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Abstract. Let p be a prime and suppose that K/F is a cyclic
extension of degree pn with group G. Let J be the FpG-module
K×/K×p of pth-power classes. In our previous paper we estab-
lished precise conditions for J to contain an indecomposable direct
summand of dimension not a power of p. At most one such sum-
mand exists, and its dimension must be pi + 1 for some 0 ≤ i < n.
We show that for all primes p and all 0 ≤ i < n, there exists a field
extension K/F with a summand of dimension pi + 1.

Let p be a prime and K/F a cyclic extension of fields of degree pn

with Galois group G. Let K× be the multiplicative group of nonzero
elements of K and J = J(K/F ) := K×/K×p be the group of pth-
power classes of K. We see that J is naturally an FpG-module. In
our previous paper [MSS] we established the decomposition of J into
indecomposables, as follows.

For i ∈ N let ξpi denote a primitive pith root of unity, and for 0 ≤
i ≤ n let Ki/F be the subextension of degree pi, with Gi = Gal(Ki/F ).
We adopt the convention that for all i, {0} is a free FpGi-module.

Theorem. [MSS, Theorems 1, 2, and 3] Suppose

• F does not contain a primitive pth root of unity or

• p = 2, n = 1, and −1 /∈ NK/F (K×),

then

J ∼=
n

⊕

i=0

Yi

where each Yi is a free FpGi-module.
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Otherwise, let

m = m(K/F ) :=

{

−∞, ξp ∈ NK/F (K×),

min{s : ξp ∈ NK/Ks
(K×)} − 1, ξp /∈ NK/F (K×).

Then

J ∼= X ⊕
n

⊕

i=0

Yi

where Yi is a free FpGi-module and X is an indecomposable FpG-module

of Fp-dimension pm + 1 if m ≥ 0 and 1 if m = −∞.

It is not difficult to show that the decomposition is unique. (See the
well-known result of Azumaya [AF, p. 144].)

From the well-known result of Albert [A] concerning embedding a
cyclic extension of degree pi to a cyclic extension of degree pi+1, we
see that ξp ∈ NK/Ks

(K×
s ) for all s ∈ {0, 1, . . . , n} if m = −∞ and

ξp ∈ NK/Ks
(K×) for all s ∈ {m + 1, . . . , n} if m > −∞.

The submodules Yi are produced naturally using norms from dif-
ferent layers of the tower of field extensions. However, the remaining
submodule X is more mysterious, and we consider a first problem con-
cerning the classification of all FpG-modules occurring as J(K/F ):

Given n ≥ 1 and d an element of the set

{1, p0 + 1, . . . , pn−1 + 1},
does there exist a cyclic extension K/F with ξp ∈ F× such that the
exceptional summand X has dimension d?

It turns out that we may answer this question in the affirmative using
a construction of cyclic division algebras due to Brauer-Rowen. We
remark that in [MS] the full realization problem, realizing all possible
isomorphism classes for the FpG-module J(K/F ), has been solved in
the case n = 1 and ξp ∈ F×.

1. Strategy and Main Theorem

Our strategy is to reformulate m(K/F ) in terms of cyclic algebras
and then to use the construction of Brauer-Rowen of suitable cyclic
algebras. We will prove the following theorem:

Theorem. Let n ∈ N and t ∈ {−∞, 0, 1, . . . , n− 1}. Then there exists

a cyclic extension K/F of degree pn with ξp ∈ F× and m(K/F ) = t.
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In two later sections we will examine the relations between m(K/F )
and the index of a certain cyclotomic cyclic algebra A defined over F .
In particular, we show by example that while these two invariants of
K/F are closely related, they are not same.

Before turning to the proof of the theorem, we recall some basic facts
about cyclic algebras. If E/F is a cyclic extension of degree r > 1, with
Galois group G = Gal(E/F ) = 〈τ〉, and b ∈ F×, then

B = (E/F, τ, b)

is a central simple algebra such that

B =
⊕

0≤j<r

ujE,

where u−1du = dτ for all d ∈ E and ur = b. Thus B is an F -algebra
of dimension r2 over F . We say that deg B := r. If B ∼= Ms(D),
the matrix algebra containing matrices of size s× s over some division
algebra D, then we set ind B =

√
dimF D. We denote the order of [B]

in the Brauer group Br(F ) by exp B. Finally, we observe the following
important connection:

[B] = 0 in Br(F ) ⇔ b ∈ NE/F (E×).

In this case, we say that B splits. For further details on cyclic algebras
we refer the reader to [P, Chapter 15] and [R, Chapter 7].

The particular cyclic algebra in which we will be most interested is
the cyclotomic cyclic algebra

A := (K/F, σ, ξp), where G = 〈σ〉.
(Recall that we assume ξp ∈ F for our extensions K/F .)

Proof. We begin with a construction of Brauer-Rowen. (See [Br] for
the original construction and see [R, Section 7.3] and [RT, Section 6]
for some nice variations of Brauer’s construction.)

First suppose t ≥ 0. Set q = pn−t and let K = Q(ξq)(µ1, . . . , µpn),
where ξq is a primitive qth root of unity and the µi are indeterminates
over Q. Observe that K has an automorphism σ of order pn fixing
Q(ξq) and permuting the µi cyclically.

Let F = K〈σ〉 be the subfield of K fixed by 〈σ〉 and, for each 1 ≤ i ≤
n, Ki = K〈σpi

〉. Then K/F is a cyclic extension of degree pn satisfying
Q(ξp) ⊂ F , and G = 〈σ〉 = Gal(K/F ). Denote by σ̄ the restriction of
σ to the subfield Kt+1.
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Let A = (K/F, σ, ξp). Now A is Brauer-equivalent to the cyclic
algebra R = (Kt+1/F, σ̄, ξq) by [P, Corollary 15.1b]. On the other
hand, the construction of Brauer-Rowen provides that R is a division
algebra of degree pt+1 and of exponent p [R, Theorem 7.3.8]. Since
[A] = [R] 6= 0, we have ξp 6∈ NK/F (K×).

For all 0 ≤ i ≤ n we have

(K/F, σ, ξp) ⊗F Ki
∼= (K/Ki, σ

pi

, ξp)

by [D, Lemma 6, p. 74]. Therefore, since Kt+1 is a maximal subfield of
R, Kt+1 splits A:

[A ⊗F Kt+1] = 0 ∈ Br(Kt+1).

Therefore ξp ∈ NK/Kt+1
(K×). Hence m(K/F ) ≤ t.

Suppose m = m(K/F ) < t. Then [A ⊗F Km+1] = 0 ∈ Br(Km+1),
whence Km+1/F splits A. But then pt+1 = ind A ≤ [Km+1 : F ] < pt+1,
a contradiction. Hence m(K/F ) = t.

Now suppose that t = −∞. Let F be a number field containing ξp.
Then the extension F c/F obtained by adjoining all pth-power roots of
unity is the cyclotomic Zp-extension of F . Let K/F be the subextension
of degree pn of F c/F . Then G = Gal(K/F ) is cyclic and K/F embeds
in a cyclic extension of F of degree pn+1. Therefore ξp ∈ NK/F (K×),
by a result of Albert [A], and hence m = −∞. ¤

Remark 1. Observe that the case n = 1 may be handled quite simply.
For the case m(K/F ) = 0, we set F = Q(ξp)(X), where X is a transcen-

dental element over Q(ξp), and K = F ( p
√

X). Write G = Gal(K/F ) as

〈σ〉 with σ( p
√

X) = ξp
p
√

X. Then the cyclic algebra A = (K/F, σ, ξp) is

a symbol algebra A =
(

X,ξp

F,ξp

)

. (See, for instance, [P, p. 284].) Further-
more,

−[A] =

[(

ξp, X

F, ξp

)]

= [(E/F, τ,X)] ∈ Br(F ),

where E = F (ξp2) and τ(ξp2) = ξpξp2 . However, it is an easy exercise
(solved in [P, p. 380]) that [(E/F, τ,X)] 6= 0. Hence A is not split, and
m = 0 as required.

The m(K/F ) = −∞ case follows as in the end of the proof of the
theorem. Consider the tower

Q(ξp) ⊂ Q(ξp2) ⊂ Q(ξp3).

By Albert’s result, if F = Q(ξp) and K = Q(ξp2), we have n = 1 and
m(K/F ) = −∞.
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Remark 2. For extensions K/F of local fields one may then deduce
that m(K/F ) ∈ {−∞, 0}, confirming [B], as follows. If [A] = 0 ∈
Br(F ), then m = −∞. Otherwise, since ind A = exp A for local fields
(see [P, Corollary 17.10b]), the local invariant inv A of A is s/p with
s ∈ N, p ∤ s. Because

inv A ⊗F E = [E : F ] inv A

(see [P, Proposition 17.10]), we obtain that inv A ⊗F K1 = 0. Hence
[A ⊗F K1] = 0 ∈ Br(K1) and m(K/F ) = 0, as desired.

2. The Invariants m and ind A

The proof of the theorem turns on the fact that for the particular
extension K/F we have ind A = pm+1. It is interesting to ask whether
this equality holds generally.

We show in this section that the answer is negative. However, we
have an inequality

ind A ≤ pm+1,

as follows. Observe that by the definition of m(K/F ),

[A ⊗F Km(K/F )+1] = 0 ∈ Br(Km(K/F )+1)

for m 6= −∞. Hence the inequality holds in the case m 6= −∞. The
statement also holds for m = −∞, since A splits if and only if m = −∞.
In fact, in this case we obtain an equality.

We show that equality does not always hold by considering the fol-
lowing example in the number field case. Recall first that for number
fields exp A = ind A. (See, for instance, [P, Theorem 18.6].) Therefore
ind A is either 1 or p since the exponent of A divides p:

[⊗pA] = [(K/F, σ, 1)] = 0 ∈ Br(F ).

Hence it is enough to produce a case when m(K/F ) > 0.

Let p = 2, c ∈ 4Z \ {0}, a = 1 + c2 /∈ Z2, and d ∈ {1,−1} such that
d(a+

√
a) is not a sum of two squares in Q2. (For example, take a = 17

and d = −1.) It is well-known that then

F = Q < K1 = Q(
√

a) < K2 = Q

(

√

d(a +
√

a)

)

is a tower of fields with K2/F cyclic of order 4. (See [JLY, p. 33].)
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Let K̂i, i = 1, 2, denote the completion of Ki with respect to any
valuation v on Ki which extends the 2-adic valuation on Q. Since
8 | a − 1, we have K̂1 = Q2 and then we may and do assume that

K̂1 = Q2 ⊂ K̂2.

Since d(a +
√

a) is not a sum of two squares in Q2, the quaternion

algebra (d(a +
√

a),−1)Q2
is nonsplit. Hence −1 /∈ NK̂2/Q2

(K̂2) and

therefore −1 /∈ NK2/K1
(K×

2 ). (See [P, p. 353].) We obtain then that
m(K/F ) = 1.

3. When A is a Division Algebra

Observe that if A is a division algebra, then indA = pn and the
chain of inequalities

pn = ind A ≤ pm+1 ≤ pn

force the equality ind A = pm+1. In this section we show how a natu-
ral construction gives additional field extensions Lw/Fw with ind A =
pm+1 = pk for every k < n. More precisely:

Proposition. Suppose that A is a division algebra. Set Fi = F (ξpi)
and Li = K(ξpi) for each i = 1, 2, . . . , n. Further set Ai = A ⊗F Fi.

Then

ind Ai = pm(Li/Fi)+1 = pn−i+1, i = 1, 2, . . . , n.

Proof. We proceed by induction on i. The base i = 1 is simply the case
K1/F1 = K/F , which follows from the observation at the beginning of
the section. Hence we assume that A is a division algebra and, for
some i ∈ {1, 2, . . . , n − 1}, we have [Li : Fi] = pn, ind Ai = pn−i+1, and
m(Li/Fi) = n − i.

We claim that ξpi+1 /∈ Li. Otherwise, since Fi(ξpi+1)/Fi is an ex-
tension of degree 1 or p, we deduce that ξpi+1 ∈ F ′

i , where F ′
i is the

subfield of Li/Fi with [Li : F ′
i ] = pi. Without loss of generality we

may assume that ξpi

pi+1 = ξp. Then ξp = NLi/F ′

i
(ξpi+1), and we obtain

m(Li/Fi) ≤ n − i − 1, a contradiction.

Hence Li/Fi and Fi+1/Fi are linearly disjoint Galois extensions. There-
fore Li+1/Fi+1 is a Galois extension of degree pn and

G = Gal(Li/Fi) ∼= Gal(Li+1/Fi+1).
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Now let σi+1 ∈ Gal(Li+1/Fi+1) such that the restriction of σi+1 to
Li is σi. (We assume that σi is already defined by induction, where
σ1 = σ.) Then by [D, Lemma 7, p. 74] we see that

Ai+1 = Ai ⊗Fi
Fi+1

∼= (Li+1/Fi+1, σi+1, ξp).

We therefore obtain from [P, Proposition 13.4v] that

ind Ai+1 ≥
ind Ai

p
= pn−i.

On the other hand, we show that pm(Li+1/Fi+1)+1 ≤ pn−i, as follows.
Since ξpi+1 ∈ F×

i+1, we have

ξp ∈ NLi+1/F ′

i+1
(L×

i+1),

where Fi+1 ⊂ F ′
i+1 ⊂ Li+1 and [Li+1 : F ′

i+1] = pi. Hence m(Li+1/Fi+1) ≤
n − i − 1.

Putting these last two equalities together with the equality of the
second section, we reach the following chain:

ind Ai+1 ≤ pm(Li+1/Fi+1)+1 ≤ pn−i ≤ ind Ai+1.

We obtain m(Li+1/Fi+1) = n − (i + 1) and pm(Li+1/Fi+1)+1 = ind Ai+1,
as desired. ¤

To include m = −∞ in the proposition, it is sufficient to continue the
induction one step further. Set Fn+1 = F (ξpn+1) and Ln+1 = K(ξpn+1).
Then again Ln+1/Fn+1 is a cyclic extension of degree pn and An+1 =
A ⊗F Fn+1 splits. We conclude that m(Ln+1/Fn+1) = −∞.
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