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Abstract. It is shown that the Pythagoras number of a real function field of a hyperel-
liptic curve C with good reduction defined over the real formal power series field is equal
to 2. A main tool in the proof is the explicit description of the Brauer group of C. If the
function field of such a curve is non-real then it is shown that its Pythagoras number is 3.

1. Introduction

Let k be a field and let
∑

k2 denote the set of non-zero elements in k which can be written
as a sum of squares in k. The smallest natural number p(k) such that every element in
∑

k2 can be written as a sum of p squares in k is called the Pythagoras number of k.
(We refer to [14, Chap.7, definition 1.1] for a more formal definition.) The study of the
Pythagoras number of a field finds its origin in E. Artin’s solution of the 17th problem
of Hilbert and in the research that emerged from this work. Hilbert’s problem reads as
follows; Let K = R(x1, . . . , xn). Let f ∈ K be a positive semi-definite function in K (i.e.
f(a) ≥ 0 for all a ∈ Kn). Is it true that f is a sum of squares in K? Artin showed that the
answer is positive and later Pfister obtained a quantitative result namely that a positive
semi-definite function in K is a sum of 2n squares. Pfister’s result implies that p(K) = 2n,
cf. [13, Chap. 6].
The theory of real fields (also called formally real fields, these are fields admitting an
ordering or equivalently fields in which −1 is not equal to a sum of squares) created by
E. Artin and O. Schreier, is fundamental for the solution of Hilbert’s 17th problem and
provides the proper algebraic setting for the above mentioned results. (We refer to [11]
for an introduction to this theory and its further developments.) Real fields with no real
algebraic extension are called real closed fields. These can be characterized in different
ways (cf. [11]). For instance R is a real closed field if and only if one of the following
equivalent statements holds;
(a) R admits a unique ordering and the set of positive elements for this ordering is exactly
the group of squares, R∗2 in R.
(b) An algebraic closure Ra of R is a finite extension of R.
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Property (b) can be replaced by the at first sight stronger statement that the Galois group
Gal(Ra/R(

√
−1)) is trivial.

The above mentioned results of Artin and Pfister, if one formulates them appropriately,
hold for any function field of finite transcendence degree over a real closed field. For instance
(see [14, Chap.7, 1.4 (4)]), let R be a real closed field and K a field of transcendence degree
n over R then p(K) ≤ 2n.
The Pythagoras number has been studied for various other classes of fields, a survey of
known results can be found in chapter 7 of Pfister’s book [14]. In many cases it turns out
that the determination of the Pythagoras number is closely related to the arithmetic or
the geometry of the field. (For instance the bounds for the Pythagoras number of fields
of transcendence degree n over a number fields obtained by Colliot-Thélène and Jannsen
(see [14, page 100, 101]) are based on very deep results, namely on a generalized version
of Kato’s local-global principle and on the Milnor conjectures proved by Orlov, Vishik and
Voevodsky.) In this paper we present an other example of this phenomenon. An example
of a simpler nature. We consider function fields of curves over the field R((t)) of formal
power series over the real numbers. It turns out that the Pythagoras number depends on
a cohomological invariant namely the Brauer group of the curve.
There are two motivation to study the Pythagoras number of such fields. First if one
considers the Galois theoretic characterization of real closed fields, the “next” class of
fields to consider are the fields K for which Gal(Ka/K) has a simple structure. (This
point of view can be found in the work of different authors, see for instance [10], [6], [7].
In [6, Chap. III, theorem 1] the following result is obtained

Theorem 1.1. [6] Let K be a real field, Ka a fixed algebraic closure of K. Then the
Galois group Gal(Ka/K(

√
−1)) is abelian if and only if any real extension (in Ka) of K

is pythagorean.

Here pythagorean means that for all a, b ∈ K, a2 + b2 = c2 for some c ∈ K. So in
pythagorean fields every sum of squares is a square. Fields satisfying the equivalent prop-
erties of the theorem are called hereditarily pythagorean fields. In [6, Chap. III, theorem 4]
the following characterization of these fields is given; A field K is hereditarily pythagorean
if and only if the Pythagoras number of K(x), the rational function field in one variable
over K, is equal to 2. The problem of determining the Pythagoras of function fields of
curves over hereditarily pythagorean fields becomes now very natural. In [21] the first
and the third author obtained the following result for the function field of a conic over a
hereditarily pythagorean field.

Theorem 1.2. [21, Theorem 3] Let C be a conic defined over a hereditarily pythagorean
field K such that the function field K(C) is a real field. Then p(K(C)) = 2.

Theorem 1.3. [21, Theorems 1 and 2] Let C be a conic defined over a hereditarily
pythagorean field K such that the function field K(C) is a non-real field. Then p(K(C)) = 2
if and only if the order of the relative Brauer group, Br(K(

√
−1)/K), is equal to 2. If

|Br(K(
√
−1)/K)| > 2 then p(K(C))=3.
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The proof of theorem 1.3 relies on the fact that for function fields of curves over hereditarily
pythagorean fields it turns out that the totally positive elements which are not sums of
two squares correspond to non-trivial elements in Br(C), the Brauer group of the curve
(cf. lemma 2.7). In the case C is a conic such elements are induced by non-trivial elements
in Br(K(

√
−1)/K). For general curves over hereditarily pythagorean fields we do not have

enough information on the Brauer group of C to calculate the Pythagoras number of the
function field. However a basic example of a hereditarily pythagorean field is the field
R((t)) (cf. [6, page 108])). The results of [21] (theorems 1.2 and 1.3) imply that for a conic
C, p(R((t))(C) = 2 if and only if R((t))(C) is a real field, this since |Br(C((t))/R((t)))| =
|Br(R((t))| = 4. Now it is possible, using a general theorem proved in [15], to determine the
Brauer group of hyperelliptic curves with good reduction (cf. definition 2.3) over R((t)).
Using this we obtained the main result of this paper,

Theorem 1.4. (cf. Theorem 3.8 and theorem 4.1). Let C be a hyperelliptic curve over
R((t)) with good reduction. If R((t))(C) is a real field then p(R((t))(C)) = 2. If R((t))(C)
is a non-real field then p(R((t))(C)) = 3.

The second motivation for studying the Pythagoras number of function fields of curves
over R((t)), comes from the study of the structure of central simple algebras of exponent
2 over such fields. In [4] the structure of central simple algebras of exponent 2 over the
rational function field R((t))(x) is studied . Especially so called Ω-algebras were considered.
These are algebras that are trivial over all real closures of the function field. The results
obtained there rely strongly on the fact that p(R((t))(x)) = 2. Ω-algebra’s of exponent
2 turn up naturally in questions concerning quadratic forms. In [5] Becher proved that
if K is a field with Pythagoras number ≤ 2 such that the u-invariant of K(

√
−1) is 4

then the u-invariant of K also equals 4. (The u-invariant of a real field is the maximal
dimension of anisotropic torsion quadratic forms. We refer to [14, Chap.8] for more details
on this invariant.) Becher’s result together with our theorem 1.4 implies that if C is a
hyperelliptic curve with good reduction over R((t)) such that R((t))(C) is formally real
then the u-invariant of R((t))(C) is 4.
In section 2 we fix some conventions and notations and we recall some facts on Brauer
groups, and on hyperelliptic curves and there function fields. We end the section with the
lemma relating the Pythagoras number of R((t))(C) to the Brauer group of the curve. In
section 3 we give a calculation of the Brauer group of a hyperelliptic curves with good
reduction over R((t)) in the case the function field R((t))(C) is real. And we prove theo-
rem 1.4 in this case. In section 4 we prove theorem 1.4 in the case R((t))(C) is a non-real
field.
We restricted ourself to function fields of curves over the real formal power series field
R((t)), the example we constantly worked with. However the proofs of the main results
work in greater generality. The real number field R can be replaced by any real closed field.
Actually the results also hold for function fields of curves over henselian discrete valued
fields with real closed residue field. All arguments work in that generality, one only has to
replace the field R by the residue field and the parameter t by the uniformizing element
for the discrete valuation.
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The authors are grateful to Karim Becher for various helpful discussions, he also indicated
to us the general result of Elman and Lam on the Pythagoras number under quadratic
totally positive extension which settles one case in the proof of our main theorem.

2. Notations and preliminary results

We first fix some conventions and notations.
Let A be an abelian group, n ∈ N, n > 1, the n-torsion subgroup of A, i.e. the kernel of
the morphism defined by multiplication with n, is denoted with nA. (In this paper we are
mainly dealing with 2-torsion subgroups.)
Let G be a profinite group and B a discrete G-module, then H i(G,B) denotes the i-
th cohomology group of G with coefficients in B. For a subgroup H ⊂ G of finite index,
resG

H : H i(G,B) → H i(H,B) denotes the restriction map and corH
G : H i(H,B) → H i(G,B)

the corestriction map (cf. [18, chap. VII]). We will work with Galois cohomology. Let k be
a field of characteristic zero, then k denotes the algebraic closure of k and Gk = Gal(k/k)
denotes the absolute Galois group of k. If l/k be a finite field extension then l is the fixed
field of a subgroup of finite index H in Gk and we will write resl/k for the restriction map

resGk

H and corl/k for the corestriction map corH
Gk

.
The Brauer group of k, Br(k), is a Galois cohomological invariant which plays a key
role in the proof of our main result. Br(k) is the abelian group of Brauer equivalence
classes of finite dimensional central simple algebras over k, where central simple algebras
A and B over k are called equivalent if and only if there is an isomorphism of matrix
algebras Mn(A) ∼= Mm(B) for some natural numbers n,m. It is well known that Br(k) ∼=
H2(Gk, Gm), where Gm is the multiplicative group defined by Gm(K) = K∗ for all finite
field extensions K/k. We will use the following terminology. By an algebra A over k we
will mean a central simple k-algebra unless stated otherwise. If we say that A is trivial we
mean that the Brauer class [A] is trivial in Br(k). Let R be a commutative ring then R∗

denotes the group of units in R and R∗2 the subgroup of elements which are squares in R.
The Brauer group of R consists of equivalence classes of Azumaya algebras over R with
respect to Morita equivalence (cf. [3]).
Let k be a field of characteristic zero and let X be an irreducible smooth projective variety
over k, then k(X) denotes the function field of X. For a field extension K/k, we write
X(K) for the set of K- rational points on X. Let v be a discrete valuation on k(X),
Ov the associated valuation ring and k(v) its residue field. There exists a ramification
homomorphism (cf. [16, chap 5])

∂v : Br(k(X)) → Homcont(Gk(v), Q/Z) = H1(Gk(v), Q/Z).

A central simple algebra over k(X) is said to be ramified in v if and only if ∂v([A]) 6= 0.
The kernel of ∂v can be identified with Br(Ov), i.e. the kernel is the image of the natural
monomorphism 0 → Br(Ov) → Br(k(X)) induced by the inclusion map Ov ⊂ k(X), cf. [2,
page 289].
We need to calculate the ramification of central simple algebras A over k(X) of exponent 2.
So we consider the restriction of ∂v to the 2-component 2Br(k(X)). This map takes values
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in H1(Gk(v), Z/2Z) ∼= k(v)∗/k(v)∗2 (the isomorphism is canonical since k(X) contains all
the 2th-roots of unity). By a famous theorem of Merkurjev algebras of exponent 2 are
equivalent to tensor products of quaternion algebras. For a quaternion algebra (a, b)k(X)

the ramification is given by the formula (cf. [16]),

∂v((a, b)k(X)) = (−1)v(a)v(b)

(

av(b)

bv(a)

)

∈ k(v)∗/k(v)∗2.

The ramification map factors over Br(k(X)v), where k(X)v is the completion of k(X) with
respect to the valuation v. Since the characteristic of k is zero, such a completion is of the
form k(v)((z)), where z is a uniformizing element in Ov.
We consider the special case where X = C is an irreducible smooth projective curve over
k. There is a one to one correspondence between the discrete valuation rings in k(C)
and the closed points of C, viewed as a scheme over k. A central simple algebra over
k(C) is said to be ramified in a closed point of C if it is ramified with respect to the
corresponding discrete valuation. It is known that the unramified part of the Brauer group
(cf. [8]), Brnr(k(C)) := ∩vBr(Ov) can be identified with the Brauer group of the curve in
the sense of Grothendieck (i.e. Br(C) = H2

et(C, Gm)). So Br(C) (using this identification)
consists exactly of the classes of central simple algebras over k(C) that are unramified in
all the points of C. Our results concerning the Pythagoras number of function fields of
hyperelliptic curves depend on the calculation of Br(C) for such curves.
We also review some facts concerning hyperelliptic curves over a field k.
We denote by Pn

k
the n-dimensional projective space over an algebraic closure k of k. A

point of Pn
k

with homogeneous coordinates x0, . . . , xn will be denoted by (x0 : x1 : · · · : xn).
Also, let An

k,i
, i = 0, . . . , n, be the affine subsets of Pn

k
consisting of the points whose i-th

homogeneous coordinate is nonzero. For any polynomial f(x) ∈ k[x] of degree m and
without multiple roots, let C0 be the affine curve over k defined by the equation y2 = f(x),
then the genus of C0 is:

g =

{

(m − 1)/2 if m is odd,
(m − 2)/2 if m is even.

The projective closure C of the image of C0 under the mapping

φ : C0 −→ P
g+2

k
, (x, y) 7→ (1 : x : x2 : x3 : · · · : xg+1 : y)

is called the hyperelliptic curve corresponding to the equation y2 = f(x). It is known that
C is a smooth, irreducible projective curve and that

C =

{

(C ∩ A
g+2
0 ) ∪ P∞ if m is odd,

(C ∩ A
g+2
0 ) ∪ P∞1

∪ P∞2
if m is even.

Here P∞ = (0 : 0 : · · · : 1 : 0), P∞1
, P∞2

= {(0 : 0 : · · · : 1 : ±√
am)} ∈ A

g+2
g+1, where

am ∈ k is the leading coefficient of f(x). The map φ gives an isomorphism between the
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affine curves C0 and C ∩ A
g+2
0 . We denote by ψC the hyperelliptic projection given by

ψC : C −→ P1

P 7→
{

(x : 1) if P = (1 : x : x2 : x3 : · · · : xg+1 : y),

(1 : 0) if P 6∈ A
g+2

k,0
.

The ramification points of the double cover ψC : C → P1
k are called the Weierstrass points

of the hyperelliptic curve C. The hyperelliptic projection ψC , which is defined over k,
induces embeddings of the rational function field k(x) in the function field k(C) of C.

ψ∗
C : k(x) →֒ k(C),

i.e.

ψ∗
C : k(x) →֒ k(x)(

√

f(x)).

Let l/k be an algebraic extension then we also obtain an embedding

ψC,l : l(x) →֒ l(C),

by taking the tensor product with l. We will further identify k(x) with the subfield ψ∗
C(k(x))

of k(C). Let v be a discrete valuation on k(C), we need an explicit description of the
completion k(C)v. We recall how this can be obtained. We start with the rational function
field k(x)(= k(P1

k)). A discrete valuation v on k(x) is either induced by monic irreducible
polynomials h(x) ∈ k[x] (these are the valuations corresponding to the closed points in
A1

k(= A1
k,1)) or v = v∞ (the valuation corresponding to the point at infinity of P1

k). In the
first case h(x) is a uniformizing element for v and the completion of k(x) with respect to
v is of the form k(θ)((f(x))) where θ is a root of h(x). The element x−1 is a uniformizing
element for v∞ and the completion with respect to this valuation is of the form k((x−1)).

Now k(C) = k(x)(
√

f(x)) is a quadratic extension of k(x), its discriminant is equal to
4f(x). The discrete valuations on k(C) are all obtained from extending discrete valuations
on k(x). Let v be a valuation on k(x) corresponding to the irreducible polynomial h(x). If
h(x) does not divide f(x), then v extends (up to equivalence) to one or two valuations w
on k(C), unramified over k(x). Let w be such an extension of v, then h(x) is a uniformizing

element of w. The residue field of w is equal to k(θ)(
√

f(θ)) and the completion k(C)w is

of the form k(θ)(
√

f(θ))((h)). (Note that the residue field of w is a quadratic extension
of the residue field of v if and only f(θ) 6∈ k(θ)∗2, this is exactly the case when w is the
unique extension of v to k(C).) If f(x) = h(x)g(x), then (since f(x) has no multiple roots
in k) gcd(g(x), h(x)) = 1, so g(x) is a unit in Ov. In this case the valuation v ramifies
in k(C), so there is (up to equivalence) a unique valuation w on k(C) extending v. The
residue field of w is equal to the residue field of v, so it is k(θ). The completion k(C)w is

a quadratic extension of k(x)v, k(C)w = k(θ)((h))(
√

g(θ)h(x)).
The extension of the valuation v∞ of k(x) to k(C) depends on the degree m of f . If m
is odd there is (up to equivalence) a unique valuation w∞ extending v∞ (the valuation
corresponding to the unique k-rational point at infinity, P∞ ∈ C(k). This extension is
ramified over k(x) so the residue field is equal to k = k(v∞), and the completion is of the

form k((
√

x−1)). If m is even and am (the leading coefficient of f) is a square in k then
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v∞ extends to two different valuations w∞1
and w∞2

on k(C), corresponding respectively
to the k-rational points P∞1

and P∞2
, the residue field of wi are equal to k. If am is not

a square in k then there is only one extension w∞ (up to equivalence) of v∞, its residue
field is k(

√
am). In any case, if m is even, x−1 is a uniformizing element for the valuation

extending v, and the completion of k(C) with respect to such a valuation is of the form
k(
√

am)((x−1)).

For k(C) there is a one to one correspondence between the rational points of the curve, i.e.
the elements P ∈ C(k) and the discrete valuations vP on k(C). The discrete valuations of
k(C) can therefore also be viewed as the restriction of valuations vP . We reformulate in
the following lemma the above facts concerning the completions of k(C).

Lemma 2.1. Let C be a hyperelliptc curve over k as defined above. Let P ∈ C(k) such
that ψC(P ) = (a : 1), and let h(x) be a minimal polynomial of a over k. Then

k(C)P
∼=

{

k(a)(
√

f(a))((h)) if h(x) does not divide f(x),

k(a)((h))(
√

g(a)h(x)) if f(x) = g(x)h(x);

we embed k(C) in k(C)P by interpreting x as a power series in k(a)((h)) such that x ≡
a mod h(x).
For P = P∞ in case m is odd we have

k(C)P∞
∼= k((

√
x−1)),

For P = P∞1
or P∞2

we have

k(C)P∞i

∼= k((x−1))(
√

am), i = 1, 2.

k(C) is viewed as a subfield of k(C)P∞ (respectively k(C)P∞i
) by interpreting x as the

inverse of the series x−1.
The Weierstrass points of C are the points (θ, 0) with θ a root of f(x) in the case m is
even and the same points plus the point at infinity, P∞, in case m is odd.

We now turn to the function fields R((t))(C) of hyperelliptic curves C defined over the
field of formal power series over the real numbers. As we have seen we can define such
a curve C by an equation of the form y2 = f(x), where f(x) is a polynomial over R((t))
without multiple roots. Since the ground field is R((t)) we can normalise the equation of
C even further.

Lemma 2.2. Let C0 be an affine plane curve defined by the equation y2 = f(x), where
f(x) is a polynomial without multiple roots over R((t)). Then C0 is R((t))-isomorphic to
an affine plane curve given by the equation y2 = αf0(x), where f0(x) is a monic polynomial
with coefficients in R[[t]] without multiple roots, and α ∈ R[[t]]. Without loss of generality
we may assume that α ∈ {1,−1, t,−t}; moreover, if degf(x) is odd we may assume that
α = 1.

Proof: This follows directly from the fact that every element
∑∞

i=0 ait
i of R[[t]] with a0 > 0

is a square in R[[t]]. ¤
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We fix the following notation. Let g(x) =
∑n

i=0 six
i ∈ R[[t]][x] be any polynomial over

R[[t]]. We denote the reduction of g modulo t by g(x) =
∑n

i=0 six
i ∈ R[x], where s is the

image of s ∈ R[[t]] under the canonical map R[[t]] → R.

Definition 2.3. A hyperelliptic curve C defined over R((t)) has good reduction if it cor-
responds to a curve defined by an equation of the form y2 = αf0(x) in accordance with
lemma 2.2, where α ∈ {1,−1} and f(x) ∈ R[x] is a polynomial without multiple roots.

Remark 2.4. The fact that every unit z(t) ≡ a0 mod t in R[[t]] is an n-the power in R[[t]
for every odd number n and the fact that every unit u(t) ≡ b0 mod t, with b0 > 0 is a
m-th power for every m ≥ 1 implies that all finite extensions of R((t)) are of the form
R((t))( m

√
±t) or of the form C((t))( m

√
t) with m ∈ N, m ≥ 1. If f ∈ R[[t]][x] such that f

has no multiple roots in C then the discriminant of f is not divisible by t and so we see
that the splitting field of f is either R((t)) or C((t)). This yields that such f decomposes in
a product of irreducible factors of degree at most 2. The irreducible factors of f of degree
2 are equal to a sum of two squares in R[[t]][x] (this since f is a norm of C[[t]][x]).

In order to proof theorem 1.4 we consider three different cases, described in the following
lemma.

Lemma 2.5. Let C be a hyperelliptic curve over R((t)) with good reduction. Then C is
R((t))-birational equivalent to a hyperelliptic curve defined by one of the following type of
equations:
(1) y2 = f(x), where f(x) is monic, degf(x) is odd and f(x) is a polynomial without
multiple roots;
(2) y2 = f(x), where f(x) is monic, degf(x) is even, f(x) has no linear divisor and f(x)
is a polynomial without multiple roots.;
(3) y2 = −f(x), where f(x) is monic, degf(x) is even, f(x) has no linear divisor and f(x)
is a polynomial without multiple roots.
The function field R((t))(C) is a real field if C is birational equivalent to a curve defined
by an equation of type (1) or (2). The function field R((t))(C) is a non-real field if C is
birational equivalent to a curve defined by an equation of type (3).

Proof: The definition of good reduction (definition 2.3) yields that C is isomorphic to a
curve defined by an affine equation of the form y2 = ±f0(x), with f0(x) a monic polynomial
in R[[t]] without multiple roots. Moreover in case degf0 is odd the sign may chosen to be
positive. If degf0 is even and f0 has no linear factor over R((t)), it follows from the
remark 2.4 that f0(x) is equal to a sum of two squares in R[[t]]. So we have to show
that a curve over R[[t]] with good reduction and defined by an affine equation of the form
y2 = ±f0(x) = ±(x − a)g(x), with degf0(x) = 2n, is birational equivalent to one given by
an equation of type (1). Set

x − a = u−1, y(x − a)−n = v

then

v2 = f1(u).
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We have that f1(u) is a polynomial in R[[t]][u] without multiple roots and degf1(u) =
degf0(x) − 1. Up to changing the isomorphism type of the curve C1 defined by this
equation, lemma 2.2 yields that we may assume f1(u) to be a monic polynomial. We see
that C is birationally isomorphic to the hyperelliptic curve C1 and C1 is defined by an
equation of type (1).
It is clear that in the case of type (2) the function field R((t))(C) = R((t))(x)(

√
f) is a

real field. This because f is a sum of two squares so all orderings of R((t))(x) extend to
R((t))(x)(

√
f). In the same way it is easy to see that in the case of type (3) the function

field R((t))(C) = R((t)(x)(
√

−f(x)) is non-real since −1 is clearly a sum of squares in
this field. To see that in the case type (1) the function field R((t))(C) is a real field it is
enough to notice that C has an R((t))-rational point (one sees from lemma 2.1 that the
completion of R((t))(C) in a R((t))-rational point is a real field, cf. also [4]). The latter
follows directly from the fact that f is of odd degree and so has a linear factor over R((t))
(by remark 2.4). ¤

Remark 2.6. The distinction between cases (1) and (2) can be interpreted as follows; in
case (1) the field R((t))(C) is a real but not totally real quadratic extension of R((t))(x),
in case (2) R((t))(C) is a totally real quadratic extension of R((t))(x).

To finish this section we give the following general result for function fields of curves over
R((t)), which we links the Pythagoras number for real function fields of hyperelliptic curves
over R((t)) to the Brauer group of the curve.

Lemma 2.7. Let C be any irreducible smooth projective curve over R((t)). Let fi ∈
R((t))(C), i = 1, . . . , r. Then the quaternion algebra A = (−1,

∑r
i=1 f 2

i )R((t))(C) over
R((t))(C) is unramified.

Proof: Let v be a discrete valuation on R((t))(C). The ramification formula, page 5, yields

∂v((−1,
∑

f 2
i )R((t))(C)) ≡ (−1)v(

P

f2
i ) mod R((t))(v)∗2.

If the residue field of v, R((t))(v), is non-real then remark 2.4 implies that −1 is a square
in R((t))(v), so the ramification is trivial in this case.
If the residue field of v is a real field then the completion R((t))(C)v is a formal power series
field of the form R((t))(v)((π)), with π a uniformizing element for v. We can calculate the
valuation of

∑

f 2
i as an element of this completion. If necessary renumber the elements

fi, i = 1, . . . , r such that v(f1) ≤ v(f2) ≤ v(f3) ≤ · · · ≤ v(fr). Let v(f1) = · · · = v(fl) <
v(fl+1), then f 2

1 + · · ·+ f 2
l = π2k(a2

1 + · · ·+ a2
l +πg) for some k ∈ N, a1, . . . , al ∈ R((t))(v)∗

and some g ∈ R((t))(v)[π]. Since the a2
i , i = 1, . . . , l are non-zero totally positive element

in the residue field R((t))(v), a2
1 + · · · + a2

l is a non-zero element in R((t))(v). We have

v(
∑l

i=1 f 2
i ) = 2k < v(f 2

j ) for all j = l + 1, . . . , r, so v(
∑r

i=1 f 2
i ) = 2k. It follows that

∂v(−1,
∑

f 2
i )R((t)) ≡ 1 mod R((t))(v)∗2. This proves that the algebra A is unramified for

all discrete valuations on R((t))(C). ¤

Remark 2.8. It is not difficult to see that the proof of lemma 2.7 also holds for function fields
of curves over a hereditarily pythagorean field k since the residue fields of the k-discrete
valuations are real pythagorean fields or fields in which −1 is a square.
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3. The formally real case

Throughout this section C will be a smooth hyperelliptic curve over R((t)) with good
reduction such that its function field is a formally real field. The aim of this section is
to prove theorem 1.4 for such function fields. Since the function field of C is an invariant
of the birational equivalence class of C, lemma 2.5 implies that we may assume that the
affine part of C is given by an equation of the form

(3.1) y2 = f(x),

with (in view of remark 2.4)

(3.2) f(x) = (x − a1)...(x − a2n+1)g1(x)...gm(x),

where ai 6= aj if i 6= j, and gl, l = 1, . . . ,m are different quadratic irreducible polynomials
with splitting field C((t)). Without loss of generality we also assume that the coefficients
ai, i = 1, . . . , 2n + 1 are enumerated in such a way that ai < aj if i < j.
In order to apply lemma 2.7 we need to know the Brauer classes of central simple algebras
of exponent 2 over R((t))(C) that are unramified, so we need to know the Brauer group of
the curve C. Consider the following list of elements in 2Br(R((t))(C))

Ai = (−1, (x − a1)(x − ai))R((t))(C), i = 2, . . . 2n + 1,(3.3)

Bi = (t, (x − a1)(x − ai))R((t))(C)), i = 2, . . . 2n + 1,(3.4)

Cj = (t, gj(x))R((t))(C), j = 1, . . . m.(3.5)

In [20] the first author obtained the following result

Proposition 3.1. Let C be a hyperelliptic curve defined by equation (3.1).
(a) For j = 1, . . . , n the algebras A2j and A2j+1 are Brauer equivalent.
(b) The following classes in 2Br(R((t))(C)

[(−1,−1)], [(−1, t)], [Ai], [Bj], [Ck], i ∈ {2, 4, 6, . . . , 2n}, j ∈ {2, 3, . . . , 2n+1}, k ∈ {1, . . . ,m},
form a basis of the vector space 2Br(C) over F2.

For the sake of completeness we will give the proof of this proposition here. It is based on
the description of the 2-torsion part of the Brauer group of a hyperelliptic curve in terms
of generators and relations which can be found in [15].

Theorem 3.2. Let k be a field of characteristic not 2. Let H be a hyperelliptic curve with
affine part defined by the equation

y2 = g(x),

where g(x) = (x−b)h1(x)...hr(x), deg g(x) is odd and h1(x), ..., hr(x) are irreducible monic
polynomials. Let for i = 1, . . . r, bi be a root of hi(x) in k. Then any element of 2Br H can
be represented as a tensor product of a constant algebra (i.e. algebra defined over k) and
an algebra of the form

cork(b1)(H)/k(H)((c1, (x − b)(x − b1))k(b1)(H)) ⊗ . . .
· · · ⊗ cork(br)(H)/k(H)((cr, (x − b)(x − br))k(br)(H)),
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with ci ∈ k(bi).
Conversely any algebra of the above form is an element of 2Br(H). It’s Brauer class is
trivial if and only if the algebra is similar to a tensor product D = D1 ⊗ · · · ⊗ Dr, with
Di ∈ cork(bi)(H)/k(H)((si, (x − b)(x − bi))k(bi)(H)), si =

∏

j(xj − bi)
nj such that

∑

j nj(xj, yj)
is a k-divisor of degree 0 on H whose support does not contain any Weierstrass points of
H.

Corollary 3.3. Let C be any hyperelliptic curve defined by the affine equation (3.1).
(a) Every element of 2Br C is represented as a tensor product of a constant algebra and an
algebra of the form

corC((t))(C)/R((t))(C)((c1, (x − a1)(x − θ1))C((t))(C)) ⊗ . . .
⊗ corC((t))(C)/R((t))(C)((cm, (x − a1)(x − θm))C((t))(C))
⊗ (d2, (x − a1)(x − a2))R((t))(C) ⊗ · · · ⊗ (d2n+1, (x − a1)(x − a2n+1))R((t))(C),

with θi a root of gi and ci ∈ {1, t}, di ∈ {1, t,−1,−t}.
(b) Every element of 2Br(C) is equivalent to a tensor product of algebras taken from the
set {(−1,−1)R((t))(C), (−1, t)R((t))(C),Ai, i = 2, . . . , 2n + 1,Bj, j = 2, . . . , 2n + 1, Cl, l =
1, . . . ,m}.
Proof: The first point (a) follows directly from theorem 3.2 and the fact that {1, t} represent
the square classes of C((t))∗ and that {1, t,−1,−t} represent the square classes of R((t))∗.
To see the second point note that 2Br(R((t))) is generated by (−1,−1)R((t)) and (−1, t)R((t)).
The statement then follows from the fact that

corC((t))(C)/R((t))(C)((t, (x − a1)(x − θi))C((t))(C)) = (t, gi(x))R((t))(C).

¤

Remark 3.4. Note that corollary 3.3 implies that the Brauer classes of the algebras Ai,Bi

and Cj are elements of 2Br(C).

Lemma 3.5. The algebras

(⊗i∈IBi) ⊗ (⊗j∈JCj) ⊗ C((t))(C),

with I ⊂ {2, . . . , 2n + 1} and J ⊂ {1, . . . ,m}, are non-trivial in 2Br(C((t))(C)).

Proof: Let v be the valuation on C((t)). Defining, for g(x) =
∑

alx
l ∈ C((t))[x],

w(g(x)) := minl{v(al)} we obtain a discrete valuation w on C((t))(x) extending the val-
uation v. We have w(t) = 1. The residue field of w is C(x). Since the polynomial f(x)
has no multiple roots, f(x) is not a square in the residue field C(x). Hence, the field

C((t))(C) = C((t))(x)(
√

f(x)) is an unramified extension of C((t))(x). So the valuation w
on C((t))(x) can be extended to a discrete valuation w′ on C((t))(C) in such a way that

w′(t) = 1. The residue field of w′ is C(x)(
√

f(x)), it is a quadratic extension of C(x).

For the sake of contradiction we assume that an algebra of the form

(3.6) Bi1 ⊗ · · · ⊗ Bir ⊗ Cj1 ⊗ · · · ⊗ Cjs
⊗R((t))(C) C((t))(C) ∼ (t, h(x))C((t))(C),
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with h(x) = (x − a1)
r(x − ai1) . . . (x − air)gj1(x) . . . gjs

(x), is trivial in 2Br(C((t))(C)).
Then there exist x1,x2 ∈ C((t))(C) such that h(x) = x2

1 − tx2
2. Since h(x) is monic

and since w′(x2
1) is even and w′(x2

2) is odd, it follows that 0 = w′(h(x)) = w′(x2
1 − tx2

2) =

min(w′(x2
1), w

′(tx2
2)) = w′(x2

1). So h(x) = x2
1 in the residue field C(x)(

√

f(x)). Equivalently

we find that h(x) ∈ C(x)∗2 or f(x)h(x) ∈ C(x)∗2. But since C has good reduction it is
easy to verify that both h(x) and f(x)h(x) are not in C(x)∗2. We obtained a contradiction
implying that an algebra of the form (3.6) is non-trivial in 2Br(C((t))(C)). ¤

The following lemma proves part (a) of proposition 3.1.

Lemma 3.6. The algebras A2j and A2j+1 are for every j = 1, . . . , n Brauer equivalent.

Proof: Let for i = 1, . . . ,m, θi = ui + vi

√
−1, with ui, vi ∈ R((t)), be a root of the

quadratic polynomials gi occurring in the factorisation of f , cf. equation 3.2. Let j be
any element in {1, . . . , n}. Choose d1, d2 ∈ R((t)) such that d1 6= ui, d2 6= ui, for all
i = 1, . . . ,m, a2j−1 < d1 < a2j, and a2j+1 < d2 < a2j+2 if 1 ≤ j < n, a2j+1 < d2 if
j = n. It follows from this choice of d1 and d2 that f(d1) and f(d2) are squares in R((t).

Hence (d1,
√

f(d1)) and (d2,
√

f(d2)) are R((t))-rational points of the affine part of C. The

divisor (d1,
√

f(d1))− (d2,
√

f(d2)) is an R((t))-rational divisor of degree 0 and its support
does not contain any Weierstrass points. Applying theorem 3.2 we see that the following
algebra

D = ⊗m
i=1 corC((t))(C)/R((t)(C)((d1 − θi)(d2 − θi), (x − a1)(x − θi))C((t))(C)⊗
⊗2n+1

l=2 ((d1 − al)(d2 − al), (x − a1)(x − al))R((t))(C)

is trivial in 2Br(C).
The choice of d1 and d2 also yields the following. For s 6= 2j, 2j + 1 we have that (d1 −
as)(d2 − as) > 0, implying that (d1 − as)(d2 − as) ≡ 1 mod R((t))∗2. For s = 2j, 2j + 1
we have (d1 − as)(d2 − as) < 0 implying that (d1 − as)(d2 − as) ≡ −1 mod R((t))∗2. For
i = 1, . . . ,m, the elements (d1−θi)(d2−θi) are power series in C[[t]]2 with non-zero constant
term, so they are in C((t))∗2. It follows that

D ∼ ((d1 − a2j)(d2 − a2j), (x − a1)(x − a2j))R((t))(C)⊗
((d1 − a2j+1)(d2 − a2j+1), (x − a1)(x − a2j+1))R((t))(C)

∼ A2j ⊗A2j+1

So the latter algebra is trivial, proving that A2j ∼ A2j+1 in 2Br(C). ¤

Lemma 3.7. Let

A = ⊗i∈IAi,

with I ⊂ {2, 4, . . . , 2n}. Then the algebras A, A⊗ (−1,−1), A⊗ (−1, t), A⊗ (−1,−t) are
non-trivial in 2Br(R((t))(C)).

Proof: Write A = Ai1⊗· · ·⊗Air in such a way that ij < ik if j < k. Choose c ∈ R((t)) such

that air−1 < c < air . Then f(c) > 0 and therefore f(c) ∈ R((t))∗2. Hence P = (c,
√

f(c)) is
R((t))-rational point of C. The completion of R((t))(C)P = R((t))((x−c)) (cf. lemma 2.1)
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is a real field. We obtain (since for a unit a ∈ R[[t]][[x−c]], (x−a) ≡ (c−a) mod R((t))((x−
c))∗2),

AP := A⊗R((t))(C) R((t))(C)P ∼ (−1, (c − a1)(c − air))R((t))(C)P
∼ (−1,−1)R((t))(C)P

6∼ 1,

(AP ⊗ ((−1, t)R((t))(C)P
) ∼ ((−1,−t)R((t))(C)P

) 6∼ 1

and
(AP ⊗ (−1,−t)R((t))(C)P

) ∼ ((−1, t)R((t))(C)P )) 6∼ 1.

It follows that A,A ⊗ (−1, t)R((t))(C) and A ⊗ (−1,−t)R((t))(C) are non-trivial. The non-
triviality of A ⊗ ((−1,−1)R((t))(C) can be seen in the same way by taking the completion

of R((t))(C) in the R((t))(C)-rational point Q = (d,
√

f(d)), where d is chosen such that

d > a2n+1. ¤

We can now complete the proof of proposition 3.1.
Proof of proposition 3.1:

We proved point (a) already in lemma 3.6.
To prove point (b) we have to show that the following classes in 2Br(R((t))(C),

[(−1,−1)], [(−1, t)], [Ai], i ∈ {2, 4, . . . , 2n}, [Bj ], j ∈ {2, 3, . . . , 2n + 1}, [Ck], k ∈ {1, . . . ,m}
form a basis for the F2-vector space 2Br(C). Corollary 3.3 and lemma 3.6 yield that the
given classes form a set of generators for the F2-vector space 2Br(C). To show that these
classes are linear independent over F2 we assume that the algebra

(−1,−1)s1 ⊗ (−1, t)p1 ⊗As2

2 ⊗ · · · ⊗ As2n

2n ⊗ Bp2

2 ⊗ · · · ⊗ Bp2n+1

2n+1 ⊗ Cq1

1 ⊗ · · · ⊗ Cqm

m ,

with si, pj, qk ∈ {0, 1} (and where D0 is by definition the trivial algebra R((t))(C)), is
trivial in 2Br(C). Since Ai ⊗ C((t))(C) ∼ 1, it follows from lemma 3.5 that p2 = · · · =
p2n+1 = q1 = · · · = qm = 0. Then applying lemma 3.7 we conclude that s2 = · · · = s2n = 0.
Finally one can directly verify that (−1,−1)R((t))(C), (−1, t)R((t))(C) and their tensor product
(−1,−t)R((t))(C) are non-trivial. ¤

We can now determine the Pythagoras number of a real function field of a hyperelliptic
curve with good reduction.

Theorem 3.8. Let C be a smooth hyperelliptic curve over R((t)) with good reduction such
that the function field R((t))(C) of C is a real field. Then the Pythagoras number of
R((t))(C)) is equal to 2.

Proof: It follows from lemma 2.5 that we may assume that C is defined by an affine equation
of the form y2 = f(x), where f(x) ∈ R[[t]][x] is either a monic polynomial of odd degree or
a monic polynomial which is equal to a sum of two squares in R[[t]][x], and where in both
cases f(x) is a polynomial without multiple roots.
We first deal with the case f is a polynomial of odd degree. Then f is as given in equa-
tion 3.2. To prove that the Pythagoras number p(R((t))(C)) = 2, it is enough to prove that
for any sum of squares

∑

f 2
i ∈ R((t))(C), the quaternion algebra A = (−1,

∑

f 2
i )R((t))(C)

is trivial in 2Br(R((t))(C)). From lemma 2.7 it follows that A ∈ 2Br(C). Proposition 3.1,
lemma 3.5 and the proof of lemma 3.7 imply that for any non-trivial algebra D whose
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Brauer class is in 2Br(C) the following holds; either D ⊗ C((t))(C) 6∼ 1 (in case in the
expression of D in the given basis an algebra Bi or Ci occurs) or there exists an R((t))-
rational point P such that DP 6∼ 1 (in case D is in the subspace generated by the algebras
Ai, (−1,−1)R((t))(C) and (−1, t)R((t))(C), cf. the proof of lemma 3.7).
Clearly the algebra A becomes trivial over C((t)(C), since −1 is a square in C((t))(C).
Now let P be any R((t))(C)-rational point of C. Lemma 2.1 yields that the completion
R((t))(C)P is a real hereditarily pythagorean field. It follows that any sum of squares in
R((t))(C)P is a square, so A ⊗ R((t))(C)P is trivial. It follows from the above that A is
not equivalent to any non-trivial algebra in 2Br(R((t))(C). Therefore A ∼ 1, implying that
p(R((t))(C) = 2.
In the case that f = g2 + h2, with g, h ∈ R[[t]][x], we have that R((t))(C) is the totally

positive quadratic extension R((t))(x)(
√

g2 + h2) of R((t))(x). The result now follows
from the more general fact that if k is a field with p(k) = 2 and k(

√
α) is a totally positive

quadratic extension of k then p(k(
√

α)) = 2, see [9, proposition 3.2] (note that the reduced
height as defined in [9, page 22] is exactly the Pythagoras number). This finishes the proof
of our theorem. ¤

Remark 3.9. The proof given in [9] of the fact that for a real field with Pythagoras number
2 the Pythagoras number of a totally positive quadratic extension is also 2, is based on
a norm principle for quadratic extension which is proved in the same paper. To state
this norm principle let E be a quadratic field extension of F . If ϕ is a multiplicative
quadratic form over F , and x ∈ E∗. Then NE/F (x) is represented by ϕ over F if and only
if x ∈ F ∗ · DE(ϕ) (where DE(ϕ) is the set of elements in E∗ represented by ϕ over E).
The proof of this norm principle relies on the exact triangle for the Witt rings of E and F .
Karim Becher explained to us the following direct argument for the fact that if p(k) = 2
and k(

√
α)/k is a totally positive extension then p(k)(

√
α) = 2.

It is enough to prove that p(k(
√

α) ≤ 2. Consider any sum of squares
∑

f 2
i ∈ k(

√
α).

Let the quaternion algebra A = (−1,
∑

f 2
i )k(

√
α). We have to prove that A is trivial in

2Br(k(
√

α)). The corestriction of A is equal to (−1, N(
∑

f 2
i )), where N is the norm of

k(
√

α)/k. Note that for a quadratic extension the norm of a sum of squares is again
a sum of squares. (This is a special case of the norm principle but can easily be seen
directly.) Since the Pythagoras number of k is 2 it follows that cork(

√
α)/k[A] = 0 ∈ 2Br(k).

This implies that A = (−1,
∑

f 2
i )k(

√
α) = (−1, g)k ⊗ k(

√
α) for some g ∈ k, see [12,

proposition 5.0] and [19, (2.6)]. (This fact also follows from the exactness of the sequence

2Br(k)
res→ 2Br(k(

√
α))

cor→ 2Br(k), see [1]. A sequence which is closely related to the exact
triangle for the Witt rings of these fields used in [9]). Let S be any ordering on k(

√
α).

And let k(
√

α)S be the real closure of k(
√

α) with respect to S. Since A is trivial over
k(
√

α)S it follows that g must be positive with respect to S. So g is positive with respect
to every ordering on k(

√
α). But then it is also positive with respect to any ordering of k

because k(
√

α) is a totally positive extension of k. This implies g is a sum of squares in k.
It follows that (−1, g)k is trivial, so also A is trivial. ¤

Example 3.10. The condition that C has good reduction cannot be removed in the
theorem. Consider the following example. Let C be the elliptic curve defined by the
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equation y2 = (tx − 1)(x2 + 1). It is easy to check that this curve has bad reduc-
tion (note that the genus of the reduced curve is zero). The function field R((t))(C) =

R((t))(
√

(tx − 1)(x2 + 1)) is a real field since (tx − 1)(x2 + 1) is positive for every order-

ing on R((t)(x) with x > 1
t
. Note that tx = y2+x2+1

x2+1
in R((t))(C). However tx is not

a sum of two squares in R((t))(x) since the quaternion algebra (−1, tx)R((t))(C) is non-
trivial. The latter can be seen by a quadratic form argument. We have to show that the
2-fold Pfister form ϕ = 〈1, 1,−tx,−tx〉 is anisotropic over R((t))(C). Assume the contrary,

then ϕ is hyperbolic over R((t))(x)(
√

(tx − 1)(x2 + 1)). This is equivalent with the fact
that over R((t))(x) the form 〈1,−(tx − 1)(1 + x2)〉 is a subform of ϕ. We obtain that
−(tx− 1)(1 + x2) is represented by the form 〈1,−tx,−tx〉 over R((t))(x). Or equivalently
that 〈(tx − 1)(1 + x2), 1,−tx,−tx〉 is isotropic over R((t))(x). However viewing the lat-
ter form over the larger field R(x)((t)) and applying Springer’s theorem, (cf. [17, Chap.6,
corollary 2.6]), taking residue forms, we obtain 〈1,−(1 + x2)〉 for the first residue form
and 〈−x,−x〉 for the second residue form. Both forms are anisotropic over R(x), therefore
〈(tx − 1)(1 + x2), 1,−tx,−tx〉 is anisotropic over R(x)((t)), so also over the smaller field
R((t))(x). This contradicts our assumption. ¤

It follows that p(R((t))(C)) 6= 2. However we do not know the exact value, it is either 3
or 4.

4. The case of nonreal field

In this final section we determine the Pythagoras number of a non-real function field,
R((t))(C), of a hyperelliptic curve with good reduction over R((t)).

Theorem 4.1. Let C be a smooth hyperelliptic curve over R((t)) with good reduction and
such that R((t))(C) is non-real. Then p(R((t))(C)) = 3.

Proof: Lemma 2.5 implies that we may assume that C is defined by an affine equation of
the form y2 = −f(x), with f a sum of two squares in R[[t]][x]. It follows that −1 is a sum
of two squares in R((t))(C). Thus s(R((t))(C)) = 2 and every element of R((t))(C) is a
sum of squares. It is well known (cf. [14, chap. 7, lemma 1.3]) that since the level is finite
we have s(R((t))(C)) ≤ p(R((t))(C)) ≤ s(R((t))(C)) + 1. So to proof the theorem it is
enough to find an element in R((t))(C) which is not a sum of two squares.
Consider the algebra A = (−1, t)R((t))(C). We claim that A is non-trivial in 2Br(R((t))(C)).
This then implies that t is not equal to a sum of two squares in R((t))(C) and we are done.
To prove the claim, assume for the sake of contradiction that A is trivial in 2Br(R((t))(C)).
Then there exist x1,x2 ∈ C((t))(C) such that −1 = x2

1 − tx2
2. Let w be the extension of the

valuation v on R((t))(C), defined in the same way as in the proof of lemma 3.5. Then t is a

uniformizing element for w and the residue field of w is equal to R(x)(
√

−f(x)), a quadratic

extension of R(x). We have 0 = w(−1) = w(x2
1 − tx2

2) = min(w(x2
1), w(tx2

2)) = w(x2
1) since

w(x2
1) is even and w(tx2

2) is odd. Hence −1 = x2
1 in the residue field R(x)(

√

f(x)), or

equivalently −1 ∈ R(x)∗2 or −f(x) ∈ R(x)∗2. But this is impossible since −1 and −f(x)
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are both negative for every ordering of R(x) (the latter because C has good reduction). So
we obtained the contradiction we needed. ¤
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[21] S. V. Tikhonov and V. I. Yanchevskĭı, Pythagoras numbers of function fields of conics over hereditarily

pythagorean fields, Dokl. Nats. Akad. Nauk Belarusi 47 (2003), n◦2, 5–8.



PYTHAGORAS NUMBERS 17

Van Geel: Department of Pure Mathematics and Computer Algebra, Ghent University,

Galglaan 2, B-9000 Gent, BELGIUM

E-mail address: jvg@cage.rug.ac.be
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