
ON THE NOTION OF CANONICAL DIMENSION FOR

ALGEBRAIC GROUPS

G. BERHUY AND Z. REICHSTEIN

Abstract. We define and study a numerical invariant of an algebraic
group action which we call the canonical dimension. As an application
of the resulting theory we give estimates on the minimal number of
parameters required to define a generic hypersurface of degree d in P

n−1.
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1. Introduction

Many important objects in algebra can be parametrised by a non-abelian
cohomology set of the form H1(K, G), where K is a field and G is a lin-
ear algebraic group defined over K. For example, elements of H1(K, On)
can be identified with n-dimensional quadratic forms over K, elements of
H1(K, PGLn) with central simple algebras of degree n, elements of H1(K, G2)
with octonion algebras, etc; cf. [Se3] or [KMRT]. Recall that H1(K, G) has
a marked (split) element but usually no group structure. Thus, a priori
there are only two types of elements in H1(K, G), split and non-split. How-
ever, it is often intuitively clear that some non-split elements are closer to
being split than others. This intuitive notion can be quantified by consid-
ering degrees or Galois groups of splitting field extensions L/K for α; see,
e.g., [T], [RY2]. Another “measure” of how far α is from being split is its
essential dimension (here we assume that K contains a copy of a base field
k and G is defined over k); for details and further references, see Section 2.1
and the first paragraph of Section 14.

In this paper we introduce and study yet another numerical invariant
that “measures” how far α is from being split. We call this new invariant
the canonical dimension and denote it by cd(α). We give several equivalent
descriptions of cd(α); one of them is that cd(α) = min trdegK(L), where
the minimum is taken over all generic splitting fields L/K for α (see Sec-
tion 9). Generic splitting fields have been the object of much research in
the context of central simple algebras (i.e., for G = PGLn; see, e.g., [A],
[Ar], [Roq1], [Roq2]) and quadratic forms (i.e., for G = On or SOn; see,
e.g., [Kn1], [Kn2], [KS]); related results for Jordan pairs can be found in [Pe].
Kersten and Rehmann [KR], who, following on the work of Knebusch, stud-
ied generic splitting fields in a setting rather similar to ours (cf. Remark 9.5),
remarked, on p. 61, that the question of determining the minimal possible
transcendence degree of a generic splitting field (or cd(α), in our language)
appears to be difficult in general. Much of this paper may be viewed as an
attempt to address this question from a geometric point of view.

We will always assume that k is an algebraically closed base field of char-
acteristic zero and K is finitely generated over k. In this context every
α ∈ H1(K, G) is represented by a (unique, up to birational isomorphism)
generically free G-variety X, with k(X)G = K; see e.g., [Po, (1.3.3)]. We
will often work with X, rather than α, writing cd(X, G) instead of cd(α) and
using the language of invariant theory, rather than Galois cohomology. An
advantage of this approach is that cd(X, G) is well defined for G-varieties X
that are not necessarily generically free (see Definition 3.3), and the interplay
between generically free and non-generically free varieties can sometimes be
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used to gain insight into their canonical dimensions; cf., e.g., Lemma 6.1. If
S is the stabilizer in general position for a G-variety X, then cd(X, G) can
be related to the essential dimension of S. This connection is explored in
Sections 5 – 6.

In Sections 7 - 13 we study canonical dimensions of generically free G-
varieties or, equivalently, of classes α ∈ H1(K, G). We will be particularly
interested in the maximal possible value of cd(α) for a given group G; we
call this number the canonical dimension of G and denote it by cd(G). The
canonical dimension cd(G), like the essential dimension ed(G), is a numerical
invariant of G; if G is connected, both measure, in different ways, how far
G is from being “special” (for the definition and a brief discussion of special
groups, see Section 2.5 below). While cd(G) and ed(G) share some common
properties (note, in particular, the similarity between the results of Section 7
in this paper and those of [R, Sections 3.1, 3.2]) they do not appear to be
related to each other. For example, since cd(G) = 0 for every finite group G
(see Lemma 7.5(b)), the rich theory of essential dimension for finite groups
(see [BR], [BR2], [JLY, Section 8]) has no counterpart in the setting of
canonical dimension. On the other hand, our classification of simple groups
of canonical dimension 1 in Section 13 has no counterpart in the context of
essential dimension, because connected groups of essential dimension 1 do
not exist; see [R, Corollary 5.7].

In Section 8 we prove a strong necessary condition for α ∈ H1(K, G)
to be of canonical dimension ≤ 2. A key ingredient in our proof is the
classification of minimal models for rational surfaces, due to Iskovskih [I];
see Proposition 8.2. In Sections 11 and 12 we study canonical dimensions of
the groups GLn /µd, SLn /µe, SOn and Spinn. Our arguments there heavily
rely on the recent results of Merkurjev [M2] and Karpenko-Merkurjev [KM].

Our definition of canonical dimension naturally extends to the setting
of functors F from the category of field extensions of k to the category of
pointed sets; cd(G) is then a special case of cd(F), with F = H1(−, G) (see
Section 10). A similar notion in the context of essential dimension is due to
Merkurjev [M1]; see also [BF2] and the beginning of Section 14.

In the last two sections we apply the theory developed in this paper to the
problem of computing the minimal number ed(Hn,d) of independent param-
eters, required to define the general degree d hypersurface in P

n−1. (For a
precise statement of the problem, see Section 14.) We show that if d ≥ 3 and
(n, d) 6= (2, 3), (2, 4) or (3, 3), our problem reduces to that of computing the
canonical dimension of the group SLn /µgcd(n, d). In particular, combining
Theorem 14.3 with Corollary 11.4, we obtain following theorem.

Theorem 1.1. Let n and d be positive integers such that d ≥ 3 and (n, d) 6=
(2, 3), (2, 4) or (3, 3). Suppose gcd(n, d) = pj for some prime p and some
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integer j ≥ 0. Write n = pin0, where gcd(p, n0) = 1. Then

ed(Hn,d) =

(

n + d − 1
d

)

− n2 +

{

0, if j = 0

pi − 1, if j ≥ 1.
.

If d ≤ 2 or (n, d) = (2, 3), (2, 4), (3, 3), then our problem reduces to com-
puting canonical dimensions for certain group actions that are not generi-
cally free; this is done in Section 15. Related results for (n, d) = (2, 3) and
(3, 3) can be found in [BF1].

Acknowledgments

We are grateful to D. Hoffmann, A. Merkurjev and J-P. Serre for helpful
comments.

2. Notation and preliminaries

Throughout this paper we will work over an algebraically closed base field
k of characteristic zero. Unless otherwise specified, all algebraic varieties,
algebraic groups, group actions, fields and all maps between them are as-
sumed to be defined over k, all algebraic groups are assumed to be linear
(but not necessarily connected), and all fields are assumed to be finitely
generated over k.

By a G-variety we shall mean an algebraic variety X with a (regular)
action of an algebraic group G. We will usually assume that X is irreducible
and focus on properties of X that are preserved by (G-equivariant) birational
isomorphisms. In particular, we will call a subgroup S ⊂ G a stabilizer in
general position for X if Stab(x) is conjugate to S for x ∈ X in general
position. It is known that many G-varieties have a stabilizer in general
position; for an overview of this topic, see [PV, Section 7]. As usual, if
S = {1}, i.e., G acts freely on a dense open subset of X, then we will say
that the G-variety X (or equivalently, the G-action on X) is generically free.

2.1. Essential dimension. Let X be a generically free G-variety. The
essential dimension ed(X, G) of X is the minimal value of dim(Y )−dim(G),
where the minimum is taken over all dominant rational maps X 99K Y of
G-varieties with Y generically free. For a given algebraic group G, ed(X, G)
attains its maximal value in the case where X = V is a (generically free)
linear representation of G. This value is called the essential dimension of G
and is denoted by ed(G) (it is independent of the choice of V ). For details,
see [R, Section 3].

2.2. Rational quotients. The rational quotient for a G-variety X is an
algebraic variety Y such that k(Y ) = k(X)G. The inclusion k(Y ) →֒ k(X)
then induces a rational quotient map π : X 99K Y . Note that Y and π are
only defined up to birational isomorphism; one usually writes X/G in place
of Y . We shall say that G-orbits in X are separated by regular invariants if
π is a regular map and π−1(y) is a single G-orbit for every k-point y ∈ Y . By
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a theorem of Rosenlicht, X has a G-invariant dense open subset U , where
G-orbits are separated by regular invariants. For a detailed discussion of
the rational quotient and Rosenlicht’s theorem, see [PV, Section 2.4].

2.3. Split generically free varieties. Let X be a generically free G-
variety, where the G-orbits are separated by regular invariants. We will
call a rational map s : X/G 99K X a rational section for π if s ◦ π = id
on X/G. (Note that since the fibers of π are precisely the G-orbits in X,
G · s(X/G) is dense in X. Consequently, some translate of s will “survive”
if X is replaced by a birationally equivalent G-variety.) We shall say that
X is split if one of the following equivalent conditions holds:

(i) X is birationally isomorphic to G × X/G,

(ii) π has a rational section,

(iii) X represents the trivial class in H1(K, G),

(iv) ed(X, G) = 0.

For a proof of equivalence of these four conditions, see [Po, (1.4.1)] and [R,
Lemma 5.2].

2.4. The groups GLn /µd and SLn /µe. In this section we will review
known results about the Galois cohomology sets H1(K, G), where G =
GLn /µd or SLn /µe, µd is the unique cyclic subgroup of GLn of order d,
and e divides n.

Lemma 2.1. Let G = GLn /µd (respectively, G = SLn /µe), f : G −→
PGLn be the canonical projection, and K/k be a field extension. Then

(a) The map f∗ : H1(K, G) → H1(K, PGLn) has trivial kernel.

(b) The image of f∗ consists of those classes which represent central simple
algebras of degree n and exponent dividing d (respectively, dividing e).

Proof. (a) The exact sequence 1 −→ Ker(f)
i→֒ G

f−→ PGLn −→ 1 of
algebraic groups, gives rise to an exact sequence

H1(K, Ker(f))
i∗−→ H1(K, G)

f∗−→ H1(K, PGLn)

of pointed sets; cf. [Se2, pp. 123 - 126]. It is thus enough to show that i∗
is the trivial map (i.e., its image is {1}). If G = GLn /µd this is obvious,
since Ker(f) ≃ Gm, and thus H1(K, Ker(f)) = {1}. If G = SLn /µe then
Ker(f) = µn

e
, and the commutative diagram

(2.1) 1 // µn //

× e

²²

SLn
//

²²

PGLn
// 1

1 // µn
e

i
// SLn /µe

// PGLn
// 1,
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of group homomorphisms induces the commutative diagram

H1(K, µn) //

²²

H1(K, SLn)

²²

H1(K, µn
e
)

i∗
// H1(K, SLn /µe)

of maps of pointed sets. Since the left vertical map is surjective (it is the

natural projection K×/(K×)n −→ K×/(K×)
n
e ), and H1(K, SLn) = {1}

(see [Se2, p. 151]), we see that the image of i∗ is trivial, as claimed.

(b) We will assume G = SLn /µe; the case G = GLn /µd is similar and
will be left to the reader. We now focus on the connecting maps

H1(K, PGLn)
δ

// H2(K, µn)

× e
²²

H1(K, SLn /µe)
f∗

// H1(K, PGLn)
δ′

// // H2(K, µn
e
)

induced by the diagram (2.1). It is well known that H2(K, µn) is the n-
torsion part of the Brauer group of K and δ sends a central simple algebra
A to its Brauer class [A]; see [Se2, Section X.5]. Hence, δ′(A) = e · [A], and
Im(f∗) = Ker(δ′) consists of algebras A of degree n and exponent dividing
e, as claimed. ¤

2.5. Special groups. An algebraic group G is called special if H1(E, G) =
{1} for every field extension E/k. Equivalently, G is special if every gener-
ically free G-variety is split. Special groups were introduced by Serre [Se1]
and classified by Grothendieck [Gro, Theorem 3] as follows: G is special if
and only if its maximal semisimple subgroup is a direct product of simply
connected groups of type SL or Sp; cf. also [PV, Theorem 2.8]. The follow-
ing lemma can be easily deduced from Grothendieck’s classification; we will
instead give a proof based on Lemma 2.1.

Lemma 2.2. GLn /µd is special if and only if gcd(n, d) = 1.

Proof. If n and d are relatively prime then every central simple algebra of
degree d and exponent dividing n is split. By Lemma 2.1, f∗ has trivial
image and trivial kernel, showing that H1(E, GLn /µd) = {1} for every
E, i.e., GLn /µd is special. Conversely, suppose e = gcd(n, d) > 1. Let
E = k(a, b), where a and b are algebraically independent variables over k,
and D = (a, b)e = generic symbol algebra of degree e. Then A = Mn

e
(D)

is a central simple algebra of degree n and exponent e, with center E. This
algebra defines a class in H1(E, PGLn); since e divides d, Lemma 2.1 tells
us that this class is the image of some α ∈ H1(E, GLn /µd). Since A is not
split, α 6= 1, and hence GLn /µd is not special, as claimed. ¤
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3. The canonical dimension of a G-variety

Let X be an irreducible G-variety (not necessarily generically free). We
shall say that a rational map F : X 99K X is a canonical form map if F (x) =
f(x) · x for some rational map f : X 99K G. Here we think of F (x) as
a “canonical form” of x. Note that F and f are not required to be G-
equivariant.

Remark 3.1. If the G-action on X is generically free and F : X 99K X is a
rational map then the following conditions are equivalent:

(a) F is a canonical form map,

(b) π ◦ F = π, where π : X 99K X/G is the rational quotient map.

(b) F (x) ∈ G · x for x ∈ X in general position,

The proof is easy, and we leave it as an exercise for the reader.

Example 3.2. Let X = Mn, with the conjugation action of G = GLn. We
claim that the rational map F : Mn 99K Mn, taking A to its companion
matrix

F (A) =















0 0 . . . 0 −cn

1 0 . . . 0 −cn−1

0 1 . . . 0 −cn−2
...

...
...

...
...

0 0 . . . 1 −c1















,

is a canonical form map. Here tn + c1t
n−1 + · · · + cn = det(tI − A) is the

characteristic polynomial of A.
To prove the claim, fix a non-zero column vector v ∈ kn and define f(A)

as the matrix whose columns are v, Av, . . . , An−1v. It is now easy to see
that f : A 7→ f(A) is a rational map Mn 99K GLn, and f(A)−1Af(A) is the
companion matrix F (A). ¤

Our definition of a canonical form map is quite general; for example it
includes the trivial case, where f(x) = 1G and thus F (x) = x for every
x ∈ X. Usually we would like to choose f so that the canonical form of
every element lies in some subvariety of X of small dimension. With this in
mind, we give the following:

Definition 3.3. The canonical dimension cd(X, G) of a G-variety X is
defined as

cd(X, G) = min {dim F (X) − dim(X/G)},
where the minimum is taken over all canonical form maps F : X 99K X. If
the G-action on X is generically free, and X represents α ∈ H1(K, G), we
will also write cd(α) in place of cd(X, G).

Note that the symbol cd does not stand for and should not be confused
with cohomological dimension.
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Lemma 3.4. The integer cd(X, G) is the minimal value of dim F (G ·x) for
x ∈ X in general position. Here the minimum is taken over all canonical
form maps F : X 99K X.

Proof. Let π : X 99K X/G is the rational quotient map for the G-action on
X. Then for any canonical form map F : X 99K X, we have π = π ◦ F . In
particular, π F (X) = X/G. Applying the fiber dimension theorem to

π|F (X) : F (X) 99K X/G ,

we see that dim F (X) − dim(X/G) = dim F (G · x) for x ∈ X in general
position. By Definition 3.3, cd(X, G) is the minimal value of this quantity,
as F ranges over all canonical form maps F : X 99K X. ¤

Example 3.5. Let X = Mn, with the conjugation action of G = GLn. Then
the canonical form map F constructed in Example 3.2 takes every orbit in
X to a single point. This shows that cd(Mn, GLn) = 0. The same argument
shows that cd(Mn, PGLn) = 0; cf. also Lemma 4.3 below.

4. First properties

4.1. Subgroups.

Lemma 4.1. If X be a G-variety and H be a closed subgroup of G then

cd(X, G) + dim X/G ≤ cd(X, H) + dim X/H .

Proof. The left hand side is the minimal value of dim F (X), as F ranges
over canonical form maps F : X 99K X corresponding to f : X 99K G. The
right hand side is the same, except that f is only allowed to range over
rational maps X 99K H. Since there are more rational maps from X to G
than from X to H, the inequality follows. ¤

4.2. Connected components.

Lemma 4.2. Let X be a G-variety and let G0 be the connected component
of G. Then cd(X, G0) = cd(X, G).

Proof. The inequality cd(X, G) ≤ cd(X, G0) follows from Lemma 4.1, with
H = G0. To prove the opposite inequality, let F : X 99K X be a canonical
form map such that dim F (G · x) = cd(X, G) for x ∈ X in general position.
Here F (x) = f(x) · x for some rational map f : X 99K G. Since X is
irreducible, the image of f lies in some irreducible component of G. Let g
be an element of this component. Then we can replace f by f ′ : X 99K G0,
where f ′(x) = g−1f(x), and F by F ′ : X 99K X given by F ′(x) = f ′(x) ·x =
g−1 · F (x). (Note that here g is independent of x.) Since F ′(G · x) is
a translate of F (G · x), we conclude that cd(X, G0) ≤ dim F ′(G0 · x) ≤
dim F ′(G · x) = dim F (G · x) = cd(X, G). ¤
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4.3. Quotient groups.

Lemma 4.3. Let α : G −→ G be a surjective map of algebraic groups and
N = Ker(α). Suppose X is a G-variety or, equivalently, a G-variety with
N acting trivially. Then

(a) cd(X, G) ≥ cd(X, G).

(b) If N is special then cd(X, G) = cd(X, G).

Proof. Part (a) follows from Definition 3.3, because f : X 99K G and

f = f (mod N) : X 99K G

give rise to the same canonical form map F : X 99K X. Note that equality
may not hold in general, because not every rational map f : X 99K G can
be lifted to f : X 99K G.

(b) If N is special then α has a rational section β : G 99K G. (Note
that β is a rational map of varieties; it is not required to respect the group
structure.) Now choose f : X 99K G such that the canonical form map
F : X 99K X given by F (x) = f(x) · x has the property that F (G · x) =
F (G · x) has dimension cd(X, G) for x ∈ X in general position. In order to
show that cd(X, G) ≤ cd(X, G), it is enough to lift f to f : X 99K G. If f(X)
does not lie entirely in the indeterminacy locus of β, we can take f = β ◦ f ,
thus completing the proof. Otherwise we choose g ∈ G so that gf(X) does
not lie entirely in the indeterminacy locus of β. Then we may replace f by
fg : X 99K G, where fg(x) = gf(x), and lift fg to G as before. ¤

4.4. Direct products.

Lemma 4.4. Let Xi be a Gi-variety for i = 1, 2, G = G1 × G2 and X =
X1 × X2. Then cd(X, G) ≤ cd(X1, G1) + cd(X2, G2).

Proof. If Fi : Xi 99K Xi are canonical form maps associated to fi : Xi 99K G
(for i = 1, 2) then F = (F1, F2) : X 99K X is a canonical form map associated
to f = (f1, f2) : X = X1 × X2 99K G1 × G2. Clearly,

F (G · x) = F1(G1 · x1) × F2(G2 · x2)

for any x = (x1, x2) and thus dim(F · x) = dim(F1 · x1) + dim(F2 · x2). The
desired inequality now follows from Lemma 3.4. ¤

4.5. Split varieties.

Lemma 4.5. Let X be a generically free G-variety and let π : X 99K X/G
be the rational quotient map.

(a) If X is split (cf. Section 2.3) then cd(X, G) = 0.

(b) Suppose G is connected. Then the converse to part (a) holds as well.

Proof. (a) Since X is split, we may assume X = G×X0, where X0 = X/G;
see Section 2.3(i). The map F : X −→ X, given by F : (g, x0) 7→ (1G, x0) is
clearly a canonical form map, with dim F (X) = dim(X/G), and the desired
equality follows.
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(b) After replacing X be a G-invariant dense open subset, we may as-
sume that the G-orbits in X are separated by regular invariants. Suppose
cd(X, G) = 0, i.e., dim F (X) = dim(X/G) for some canonical form map
F : X 99K X. It is enough to show that π|F (X) : F (X) 99K X/G is a bira-
tional isomorphism. Indeed, if we can prove this then

π−1
|F (X) : X/G

≃
99K F (X) →֒ X

will be a rational section (as defined in Section 2.3).
To prove that π|F (X) is a birational isomorphism, consider the fibers of

this map. If x ∈ X is a point in general position and y = π(x) ∈ X/G then
π−1
|F (X)(y) = F (G · x). Since G is connected, G · x is irreducible, and so is

F (G ·x). On the other hand, since cd(X, G) = 0, π−1
|F (X)(y) is 0-dimensional.

We thus conclude that π−1
|F (X)(y) is a single k-point for y ∈ X/G in general

position. Hence, π|F (X) is a birational isomorphism (cf., e.g., [Hu, Section
I.4.6]), and the proof is complete. ¤

5. A lower bound

Definition 5.1. Let S be an algebraic group and Y be a generically free
S-variety. We define e(Y, S) as the smallest integer e with the following
property: given a point y ∈ Y in general position, there is an S-equivariant
rational map f : Y 99K Y such that f(Y ) contains y and dim f(Y ) ≤ e +
dim(S).

Remark 5.2. Note that this definition is similar to the definition of the
essential dimension ed(Y, S) of Y ; cf. Section 2.1. The difference is that
ed(Y, S) is the minimal value of dim f(Y ) − dim(S), where f is allowed
to range over a wider class of rational S-equivariant maps. In particular,
e(Y, S) ≥ ed(Y, S). Note also that e(Y, S) depends only on the birational
class of Y , as an S-variety.

Remark 5.3. In the sequel we will be particularly interested in the case
where Y is itself an algebraic group, S is a closed subgroup of Y , and
the S-action on Y is given by translations (say, by right translations, to
be precise). In this situation, e(Y, S) is simply the minimal possible value
of dim f(Y ) − dim(S), where f ranges over all S-equivariant rational maps
Y 99K Y . Indeed, after composing f with a suitable left translation g : Y −→
Y , we may assume that f(Y ) contains any given y ∈ Y .

Lemma 5.4. Let Y be a generically free S-variety.

(a) If Y is split (cf. Section 2.3) then e(Y, S) = 0.

(b) Suppose there exists a dominant rational S-equivariant map α : V 99K

Y , where V is a vector space with a linear S-action. Then e(Y, S) = ed(S).

(c) If Y = G is a special algebraic group, S is a subgroup of G and the
S-action on Y is given by translations then e(Y, S) = ed(S).
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Note that the condition of part (a) is always satisfied if S is a special
group.

Proof. (a) If Y is split, it is birationally isomorphic to S × Z, where S acts
by translations on the first factor and trivially on the second. In fact, we
may assume without loss of generality that Y = S ×Z. Now for any z0 ∈ Z
consider fz0

: S × Z 99K S × Z, given by (s, z) 7→ (s, z0). As z0 ranges over
Z, the images of fz0

cover Y . Each of these images has the same dimension
as S; this yields e(Y, S) = 0.

(b) Let β : Y 99K Y0 be the dominant S-equivariant rational map from Y
to a generically free S-variety Y0 of minimal possible dimension, ed(S) +
dim(S); cf. Remark 5.3. Then for any v ∈ V , there is a rational G-
equivariant map γ : Y0 99K V such that v lies in the image of γ; see [R,
Proposition 7.1]. Taking f = α ◦ γ ◦ β : Y 99K Y in Definition 5.1 and vary-
ing v over V , we see that e(Y, S) ≤ dim(Y0)−dim(S) = ed(S). The opposite
inequality was noted in Remark 5.2.

(c) Let V be a generically free linear representation of G (and thus of
S). Since G is special, V is split; cf. Section 2.3. Consequently, there is a
dominant rational map V 99K G of G-varieties (and hence, of S-varieties).
The desired conclusion now follows from part (b). ¤

Proposition 5.5. Let G be a connected group and X be an irreducible G-
variety with a stabilizer S in general position. Then

(a) cd(X, G) ≥ e(G, S), where S acts on G by translations.

In particular,

(b) cd(X, G) ≥ ed(G, S), and

(c) if G is special then cd(X, G) ≥ ed(S).

Proof. (b) and (c) follow from (a) by Remark 5.2 and Lemma 5.4(c) respec-
tively.

To prove part (a), let F : X 99K X be a canonical form map such that
dim F (G · x) = cd(X, G) for x in general position; cf. Lemma 3.4. Let
f : X 99K G be a rational map such that F (x) = f(x) · x.

Choose x in general position, and consider the orbit map φ : G −→ G · x.
Identifying G ·x with G/S, where S = StabG(x), we see that φ is simply the
canonical projection G −→ G/S (where, as usual, the action of S on G is
given by s · g = gs−1 ). The rational map F|G·x : G · x 99K G · x can now be

lifted to F ′ : G 99K G given by F ′(g) = f(φ(g))g. Since φ(gs−1) = φ(g) for
every s ∈ S, we see that F ′ is S-equivariant, with respect to the S-action on
G (via translations on the right). Since S acts freely on G (and hence, on
F ′(G)), we conclude that F ′ : G 99K F ′(G) is an S-compression, and thus,
by the definition of e(G, S),

dim F ′(G) − dim(S) ≥ e(G, S) .
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Moreover, since F ′(G) is S-invariant, and F (G · x) = φF ′(G) = F ′(G)/S,
we have

dim F (G · x) = dim F ′(G) − dim(S) ≥ e(G, S) ,

as claimed. ¤

Remark 5.6. The same argument shows that if e(G, Stab(x)) ≥ d for x in
a Zariski dense open subset of X then cd(X, G) ≥ d.

Corollary 5.7. Let G be a connected group, S be a closed subgroup, and
X = G/S be a homogeneous space. Then

(a) cd(X, G) = e(G, S), where S acts on G by translations.

(b) If G is special then cd(X, G) = ed(S).

Proof. Part (b) follows from part (a) and Lemma 5.4(c).
To prove (a), note that by Proposition 5.5, we only need to show that

cd(X, G) ≤ e(G, S), i.e., to construct a canonical form map F : X 99K X
such that

(5.1) dim F (G · x) = e(G, S)

for x in general position. We will define F by reversing the construction in
Proposition 5.5. Let F ′ : G 99K G be an S-equivariant rational map (with
respect to the right translation action of S on G), such that dim F ′(G)
assumes its minimal possible value, e(G, S)+dim(S); cf. Remark 5.3. Then
f ′ : G 99K G given by f ′(g) = F ′(g)g−1 is S-invariant (with respect to the
right translation action of S on G). Hence, f ′ descends to f : G/S 99K G.
Thus we have a commutative diagram

G
F ′

99K G
↓ ↓

G/S
F

99K G/S

where F (x) = f(x) · x. Here F is, by construction, a canonical form map,
and

dim F (G/S) = dim F ′(G) − dim S = e(G, S) ,

as desired. ¤

6. A comparison lemma

Lemma 6.1. Let α : X 99K Y be a dominant rational map of irreducible
G-varieties. Suppose dim(G · x) = d and dim(G · y) = e for x ∈ X and
y ∈ Y in general position. Then cd(X, G) ≤ cd(Y, G) + d − e.

Proof. Let f : Y 99K G be a rational map such that dim F (G · y) = cd(Y, G)
for Y in general position. Here, as usual, F : Y 99K Y is defined by F (y) =
f(y) · y.

Now consider f ′ = f ◦ α : X 99K G and the induced canonical form map
F ′ : X 99K X given by F ′(x) = f ′(x) · x. The relationship between F and
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F ′ is illustrated by the following commutative diagram, where x is a point
in general position in X and y = α(x) ∈ Y .

G · x F ′

99K F ′(G · x)
α ↓ ↓ α

G · y F
99K F (G · y) .

Each fiber of α : G · x −→ G · y has dimension d − e. Hence, each fiber of
the right vertical map α|F ′(G·x) has dimension ≤ d − e. Applying the fiber
dimension theorem to this map, we obtain

dim F ′(G · x) ≤ dim F (G · y) + d − e = cd(Y, G) + d − e ,

and the proposition follows; cf. Lemma 3.4. ¤

Let X be a G-variety and H be a closed subgroup of G. Recall that
an H-invariant (not necessarily irreducible) subvariety Y ⊂ X is called a
(G, H)-section if (i) G · Y is dense in X and (ii) for y ∈ Y in general
position, g · y ∈ Y ⇔ g ∈ H. Note that in some papers a (G, H)-section is
called a relative section (cf. [PV, Section 2.8]) or a standard relative section
with normalizer H (cf [Po, (1.7.6)]).

Corollary 6.2. Let X be an irreducible G-variety.

(a) If X has a (G, H)-section then cd(X, G) ≤ e(G, H) + d − dim(G) +
dim(H), where d = dim(G · x) for x ∈ X in general position.

(b) If X has stabilizer S in general position then

e(G, S) ≤ cd(X, G) ≤ e(G, N) − dim(S) + dim(N) ,

where N is the normalizer of S in G.

Proof. (a) The existence of a (G, H)-section is equivalent to the existence of
a G-equivariant rational map X 99K G/H; see [Po, Theorem 1.7.5]. Thus by
Lemma 6.1, cd(X, G) ≤ cd(G/H, G) − d + dim(G/H). By Corollary 5.7(a)
cd(G/H, G) = e(G, H), and part (a) follows.

(b) The inequality e(G, S) ≤ cd(X, G) follows from Proposition 5.5(a).
To prove the inequality

(6.1) cd(X, G) ≤ e(G, N) − dim(S) + dim(N) ,

note that by [Po, (1.7.8)], X has a (G, N)-section. Substituting H = N and
d = dim(G) − dim(S) into the inequality of part (a), we obtain (6.1). ¤

7. The canonical dimension of a group

In this section we will define the canonical dimension of an algebraic group
G. We begin with a simple lemma.

Lemma 7.1. Let X be an irreducible G-variety, and let Z be an irreducible
variety with trivial action of G. Then cd(X × Z, G) = cd(X, G).
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Proof. The inequality cd(X × Z, G) ≤ cd(X, G) follows from Lemma 6.1,
applied to the projection map α : X × Z −→ X. To prove the opposite
inequality, let c = cd(X × Z, G) and choose f : X × Z 99K G such that
dim F (G · (x, z)) = c. Here, as usual, F (y) = f(y) · y for y ∈ Y . It is now
easy to see that for z0 ∈ Z in general position, the map fz0

: X 99K G given
by fz0

(x) = f(x, z0) gives rise to a canonical form map Fz0
: X 99K X such

that dim F0(G · x) = c. In other words, cd(X, G) ≤ c, as claimed. ¤

Proposition 7.2. Let V be a generically free linear representation of G.

(a) If X is an irreducible generically free G-variety then cd(X, G) ≤
cd(V, G).

(b) If W is another generically free G-representation, then cd(V, G) =
cd(W, G).

Proof. (a) By [R, Corollary 2.20], there is a dominant rational map α : X ×
A

d
99K V of G-varieties, where d = dim(V ), and G acts trivially on A

d.
Now

cd(X, G)
by Lemma 7.1

= cd(X × A
d, G)

by Lemma 6.1

≤ cd(V, G) ,

as claimed.
(b) cd(W, G) ≤ cd(V, G) by part (a). To prove the opposite inequality,

interchange the roles of V and W . ¤

Definition 7.3. We define the canonical dimension cd(G) of an algebraic
group G to be cd(V, G), where V is a generically free linear representation of
G. By Proposition 7.2 this number is independent of the choice of V . More-
over, cd(G) = max{cd(X, G)}, as X ranges over all irreducible generically
free G-varieties.

Corollary 7.4. Suppose W is a linear representation of G such that StabG(w)
is finite for w ∈ W in general position. Then cd(G) ≤ cd(W, G).

Proof. Let V be a generically free linear representation of G. Then so is
X = V × W . The desired inequality is now a consequence of Lemma 6.1,
applied to the projection map α : V × W −→ W . ¤

Lemma 7.5. (a) cd(G) ≤ cd(H)+dim(G)−dim(H), for any closed subgroup
H ⊂ G.

(b) cd(G) = cd(G0).

(c) cd(G) = 0 if and only if G0 is special.

(d) cd(G1 × G2) ≤ cd(G1) + cd(G2).

Proof. (a) Follows from Lemma 4.1(b), with X = V = generically free linear
representation of G.

(b) Immediate from Lemma 4.2.

(c) By part (b), we may assume G = G0 is connected. The desired
conclusion now follows from Lemma 4.5.
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(d) Follows from Lemma 4.4, by taking Xi = Vi to be a generically free
representation of Gi for i = 1, 2. ¤

Example 7.6. Consider the subgroup

H = {











A

b1
...

bn−1

0 . . . 0 1











| A ∈ GLn−1 , b1, . . . , bn−1 ∈ k} ,

of G = PGLn. The Levi subgroup of H is special (it isomorphic to GLn−1);
hence, H itself is special. (This follows from the theorem of Grothendieck
stated in Section 2.5 or alternatively, from [San, Theorem 1.13].) Since
dim(H) = n2 − n, Lemma 7.5(a) yields cd(PGLn) ≤ n − 1. In particular,
cd(PGL2) = 1. (Note that cd(PGL2) ≥ 1 by Lemma 7.5(c)).

Alternatively, we can deduce the inequality cd(PGLn) ≤ n−1 by applying
Lemma 6.1 to the projection map Mn ×Mn −→ Mn to the first factor,
where PGLn acts on Mn by conjugation. The PGLn-action on Mn ×Mn

is generically free; hence, cd(PGLn) = cd(Mn ×Mn, PGLn). On the other
hand, cd(Mn, PGLn) = 0; see Example 3.5. Now Lemma 6.1 tells us that

cd(PGLn) = cd(Mn ×Mn, PGLn) ≤ cd(Mn, PGLn) + n − 1 − 0 = n − 1 .

For a third proof of this inequality, see Example 9.8.

8. Splitting fields

Throughout this section we will assume that G/k is a connected linear
algebraic group. Unless otherwise specified, the fields E, K, L, etc., are
assumed to be finitely generated extensions of the base field k.

Let X be a generically free irreducible G-variety, E = k(X)G = k(X/G),
π : X 99K X/G be the rational quotient map and F : X 99K X be a canonical
form map. Recall that F commutes with π, so that F (X) may be viewed
as an algebraic variety over E.

Lemma 8.1. Let X be a generically free G-variety such that G-orbits in X
are separated by regular invariants and let F : X 99K X be a canonical form
map. Denote the class represented by X in H1(E, G) by α. Then for any
field extension K/E the following conditions are equivalent:

(a) αK = 1,

(b) X is rational over K,

(c) F (X) is unirational over K,

(d) K-points are dense in F (X),

(e) F (X) has a K-point.

Proof. We begin by proving the lemma in the case where E = K.
(a) ⇒ (b): If α = 1 then X is birationally isomorphic to X/G × G (over

X/G). Now recall that the underlying variety of a connected algebraic group
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G is rational over k. Hence, X × G is rational over X/G, i.e., X is rational
over E.

(b) ⇒ (c): The rational map F : X 99K F (X) is, by definition, dominant.
If X is rational, this makes F (X) unirational.

(c) ⇒ (d) and (d) ⇒ (e) are obvious.
(e) ⇒ (a): An E-point in F (X) is a rational section s : X/G 99K F (X) ⊂

X for π. The existence of such a section implies that X is split, and hence,
so is α; see Section 2.3.

To prove the general case, note that since the G-orbits in X are sepa-
rated by regular invariants, we can choose a regular model of the rational
quotient variety X/G, so that the rational quotient map π : X −→ X/G
is regular and its fibers are exactly the G-orbits in X. After making X/G
smaller if necessary, we may also assume that our field extension K/E is
represented by a surjective morphism Y −→ X/G of algebraic varieties.
Then αK is represented by the G-variety XK = X ×X/G Y . It is easy to
see that the regular map XK −→ Y (projection to the second component)
separates the G-orbits in XK and that F naturally extends to a canon-
ical form map FK : XK 99K XK given by FK(x, y) = (F (x), y), so that
FK(XK) = F (X) ×X/G Y . Replacing X by XK and F by FK , we reduce
the lemma to the case we just proved (where K = E). ¤

Let α ∈ H1(E, G). As usual, we will call a field extension K/E a split-
ting field for α if the image αK of α under the natural map H1(E, G) −→
H1(K, G) is split. If α is represented by a generically free G-variety X, with
k(X)G = E then we will also sometimes say that K is a splitting field for
X.

Proposition 8.2. Suppose α ∈ H1(E, G).

(a) If cd(α) = 1 then there exist 0 6= a, b ∈ E such that a field extension
K/E splits α if and only if the quadratic form q(x, y, z) = x2 + ay2 + bz2 is
isotropic over K. In particular, α has a splitting field K/E of degree 2.

(b) If cd(α) = 2 then α has a splitting field K/E of degree 2, 3, 4, or 6.

Note that if K/E is a splitting field for α then [K : E] = 1 is impossible
in either part. Indeed, otherwise α itself is split, and cd(α) = 0 by see
Lemma 4.5(a).

Proof. Choose a canonical form map F : X 99K X, such that dim F (X) −
dim(X/G) = cd(α). By Lemma 8.1, F (X) is unirational over every splitting
field K of α; in particular, it is unirational over the algebraic closure E of
E.

(a) Here F (X) is a curve over E, and Lüroth’s theorem tells us that
F (X) is rational over E. It is well known that any such curve is birationally
isomorphic to a conic Z in P

2
E (see, e.g., [MT, Proposition 1.1.1]) and that

K-points are dense in Z if and only if Z(K) 6= ∅ (see, e.g., [MT, Theorem
1.2.1]). Writing the equation of Z ⊂ P

2
E in the form x2 + ay2 + bz2 = 0, we
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deduce the first assertion of part (a). The second assertion is an immediate
consequence of the first; for example, K = E(

√−a) is a splitting field for α.

(b) Here F (X) is a surface over E, which becomes unirational over the
algebraic closure E. By a theorem of Castelnuovo, F (X) is, in fact, rational
over E. Let Z be a complete smooth minimal surface, defined over E, which

is birationally isomorphic to F (X) via φ : F (X)
∼

99K Z and let U ⊂ Z be
an open subset such that φ is an isomorphism over U . Part (b) now follows
from Lemma 8.1 and Lemma 8.3 below. ¤

Lemma 8.3. Let E be a field of characteristic zero, Z be a complete minimal
surface defined over E and rational over E, and let U be a dense open subset
of Z (defined over E). Then U contains a K-point for some field extension
K/E of degree 1, 2, 3, 4 or 6.

Proof. By a theorem of Iskovskih, Z is isomorphic to P
2
E , a conic bundle or

a del Pezzo surface; see [I, Theorem 1] or [MT, Theorem 3.1.1]. If Z = P
2
E ,

then E-points are dense in Z, and the lemma is obvious.
If f : Z −→ C is a conic bundle over a rational curve C, then after re-

placing E by a quadratic extension E′, we may assume that CE′ ≃ P
1
E′ . For

every E′-point z ∈ C, f−1(z) is a rational curve over E′. Taking z ∈ CE′ so
that f−1(z) ∩ U 6= ∅, we can choose an extension K/E′ of degree 1 or 2 so
that f−1(z)K ≃ P

1
K . Now [K : E] = 1, 2 or 4, and K-points are dense in

f−1(z), so that one of them will lie in U .
From now on we may assume that Z is a del Pezzo surface. Recall that the

anticanonical divisor −ΩZ on a del Pezzo surface is ample, and the degree
d = ΩZ · ΩZ can range from 1 to 9.

If d = 1 the linear system | − 2ΩZ | defines a (ramified) double cover
f : Z −→ Q, where Q is a quadric cone in P

3
E ; see [I, p. 30]. Then QE′ ≃

P
2
E′ for some extension E′/E of degree 1 or 2. Now choose an E′-point

x ∈ f(U) ⊂ Q and split f−1(x) over a field extension K/E′ of degree 1 or
2. Then [K : E] = 1, 2 or 4 and U contains a K-point.

If d = 2 then the linear system | − ΩZ | defines a (ramified) double cover
Z −→ P

2
E (see [I, p. 30]), and points of degree 2 are clearly dense in Z.

If 3 ≤ d ≤ 9 then it is enough to show that Z(K) 6= ∅ for some field
extension K/E of degree 1, 2, 3, 4 or 6. Indeed, if Z(K) 6= ∅ then ZK is
unirational over K (see [MT, Theorem 3.5.1]) and thus K-points are dense
in Z. Note also that for 3 ≤ d ≤ 9, Z is isomorphic to a surface in P

d of
degree d. Intersecting this surface by two hyperplanes in general position,
we see that Z has a point of degree dividing d. This proves the lemma for
d = 3, 4, and 6.

For d = 5 and 7, Z always has an E-point (see [MT, Theorem 7.1.1]), so
the lemma holds trivially in these cases. For d = 8, Z has a point of order
dividing 4 and for d = 9, Z has a point of order dividing 3 (see [MT, p. 80]).
The proof of the lemma is now complete. ¤
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Example 8.4. Suppose α ∈ H1(K, PGLn) is represented by a central simple
algebra of index d. Then the degree of every splitting field for α is divisible by

d (cf. e.g, [Row, Theorem 7.2.3]); hence, cd(α) ≥
{

2, if d ≥ 3,

3, if d 6= 1, 2, 3, 4 or 6.
.

In particular, cd(PGLn) ≥
{

2, if n ≥ 3,

3, if n 6= 1, 2, 3, 4 or 6.
For sharper results on

cd(PGLn), see Section 11.

Example 8.5. Let V be a generically free linear representation of G = F4,
E6 of E7 (adjoint or simply connected), K = k(V )G and α ∈ H1(K, G) be
the class represented by the G-variety V . Then the degree of any splitting
field L/K for α ∈ H1(k(V )G, G) is divisible by 6; [RY2, p. 223]. We conclude
that cd(G) ≥ 2 for these groups.

Example 8.6. cd(G) ≥ 3, if G = E8 or adjoint E7; see [RY2, Corollaries
5.5 and 5.8].

Remark 8.7. Let G be a connected linear algebraic group defined over k
and let H be a finite abelian p-subgroup of G, where p is a prime integer.
Recall that the depth of H is the smallest value of i such that [H : H∩T ] = pi,
as T ranges over all maximal tori of G; see [RY2, Definition 4.5]. Note that
H has of depth 0 if and only if it lies in a torus of G. A prime p is called a
torsion prime for G if and only if G has a finite abelian p-subgroup of depth
≥ 1. (This is one of many equivalent definitions of torsion primes; see [St,
Theorem 2.28].) The inequalities of Examples 8.4 - 8.6 may be viewed as
special cases of the following assertion:

Suppose a connected linear algebraic group G has a p-subgroup H of depth
d.

(a) If cd(G) ≤ 1 then pd = 1 or 2.

(b) If cd(G) ≤ 2 then pd = 1, 2, 3 or 4.

The proof is immediate from Proposition 8.2 and [RY2, Theorem 4.7] (where
we take X to be a generically free linear representation of G).

9. Generic splitting fields

Definition 9.1. Let K/E be a (finitely generated) field extension. Follow-
ing Saltman [Sal, Chapter 11], we shall say that a (finitely generated) field
extension L/E

(a) is a dense specialization of K/E, if for every 0 6= a ∈ K there is a
place φ : K −→ L ∪ {∞} (defined over k) such that φ(a) 6= 0,∞.

(b) is a rational specialization of K/E if there is an embedding K →֒
L(t1, . . . , tr), over E, for some r ≥ 0.

In geometric language, (a) and (b) can be restated as follows. Suppose
the field extensions K/E and L/E are induced by dominant rational maps
V 99K Z and W 99K Z of irreducible algebraic k-varieties, respectively. Then
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(a′) W is a dense specialization of V if for every closed subvariety V0 of
V there is a rational map W 99K V , over Z, whose image is not contained
in V0.

(b′) W is a rational specialization of V if for some r ≥ 0 there is a
dominant map W × A

r
99K V , over Z.

Remark 9.2. In the definition of rational specialization we may assume
without loss of generality that r = max {0, trdegE(L)−trdegE(K)}; see [Roq2,
Lemma 1].

Definition 9.3. Let α ∈ H1(E, G). A splitting field K/E for α is called
generic (respectively, very generic) if every splitting field L/E for α is a
dense (respectively rational) specialization of K/E.

Remark 9.4. It is easy to see that a rational specialization is dense, (cf. [Sal,
Lemma 11.1]) and hence, a very generic splitting field is generic.

Remark 9.5. The generic splitting field of α in Definition 9.3 is closely
related to the generic splitting field for the twisted group αG, as defined by
Kersten and Rehmann [KR]. The main difference between the two defini-
tions is that in [KR] a generic splitting field K/E is only required to have
a single specialization to any other splitting field K/E. However, as far as
we can determine, the particular generic splitting fields constructed in [KR]
have the dense specialization property, i.e., are also generic in the stronger
sense of our Definition 9.3.

Lemma 9.6. Let G be a connected algebraic group, X be an irreducible
generically free G-variety, E = k(X)G = k(X/G) and F : X 99K X be a
canonical form map. Then k(F (X))/E is a very generic splitting field for
the class α ∈ H1(E, G) represented by X.

Proof. After replacing X by a G-invariant open subset, we may assume that
G-orbits in X are separated by regular invariants. The generic point of
F (X) is a k(F (X))-point; hence, by Lemma 8.1, F (X)/E is a splitting field
for α.

It remains to show that every splitting field L/E for α is a rational spe-
cialization of k(F (X))/E. After replacing X by a smaller G-invariant dense
open subset, we may assume that L/E is induced by a surjective morphism
Y −→ X/G of algebraic varieties. Then αL = 1L is represented by the
generically free G-variety XL = X ×X/G Y . Since XL is split, it is rational
over L; see Lemma 8.1. The morphisms

XL
pr1−→ X

F−→ F (X)
π−→ X/G

now tell us that k(F (X)) →֒ k(XL) = L(t1, . . . , tr), over E, where t1, . . . , tr
are independent variables and r = dim(G). (Here pr1 is the projection
XL = X ×X/G Y −→ X to the first factor.) This shows that L/E is a
rational specialization of k(F (X))/E, as claimed. ¤
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Proposition 9.7. Let E/k be a finitely generated field extension. Then for
every α ∈ H1(E, G),

cd(α) = min {trdegE(K) | K/E is a generic splitting field for α }
= min {trdegE(L) | L/E is a very generic splitting field for α }.

Proof. Let X be a generically free G-variety representing α; in particular,
E = k(X)G = k(X/G). Since cd(X, G) is, by definition, the minimal value
of dim F (X)− dim(X/G) = trdegE k(F (X)) as F ranges over all canonical
form maps X 99K X, Lemma 9.6 tells us that

cd(α) = cd(X, G) ≥ min{trdegE(L) | L/E is a very splitting field for α }.
Now let K/E be a generic splitting field for α. It remains to show that

(9.1) cd(X, G) ≤ trdegE(K)

Choose a variety Y whose function field k(Y ) is K; the inclusion E ⊂ K
then gives rise to a rational map Y 99K X/G. By Lemma 9.6 (with F = id),
k(X)/E is a very generic (and hence, a generic; cf. Remark 9.4) splitting
field of α. Since k(X)/E and K/E are both generic splitting fields, each is a
dense specialization of the other. Geometrically, this means that there exist
rational maps f1 : X 99K Y and f2 : Y 99K X such that the diagram

X
f1

//____

!!D
D

D
D Y

f2
//____

²²
Â

Â

Â X

}}z
z

z
z

X/G

commutes. Moreover, having chosen f1, the dense specialization property
allows us to choose f2, so that the indeterminacy locus of f2 does not contain
the image of f1. In other words, F = f2 ◦ f1 is a well defined rational map
X 99K X which commutes with the rational quotient map π : X 99K X/G.
By Remark 3.1, F is a canonical form map. Thus

cd(X, G) ≤ dim F (X) − dim X/G ≤ dim f2(Y ) − dim X/G ≤
dim(Y ) − dim(X/G) = trdegk(K) − trdegk(E) = trdegE(K)

Thus completes the proof of (9.1) and thus of Proposition 9.7. ¤

Example 9.8. Let α ∈ H1(E, PGLn) be represented by a central simple
E-algebra A and let K be the function field of the Brauer-Severi variety of
A. Then K/E is a very generic splitting field for α (see, e.g., [Sal, Corollary
13.9]) and trdegE(K) = n − 1. By Proposition 9.7, cd(α) ≤ n − 1. This
gives yet another proof of the inequality cd(PGLn) ≤ n− 1 of Example 7.6.

10. The canonical dimension of a functor

The results of the previous section naturally lead to the following defini-
tions. Let F be a functor from the category Fieldsk of finitely generated
extensions of the base field k to the category Sets∗ of pointed sets. We
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will denote the marked element in F(E) by 1E (and sometimes simply by
1, if the reference to the field E is clear from the context). Given a field
extension L/E, we will denote the image of α ∈ F(E) in F(L) by αL.

The notions of splitting field and generic splitting field naturally extend
to this setting. That is, given α ∈ F , we will say that L/E is a splitting field
for α if αL = 1L. We will call a splitting field K/E for α generic (respec-
tively, very generic) if every splitting field L/E for α is a dense (respectively,
rational) specialization of K/E. Moreover, we can now define cd(α) by

cd(α) = min {trdegE(K) | K/E is a generic splitting field for α }
and cd(F) by

cd(F) = max {cd(α) |E/k is a finitely generated extension, α ∈ F(E) }.
Proposition 9.7 says that if G is a connected algebraic group and F =
H1(−, G) then the above definition of cd(α) agrees with Definition 3.3.
Moreover, Definition 7.3 tells us that for this F , cd(F) = cd(G).

Note that none of the above definitions require k to be algebraically closed.
In particular, it now makes sense to talk about the canonical dimension of
an algebraic group defined over a non-algebraically closed field. This opens
up interesting directions for future research, but we shall not pursue them in
this paper. Instead we will continue to assume that k is algebraically closed,
and our main focus will remain on the functors H1(−, G). However, even
in this (more limited but already very rich) context, we will take advantage
of the notion of canonical dimension for a functor by considering certain
subfunctors of H1(−, G).

We also remark that it is a priori possible that for some functors F , some
fields E/k and some α ∈ F(E) there will not exist a generic splitting field;
if this happens, then, according to our definition, cd(α) = cd(F) = ∞.
However, Proposition 9.7 tells us that this does not occur for any functor of
the form H1(−, G), where G is a linear algebraic group, and consequently,
for any of its subfunctors.

Example 10.1. Isomorphic functors clearly have the same canonical di-
mension. In particular, suppose G is a linear algebraic group and U is
a normal unipotent subgroup of G. Then the natural map H1(−, G) −→
H1(−, G/U) is and isomorphism (see, e.g., [San, Lemma 1.13]) and hence,
cd(G) = cd(G/U). Taking U to be the unipotent radical of G, we see that
that cd(G) = cd(Gred), where Gred is the Levi subgroup of G.

The following simple lemma slightly extends the observation that isomor-
phic functors have the same canonical dimension. This lemma will turn out
to be surprisingly useful in the sequel.

Lemma 10.2. Suppose τ : F1 −→ F2 is a morphism of functors with trivial
kernel. Then for every finitely generated field extension E/k,

(a) cd(α) = cd(τ(α)) for any α ∈ F1(E).

(b) cd(F1) ≤ cd(F2).
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(c) Moreover, if τ is surjective then cd(F1) = cd(F2).

Proof. Since τ has trivial kernel, α and τ(α) have the same splitting fields
and hence, the same generic splitting fields. This proves part (a). Parts (b)
and (c) follow from part (a) and the definition of cd(F). ¤

Example 10.3. Recall that the cohomology set H1(−, PSO2n) classifies
pairs (A, σ), where A is a central simple algebras of degree 2n with an orthog-
onal involution σ of determinant 1; see [KMRT, p. 405]. (Note that [KMRT]
uses the symbol PGO+ instead of PSO. Since we are working over an alge-
braically closed field k of characteristic zero, for us PGO+ = PSO.) Consider
the morphism of functors f : H1(−, SO2n) −→ H1(−, PSO2n) sending a qua-
dratic form q of dimension 2n to the the pair (M2n(K), σq), where σq is the
involution of M2n(K) associated to q. Since we are assuming that K con-
tains an algebraically closed field k of characteristic zero, the 2n-dimensional
unit form 〈1, . . . , 1〉 is hyperbolic over K. Hence, f has trivial kernel, and
Lemma 10.2(b) tells us that cd(PSO2n) ≥ cd(SO2n).

Example 10.4. The exact sequence

1 −→ µ2 −→ Spinn
π−→ SOn −→ 1

of algebraic groups gives rise to the exact sequence

SOn(−)
δ

// H1(−, µ2) // H1(−, Spinn)
π∗

// H1(−, SOn)

of cohomology sets, where δ is the spinor norm; see, e.g., [Gar, p. 688].
Since −1 is a square in k, the unit form is hyperbolic, hence δ is surjective
and thus π has trivial kernel. On the other hand, the image of π∗ consists
of quadratic forms q of discriminant 1 such that

q′ =

{

q, if n is even,

q ⊕ 〈1〉, if n is odd

has trivial Hasse-Witt invariant. Thus cd(Spinn) = cd(HWn), where HWn

is the set of n-dimensional quadratic forms q such that q′ has trivial dis-
criminant and trivial Hasse-Witt invariant.

Example 10.5. Define the functors Pfr and GPfr by Pfr(E) = r-fold Pfister
forms defined over E and GPfr(E) = scaled r-fold Pfister forms defined over
E. Since Pfr is a subfunctor of GPfr, we have cd(Pfr) ≤ cd(GPfr). On
the other hand, since q and 〈c〉 ⊗ q have the same splitting fields for every
q ∈ Pfr(E) and every c ∈ E∗, we actually have equality cd(Pfr) = cd(GPfr).

Now suppose q ∈ Pfr(E). Let q′ be a subform of q of dimension 2r−1 + 1.
The argument in [KS, p. 29] shows that K = E(q′) is a generic splitting
field for α. Recall that E(q′) is defined as the function field of the quadric

hypersurface q′ = 0 in P
2r−1

E ; in particular, trdegE E(q) = 2r−1 − 1. Propo-
sition 9.7 now tells us that cd(q) ≤ 2r−1 − 1. On the other hand, if q is
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anisotropic, a theorem of Karpenko and Merkurjev [KM, Theorem 4.3] tells
us that, in fact cd(q) = 2r−1 − 1. We conclude that

(10.1) cd(GPfr) = cd(Pfr) = 2r−1 − 1 .

We remark that the setting considered in [KM] is a bit different from
ours. First of all, in [KM] a field K/E is called splitting for a quadratic
form q/E if qK is isotropic, where as we use this term to indicate that
qK is hyperbolic. However, if q is a Pfister form then the two definitions
coincide. Also a generic splitting field in [KM] is only required to have a
single specialization to any other splitting field, where as our Definition 9.3
requires such specializations to be dense. Consequently, for a Pfister form,
any generic splitting field in our sense is also generic in the sense of [KM],
and the lower bound on the transcendence degree given by [KM, Theorem
4.3] remains valid in our setting.

Example 10.6. Consider the exceptional group G2. The functors H1(−, G2)
and Pf3 are isomorphic; see, e.g., [KMRT, Corollary 33.20]. Hence, cd(G2) =
cd(Pf3) = 3; see (10.1).

11. Groups of type A

In this section we will study canonical dimensions of the groups GLn /µd

and SLn /µe, where e divides n. We define the functor

(11.1) Cn,e : Fieldsk −→ Sets∗

by Cn,e(E/k) = {isomorphism classes of central simple E-algebras of degree
n and exponent dividing e}. The marked element in Cn,e(E/k) is the split
algebra Mn(E). Clearly, Cn,e is a subfunctor of H1(−, PGLn).

Lemma 11.1. Let n and d be positive integers and e be their greatest com-
mon divisor. Then cd(GLn /µd) = cd(GLn /µe) = cd(SLn /µe) = cd(Cn,d) =
cd(Cn,e).

Proof. By Lemma 2.1, there are surjective morphisms of functors

H1(−, GLn /µd) −→ Cn,d ,
H1(−, GLn /µe) −→ Cn,e and
H1(−, SLn /µe) −→ Cn,e

with trivial kernels. Basic properties of the index and the exponent of
a central simple algebra tell us that Cn,d = Cn,e; the rest follows from
Lemma 10.2(c). ¤

Lemma 11.2. Let n and e be positive integers such that e divides n,

(a) If e′ | e and n′ |n then cd(SLn /µe) ≥ cd(SLn′ /µe′).

(b) Suppose n = n1n2 and e = e1e2, where ei |ni and n1, n2 are relatively
prime. Then

cd(SLn /µe) = cd(SLn1
/µe1

× SLn2
/µe2

) ≤ cd(SLn1
/µe1

) + cd(SLn2
/µe2

)



24 G. BERHUY AND Z. REICHSTEIN

(c) Let n =
∏

pap be the prime factorization of n (here the product is
taken over all primes p and ap = 0 for all but finitely many primes) and
m =

∏

p|e pap. Then cd(SLn /µe) = cd(SLm /µe),

Proof. (a) The morphism of functors Cn′,e′ −→ Cn,e given by A 7→ M n

n′
(A)

has trivial kernel. By Lemma 10.2(b), cd(Cn,e) ≥ cd(Cn′,e′). The desired
inequality now follows from Lemma 11.1.

(b) First note that the functors

H1(−, SLn1
/µe1

× SLn2
/µe2

) and H1(−, SLn1
/µe1

) × H1(−, SLn2
/µe2

)

are isomorphic. Thus by Lemma 2.1, there is a surjective morphism of
functors

H1(−, SLn1
/µe1

× SLn2
/µe2

) −→ Cn1,e1
× Cn2,e2

with trivial kernel. By Lemma 10.2(c),

cd(SLn1
/µe1

× SLn2
/µe2

) = cd(Cn1,e1
× Cn2,e2

)

and by Lemma 11.1, cd(SLn /µe) = cd(Cn,e). The equality in part (a)
now follows from the fact that for relatively prime n1 and n2 the functors
Cn1, e1

× Cn2, e2
and Cn,e are isomorphic via (A1, A2) 7→ A1 ⊗ A2. The

inequality in part (a) is a special case of Lemma 7.5(d). Part (b) is obtained
from part (a) by setting e1 = n1 and e2 = n2.

(c) By Lemma 11.1, cd(SLn /µe) = cd(Cn,e) and cd(SLm /µe) = cd(Cm,e).
On the other hand, basic properties of the index and the exponent of a
central simple algebra tell us that the functors Cm,e and Cn,e are isomorphic
via A −→ Mn/m(A). ¤

Theorem 11.3. (Merkurjev) Let α ∈ H1(E, PGLn) be the class of a divi-
sion algebra A of degree n = pi, where p is a prime. Then cd(α) = n − 1.

Proof. Let X be the Brauer-Severi variety of A. A theorem of Merkur-
jev [M2, Section 7.2] says, in particular, that every rational map X 99K X
defined over E is necessarily dominant. Theorem 11.3 is an easy consequence
of this result; we outline the argument below.

The function field K = E(X) is a generic splitting field for A; in particu-
lar, as we pointed out in Example 9.8, cd(α) ≤ n− 1. To prove the opposite
inequality, assume the contrary: A has a generic splitting field L/E of tran-
scendence degree < n−1. Let Y be a variety (defined over E) with function
field L. Since k(X)/E and K/E are both generic splitting fields for α, each
is a dense specialization of the other. Arguing as in the proof of proof of
Proposition 9.7, we see that there exist rational maps f1 : X 99K Y and
f2 : Y 99K X such that the diagram

X
f1

//____

!!D
D

D
D Y

f2
//____

²²
Â

Â

Â X

}}z
z

z
z

X/G
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commutes and f2 ◦ f1 is a well defined rational map X 99K X. Now

dim f2 ◦ f1(X) ≤ dim(Y ) < n − 1 = dim(X) ,

contradicting Merkurjev’s theorem. ¤

Corollary 11.4. Suppose n = pin0 and e = pj, where gcd(p, n0) = 1 and

i ≥ j. Then cd(SLn /µe) =

{

0, if j = 0,

pi − 1, if j ≥ 1.

Proof. If j = 0 then SLn /µe = SLn is special and hence, has canonical
dimension 0. Thus we only need to consider the case where j ≥ 1. By
Lemma 11.2(c), cd(SLn /µe) = cd(SLpi /µpj ). Thus we may also assume

that n0 = 1, i.e., n = pi.
By Lemma 11.1, cd(SLn /µe) = cd(Cn,e). Since Cn,e is, by definition, a

subfunctor of H1(−, PGLn), Example 7.6 tells us that cd(SLn /µe) ≤ n −
1 = pi − 1. To prove the opposite inequality, let A be a division algebra
of degree pi and exponent pj (such algebras are known to exist; see, e.g.,
[Row, Appendix 7C]) and let α be the class of A in H1(E, PGLn). Then by
Theorem 11.3, cd(SLn /µe) ≥ cd(α) = n − 1, as desired. ¤

Corollary 11.5. Let n = 2in0, where i ≥ 1 and n0 is odd. Then cd(PSpn) =
2i − 1.

Proof. Recall that every α ∈ H1(−, PSpn) is represented by a pair (A, σ),
where A is a central simple algebra of degree 2n and exponent ≤ 2, and σ
is a symplectic involution on A. A central simple algebra has a symplec-
tic involution if and only if its exponent is 1 or 2; moreover, a symplectic
involution of a split algebra is necessarily hyperbolic. In other words, the
morphism of functors

H1(−, PSpn) −→ Cn,2 ,

given by α 7→ A is surjective and has trivial kernel. Here Cn,2 is the functor
of central simple algebras of degree n and exponent dividing 2, as in (11.1).
Thus

cd(PSpn) = cd(Cn,2)
by Lemma 11.1

= cd(SLn /µ2)
by Corollary 11.4

= 2i − 1 ,

as claimed. ¤

12. Orthogonal and Spin groups

Lemma 12.1. (a) cd(SOn−1) ≤ cd(SOn) for every n ≥ 2. Moreover, equal-
ity holds if n is even.

(b) cd(Spinn−1) ≤ cd(Spinn) for every n ≥ 2. Moreover, equality holds if
n is even.

(c) cd(SOn) ≥ cd(Spinn) for every n ≥ 2. Moreover, if n ≥ 2r, where
r ≥ 3 is an integer then cd(Spinn) ≥ 2r−1 − 1.
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Proof. (a) The morphism τ : H1(−, SOn−1) → H1(−, SOn), sending a qua-
dratic form q to 〈1〉 ⊕ q has trivial kernel. Lemma 10.2(b) now tells us that
cd(SOn−1) ≤ cd(SOn).

To prove the opposite inequality for n is even, let q = 〈a1, . . . , an〉 ∈ SOn.
Then q = 〈a1〉 ⊗ q̃, where q̃ = 〈1, a1a2, . . . , a1an〉 lies in the image of τ .
(Note that here we use the assumption that n is even to conclude that q̃ has
discriminant 1.) Since q and q̃ have the same splitting fields, cd(q) = cd(q̃).
On the other hand, since q̃ lies in the image of τ , Lemma 10.2(a) tells
us that cd(q̃) ≤ cd(SOn−1). Thus cd(q) ≤ cd(SOn−1) and consequently,
cd(SOn) ≤ cd(SOn−1), as desired.

(b) is proved by the same argument as (a), using the identity cd(Spinn) =
cd(HWn) of Example 10.4. The first assertion follows from the fact that τ
restricts to a morphism HWn−1 −→ HWn. In the proof of the second
assertion, the key point is that if a quadratic form q = 〈a1〉 ⊗ q̃, of even
dimension n, has trivial discriminant and trivial Hasse-Witt invariant then
so does q̃; the rest of the argument goes through unchanged.

(c) The first inequality follows from the fact that HWn is a subfunctor
of H1(−, SOn). To prove the second inequality, note that by part (b) we
may assume n = 2r. Since the discriminant and the Hasse-Witt invariant
of an r-fold Pfister form are both trivial for any r ≥ 3, we see that Pfr is a
subfunctor of HWn and thus

cd(Spinn) = cd(HWn) ≥ cd(Pfr) = 2r−1 − 1 ;

see Example 10.5. ¤

Example 12.2. (a) cd(SOn) =











0, if n = 1 or 2,

1, if n = 3 or 4,

3, if n = 5 or 6.

(b) cd(Spinn) = 0 for n = 3, 4, 5 or 6.

(c) cd(Spinn) = 3 for n = 7, 8, 9 or 10.

Proof. (a) Note that SO1 = {1}, SO3 ≃ PGL2, and SO6 ≃ SL4 /µ2. Hence,
cd(SO1) = 0, and (by Corollary 11.4) cd(SO3) = 1 and cd(SO6) = 3. The
remaining cases follow from Lemma 12.1(a).

(b) In view of Lemma 12.1(b), it is enough to show that cd(Spin6) = 0. By
the Arason-Pfister theorem [Lam, Theorem 10.3.1], the only 6-dimensional
form with trivial discriminant and trivial Hasse-Witt invariant is the split
form. In other words, HW6 is the trivial functor and thus

cd(Spin6) = cd(HW6) = 0 .

Alternative proof of (b): Exceptional isomorphisms of simply connected
simple groups tell us that Spin3 ≃ SL2, Spin5 ≃ Sp4 and Spin6 ≃ SL4 are
all special and hence, have canonical dimension 0; cf. Lemma 7.5(c).

(c) Using the Arason-Pfister theorem once again, we see that every 8-
dimensional quadratic form with trivial discriminant and trivial Hasse-Witt
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invariant, is a scaled Pfister form; see [Lam, Corollary 10.3.3]. Thus

cd(Spin7) = cd(Spin8) = cd(GPf3) = 3 ;

see Example 10.5. On the other hand, by a theorem of Pfister every q ∈
HW10 is isotropic, i.e., has the form 〈1,−1〉 ⊕ q′, where q′ ∈ HW8; see [Pf,
Proof of Satz 14] (cf. also [KM, Theorem 4.4]).

Applying Lemma 10.2(a) to the morphism HW8 −→ HW10 given by
q′ −→ 〈1,−1〉 ⊕ q′, we see that

cd(q) = cd(q′) ≤ cd(HW8) = cd(Spin8) .

This shows that cd(Spin9) = cd(Spin10) ≤ cd(Spin8) = 3. The opposite
inequality is given by Lemma 12.1(b). ¤

Proposition 12.3. cd(SO2m) ≤ m(m−1)
2 for every m ≥ 1.

Proof. Write SO2m = SO(q), where q is a non-degenerate quadratic form
on k2m. Let X = Griso(m, 2m) be the Grassmannian of maximal (i.e., m-
dimensional) q-isotropic subspaces of k2m, i.e., of m-dimensional subspaces
contained in the quadric Q ⊂ k2m given by q = 0. It is well known that X is
a projective variety with two irreducible components X1 and X2, each of di-

mension m(m−1)
2 ; see e.g., [GH, Section 6.1]. Using the Witt Extension The-

orem (see, e.g., [Lam, p. 26]), it is easy to see that the full orthogonal group
O(q) acts transitively on X and SO(q) acts transitively on each component
Xi (i = 1, 2). Fix an isotropic subspace L ∈ X1 and let P = StabSO(q)(L).
By Lemma 7.5(a), with G = SO(q) and H = P , we have

cd(SO2m) ≤ cd(P ) + dim(SO2m) − dim(P ) =

cd(P ) + dim(X1) = cd(P ) +
m(m − 1)

2
.

It remains to show that cd(P ) = 0. We claim that the Levi subgroup of
P is naturally isomorphic to GL(L) ≃ GLm via f : P −→ GL(L), where
f(g) = g|L. Once this claim is established, Example 10.1 tells us that
cd(P ) = cd(GLm) = 0. (The last equality follows from the fact that GLm

is special.)
To prove the claim, note that by the Witt Extension Theorem, f is a

surjective homomorphism. It remains to show that Ker(f) is unipotent.
Indeed, choose a basis e1, . . . , e2m of k2m so that

q(x1e1 + · · · + x2me2m) = x1xm+1 + · · · + xmx2m

and L is the span of e1, . . . , em. Then every g ∈ Ker(f) has the form

(12.1) g =

(

Im A
Om B

)

,

for some m × m-matrices A and B. (Here Om and Im are, respectively, the
zero and the identity m×m-matrices.) Our goal is to show that B = Im (and
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consequently, Ker(f) is unipotent). The condition that g ∈ O(q) translates
into

(12.2) g

(

Om Im

Im Om

)

gTranspose =

(

Om Im

Im Om

)

.

Substituting (12.1) into (12.2), we see that B = Im. Formula (12.1) now
shows that g is unipotent; consequently, Ker(f) is a unipotent group, as
claimed. ¤

Conjecture 12.4. cd(SO2m−1) = cd(SO2m) = m(m−1)
2 for every m ≥ 1.

13. Groups of low canonical dimension

Theorem 13.1. Assume that G is simple. Then cd(G) = 1 if and only if
G ≃ SL2m /µ2 or PSp2m, where m is an odd integer.

Proof. First of all, observe that if G ≃ SL2m /µ2 or PSp2m, with m odd,
then indeed, cd(G) = 1; see Corollary 11.4 and Corollary 11.5. Thus we
only need to show that no other simple group has this property. Our proof
relies on the classification of simple algebraic groups; cf., e.g., [KMRT, §24
and 25] 1. We begin by observing that cd(G) ≥ 2 for every simple group of
exceptional type; see Examples 8.5, 8.6 and 10.6.

Now suppose cd(G) = 1 and G is of type A. Then G ≃ SLn /µe, where
e divides n. Let p be a prime dividing e. Then we can write e = pje0 and
n = pin0, where i ≥ j ≥ 1, and gcd(p, e0) = gcd(p, n0) = 1. Then

1 = cd(G)
by Lemma 11.2(a)

≥ SLpi /µpj

by Corollary 11.4

≥ pi − 1 ,

which is only possible if p = 2 and i = 1. This implies that e cannot be
divisible by 4 or by any prime p ≥ 3; in other words, e = 1 or 2. If e = 1
then G = SLn is special and thus cd(G) = 0. If e = 2 then i = 1 implies
that n ≡ 2 (mod 4), as claimed.

Next suppose G is of type C. Then G is isomorphic to Sp2m or PSp2m.
The groups Sp2m are special and thus have canonical dimension 0. By
Corollary 11.5, cd(PSp2m) = 1 if and only if m is odd. This completes the
proof of Theorem 13.1 for groups of type A or C.

Now suppose G is of type B or D. We have already considered some of
these groups. In particular,

• cd(SOn) ≥ cd(SO5) = 3 for any n ≥ 5 (see Lemma 12.1(a) and
Example 12.2(a)),

• cd(PSO2n) ≥ cd(SO2n) ≥ 3 for any n ≥ 3 (see Example 10.3),

• cd(Spinn) = 0 for n = 3, 4, 5, 6 (see Example 12.2(b)), and

• cd(Spinn) ≥ cd(Spin7) = 3 for any n ≥ 7 (see Lemma 12.1 and
Example 12.2(c)).

1[KMRT] uses the symbols O+ and PGSp instead of SO and PSp. Recall, however,
that we are working over an algebraically closed base field k of characteristic zero; in
particular, for us O+ = SO and PGSp = PSp.
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We also remark that SO2 ≃ Gm and SO4 ≃ (SL2 ×SL2)/µ2 are not
simple, and SO3 ≃ PGL2 = SL2 /µ2 was considered above.

This covers every simple group of type B; the only simple groups of type
D we have not yet considered are G = Spin±

4n (n ≥ 2); cf., e.g., [KMRT,
Theorems 25.10 and 25.12]. The natural projection π : Spin4n −→ SO4n

factors through Spin±
4n:

π : Spin4n
f−→ Spin±

4n −→ SO4n .

Since π∗ : H1(−, Spin4n) −→ H1(−, SO4n) has trivial kernel (see Exam-
ple 10.4), so does f∗ : H1(−, Spin4n) −→ H1(−, Spin±

4n). Now for any n ≥ 2,

cd(Spin±
4n)

by Lemma 10.2(b)

≥ cd(Spin4n)
by Lemma 12.1(b)

≥ cd(Spin8)
by Example 12.2(c)

= 3 .

This completes the proof of Theorem 13.1. ¤

Remark 13.2. The above argument also shows that if a simple classical
group G has canonical dimension 2 then either (i) G ≃ SL3m /µ3, where m
is prime to 3 or possibly (ii) G ≃ SL6m /µ6, where m is prime to 6. In case
(i), we know that cd(G) = cd(PGL3) = 2; see Corollary 11.4. In case (ii),
cd(G) = cd(PGL6) (see Corollary 11.2(c)); we do not know whether this
number is 2 or 3.

14. Essential dimensions of homogeneous forms I

We now briefly recall the definition of essential dimension of a functor,
due to Merkurjev [M1].

Let F be a functor from the category of all field extensions K of k to
the category of sets. (For our purposes, it is sufficient to consider only
finitely generated extensions K/k.) Given α ∈ F(K), we define ed(α) as
the minimal value of trdegk(K0), where k ⊂ K0 ⊂ K and α lies in the image
of the natural map F(K0) −→ F(K). The essential dimension ed(F) of
the functor F is then defined as the maximal value of ed(α), as α ranges
over F(K) and K ranges over all field extensions of k. In the special case,
where G is an algebraic group and F = H1(−, G) we recover the numbers
defined in Section 2.1: ed(α) = ed(X, G), where α ∈ H1(K, G) and X is a
generically free G-variety representing α. Moreover, ed(H1(−, G)) = ed(G).
For details, see [BF2].

Now to each G-variety X we will associate the functor OrbX,G given by
OrbX,G(L) = X(L)/ ∼, where a ∼ b for a, b ∈ X(L), if a = g · b for some
g ∈ G(L). Given an L-point a ∈ X(L), we shall denote a (mod ∼) by
[a] ∈ OrbX,G(L). Using this terminology, Definition 3.3 can be rewritten as
follows.

Proposition 14.1. ed [η] = cd(X, G) + dimX/G, where η ∈ X(k(X)) is
the generic point of X.

Proof. Let Y be a variety with function field k(Y ) = L. Then z ∈ X(L) may
be viewed as a rational map φz : Y 99K X and g ∈ G(L) as a rational map
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fg : Y 99K G. The point g ·y of X(L) corresponds to the map Fz,g : Y 99K X
given by Fz,g(y) = φz(y) · f(y). Consequently, the definition of ed([z]) can
be rewritten as

(14.1) ed [z] = min
g∈G(L)

{ trdegk k(Fz,g(Y )) } .

Now set z = η, L = k(X), Y = X, and φ = idX . The element g ∈ G(L) is
then a rational map f = fg : X 99K G, F = Fz,g : X 99K X is, by definition,
a canonical form map (see the beginning of Section 3) and the proposition
follows from (14.1) and Definition 3.3. ¤

For the rest of this paper we will focus on the following example. Let

N =

(

n + d − 1
d

)

and let X = A
N be the space of degree d forms in n

variables x = (x1, . . . , xn). That is, elements of A
N are forms p(x1, . . . , xn)

of degree d and elements of P
N−1 are hypersurfaces p(x1, . . . , xn) = 0. The

generic point of A
N is the “general” degree d form in n variables as

φn,d(x) =
∑

i1+···+id=n

ai1,...,inxi1
1 . . . xin

n ∈ K[x1, . . . , xn] ,

where ai1,...,in are independent variables, K = k(AN ) is the field these vari-
ables generate over k. The generic point of P

N−1 is the “general” degree d
hypersurface φn,d(x) = 0 in P

N−1(K), which we denote by Hn,d. Then

(14.2) ed(φn,d) = min
g∈GLn(K)

trdegk(bi1,...,id |i1 + · · · + in = d) ,

where
φn,d(g · x) =

∑

i1+···+in=d

bi1,...,inxi1
1 . . . xin

n .

Similarly

(14.3) ed(Hn,d) = min
g∈GLn(K)

trdegk(
bi1,...,in

bj1,...,jn

) ,

where the minimum is taken over all i1, . . . , in, j1, . . . , jn ≥ 0 such that
i1 + · · · + in = j1 + · · · + jn = d and bj1,...,jn 6= 0; cf. [BF2, Section 1]. It is
natural to think of ed(φn,d) (respectively, ed(Hn,d)) as the minimal number
of independent parameters required to define the general form of degree d
in n variables (respectively, the general degree d hypersurface in P

n−1).
It is clear from (14.2) and (14.3) that

(14.4) ed(Hn,d) ≤ ed(φn,d) ≤ ed(Hn,d) + 1 .

Lemma 14.2. Let N =

(

n + d − 1
d

)

and

D = dim(AN/ GLn) = dim(PN−1/ PGLn) .

Then

(a) ed(φn,d) = D + cd(AN , GLn),
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(b) ed(Hn,d) = D + cd(PN−1, GLn) = D + cd(PN−1, PGLn).

Proof. Part (a) and the first equality in part (b) are immediate conse-
quences of Proposition 14.1. The second equality in part (b) follows from
Lemma 4.3(b). ¤

Theorem 14.3. Let n and d be positive integers such that d ≥ 3 and (n, d) 6=
(2, 3), (2, 4) or (3, 3). Then

ed(Hn,d) = N − n2 + cd(GLn /µd) = N − n2 + cd(SLn /µgcd(n,d)) ,

where N =

(

n + d − 1
d

)

.

Proof. First observe that by Lemma 11.1, cd(GLn /µd) = cd(SLn /µgcd(n,d)),
so only the first equality needs to be proved.

Secondly, under our assumption on n and d, the PGLn-action on P
N−1 is

generically free. For n = 2 this is classically known (cf., e.g., [PV, p. 231]),
for n = 3, this is proved in [B] and for n ≥ 4 in [MM]. Substituting

D = dim(PN−1/ PGLn) = dim(PN−1) − dim(PGLn) = N − n2

into Lemma 14.2(b), we reduce the theorem to the identity

(14.5) cd(PN−1, PGLn) = cd(GLn /µd) .

To prove (14.5), consider the morphism of functors f : H1(−, GLn /µd) −→
H1(−, PGLn) induced by the natural projection GLn /µd −→ PGLn. Let
E = k(PN−1)PGLn . Then the element of α ∈ H1(E, PGLn) represented by
the PGLn-variety P

N−1 is the image of β ∈ H1(E, GLn /µd) represented by
the GLn /µd-variety A

N . Note that A
N is a generically free linear represen-

tation of GLn /µd and thus, cd(β) = cd(GLn /µd). By Lemma 2.1(a), f has
trivial kernel. Thus cd(PN−1, PGLn) = cd(α) = cd(β) (see Lemma 10.2),
and the proof of (14.5) is complete. ¤

The results of Section 11 can now be used to determine ed(Hn,d) for
many values of n and d (and produce estimates for others). In particular,
combining Theorem 14.3 with Corollary 11.4, we deduce Theorem 1.1 stated
in the Introduction.

The number ed(φn,d) appears to be harder to compute than ed(Hn,d). Of
course, cd(φn,d) = cd(Hn,d) or cd(φn,d) = cd(Hn,d) + 1 (see (14.4)), but for
most n and d, we do not know which of these cases occurs. One notable
exception is given by the following corollary.

Corollary 14.4. Suppose d ≥ 3, gcd(n, d) = 1 and (n, d) 6= (2, 3). Then

(a) ed(Hn,d) =

(

n + d − 1
d

)

− n2 and

(b) ed(φn,d) =

(

n + d − 1
d

)

− n2 + 1.
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Proof. Part (a) is a special case of Theorem 1.1 (with i = 0). We can also
deduce it directly from Theorem 14.3 by noting that SLn is a special group
and thus cd(SLn) = 0.

(b) In view of (14.4), we only need to prove that ed(φn,d) ≥ ed(Hn,d) + 1

or equivalently, cd(AN , GLn) ≥ 1; see Lemma 14.2. Recall that the central
subgroup µd of GLn acts trivially on A

N , and (under our assumptions on n
and d) the induced GLn /µd-action is generically free. Thus the stabilizer in
general position for the GLn-action on A

N is µd, and by Proposition 5.5(c),
cd(AN , GLn) ≥ ed(µd) = 1, as claimed. ¤

15. Essential dimensions of homogeneous forms II

In this section we will study ed(φn,d) and ed(Hn,d) for the pairs (n, d) not
covered by Theorem 14.3. We begin with a simple lemma.

Lemma 15.1. ed(H2,d) ≤ d − 2 for any d ≥ 3.

In the sequel we will only need this lemma for d = 3 and 4. (Note that
substituting n = 2 into Theorem 1.1 shows that for any d ≥ 5, ed(H2,d) =
d − 2 if d is even and d − 3 if d is odd.) However, the proof below is valid
for all d ≥ 3.

Proof. The linear transformation

x1 7→ x1 −
an−1,1

n
, x2 7→ x2

reduces the generic binary form

φ2,d(x1, x2) = ad,0x
d
1 + ad−1,1x

d−1
1 x2 + · · · + a0,dx

d
2

to

bd,0x
d
1 + bd−2,2x

d−2
1 x2

2 + · · · + b1,d−1x1x
d−1
2 + b0,dx

d
2

for some bi,d−i ∈ K = k(a0,d, . . . , ad,0). After a further substitution

x1 7→ b0,d

b1,d−1
x1 , x2 7→ x2

we may assume b1,d−1 = b0,d. The field k(bi,d−i/bj,d−j | i, j = 1, . . . , n) now
has transcendence degree ≤ d − 2; this proves the lemma. ¤

We are now ready to proceed with the main result of this section.

Proposition 15.2. (a) ed(φn,1) = ed(Hn,1) = 0.

(b) ed(φn,2) = n and ed(Hn,2) = n − 1.

(c) ed(φ2,3) = 2 and ed(H2,3) = 1.

(d) ed(φ2,4) = 3 and ed(H2,4) = 2.

(e) ed(H3,3) = 3.

We do not know whether ed(φ3,3) is 3 or 4.
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Proof. (a) A linear form l(x1, . . . , xn) over K can be reduced to just x1 by
applying a linear transformation g ∈ GLn(K). Thus ed(φn,1) = ed(Hn,1) =
0.

(b) Here d = 2, N = n(n + 1)/2, and elements of A
N are quadratic forms

in n variables. Diagonalizing the generic quadratic form φn,2 over K, we see
that ed(φn,2) ≤ n and ed(Hn,2) ≤ n−1. In view of (14.4) it suffices to show
that ed(φn,2) = n.

The GLn-action on A
N has a dense orbit, consisting of non-singular forms.

In particular, D = dim(AN/ GLn) = 0, so that by Lemma 14.2

ed(φn,2) = cd(AN , GLn) .

Since the stabilizer of a non-singular form is the orthogonal group On, A
N

is birationally G-equivariantly isomorphic to GLn / On. Thus

ed(φn,2) = cd(AN , GLn) = cd(GLn / On, GLn)
by Corollary 5.7(b)

=

ed(On)
by [R, Theorem 10.3]

= n .

This completes the proof of part (b).

(c) By Lemma 15.1, ed(H2,3) ≤ 1. Thus in view of (14.4), we only need
to show that ed(φ2,3) ≥ 2.

Here N = 4, and the GL2-action on A
4 has a dense orbit consisting of

binary cubic forms with three distinct roots. Applying Lemma 14.2, with
D = dim(A4/ GL2) = 0, as in part (b), we obtain

ed(φ2,3) = cd(A4, GL2) = cd(GL2 /S, GL2)
by Corollary 5.7(b)

= ed(S) ,

where S ⊂ GL2 is the stabilizer of a binary cubic form with three roots, say
of x3 + y3. Note that S is a finite group and that matrices that multiply x
and y by third roots of unity form a subgroup of S isomorphic to (Z/3Z)2.
Thus ed(S) ≥ ed (Z/3Z)2 = 2 (cf. [BR, Lemma 4.1(a) and Theorem 6.1]),
as desired.

(d) By Lemma 15.1, ed(H2,4) ≤ 2. In view of (14.4), it remains to prove
the inequality ed(φ2,4) ≥ 3. Note that since the invariant field k(A5)GL2 is
generated by one element (namely, the cross-ratio of the four roots of the
quartic binary form), we have D = dim(A5/ GL2) = 1. Thus we only need
to show that

(15.1) cd(A5, GL2) ≥ 2 .

Let S be the stabilizer of f ∈ A
4 (i.e., of a degree 4 binary form) in general

position. By Proposition 5.5(c),

cd(A5, GL2) ≥ ed(S) .

To compute ed(S), recall that the stabilizer of f in PGL2 is isomorphic to
(Z/2Z)2; cf. e.g., [PV, p. 231]. It is now easy to see that S fits into the
sequence

{1} −→ Z/3Z −→ S −→ (Z/2Z)2 −→ {1} .
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In particular, |S| = 12 and S is not cyclic. By [BR, Theorem 6.2(a)], we
have ed(S) ≥ 2. This concludes the proof of (15.1) and thus of part (d).
For the sake of completeness, we remark that since S is a finite subgroup of
GL2, we also have ed(S) ≤ 2 and thus ed(S) = 2.

(e) Here N = 10, and the rational quotient P
9/ GL3 is the j-line, so that

D = dim P
9/ GL3 = 1. Thus we only need to show

(15.2) cd(P9, GL3) = 2 .

An element of P
9 (i.e., a plane cubic curve) in general position can be written

as Fλ = x3+y3+z3+3λxyz. Denote the stabilizer of Fλ by S ⊂ GL3. We will
deduce (15.2) from Corollary 6.2(b). Indeed, let N be the normalizer of S in
GL3. Since GL3 is a special group, e(GL3, S) = ed(S), e(GL3, N) = ed(N)
(see Lemma 5.4(c)), and Corollary 6.2(b) assumes the following form:

ed(S) ≤ cd(P9, GL3) ≤ ed(N) − dim(S) + dim(N) .

Let S and N be the images of S and N in PGL3, under the natural projection
GL3 −→ PGL3. Note that S is a finite group (this follows from the fact that
D = dim P

9/ PGL3 = 1). In particular, dim(S) = 1. It thus suffices to show:

(e1) ed(S) ≥ 2,

(e2) N is a finite subgroup of PGL3 (and consequently, dim(N) = 1).

(e3) ed(N) ≤ 2.

The inequality (e1) is a consequence of [RY1, Corollary 7.3], with G = S
and

(15.3) H = <diag(1, ζ, ζ2), σ> ≃ (Z/3Z)2 ,

where σ is a cyclic permutation of the variables x, y, z, and ζ is a primitive
third root of unity. (Note that [RY1, Corollary 7.3] applies because S has
no non-trivial unipotent elements, and the centralizer of H in S is finite.)

To prove (e2), note that N is the normalizer of S in PGLn. The natural
3-dimensional representation of S ⊂ GL3 is irreducible (to see this, restrict
to the subgroup H of S defined in (15.3)). Hence, by Schur’s lemma, the
centralizer CPGLn

(S) = {1}, so that N = NPGLn
(S)/CPGLn

(S). The last
group is naturally isomorphic to a subgroup of Aut(S), which is a finite
group. This proves (e2).

To prove (e3), consider the natural representation of N ⊂ GL3 on A
3.

(e2) implies that this representation is generically free; cf. [BF1, Section 1].
Consequently, ed(N) ≤ 3 − dim(N) = 2.

This completes the proof of part (e). ¤
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Séminaire C. Chevalley, Anneaux de Chow et applications, IHP, 1958.

[Ho] D. W. Hoffmann, Isotropy of quadratic forms over the function field of a quadric,
Math. Z. 220 (1995), no. 3, 461–476.

[Hu] J. E. Humphreys, Linear Algebraic Groups, Graduate Texts in Mathematics,
Springer-Verlag, 1975.

[I] V. A. Iskovskih, Minimal models of rational surfaces over arbitrary fields (Rus-
sian), Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 1, 19–43, 237.
English translation: Math. USSR-Izv. 14 (1980), no. 1, 17–39

[JLY] C. U. Jensen, A. Ledet, N. Yui, Generic polynomials, Constructive aspects of the
inverse Galois problem, Mathematical Sciences Research Institute Publications,
45, Cambridge University Press, Cambridge, 2002

[KM] N. Karpenko, A. Merkurjev, Essential dimension of quadrics, Invent. Math. 153
(2003), no. 2, 361–372.

[KR] I. Kersten, U. Rehmann, Generic splitting of reductive groups, Tohoku Math. J.
(2) 46 (1994), no. 1, 35–70.

[Kn1] M. Knebusch, Generic splitting of quadratic forms. I, Proc. London Math. Soc.
(3) 33 (1976), no. 1, 65–93.

[Kn2] M. Knebusch, Generic splitting of quadratic forms. II, Proc. London Math. Soc.
(3) 34 (1977), no. 1, 1–31.

[KS] M. Knebusch, W. Scharlau, Algebraic theory of quadratic forms. Generic methods
and Pfister forms, DMV Seminar, 1. Birkhäuser, Boston, Mass., 1980.
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