ≡ 0 mod 2 for all l 6∈ Q and that invq(∆, λ) ≡
1 mod 2 if and only if λ is not a norm from LQ/Kq.

3 Existential Divisibility Lemma

As before K is a global field (of characteristic not 2) and L is a quadratic extension of K.
We fix an element ∆ ∈ K∗ such that L = K(

√
∆).

Proposition 8. There exists an existential formula φ(x, y) such that:
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1. Let x and y be elements of K∗ for which φ(x, y) is true. If r is any prime in R(L/K)
such that vr(x) is odd, then vr(xy−2) > 0.

2. φ(x, y) is true for all elements x and y of K∗ satisfying the following conditions:

(a) There exists at least one r ∈ R(L/K) for which vr(x) is odd.

(b) For every r ∈ R(L/K) with vr(x) odd, we have vr(xy−2) ≥ 0.

(c) For every c ∈ Ans the element x is positive in Kc
∼= R.

(d) For every s ∈ S(L/K), the element x is a norm from LS, where S is the unique
prime lying above s.

To prove the proposition we need to use lemma 3 for all inert primes r ∈ R(L/K). However
in general it is not possible to find a primitive element α ∈ L such that FR = Fr[α] for all
r ∈ R(L/K). The following lemma will solve this difficulty:

Lemma 9. Let K and L be as above. There exist elements α0, α1 ∈ L∗ such that for all
r ∈ R(L/K) either FR = Fr[α0] or FR = Fr[α1].

Proof. We start by setting α0 =
√

∆. Consider a r ∈ R(L/K) such that vr(∆) = 0 and (in
the number field case) r is not a 2-adic prime (i.e., it is not lying above the prime 2 in Q).
Since LR = Kr(

√
∆) is a quadratic extension of Kr, it follows from the assumptions on r that

∆ is not a square in Fr. This is a consequence of Hensel’s lemma since for non-2-adic primes
a square in the residue field lifts to a square in the completion. So for these primes r we have

FR = Fr(
√

∆).

The remaining primes are exactly the inert 2-adic primes or the inert primes r for which
vr(∆) 6= 0. This set T of inert primes is finite, say T = {r1, . . . , rn}. For all i = 1, . . . , n, we
let Ri be the unique prime in L lying over ri.

Consider the semi-local ring OT = ∩n
i=1(Ori

∩K) and its integral closure ÕT = ∩n
i=1(ORi

∩L).
The canonical morphisms

OT →֒ Ori
and ÕT →֒ ORi

induce isomorphisms OT /(πri
) ∼= Ori

/(πri
) = Fri

and ÕT /(πRi
) ∼= ORi

/(πRi
) = FRi

. For all
i = 1, . . . , n the residue fields FRi

are degree 2 extensions of Fri
, so FRi

= Fri
[βi]. By the

Chinese remainder theorem there exists an element α1 ∈ ÕT such that α1 ≡ βi mod (πRi
).

This implies FRi
= Fri

[α1] for all i = 1, . . . , n.

We can now prove the proposition.
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Proof. Take α0, α1 as in lemma 9. We define φ(x, y) as

φ(x, y) ↔ φ0(x, y) ∧ φ1(x, y)

where φi(x, y) is the formula

φi(x, y) ↔ ∃a, b, c ∈ K : 1 + x N(y−1 + αic) = a2 − ∆b2

or, written in an other way

φi(x, y) ↔ ∃a, b, c ∈ K : (1 + xy−2) + xy−1 Tr(αi)c + x N(αi)c
2 − a2 + ∆b2 = 0

We will prove part 1 of the theorem. For the sake of contradiction, assume that φ(x, y) holds,
but vr(xy−2) ≤ 0 for some prime r ∈ R(L/K) for which vr(x) is odd. Since vr(xy−2) is odd,
necessarily vr(xy−2) < 0.

We have FR = Fr[αi], with i either equal to 0 or 1. Lemma 3 implies vr

(
N(y−1 + αic)

)
=

min(vr(y
−2), vr(c

2)) ≤ vr(y
−2). It follows that

vr

(
x N(y−1 + αic)

)
≤ vr(xy−2) < 0

Thus vr

(
1 + x N(y−1 + αic)

)
= vr

(
x N(y−1 + αic)

)
, which is odd. But φi(x, y) states that

1 + x N(y−1 + αic) is equal to a2 − ∆b2. The latter however has even valuation in r since it
is a norm, so we found our contradiction.

To prove part 2 of the theorem, we assume x and y satisfy all the given conditions.

We claim that φi(x, y) (i = 0, 1) will be true if the following quadratic form is isotropic:

Qi(a, b, c, d) = (1 + xy−2)d2 + xy−1 Tr(αi)cd + x N(αi)c
2 − a2 + ∆b2 (2)

Indeed, if Qi is isotropic but φi(x, y) does not hold, then Qi must have a solution with d
equal to zero:

x N(αi)c
2 − a2 + ∆b2 = 0

Now choose a prime r ∈ R(L/K) for which vr(x) is odd. Then vr(x N(αi)c
2) will be odd, but

vr(a
2 − ∆b2) is even, which gives a contradiction.

It remains to prove that Qi (i = 0, 1) is isotropic in K, or by applying the theorem of Hasse–
Minkowski (cf. theorem 6) that Qi is isotropic over every completion of K. We check this by
considering all possible primes in MK .
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Case 1: a ∈ A(L/K)

Ka
∼= R or C. Set d = 0, c = 1√

x
and a and b such that αi = a + b

√
∆. It follows that

Qi(a, b, c, d) = 0.

Case 2: p ∈ P (L/K)

Take P as one of the two primes in ML lying over p. Since L = K(
√

∆) and LP = Kp it
follows that ∆ is a square in Kp. This means that the form 〈−1, ∆〉, which is a subform of
Qi, is isotropic in Kp. So also Qi is isotropic in Kp.

Case 3: r ∈ R(L/K)

Suppose vr(x) is even. We know that vr

(
N(αi)

)
will also be even, so we can write x N(αi) =

π2m
r u with vr(u) = 0. If we set d = 0 and c = π−m

r , then the first three terms of (2) will
be equal to the unit u. Since every unit in Kr is a norm of the extension LR, there exist
elements a and b in LR such that u = N(a + b

√
∆). This proves that Qi is isotropic.

If vr(x) is odd, it is given that vr(xy−2) > 0. This implies that vr(1 + xy−2) = 0, so 1 + xy−2

is a unit. If we set c = 0, we can conclude as above that Qi is isotropic.

Case 4: s ∈ S(L/K)

Setting d = 0 and c = 1 in Qi yields the equation x NLS/Ks
(αi) = NLS/Ks

(a + b
√

∆). If we
write this as

x = NLS/Ks

(
a + b

√
∆

αi

)

we see that this will always have a solution, because by assumption x is a norm from LS over
Ks, and a + b

√
∆ represents all elements of LS = Ks(

√
∆).

Remark. Proposition 8 applied to K = Q and L = Q(i) is a direct generalistation of the
existenial divisibility lemma proven by Pheidas in [Phe00]. In the ramified primes, only the
prime 2 in that case, Pheidas formulates alternatives for condition 2d (x being a local norm).
It would be possible to formulate such alternatives in the general case. We did not work this
out explicitly since in theorem 13 all conditions in the ramified primes will be removed.

We also like to point out that condition 2a, the existence of an inert prime where x has an
odd value, is not necessary. Even without this condition one can show that if the quadratic
form (2) is isotropic there also is a zero (a, b, c, d) with d = 1. Since removing this condition
would not substantially simplify the following section, we preferred to keep the formulation
of the lemma analogous to that of Pheidas.
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4 Removing all extra conditions

In this section we will prove a version of the existential divisibility lemma without the local
conditions (2a), (2c) and (2d). from proposition 8. This way we will find a formula which is
equivalent with For all primes r in R(L/K) for which vr(x) is odd, it holds that vr(xy−2) > 0.

As an application of this, we give an existential definition of the set of elements of K having
non-negative valuation in a prime.

Lemma 10. There exists a number k and elements u1, . . . , uk ∈ K with vr(ui) ≥ 0 for all
r ∈ R(L/K), such that the following holds:

Take any finite set T ⊂ R(L/K) and consider the semi-local ring OT = ∩t∈T (Ot∩K). Every
x ∈ OT can be written as

x = u1x
2
1 + u2x

2
2 + · · · + ukx

2
k

with xi ∈ OT \ {0}.

Proof. Here we need to give a different arguments for K a global function field and for K a
number field.

Let K be a global function field of characteristic not 2. Let L and T be as in the statement
of the theorem and let x ∈ OT . Choose y ∈ OT such that y 6= ±1 and x + y 6= ±1 (this is
possible since OT is infinite). Then

x =

(
x + y + 1

2

)2

−
(

x + y − 1

2

)2

+

(
y − 1

2

)2

−
(

y + 1

2

)2

Since 1
2
∈ OT we see that every x ∈ OT is equal to an alternating sum of four non-zero

squares in OT . It follows that the lemma holds in this case with k = 4 and u1 = u3 = 1,
u2 = u4 = −1.

To prove the lemma in the number field case we first note that every integer x ∈ Z is
represented over Z by the quadratic form x2

1 − x2
2 + x2

3 − x2
4. Namely if x is odd choose y ∈ Z

such that x + 4y 6= ±1 and y 6= ±1, then

x =

(
x + 4y + 1

2

)2

−
(

x + 4y − 1

2

)2

+ (y − 1)2 − (y + 1)2 .

If x is even choose y ∈ Z such that y is odd, x + y 6= ±1 and y 6= ±1, then

x =

(
x + y + 1

2

)2

−
(

x + y − 1

2

)2

+

(
y − 1

2

)2

−
(

y + 1

2

)2

.
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Note that in these representations of x ∈ Z all the coordinates are non-zero.

We know that the ring of integers OK of K is a finitely generated Z-module, say

OK = a1Z + a2Z + · · · + anZ.

Set k = 4n and for the ui’s we take a1,−a1, a1,−a1, a2,−a2, a2,−a2 . . . , an,−an, an,−an.
Since any integer is represented with non-zero coordinates by the form x2

1 − x2
2 + x2

3 − x2
4

it follows that every element of OK is represented with non-zero coordinates by the form
u1x

2
1 + u2x

2
2 + · · · + u4nx2

4n.

Now consider OT with T a finite subset of R(L/K). Every x in OT can be written as y/z
with y and z in OK . And since OT is a principal ideal domain we may assume that vt(z) = 0
for all t ∈ T . It follows from the above that yz = u1x

2
1 + · · ·+ ukx

2
k, with x1, . . . , xk non-zero

elements of OK . Then

x =
yz

z2
= u1

(x1

z

)2

+ · · · + uk

(xk

z

)2

For all i = 1, . . . , k and t ∈ T we have xi/z 6= 0 and vt(xi/z) = vt(xi) ≥ 0, which means that
xi/z ∈ OT .

Definition 11. Given any subset Λ ⊆ K∗, we define the support of Λ to be

supp(Λ) = {p ∈ MK | ∃λ ∈ Λ : |λ|p 6= 1}

If Λ is finite, then supp(Λ) will also be finite.

Choose four primes r1, r2, r3, r4 in R(L/K) and define the following finite set of primes:

Q = {r1, r2, r3, r4} ∪ S(L/K) ∪ Ans(L/K)

Let T be any finite subset of R(L/K) \ Q and ΛQ,T the subset of K∗ parameterizing

2BrQ(L/K) as given in lemma 7. By construction of ΛQ,T it holds that supp(ΛQ,T )∩ T = ∅.

Lemma 12. Let Λ = ΛQ,T be the set as defined above. There exists an existential formula
ψΛ(x, y) such that:

1. Let x and y be elements of K∗ for which ψΛ(x, y) is true. If r is any prime in R(L/K)\
supp(Λ) such that vr(x) is odd, then vr(xy−2) > 0.

2. Suppose x and y are elements of K∗ such that for every r ∈ R(L/K) with vr(x) odd, it
holds that vr(xy−2) > 0. Then ψΛ(x, y) is true.

13



Proof. To construct the formula ψΛ(x, y), we use the φ(x, y) obtained in lemma 8, and the
ui from lemma 10. We also set u0 = 1. We define ψΛ(x, y) as

∃y0, y1, . . . , yk, z0, z1, . . . , zk ∈ K :

(y0z0 = 1) ∧ · · · ∧ (ykzk = 1) ∧
(
(u0z

2
0 + · · · + ukz

2
k)y

2 = 1
)

∧
(

∨

λ∈Λ

φ(λx, y0)

)
∧ · · · ∧

(
∨

λ∈Λ

φ(λx, yk)

)

Note that the first two lines are equivalent with

∃y0, y1, . . . yk ∈ K∗ :
(
u0y

−2
0 + · · · + uky

−2
k = y−2

)

To prove part 1, assume that ψΛ(x, y) holds. Take any prime r ∈ R(L/K)\supp(Λ) for which
vr(x) is odd. ψΛ(x, y) implies that for all i = 1, . . . , k, φ(λix, yi) is true for a certain λi ∈ Λ.
Because r is outside of the support of Λ, we know that vr(λix) = vr(x) is odd. But now
φ(λix, yi) implies that vr(λixy−2

i ) > 0, and this valuation is equal to vr(xy−2
i ). Lemma 10

gave us vr(ui) ≥ 0, so we also have vr(xuiy
−2
i ) > 0. We conclude the proof of part 1 by

observing that

vr(xy−2) = vr

(
x(u0y

−2
0 + · · · + uky

−2
k )

)
≥

k

min
i=0

vr(xuiy
−2
i ) > 0

For the proof of part 2, suppose we have x, y ∈ K∗ such that for every r ∈ R(L/K) with
vr(x) odd, the inequality vr(xy−2) > 0 holds.

We can use approximation to get a y−1
0 for which the following finitely many conditions are

satisfied:

(I) vr(y
−1
0 ) > vr(y

−1) for all r ∈ R(L/K) \ {r1, r2, r3, r4} for which vr(x) is odd.

(II) vrj
(y−1

0 ) > −vrj
(x)/2 for j = 1, 3.

(III) vrj
(y−1

0 −y−1) = −vrj
(2y−1)+an even number greater than max

(
−vrj

(x), 2vrj
(2y−1)

)
,

for j = 2, 4.

We define these sets of primes:

T0 = {r1, r3} ∪ {r ∈ R(L/K) \ {r1, r2, r3, r4} | vr(x) is odd}
T1 = T2 = · · · = Tk = {r2, r4} ∪ {r ∈ R(L/K) \ {r1, r2, r3, r4} | vr(x) is odd}
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Claim. There exist y0, y1, . . . , yk ∈ K∗ such that u0y
−2
0 + · · · + uky

−2
k = y−2 and for all

0 ≤ i ≤ k we have vr(xy−2
i ) > 0 for all r ∈ Ti.

Proof of claim. We have already constructed y0. The case i = 0 follows easily from (I) and
(II) above, together with the hypotheses of part 2.

For every r ∈ T1 we will prove that vr(y
−2 − y−2

0 ) is even, and vr(y
−2 − y−2

0 ) ≥ −vr(x). Set

a = y−2 − y−2
0 = −(y−1

0 − y−1)((y−1
0 − y−1) + 2y−1)

If r is either r2 or r4,then from (III) it follows that vr(y
−1
0 − y−1) > vr(2y

−1), so

vr(a) = vr(y
−1
0 − y−1) + vr(2y

−1) = an even number greater than − vr(x)

If r is not r2 nor r4, we know that vr(x) is odd and the hypotheses say that vr(y
−2) > −vr(x).

Then (I) implies that vr(a) = vr(y
−2 − y−2

0 ) = vr(y
−2) is even and vr(a) > −vr(x).

Now we use approximation to find a µ ∈ K for which

vr(µ) = −vr(a)/2 for all r ∈ T1.

This way µ2a is in the ring OT1
, and by applying lemma 10 for this ring, we write µ2a as

µ2a = u1w
2
1 + · · · + ukw

2
k.

If we set y−1
i = wi/µ, then vr(y

−2
i ) = 2vr(wi) − 2vr(µ) ≥ 0 + vr(a) > −vr(x) for r ∈ T1 = Ti.

This concludes the proof of the claim.

Using this, we will show that
∨

λ∈Λ φ(λx, y0) is true. The argument proving that
∨

λ∈Λ φ(λx, yi)
is true for i = 1, . . . k is completely analogous but with the role of the pairs {r1, r3} and {r2, r4}
exchanged.

We make a subset Q0 of Q of even cardinality. We start by taking the primes in {r2, r4} ∪
S(L/K) ∪ Ans(L/K) for which x is not a local norm. We add r1 to Q0 if x is a norm from
LR1

. If necessary, we add r3 to make sure Q0 has an even number of elements. If we take
the λ ∈ Λ such that λ is a local norm everywhere, except for the primes in Q0, then λx will
have the following properties:

• λx is a local norm for all primes in S(L/K) ∪ Ans(L/K).

• vr1(λx) is odd.

15



• vr2(λx) is even and vr4(λx) is even.

• vr(λx) ≡ vr(x) mod 2 for all r ∈ R(L/K) \ {r1, r2, r3, r4}.

We will now prove that φ(λx, y0) is true for this λ ∈ Λ. The choice of λ already implies
conditions 2a, 2c and 2d for part 2 of lemma 8.

In order to prove condition 2b, take any prime r ∈ R(L/K) for which vr(λx) is odd. We
see that r cannot be r2 or r4. If r is not r1 nor r3, the fact that vr(λx) is odd implies that
vr(x) is odd. In any case we have r ∈ T0. Hence vr(λxy−2

0 ) ≥ vr(xy−2
0 ) > 0 by the preceding

claim.

The previous lemma is a form of the existential divisibility lemma without conditions in the
real primes and ramifying primes. However, in one direction, it does not work for primes in
supp(ΛQ,T ). By applying the lemma two times for well chosen sets ΛQ,T and ΛQ′,T ′ , we can
solve this problem and obtain the main theorem.

Theorem 13. There is an existential formula Ω(x, y) which is equivalent with the formula

∀r ∈ R(L/K) :
(
vr(x) odd → vr(xy−2) > 0

)
(3)

Proof. Take eight different primes {r1, r2, r3, r4, r
′
1, r

′
2, r

′
3, r

′
4} in R(L/K), and define Q as

{r1, r2, r3, r4} ∪ S(L/K) ∪ Ans(L/K). Take T = {r′1, r′2, r′3, r′4} and let Λ = ΛQ,T be the
corresponding set parameterizing 2BrQ(L/K).

Let Q′ = {r′1, r′2, r′3, r′4} ∩ S(L/K) ∩ Ans(L/K) and take T ′ = {r1, r2, r3, r4} ∪ (supp(ΛQ,T ) ∩
R(L/K)). Since T ′∩Q′ = ∅ by the choice of T , the parameterizing set Λ′ = ΛQ′,T ′ is defined.
Note that the choice of T ′ now implies R(L/K) ∩ supp(ΛQ,T ) ∩ supp(ΛQ′,T ′) = ∅.

Now we define
Ω(x, y) ↔ ψΛ(x, y) ∧ ψΛ′(x, y)

Suppose Ω(x, y) is true. ψΛ(x, y) says that vr(x) odd implies vr(xy−2) > 0 for r ∈ R(L/K) \
supp(Λ). ψΛ′(x, y) says the same thing for r ∈ R(L/K) \ supp(Λ′). Because R(L/K) ∩
supp(Λ) ∩ supp(Λ′) = ∅, we have it for all r in R(L/K).

If (3) is satisfied, then we know by lemma 12 that ψΛ(x, y) and ψΛ′(x, y) are both true.
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As mentioned in the introduction our motivation for theorem 13 finds its origin in Pheidas’
paper [Phe00]. The next corrolary shows that the theorem also generalises the fact that in a
global field the elements integral in a prime p form a diophantine set. This result in different
cases is due to different authors as indicated in the introduction of chapter 5 in [Eis03], there
one also finds a uniform proof for this fact based on Hilbert’s reciprocity law for the Brauer
group of a global field.

Corollary 14. For every non-archimedean prime p ∈ MK, the set {z ∈ K | vp(z) ≥ 0} is
diophantine.

Proof. Let p ∈ MK be a non-archimedean prime. Choose an other non-archimedean prime
q 6= p. Choose L/K a quadratic extension such that p ∈ R(L/K) and q ∈ S(L/K). To see
that such an extension exists, let Kp(αp) be the unique quadratic unramified extension of Kp

and Kq(βq) a totally ramified extension of degree two of Kq. Let X2 + ap,1X + ap,2 be the
minimal polynomial of αp over Kp and X2 + bq,1X + bq,2 be the minimal polynomial of βq

over Kq. Then lemma (33.8) in [Rei75] states that if c1 and c2 are taken sufficiently close to
ap,1 and bq,1, respectively ap,2 and bq,2, the polynomial f(X) = X2 + c1X + c2 is separable
and irreducible over K having a root in Kp and in Kq. It follows that K(γ), with f(γ) = 0,
is a quadratic extension of K with the desired properties.

Let ω ∈ 2Br(K) such that invp ω ≡ 1 mod 2, invq ω ≡ 1 mod 2 and invr ω ≡ 0 mod 2 for all
primes r 6= p, q. (Such an element ω exists by Hilbert’s reciprocity law). By construction L
is a splitting field of ω. So ω = (γ, x) with L = K(γ). It follows from the choice of L and
ω that vp(x) is odd and vr(x) is even for all r ∈ R(L/K) \ {p}. After multiplying x with a
suitable square, we may assume that vp(x) = 1. Now apply theorem 13 with this fixed x.
Then Ω(x, y) is equivalent with “vp(xy−2) > 0”, or “vp(y

−1) > −vp(x)/2”. If we set y = z−1

and use the fact that vp(x) = 1, we find that Ω(x, z−1) is equivalent with “vp(z) ≥ 0”.

References
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