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Abstract. Let p be a prime and F a field containing a primitive
pth root of unity. If p > 2 assume also that F is perfect. Then
for n ∈ N, the cohomological dimension of the maximal pro-p-
quotient G of the absolute Galois group of F is n if and only if
the corestriction maps Hn(H, Fp) → Hn(G, Fp) are surjective for
all open subgroups H of index p. Using this result we derive a
surprising generalization to dimFp

Hn(H, Fp) of Schreier’s formula

for dimFp
H1(H, Fp).

For a prime p, let F (p) denote the maximal p-extension of a field F .
One of the fundamental questions in the Galois theory of p-extensions
is to discover useful interpretations of the cohomological dimension
cd(G) of the Galois group G = Gal(F (p)/F ) in terms of the arithmetic
of p-extensions of F . When cd(G) = 1, for instance, we know that G is
a free pro-p-group [S1, §3.4], and when cd(G) = 2 we have important
information on the G-module of relations in a minimal presentation [K,
§7.3].

For a fixed n > 2, however, little is known about the structure of
p-extensions when cd(G) = n. Now when n = 1 and G is finitely
generated as a pro-p-group, we have Schreier’s well-known formula

(1) h1(H) = 1 + [G : H](h1(G) − 1)

for each open subgroup H of G, where

h1(H) := dimFp
H1(H, Fp).

(See, for instance, [K, Example 6.3].)
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Observe that from basic properties of p-groups it follows that for
each open subgroup H of G there exists a chain of subgroups

G = G0 ⊃ G1 ⊃ · · · ⊃ Gk = H

such that Gi+1 is normal in Gi and [Gi : Gi+1] = p for each i =
0, 1, . . . , k− 1. Since closed subgroups of free pro-p-groups are free [S1,
Corollary 3, §I.4.2], Schreier’s formula (1) is equivalent to the seemingly
weaker statement that the formula holds for all open subgroups H of
G of index p:

(2) h1(H) = 1 + p(h1(G) − 1).

We deduce a remarkable generalization of Schreier’s formula for each
n ∈ N, as follows. Let F× denote the nonzero elements of a field F ,
and for c ∈ F×, let (c) ∈ H1(G, Fp) denote the corresponding class.
For α ∈ Hm(G, Fp) abbreviate by annn α the annihilator

annn α = {β ∈ Hn(G, Fp) | α ∪ β = 0}.
Finally, set hn(G) = dimFp

Hn(G, Fp).

Theorem 1. Suppose that ξp ∈ F and assume that F is perfect if

p > 2. Suppose that hn(G) < ∞. Let H be an open subgroup of G of

index p, with fixed field F ( p
√

a). Then

hn(H) = an−1(G,H) + p
(

hn(G) − an−1(G,H)
)

,

where an−1(G,H) is the codimension of annn−1(a):

an−1(G,H) := dimFp

(

Hn−1(G, Fp)/ annn−1(a)
)

.

The proof of Theorem 1 brings additional insight into the structure
of Schreier’s formula; in fact, it makes Schreier’s formula transparent
for any n ∈ N. In section 1, we derive several interpretations for
the statement cd(G) = n. First, we prove in Theorem 2 that if F
contains a primitive pth root of unity ξp and F is perfect if p > 2, then
cd(G) ≤ n if and only if the corestriction maps cor : Hn(H, Fp) →
Hn(G, Fp) are surjective for all open subgroups H of G of index p.
As a corollary, we show that the corresponding cohomology groups
Hn+1(H, Fp) are all free as Fp[G/H]-modules if and only if cd(G) ≤ n,
under the additional hypothesis that F = F 2+F 2 when p = 2. Finally,
we show in Theorem 3 that if G is finitely generated, then cd(G) ≤ n
if and only if a single corestriction map, from the Frattini subgroup
Φ(G) = Gp[G,G] of G, is surjective. In section 2 we prove Theorem 1.
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For basic facts about Galois cohomology and maximal p-extensions
of fields, we refer to [K] and [S1]. In particular, we work in the category
of pro-p-groups.

1. When is cd(G)= n?

As a consequence of recent results of Rost and Voevodsky on the
Bloch-Kato conjecture, we have the following interesting translation of
the statement cd(G) ≤ n for a given n ∈ N.

Theorem 2. Suppose that ξp ∈ F and assume that F is perfect if

p > 2. Then for each n ∈ N we have cd(G) ≤ n if and only if

cor : Hn(H, Fp) → Hn(G, Fp)

is surjective for every open subgroup H of G of index p.

Proof. Suppose that F satisfies the conditions of the theorem, and let
GF (p) be the absolute Galois group of F (p).

Observe that since F contains ξp, the maximal p-extension F (p) is
closed under taking pth roots and hence H1(GF (p), Fp) = {0}. By
the Bloch-Kato conjecture, proved in [V1, Theorem 7.1], the subring
of the cohomology ring H⋆(GF (p), Fp) consisting of elements of posi-
tive degree is generated by cup-products of elements in H1(GF (p), Fp) .
Hence Hn(GF (p), Fp) = {0} for n ∈ N. Then, considering the Lyndon-
Hochschild-Serre spectral sequence associated to the exact sequence

1 → GF (p) → GF → G → 1,

we have that

(3) inf : H⋆(G, Fp) → H⋆(GF , Fp)

is an isomorphism.

Now suppose that cor : Hn(H, Fp) → Hn(G, Fp) is surjective for all
open subgroups H of G of index p. Let K be the fixed field of such a
subgroup H. Then K = F ( p

√
a) for some a ∈ F×. From Voevodsky’s

theorem [V1, Proposition 5.2], modified in [LMS1, Theorem 5] and
translated to G from GF via the inflation maps (3) above, we obtain
the following exact sequence:

(4) Hn(H, Fp)
cor−→ Hn(G, Fp)

−∪(a)−−−−→ Hn+1(G, Fp)
res−→ Hn+1(H, Fp).

Therefore res : Hn+1(G, Fp) → Hn+1(H, Fp) is injective for every open
subgroup H of G of index p.
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Now consider an arbitrary element

α = (a1) ∪ · · · ∪ (an+1) ∈ Hn+1(G, Fp),

where ai ∈ F× and (ai) is the element of H1(G, Fp) associated to ai,
i = 1, 2, . . . , n + 1. Suppose that (a1) 6= 0, and set K = F ( p

√
a1) and

H = Gal(F (p)/K). We have 0 = res(α) ∈ Hn+1(H, Fp). Since res
is injective, α = 0. Again by the Bloch-Kato conjecture [V1, Theo-
rem 7.1], we know that Hn+1(G, Fp) is generated by the elements α
above. Hence Hn+1(G, Fp) = {0} and therefore cd(G) ≤ n. (See [K,
page 49].)

Conversely, if cd(G) ≤ n then from exact sequence (4) we conclude
that cor : Hn(H, Fp) → Hn(G, Fp) is surjective for open subgroups H
of G of index p. ¤

Using conditions obtained in [LMS2] for Hn(H, Fp) to be a free
Fp[G/H]-module, we obtain the following corollary. We observe the
convention that {0} is a free Fp[G/H]-module.

Corollary. Suppose that ξp ∈ F and assume that F is perfect if p > 2.
If p = 2 assume also that F = F 2 + F 2. Then for each n ∈ N, we have

that Hn+1(H, Fp) is a free Fp[G/H]-module for every open subgroup H
of G of index p if and only if cd(G) ≤ n.

Observe that the condition F = F 2 + F 2 is satisfied in particular
when F contains a primitive fourth root of unity i: for all c ∈ F×,
c = ((c + 1)/2)2 + ((c − 1)i/2)2.

Proof. Assume that F is as above, n ∈ N, and that Hn+1(H, Fp) is a
free Fp[G/H]-module for every open subgroup H of G of index p. If
p > 2, then it follows from [LMS2, Theorem 1] that the corestriction
maps cor : Hn(H, Fp) → Hn(G, Fp) are surjective for all such subgroups
H.

If p = 2, then we consider open subgroups H of index 2 with cor-
responding fixed fields K = F (

√
a). From [LMS2, Theorem 1] we

obtain that annn(a) = annn

(

(a)∪ (−1)
)

. It follows from the hypothe-
sis F = F 2+F 2 that (c)∪(−1) = 0 ∈ H2(G, F2) for each c ∈ F× and in
particular for c = a. Hence annn(a) = Hn(G, F2). But then from exact
sequence (4) above, we deduce that cor : Hn(H, F2) → Hn(G, F2) is
surjective.
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Since our analysis holds for all open subgroups H of index p, by
Theorem 2 we conclude that cd(G) ≤ n.

Assume now that cd(G) ≤ n. Then by Serre’s theorem in [S2] we find
that cd(H) ≤ n for every open subgroup H of G. Hence Hn+1(H, Fp) =
{0} which, by our convention, is a free Fp[G/H]-module, as required.

¤

Remark. When p = 2 and F 6= F 2+F 2, the statement of the corollary
may fail. Consider the case F = R. Then the only subgroup H of index
2 in G = Z/2Z is H = {1}. Then for all n ∈ N, Hn+1(H, F2) = {0}
and is free as an F2[G/H]-module. However, cd(G) = ∞.

Under the additional assumption that G is finitely generated, we
show that the surjectivity of a single corestriction map is equivalent to
cd(G) ≤ n.

Theorem 3. Suppose that ξp ∈ F and assume that F is perfect if

p > 2. Suppose that G is finitely generated. Then for each n ∈ N we

have cd(G) ≤ n if and only if

cor : Hn(Φ(G), Fp) → Hn(G, Fp)

is surjective.

Proof. Because G is finitely generated, the index [G : Φ(G)] is finite,
and we may consider a suitable chain of open subgroups

G = G0 ⊃ G1 ⊃ · · · ⊃ Gk = Φ(G)

such that [Gi : Gi+1] = p for each i = 0, 1, . . . , k − 1.

By Serre’s theorem in [S2], cd(H) = cd(G) for every open subgroup
H of G. Hence if cd(G) ≤ n we may iteratively apply Theorem 2 to
the chain of open subgroups to conclude that

cor : Hn(Φ(G), Fp) → Hn(G, Fp)

is surjective.

Assume now that cor : Hn(Φ(G), Fp) → Hn(G, Fp) is surjective. For
each open subgroup H of G of index p we have a commutative diagram
of corestriction maps

Hn(Φ(G), Fp) //

''P

P

P

P

P

P

P

P

P

P

P

P

Hn(H, Fp)

²²

Hn(G, Fp)
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since Φ(G) ⊂ H. We obtain that cor : Hn(H, Fp) → Hn(G, Fp) is
surjective, and by Theorem 2 we deduce that cd(G) ≤ n, as required.

¤

2. Schreier’s Formula for Hn

We now prove Theorem 1. Suppose that cd(G) = n, and let H be an
open subgroup of G of index p. By Theorem 2, the corestriction map
cor : Hn(H, Fp) → Hn(G, Fp) is surjective.

Let K = F ( p
√

a) be the fixed field of H. Since Hn+1(G, Fp) = {0} by
hypothesis, we conclude that annn−1

(

(a)∪ (ξp)
)

= Hn−1(G, Fp). Then
by [LMS1, Theorem 1], we obtain the decomposition

Hn(H, Fp) = X ⊕ Y,

where X is a trivial Fp[G/H]-module and Y is a free Fp[G/H]-module.
Moreover

x := rankFp
X = dimFp

Hn−1(G, Fp)/ annn−1(a) = an−1(G,H), and

y := rank Y = dimFp
Hn(G, Fp)/(a) ∪ Hn−1(G, Fp).

Therefore hn(H) = dimFp
Hn(H, Fp) = x + py.

Now, considering the exact sequence

0 → Hn−1(G, Fp)

annn−1(a)

−∪(a)−−−−→ Hn(G, Fp) →
Hn(G, Fp)

(a) ∪ Hn−1(G, Fp)
→ 0,

we see that dimFp
Hn(H, Fp) is equal to the sum of the dimension x of

the kernel and p times the dimension y of the cokernel, and the theorem
follows.

Observe that we have established a more general formula than the
formula displayed in Theorem 1, since we have not assumed that hn(G)
is finite.

When n = 1, annn−1(a) = {0} so that an−1(G,H) = 1. Therefore
when G is finitely generated we recover Schreier’s formula (2):

h1(H) = 1 + p(h1(G) − 1).
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