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This is a report on the joint work with S. Nikolenko and N. Semenov.

Let k be a field. For a smooth projective variety X over k consider its
Chow motive M(X). One of the naturally arising problems in the theory
of Chow motives is to determine whether the motive of a given variety is
decomposable. In what follows we explain the machinery of proving such
results for projective homogeneous varieties of type F4.

The main motivation for our work was the result of N. Karpenko where
he gave a shortened construction of a Rost motive for a norm quadric [Ka98].
In our talk we try to give a ’shortened’ construction of a generalized Rost
motive for a variety that corresponds to a symbol (3, 3).

Before formulating the results we need to introduce the notion of a Chow
motive and a projective homogeneous variety of type F4.

Chow motives. We define the category of Chow motives (over k) follow-
ing [Ma68]. Fisrt, we define the category of correspondences (over k). Its
objects are smooth projective varieties over k. For morphisms, called cor-
respondences, we set Mor(X, Y ) := CHdim X(X × Y ). The pseudo-abelian
completion of the category of correspondences is called the category of Chow
motives and is denoted by Mk. The objects of Mk are pairs (X, p), where
X is a smooth projective variety and p is a projector, that is, p ◦ p = p. The
motive (X, id) will be denoted byM(X). By the constructionMk is a tensor
additive self-dual category. Moreover, the Chow functor CH : Vark → Z-Ab
(to the category of Z-graded abelian groups) factors through Mk, i.e, one
has

Vark
CH //

Γ ##GGGGGGGG Z-Ab

Mk

R

;;wwwwwwwww

where Γ : f 7→ Γf is the graph and R : (X, p) 7→ im(p) is the realization
functor.
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Homogeneous varieties of type F4. It is well known that the classi-
fication of algebraic groups of type F4 is equivalent to the classification of
Albert algebras which are 27-dimensional exceptional simple Jordan algebras
([PR94] and [Inv]). All Albert algebras can be obtained from one of the two
Tits constructions. We restrict ourselves to those obtained by the first Tits
process. Recall that an Albert algebra A obtained by the first Tits construc-
tion is produced from a central simple algebra of degree 3. This means that
A is either completely split (reduced) or a division algebra. In our talk we
restrict ourselves to the latter case, i.e., to the case of an anisotropic group
G of type F4.

Consider the Dynkin diagram corresponding to the group G.

◦
1

◦
2

< ◦
3

◦
4

Let Pi, i = 1, 4 be a maximal parabolic subgroup of G that is generated
by the first (last) three vertices of the Dynkin diagram. The projective
homogeneous varieties X1 = G/P1 and X2 = G/P4 will be the main objects
of our investigations. Observe that dim X1 = dim X2 = 15 and they are not
isomorphic to each other as well as they are not isomorphic to any variety of
classical type.

The main result The goal of the present talk is to prove the following

Theorem 1. Let k be a field of characteristic different from 2 and 3. Let X =
G/P be a projective homogeneous variety over k, where G is an anisotropic
group of type F4 obtained by the first Tits process and P its maximal parabolic
subgroup corresponding to the first (last) three vertices of the respective Dynkin
diagram. Then

(i) the (integral) Chow motive of X decomposes as

M(X) ∼= R⊕R12 ⊕R(3)⊕Rt ⊕Rt
12 ⊕Rt(3),

where the motive R = (X, p) is the (integral) generalized Rost motive,
i.e., over the separable closure k′ of k it splits as the direct sum of
Lefschets motives Z⊕Z(4)⊕Z(8), the motive Rt = (X, pt) denotes its
transpose and the motive R12 is isomorphic over k′ to the direct sum
R(1)⊕R(2)⊕Rt(1)⊕Rt(2)
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(ii) the Chow motive of X with Z/3-coefficients decomposes as

M(X, Z/3) ∼=
3⊕

i=0

(R(i)⊕Rt(i)).

The following result obtained during the proof of 1 represents independent
interest (in view of [Bo03])

Theorem 2. Under the hypotheses of theorem 1 let X1 = G/P1 and X2 =
G/P4 be two projective homogeneous varieties corresponding to the maximal
parabolic subgroups P1 and P4 generated by the first (last) three vertices of the
Dynkin diagram respectively. Then the motives of X1 and X2 are isomorphic.

Remark 3. Note that the variety X is a norm variety for the symbol
{a1, a2, a3} ∈ KM

3 (k)/3 (it follows from the existance of the Rost-Serre in-
variant g3 for an Albert algebra). And the part (ii) of the Theorem follows
from Voevodsky’s results [Vo03, S. 5].

Remark 4. Observe that the variety X splits completely over its function
field (generically split). For anisotropic groups of classical types the examples
(see [Ro98, Prop. 19]) of generically split projective homogeneous varieties
that have decomposable motives are Pfister quadrics and their neighbours
(those are norm varieties for symbols mod 2). For exceptional groups the
’minimal’ example was provided by J.-P. Bonnet [Bo03]. He considered the
Fano variety G2/P2 (an anisotropic group of type G2 modulo the maximal
parabolic subgroup) and proved that the motives of G2/P2 and G2/P1 are
isomorphic. Since the latter variety is a 5-dimensional quadric which has a
decomposable motive, so is G2/P2. The examples of varieties X1 and X2 that
we provide can not be reduced to the classical ones.

Remark 5. Our proof works not only for projective homogeneous varieties
of type F4. Applying the similar arguments to Pfister quadrics and their
neighbours one obtains the well-known decompositions into Rost motives.
For the groups of type G2 one immediately obtains the motivic decomposition
of the Fano variety G2/P2 together with the motivic isomorphism found by
J.-P. Bonnet.

We start with the following
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Definition 6. Let X be a projective variety over a field k of dimension n.
Let k′ be the separable closure of the field k. Consider the scalar extension
X ′ = X×k k′. We say a cycle J ∈ CH(X ′) is rational if it lies in the image of
the pull-back homomorphism CH(X) → CH(X ′). For instance, there is an
obvious rational cycle ∆X′ on CHn(X ′ × X ′) that is given by the diagonal
class. Clearly, any linear combinations, intersections and correspondence
products of rational cycles are rational.

The reduction to a separably closed field. The basic idea of the proof
is to produce several rational projectors pi (idempotents) in the ring of endo-
morphisms EndM(X ′

1) = CH15(X ′
1×X ′

1) over the separable closure k′ of the
field k with the property

∑
i pi = ∆X1 . Then by Rost Nilpotence Theorem

we can lift those idempotents to EndM(X) and hence, obtain the desired
decomposition. So from this point on we work over the separably closed field
k′ = k.

The properties we use. In order to produce such projectors we use the
following properties of the varieties X1 and X2:

(i) Pic(Xi) is generated by rational cycles;

(ii) X1 and X2 split completely over the function fields of the each other
(generically split);

(iii) The Chow group CH(Xi) has a rational basis element in each codimen-
sion ≤ [dim Xi/2] = 7.

Observe that the first property holds by the result of Merkurjev and
Tignol [MT95] that provides an exact sequence relating Pic(X) and Pic(X ′)
by means of Tits algebras. Since any group of type F4 is adjoint and simply-
connected, these algebras are trivial, and one obtains Pic(X) = Pic(X ′).

The second property holds since our group is obtained by the first Tits
process and, hence, there are only two Tits diagrams (completely split or
anisotropic).

The last property holds by Pieri formulas (when computing CH(G/P ))
and the fact that any cycle times 3 is rational (our varieties split by a cubic
field extension).

Remark 7. Note that the same properties hold for Pfister quadrics and for
projective homogeneous varieties of type G2.
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The tools we use To perform all the computations we use the following
tools

(a) The generic point diagram

Let X and Y be projective homogeneous varieties over k that split com-
pletely over the function fields k(Y ) and k(X) respectively. Consider
the following pull-back diagram

CH(X × Y )

f

��

g // CH(X ′ × Y ′)

f ′

��
CH(Xk(Y ))

= // CH(X ′
k′(Y ′))

where the vertical arrows are surjective. Now take any cycle α ∈
CHi(X ′×Y ′), i ≤ dim X. Let β = (g◦f)−1(f ′(α)). Then f ′(β) = f ′(α)
and β is rational. Hence, β = α+J , where J ∈ kerf ′, and we conclude
that α + J ∈ CHi(X ′ × Y ′) is rational.

(b) The Hasse diagram for G/P

(c) The computer program that computes the ring structure of CH(G/P )
for a split group G and a parabolic subgroup P

The proof Consider the part (codimensions i = 0 . . . 8) of the Hasse di-
agram for the projective homogeneous variety X = G/Pi, i = 1, 4. Denote
by hi, i = 0 . . . 8, and gi, i = 0 . . . 4, the respective basis elements of Chow
groups CHi(X).

◦
g4

◦
g5

◦
g6

◦
g7

◦
g8

◦
1

◦
h1

◦
h2

◦
h3

~~~~~~~

@@
@@

@@
@

◦
h4

◦
h5

◦
h6

◦
h7

◦
h8

By property (i) the generator h1 is rational. Hence all its powers h2 = h2
1,

h3 = h3
1 are rational as well. By the generic point diagram (a) and property
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(ii) we obtain that the cycle h4 × 1 ± 1 × g4 is rational. Hence, its square
r = (h4 × 1 ± 1 × g4)

2 is rational as well. Observe that r ∈ CH8(X). Now
by property (iii) we have rational cycles ri in each codimension i = 0 . . . 7.
Multiplying r by ri × r7−i for i = 4, 5, 6, 7 we obtain some rational cycles in
CH15(X ×X). It turns out that taking its linear combinations one obtains
the desired projectors p0, p12, p3.

Applying the similar procedure to the product X1 ×X2 one obtains the
desired motivic isomorphism.
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