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Abstract

We provide an explicit decomposition of the motives of two an-
isotropic projective homogeneous varieties of type F4. In particular,
we provide an explicit construction of a generalized Rost motive for a
norm variety that corresponds to a symbol (3, 3).

We also establish a motivic isomorphism between two projective
homogeneous varieties of type F4. We provide an explicit construction
of this isomorphism.

All our proofs work for Chow motives with integral coefficients.

1 Introduction

The main motivation for our work was the result of N. Karpenko where he
gave a shortened construction of a Rost motive for a norm quadric [Ka98].
In the present paper we provide a shortened and explicit construction of
a generalized Rost motive for a norm variety that corresponds to a symbol
(3, 3). The latter is given by the Rost–Serre invariant g3 for an Albert algebra
and the respective norm variety is a projective homogeneous variety of type
F4. Namely, we prove the following

1.1 Theorem. Let k be a field of characteristic different from 2 and 3.
Let X = G/P be a projective homogeneous variety over k, where G is an

∗MSC2000: 14C15, 57T15 Keywords: anisotropic homogeneous variety, Rost motive,
exceptional algebraic group
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anisotropic group of type F4 obtained by the first Tits process and P its
maximal parabolic subgroup corresponding to the first (last) three vertices of
the respective Dynkin diagram. Then

(i) the (integral) Chow motive of X decomposes as

M(X) ∼= R ⊕ R12 ⊕ R(3) ⊕ Rt ⊕ Rt
12 ⊕ Rt(3),

where the motive R = (X, p) is the (integral) generalized Rost motive,
i.e., over the separable closure k′ of k it splits as the direct sum of
Lefschetz motives Z⊕Z(4)⊕Z(8), the motive Rt = (X, pt) denotes its
transpose and the motive R12 is isomorphic over k′ to the direct sum
R(1) ⊕ R(2);

(ii) the Chow motive of X with Z/3-coefficients decomposes as

M(X, Z/3) ∼=

3
⊕

i=0

(R(i) ⊕ Rt(i)).

1.2. Observe that the part (ii) of the Theorem is the consequence of Vo-
evodsky’s results [Vo03, § 5], where the generalized Rost motive with Z/p-
coefficients (p is any prime) was constructed.

By the next result, we provide the first known “purely exceptional” ex-
ample of two non-isomorphic varieties with isomorphic motives. Recall that
the similar result for groups of type G2 obtained in [Bo03] provides a motivic
isomorphism between quadric and Fano variety.

1.3 Theorem. Under the hypotheses of theorem 1.1 let X1 and X2 be two
projective homogeneous varieties corresponding to the maximal parabolic sub-
groups generated by the last (first) three vertices of the Dynkin diagram re-
spectively. Then the motives of X1 and X2 are isomorphic.

1.4. Our proof is quite elementary. It uses well-known facts concerning linear
algebraic groups and projective homogeneous varieties, a computer program
that computes the Chow ring CH(G/P ) for a split group G, Rost Nilpotence
Theorem and several simple procedures that allow to produce rational cycles
on CH(G/P × G/P ). Moreover, the proof works not only for projective ho-
mogeneous varieties of type F4. Applying the similar arguments to Pfister
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quadrics and their maximal neighbors one obtains the well-known decom-
positions into Rost motives [Ro98]. For exceptional groups of type G2 one
immediately obtains the motivic decomposition of the variety G2/P2 together
with the motivic isomorphism found by J.-P. Bonnet [Bo03].

1.5. The paper is organized as follows. In Section 2 we provide background
information on Chow motives and rational cycles. Section 3 is devoted to
computational matters of Chow rings. Namely, we introduce Pieri and Gi-
ambelli formulae and discuss their relationship with Hasse diagrams. In
Section 4 we apply the formulae introduced in Section 3 to projective homo-
geneous varieties X1 and X2 of type F4. In Section 5 we prove Theorem 1.1.
Section 6 is devoted to the proof of Theorem 1.3. In Appendix I we provide
the complete multiplication tables for Chow rings of X1 and X2 obtained by
using the algorithm described in Appendix II.

2 Rational cycles on projective homogeneous

varieties

2.1. Let k be a field and Vark be a category of smooth projective varieties
over k. We define the category of Chow motives (over k) following [Ma68].

First, we define the category of correspondences (over k) denoted by Cork.
Its objects are smooth projective varieties over k. For morphisms, called
correspondences, we set Mor(X,Y ) := CHdim X(X × Y ). For any two corre-
spondences α ∈ CH(X × Y ) and β ∈ CH(Y × Z) we define the composition
β ◦ α ∈ CH(X × Z)

β ◦ α = pr 13∗(pr
∗
12(α) · pr ∗

23(β)), (1)

where pr ij denotes the projection on the i-th and j-th factors of X × Y ×Z
respectively and pr ij∗

, pr ∗
ij denote the induced push-forwards and pull-backs

for Chow groups.
The pseudo-abelian completion of Cork is called the category of Chow

motives and is denoted by Mk. The objects of Mk are pairs (X, p), where
X is a smooth projective variety and p is a projector, that is, p ◦ p = p. The
motive (X, id) will be denoted by M(X).

2.2. By the construction Mk is a tensor additive category with self-duality.
given by the transposition of cycles α 7→ αt. Moreover, the Chow functor
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CH : Vark → Z-Ab (to the category of Z-graded abelian groups) factors
through Mk, that is, one has

Vark
CH //

Γ ##GGGGGGGG Z-Ab

Mk

R

;;wwwwwwwww

where Γ : f 7→ Γf is the graph and R : (X, p) 7→ im(p∗) is the realization.

2.3. Observe that the composition product ◦ induces the ring structure on
the abelian group CHdim X(X × X). The unit element of this ring is the
class of the diagonal map ∆X such that ∆X ◦ α = α ◦ ∆X = α for all
α ∈ CHdim X(X × X).

2.4. Let G be a split linear algebraic group over k. Let X be a projective
G-homogeneous variety, i.e., X = G/P , where P is a parabolic subgroup of
G. The abelian group structure of CH(X), as well as its ring structure, is
well-known. Namely, X has a cellular filtration and the base of this filtration
generates the free abelian group CH(X) (see [Ka01]). Note that the product
of two projective homogeneous varieties X×Y has a cellular filtration as well,
and CH∗(X ×Y ) ∼= CH∗(X)⊗CH∗(Y ) as graded rings. The correspondence
product of two cycles α = fα×gα ∈ CH(X×Y ) and β = fβ×gβ ∈ CH(Y ×X)
is given by (cf. [Bo03, Lem. 5])

(fβ × gβ) ◦ (fα × gα) = deg(gα · fβ)(fα × gβ), (2)

where deg : CH(Y ) → CH({pt}) = Z is the degree map.

2.5. Let X be a projective variety of dimension n over a field k. Let k′ be the
separable closure of the field k. Consider the scalar extension X ′ = X ×k k′.
We say a cycle J ∈ CH(X ′) is rational if it lies in the image of the pull-back
homomorphism CH(X) → CH(X ′). For instance, there is an obvious rational
cycle ∆X′ on CHn(X ′ ×X ′) that is given by the diagonal class. Clearly, any
linear combinations, intersections and correspondence products of rational
cycles are rational.

2.6. Several techniques allow to produce rational cycles (cf. [Ka04, Prop. 3.3]
for the case of quadrics). We shall use the following:
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(i) Consider a variety Y and a morphism X → Y such that X ′ = Y ′×Y X,
where Y ′ = Y ×k k′. Then any rational cycle on CH(Y ′) gives rise to a
rational cycle on CH(X ′) by the induced pull-back CH(Y ′) → CH(X ′).

(ii) Consider a variety Y and a projective morphism Y → X such that Y ′ =
X ′ ×X Y . Then any rational cycle on CH(Y ′) gives rise to a rational
cycle on CH(X ′) by the induced push-forward CH(Y ′) → CH(X ′).

(iii) Let X and Y be projective homogeneous varieties over k that split com-
pletely over the function fields k(Y ) and k(X) respectively. Consider
the following pull-back diagram

CHi(X × Y )

f

²²

g
// CHi(X ′ × Y ′)

f ′

²²

CHi(Xk(Y ))
= // CHi(X ′

k′(Y ′))

where the vertical arrows are surjective by [IK00, §5]. Now take any
cycle α ∈ CHi(X ′ × Y ′), i ≤ dim X. Let β = g(f−1(f ′(α))). Then
f ′(β) = f ′(α) and β is rational. Hence, β = α + J , where J ∈ kerf ′,
and we conclude that α + J ∈ CHi(X ′ × Y ′) is rational.

2.7. We will use the following fact (see [CGM, Cor. 8.3]) that follows from
the Rost Nilpotence Theorem. Let p′ be a non-trivial rational projector on
CHn(X ′ × X ′), i.e., p′ ◦ p′ = p′. Then there exists a non-trivial projector p
on CHn(X ×X) such that p×k k′ = p′. Hence, the existence of a non-trivial
rational projector p′ on CHn(X ′ ×X ′) gives rise to the decomposition of the
Chow motive of X

M(X) ∼= (X, p) ⊕ (X, 1 − p)

We shall find such a projector in the case of an “exceptional” projective
homogeneous variety “of type F4”.

3 Hasse diagrams and Chow rings

3.1. To each projective homogeneous variety X we may associate an oriented
labeled graph H called Hasse diagram. It is known that the ring structure of
CH(X) is determined by H. In the present section we remind several facts
concerning relations between Hasse diagrams and Chow rings. For a precise
reference on this account see [De74], [Hi82a] and [Ko91].
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3.2. Let G be a split simple algebraic group defined over a field k. We fix
a maximal split torus T in G and a Borel subgroup B of G containing T
and defined over k. Denote by Φ the root system of G, by Π the set of
simple roots of Φ corresponding to B, by W the Weyl group, and by S the
corresponding set of fundamental reflections.

Let P = PΘ be a (standard) parabolic subgroup corresponding to a subset
Θ ⊂ Π, i.e., P = BWΘB, where WΘ = 〈sθ | θ ∈ Θ〉. Denote

WΘ = {w ∈ W | ∀ s ∈ Θ l(ws) = l(w) + 1},

where l is the length function. The pairing

WΘ × WΘ → W (w, v) 7→ wv

is a bijection and l(wv) = l(w)+ l(v). It is easy to see that WΘ consists of all
representatives in the cosets W/WΘ which have minimal length. Sometimes
it is also convenient to consider the set of all representatives of maximal
length. We shall denote this set as ΘW . Observe that there is a bijection
WΘ → ΘW given by v 7→ vwθ, where wθ is the longest element of WΘ. The
longest element of WΘ corresponds to the longest element w0 of the Weyl
group.

3.3. To a subset Θ of the finite set Π we associate an oriented labeled graph,
which we call a Hasse diagram and denote by HW (Θ). This graph is con-
structed as follows. The vertices of this graph are the elements of WΘ.
There is an edge from a vertex w to a vertex w′ with a label i if and only if
l(w) < l(w′) and w′ = wsi. The example of such a graph is provided in 4.4.
Observe that the diagram HW (∅) coincides with the Cayley graph associated
to the pair (W,S).

3.4 Lemma. The assignment HW : Θ 7→ HW (Θ) is a contravariant functor
from the category of subsets of the finite set Π (with embeddings as mor-
phisms) to the category of oriented graphs.

Proof. It is enough to embed the diagram HW (Θ) to the diagram HW (∅).
We do this as follows. We identify the vertices of HW (Θ) with the subset of
vertices of HW (∅) by means of the bijection WΘ → ΘW . Then the edge from
w to w′ of ΘW ⊂ W has a label i if and only if l(w) < l(w′) and w′ = siw (as
elements of W ). Clearly, the obtained graph will coincide with HW (Θ).
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3.5. Now consider the Chow ring of a projective homogeneous variety G/PΘ.
It is well known that CH(G/PΘ) is a free abelian group with a basis given
by the varieties [Xw] that correspond to the vertices w of the Hasse diagram
HW (Θ). The degree of the basis element [Xw] corresponds to the minimal
number of edges needed to connect the respective vertex w with wθ (which
is the longest one). The multiplicative structure of CH(G/PΘ) depends only
on the root system of G and the diagram HW (Θ).

3.6 Lemma. The contravariant functor CH: Θ 7→ CH(G/PΘ) factors through
the category of Hasse diagrams HW , i.e., the pull-back (ring inclusion)

CH(G/PΘ′) →֒ CH(G/PΘ)

arising from the embedding Θ ⊂ Θ′ is induced by the embedding of the re-
spective Hasse diagrams HW (Θ′) ⊂ HW (Θ).

3.7 Corollary. Let B be a Borel subgroup of G and P its (standard) parabolic
subgroup. Then CH(G/P ) is a subring of CH(G/B). The generators of
CH(G/P ) are [Xw], where w ∈ ΘW ⊂ W . The cycle [Xw] in CH(G/P ) has
the codimension l(w0) − l(w).

Proof. Apply the lemma to the case B = P∅ and P = PΘ′ .

Hence, in order to compute CH(G/P ) it is enough to compute CH(X),
where X = G/B is the variety of complete flags. The following results
provide tools to perform such computations.

3.8. In order to multiply two basis elements h and g of CH(G/P ) such that
deg h + deg g = dim G/P we use the following formula (see [Ko91, 1.4]):

[Xw] · [Xw′ ] = δw,w0w′wθ
· [pt].

3.9 (Pieri formula). In order to multiply two basis elements of CH(X) one
of which is of codimension 1 we use the following formula (see [De74, Cor. 2
of 4.4]):

[Xw0sα
][Xw] =

∑

β∈Φ+, l(wsβ)=l(w)−1

〈β∨, ωα〉[Xwsβ
],

where the sum runs through the set of positive roots β ∈ Φ+, sα denotes
the simple reflection corresponding to α and ω̄α is the fundamental weight
corresponding to α. Here [Xw0sα

] is the element of codimension 1.
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3.10 (Giambelli formula). Let P = P (Φ) be the weight space. We denote
as ω̄1, . . . ω̄l the basis of P consisting of fundamental weights. The symmetric
algebra S∗(P ) is isomorphic to Z[ω̄1, . . . ω̄l]. The Weyl group W acts on P ,
hence, on S∗(P ). Namely, for a simple root αi,

wαi
(ω̄j) =

{

ω̄i − αi, i = j,

ω̄j, otherwise.

We define a linear map c : S∗(P ) → CH∗(G/B) as follows. For a homoge-
neous u ∈ Z[ω̄1, . . . , ω̄l]

c(u) =
∑

w∈W, l(w)=deg(u)

∆w(u)[Xw0w],

where for w = wα1
. . . wαk

we denote by ∆w the composition of derivations
∆α1

◦ . . . ◦ ∆αk
and the derivation ∆αi

: S∗(P ) → S∗−1(P ) is defined by

∆αi
(u) =

u−wαi
(u)

αi
. Then (see [Hi82a, ch. IV, 2.4])

[Xw] = c(∆w−1(
d

|W |
)),

where d is the product of all positive roots in S∗(P ). In other words, the
element ∆w−1( d

|W |
) ∈ c−1([Xw]).

Hence, in order to multiply two basis elements h, g ∈ CH(X) take their
preimages under the map c and multiply them in S∗(P ) = Z[ω̄1, . . . ω̄l]. Then
apply c to their product.

4 Projective homogeneous varieties of type

F4

4.1. From now on, we assume that the characteristics of the base field k is
not equal to 2 or 3. In the present section we remind several well-known
facts concerning Albert algebras, groups of type F4 and respective projective
homogeneous varieties (see [PR94], [Inv], [Gar97]). At the end we provide
partial computations of Chow rings of these varieties.

We start with the following observation concerning the Picard group of a
projective homogeneous variety of type F4
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4.2 Lemma. Let G be an anisotropic group of type F4 over a field k and P
be its maximal parabolic subgroup. Let X = G/P be a respective projective
homogeneous variety and X ′ = X×kk′ be its scalar extension to the separable
closure k′. Then the Picard group Pic(X ′) is a free abelian group of rank 1
with a rational generator.

Proof. Since P is maximal, Pic(X ′) is a free abelian group of rank 1. We use
the following exact sequence (see [Ar82] and [MT95, 2.3]):

0 −→ Pic X −→ (Pic X ′)Γ αX−−→ Br(k),

where Γ = Gal(k′/k) is the absolute Galois group and Br(k) the Brauer
group of k. The map αX is explicitly described in [MT95] in terms of Tits
classes. Since groups of type F4 are adjoint and simply-connected, their Tits
classes are trivial and so is αX . Since Γ acts trivially on Pic(X ′) and the
image of αX is trivial, we have Pic(X) ≃ Pic(X ′).

4.3. It is well known that the classification of algebraic groups of type F4 is
equivalent to the classification of Albert algebras (those are 27-dimensional
exceptional simple Jordan algebras). All Albert algebras can be obtained
from one of the two Tits constructions.

An Albert algebra A obtained by the first Tits construction is produced
from a central simple algebra of degree 3. By using the Rost-Serre invariant
g3 (if the input central simple algebra is split, then g3 = 0) one can show that
for the respective group G = Aut(A) only two Tits diagrams ([Ti66, Table
II]) are allowed, namely the completely split case and the anisotropic case.
This means that

(i) anisotropic G splits completely by a cubic field extension;

(ii) for each maximal parabolic subgroup Pi, i = 1, 2, 3, 4, the respective
projective homogeneous varieties X = G/Pi split completely over the
function field k(G/Pj), j = 1, 2, 3, 4.

4.4. From this point on we consider a split group G of type F4 obtained
by the first Tits process. Let X1 = G/P1 and X2 = G/P4 be projective
homogeneous varieties, corresponding to maximal parabolic subgroups P1

and P4 generated by the last {2, 3, 4} and the first {1, 2, 3} three vertices of
the Dynkin diagram

◦
1

◦
2

> ◦
3

◦
4
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Varieties X1 and X2 are not isomorphic and have the dimension 15. We
provide the Hasse diagrams (graphs) for X1:

◦ 1 //◦ 2
@@

@@

◦
@@

@@ ◦
@@

@@

2 ~~~~ ◦
@@

@@ ◦
@@

@@

◦
1
◦

2
◦

3
◦

~~~~

2
@@

@@ ◦
~~~~

@@
@@ ◦

2
//◦

~~~~

3
@@

@@ ◦
~~~~

@@
@@ ◦

3
◦

2
◦

1
◦

◦
~~~~

1
@@

@@ ◦ 3

~~~~ ◦
~~~~

4
@@

@@ ◦ 2

~~~~

◦ 4

~~~~ ◦ 1

~~~~

and X2:

◦ 4 //◦ 3
@@

@@

◦
@@

@@ ◦
@@

@@

3 ~~~~ ◦
@@

@@ ◦
@@

@@

◦
4
◦

3
◦

2
◦

~~~~

3
@@

@@ ◦
~~~~

@@
@@ ◦

3
//◦

~~~~

2
@@

@@ ◦
~~~~

@@
@@ ◦

2
◦

3
◦

4
◦

◦
~~~~

4
@@

@@ ◦ 2

~~~~ ◦
~~~~

1
@@

@@ ◦ 3

~~~~

◦ 1

~~~~ ◦ 4

~~~~

We draw the diagrams in such a way that the labels on the opposite sides of
a parallelogram are equal and in that case we omit all labels but one.

Recall that (see 3.5) the vertices of this graph correspond to the basis
elements of the Chow group CH(X1). The leftmost vertex is the unit class
1 = [Xw0

] and the rightmost one is the class of a 0-cycle of degree 1.

4.5. We denote the basis elements of the respective Chow groups as follows

CHi(X1) =

{

〈hi
1〉, i = 0 . . . 3, 12 . . . 15,

〈hi
1, g

i
1〉, i = 4 . . . 11.

CHi(X2) =

{

〈hi
2〉, i = 0 . . . 3, 12 . . . 15,

〈hi
2, g

i
2〉, i = 4 . . . 11.

The generators hi correspond to the upper vertices of the respective Hasse
diagrams, and gi to the lower ones (if the corresponding rank is 2).

4.6. Applying 3.8 we immediately obtain the following partial multiplication
table

hs
kg

15−s
k = 0, hs

kh
15−s
k = gs

kg
15−s
k = h15

k ,

where k = 1, 2, for all s.
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4.7. By Pieri formula 3.9 we obtain the following partial multiplication tables
for CH(X1):

h1
1h

1
1 = h2

1, h1
1h

2
1 = 2h3

1, h1
1h

3
1 = 2h4

1 + g4
1, h1

1h
4
1 = h5

1,

h1
1g

4
1 = 2h5

1 + g5
1, h1

1h
5
1 = 2h6

1 + g6
1, h1

1g
5
1 = 2g6

1, h1
1h

6
1 = h7

1 + g7
1,

h1
1g

6
1 = 2g7

1, h1
1h

7
1 = 2h8

1 + g8
1, h1

1g
7
1 = h8

1 + 2g8
1, h1

1h
8
1 = h9

1,

h1
1g

8
1 = h9

1 + 2g9
1, h1

1h
9
1 = 2h10

1 , h1
1g

9
1 = h10

1 + 2g10
1 , h1

1h
10
1 = h11

1 + 2g11
1 ,

h1
1g

10
1 = g11

1 , h1
1h

11
1 = 2h12

1 , h1
1g

11
1 = h12

1 , h1
1h

12
1 = 2h13

1 ,

h1
1h

13
1 = h14

1 , h1
1h

14
1 = h15

1 .

for CH(X2):

h1
2h

1
2 = h2

2, h1
2h

2
2 = h3

2, h1
2h

3
2 = h4

2 + g4
2, h1

2h
4
2 = h5

2,

h1
2g

4
2 = h5

2 + g5
2, h1

2h
5
2 = h6

2 + g6
2, h1

2g
5
2 = g6

2, h1
2h

6
2 = h7

2 + g7
2,

h1
2g

6
2 = g7

2, h1
2h

7
2 = 2h8

2 + g8
2, h1

2g
7
2 = h8

2 + 2g8
2, h1

2h
8
2 = h9

2,

h1
2g

8
2 = h9

2 + g9
2, h1

2h
9
2 = h10

2 , h1
2g

9
2 = h10

2 + g10
2 , h1

2h
10
2 = h11

2 + g11
2 ,

h1
2g

10
2 = g11

2 , h1
2h

11
2 = h12

2 , h1
2g

11
2 = h12

2 , h1
2h

12
2 = h13

2 ,

h1
2h

13
2 = h14

2 , h1
2h

14
2 = h15

2 .

4.8. Observe that the multiplication tables 4.7 can be visualized by means of
the Hasse diagrams. Namely, for the variety X1 consider the following graph
which is obtained from the respective Hasse diagram by adding a few more
edges and erasing all the labels:

◦

;;
;;

;;
;; ◦

@@
@@

¤¤
¤¤

¤¤
¤¤

◦
@@

@@ ◦
@@

@@

~~~~ ◦
@@

@@
@@

@@ ◦
@@

@@
@@

@@

◦ ◦ ◦ ◦
~~~~
~~~~

@@
@@ ◦

~~~~
~~~~

@@
@@ ◦ ◦

~~~~

@@
@@
@@

@@ ◦
~~~~

@@
@@
@@

@@ ◦ ◦ ◦ ◦

◦
~~~~
~~~~

@@
@@ ◦

~~~~
~~~~ ◦

~~~~

@@
@@
@@

@@ ◦
~~~~

◦
~~~~
~~~~ ◦

~~~~

and for X2:

◦

;;
;;

;;
;; ◦

@@
@@

¤¤
¤¤

¤¤
¤¤

◦
@@

@@ ◦
@@

@@

~~~~ ◦
@@

@@ ◦
@@

@@

◦ ◦ ◦ ◦
~~~~

@@
@@ ◦

~~~~

@@
@@ ◦ ◦

~~~~

@@
@@ ◦

~~~~

@@
@@ ◦ ◦ ◦ ◦

◦
~~~~

@@
@@ ◦

~~~~ ◦
~~~~

@@
@@ ◦

~~~~

◦
~~~~ ◦

~~~~
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The multiplication rules can be restored from this graph as follows: for a
vertex u (that corresponds to a basis element of the Chow group) we set

h1
i u =

∑

u→v

v,

where the sum runs through all the edges going from u to the right (cf.
[Hi82b, Cor. 3.3]), i = 1, 2.

4.9. Applying Giambelli formula 3.10 we obtain the following products which
will be essentially used in the next section

g4
1g

4
1 = 6h8

1 + 8g8
1, g4

2g
4
2 = 3h8

2 + 4g8
2.

5 Construction of rational projectors

The goal of the present section is to prove Theorem 1.1.

5.1. According to 2.7 in order to decompose the motive M(X) it is enough
to construct rational projectors on CH15(X ′ × X ′), where X ′ = X ×k k′.
Observe that our anisotropic group G of type F4 is obtained by the first
Tits construction, so by 4.3.(i) there is a splitting field extension of degree
3. Therefore, for any basis element h of CH(X ′) the cycle 3h is rational (it
follows immediately by transfer arguments). Hence, in order to construct
rational cycles in CH(X ′×X ′) it is enough to work modulo 3. We shall write
x =3 y iff x − y = 3z for some cycle z. Please note that all results hold for
Chow groups with integral coefficients.

5.2. Recall that the cycles h1
1 and h1

2 are rational by Lemma 4.2. Hence,
their powers (h1

1)
i and (h1

2)
i, i = 2 . . . 7, are rational as well. Using multipli-

cation tables 4.7 or their graph interpretation 4.8 we immediately obtain the
following rational cycles: in codimensions 2 through 7 for CH(X ′

1):

h2
1, h3

1, h4
1 − g4

1, h5
1 + g5

1, h6
1, h7

1 + g7
1,

and for CH(X ′
2):

h2
2, h3

2, h4
2 + g4

2, g5
2 − h5

2, h6
2, h7

2 + g7
2.
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5.3. Apply the arguments of 2.6.(iii) to CH4(X ′
2 × X ′

1) (this can be done
because all the properties for X ′

1 and X ′
2 hold by 4.3.(ii)). There exists a

rational cycle α1 ∈ CH4(X ′
2×X ′

1) such that f ′(α1) = g4
2 ×1. This cycle must

have the following form:

α1 = g4
2 × 1 + a1h

3
2 × h1

1 + a2h
2
2 × h2

1 + a3h
1
2 × h3

1 + a41 × h4
1 + a′1 × g4

1,

where ai, a
′ ∈ {−1, 0, 1}. We may reduce α1 by adding cycles that are known

to be rational (by 5.2) to

α1 = (g4
2 × 1) + a′(1 × g4

1).

Repeating the same procedure for a rational cycle α2 ∈ CH4(X ′
2 × X ′

1) such
that f ′(α2) = 1 × g4

1 and reducing it we obtain the rational cycle

α2 = b(g4
2 × 1) + (1 × g4

1),

where b ∈ {−1, 0, 1}. Hence, there is a rational cycle of the form

r = g4
2 × 1 − a(1 × g4

1),

where a ∈ {−1, 1}.

5.4. To obtain a rational projector p1 we proceed as follows. First, we obtain
the following rational cycles in CH(X ′

2 × X ′
1) modulo 3.

r2 = (g4
2 × 1 − a · 1 × g4

1)
2 =3 g8

2 × 1 + a(g4
2 × g4

1) − 1 × g8
1,

r1 = (1 × (h7
1 + g7

1))r
2 =3 g8

2 × (h7
1 + g7

1) − 1 × h15
1 − a(g4

2 × (g11
1 + h11

1 )),

r2 = ((h7
2 + g7

2) × 1)r2 =3 −(h7
2 + g7

2) × g8
1 + h15

2 × 1 + a((g11
2 − h11

2 ) × g4
1),

r3 = (h1
2 × h6

1)r
2 =3 −h1

2 × h14
1 + (g9

2 + h9
2) × h6

1 + a((h5
2 + g5

2) × (g10
1 − h10

1 )),

r4 = (h6
2 × h1

1)r
2 =3 h6

2 × (g9
1 − h9

1) + h14
2 × h1

1 + a((h10
2 + g10

2 ) × (h5
1 − g5

1)),

r5 = (h2
2× (h5

1 +g5
1))r

2 =3 h2
2×h13

1 +(g10
2 −h10

2 )× (h5
1 +g5

1)+a((h6
2−g6

2)×g9
1),

r6 = ((g5
2−h5

2)×h2
1))r

2 =3 −h13
2 ×h2

1−(g5
2−h5

2)×(h10
1 +g10

1 )+a(g9
2×(h6

1+g6
1)),

r7 = (h3
2 × (h4

1 − g4
1))r

2 =3 h3
2 × h12

1 − h11
2 × (h4

1 − g4
1) + a(h7

2 × (g8
1 − h8

1)),

r8 = ((h4
2 + g4

2) × h3
1)r

2 =3 −h12
2 × h3

1 + (h4
2 + g4

2) × h11
1 + a((h8

2 − g8
2) × h7

1).
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5.5. To obtain motivic decompositions, we need to find rational projectors
in CH(X ′

1 × X ′
1) and CH(X ′

2 × X ′
2). By compositioning (still modulo 3), we

obtain the following rational cycles:

p0 = −(r2 ◦ rt
1) =3 h15

1 × 1 + (g11
1 + h11

1 ) × g4
1 + (g7

1 + h7
1) × g8

1,

p1 = −(r4 ◦ rt
3) =3 h14

1 × h1
1 + (h10

1 − g10
1 ) × (g5

1 − h5
1) + h6

1 × (h9
1 − g9

1),

p2 = −(r6 ◦ rt
5) =3 h13

1 × h2
1 − (h5

1 + g5
1) × (h10

1 + g10
1 ) + g9

1 × (h6
1 + g6

1),

p3 = −(r8 ◦rt
7) =3 h12

1 ×h3
1 +(h8

1−g8
1)×h7

1 +(h4
1−g4

1)×h11
1 ∈ CH15(X ′

1×X ′
1);

q0 = −(rt
1 ◦ r2) =3 h15

2 × 1 + (g11
2 − h11

2 ) × g4
2 + (g7

2 + h7
2) × g8

2,

q1 = −(rt
4 ◦ r3) =3 h1

2 × h14
2 + (g9

2 + h9
2) × h6

2 − (h5
2 + g5

2) × (h10
2 + g10

2 ),

q2 = −(rt
6 ◦ r5) =3 h2

2 × h13
2 − (g10

2 − h10
2 ) × (g5

2 − h5
2) + (g6

2 − h6
2) × g9

2,

q3 = −(rt
7 ◦r8) =3 h12

2 ×h3
2 +(h4

2 +g4
2)×h11

2 +(h8
2−g8

2)×h7
2 ∈ CH15(X ′

2×X ′
2).

It remains to note that

p0 ◦ p0 = p0, p3 ◦ p3 = p3 in CH15(X ′
1 × X ′

1),

q0 ◦ q0 = q0, q3 ◦ q3 = q3 in CH15(X ′
2 × X ′

2),

where the equalities hold with integral coefficients (not just modulo 3).
Note that p1, p2, q1, and q2 are not projectors with integral coefficients,

but the sums
p12 = p1 + pt

2 + 3(h10
1 × h5

1 + g10
1 × g5

1),

q12 = q1 + qt
2 + 3(h5

2 × h10
2 + g5

2 × g10
2 )

are rational projectors. In fact, p1, p2, q1, and q2 are projectors modulo 3,
that is, p1 ◦ p1 =3 p1 etc.

Also note that

p0 + p12 + p3 + pt
0 + pt

12 + pt
3 = ∆X′

1
,

q0 + q12 + q3 + qt
0 + qt

12 + qt
3 = ∆X′

2
,

where ∆X′

i
are the diagonal cycles, and all these projectors are orthogonal to

each other. Hence, by 2.7 we obtain the decomposition of the motive of X1

and X2:

M(X1) = (X1, p0) ⊕ (X1, p12) ⊕ (X1, p3) ⊕ (X1, p
t
0) ⊕ (X1, p

t
12) ⊕ (X1, p

t
3),
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M(X2) = (X2, q0) ⊕ (X2, q12) ⊕ (X2, q3) ⊕ (X2, q
t
0) ⊕ (X2, q

t
12) ⊕ (X2, q

t
3),

It is also easy to see that over the separable closure k′ the motives (X1, p0),
(X1, p3), (X2, q0), and (X2, q3) split as the direct sums of Lefschetz motives
Z ⊕ Z(4) ⊕ Z(8). Indeed, the images of the realizations of p0, p3, q0, and
q3 are free abelian groups 〈1, g4

1, g
8
1〉, 〈h

3
1, h

7
1, h

11
1 〉, 〈1, g4

2, g
8
2〉, and 〈h3

2, h
7
2, h

11
2 〉

respectively.

5.6. Since p1, p2, q1, and q2 are projectors modulo 3, we obtain here a con-
sequence of Voevodsky’s theorem [Vo03] for the case of the symbol (3, 3).
These projectors are the generalized Rost projectors in this case.

6 Motivic isomorphism between M(X1) and

M(X2)

The goal of this section is to prove Theorem 1.3.

6.1. We continue to use the notation from the previous section. Consider
the following cycle in CH15(X ′

2 × X ′
1)

J = g8
2 × g7

1 − 1 × h15
1 − ag4

2 × g11
1 − ah12

2 × h3
1 + ah4

2 × h11
1 + h8

2 × h7
1

− g7
2 × g8

1 + h15
2 × 1 + ag11

2 × g4
1 + ah3

2 × h12
1 − ah11

2 × h4
1 − h7

2 × h8
1

− h1
2 × h14

1 + h9
2 × h6

1 + ah5
2 × h10

1 − ag5
2 × g10

1 + ah13
2 × h2

1 − g9
2 × g6

1

− h6
2 × h9

1 + h14
2 × h1

1 − ah2
2 × h13

1 + g6
2 × g9

1 + ag10
2 × g5

1 − ah10
2 × h5

1.

Observe that
J ◦ (−J t) = ∆X′

1
, (−J t) ◦ J = ∆X′

2
.

In other words, the correspondence J provides a motivic isomorphism be-
tween X ′

2 and X ′
1 with the inverse (−J)t. From the other hand,

J =3 (r1 + ar8) + (r2 + ar7) + (r3 − ar6) + (r4 − ar5)

and, hence, is rational. Theorem 1.3 is proved.

7 Further work

We plan to use our methods to obtain similar decompositions for other pro-
jective homogeneous varieties. Our closest plans include decomposing the
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motives of other projective homogeneous varieties of type F4 and of other
types, e.g., E8.

Another interesting question is to determine whether the motive R12 ob-
tained above is decomposable.
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Appendix I

The multiplication table for X1:

h4h4 = h8 + g8, h4h5 = 2h9 + 2g9, h4h6 = 2h10 + g10, h4h7 = h11 + 2g11,

h4h8 = h12, h4h9 = 2h13, h4h10 = h14, h4g4 = 2h8 + 3g8,

h4g5 = h9 + 2g9, h4g6 = 2h10 + 2g10, h4g7 = h11 + 3g11, h4g8 = 2h12,

h4g9 = h13, h4g10 = 0, g4g4 = 6h8 + 8g8, g4g5 = 4h9 + 4g9,

g4g6 = 6h10 + 4g10, g4g7 = 3h11 + 8g11, g4g8 = 6h12, g4g9 = 4h13,

g4g10 = h14, g4h5 = 5h9 + 6g9, g4h6 = 5h10 + 4g10, g4h7 = 2h11 + 6g11,

g4h8 = 2h12, g4h9 = 4h13, g4h10 = 2h14, h5h5 = 6h10 + 4g10,

h5h6 = 2h11 + 5g11, h5h7 = 4h12, h5h8 = 2h13, h5h9 = 2h14,

h5g5 = 4h10 + 4g10, h5g6 = 2h11 + 6g11, h5g7 = 5h12, h5g8 = 4h13,

h5g9 = h14, g5g5 = 4h10, g5g6 = 2h11 + 4g11, g5g7 = 4h12,

g5g8 = 4h13, g5g9 = 2h14, g5h6 = h11 + 4g11, g5h7 = 2h12,

g5h8 = 0, g5h9 = 0, h6h6 = 3h12, h6h7 = 3h13,

h6h8 = h14, h6g6 = 3h12, h6g7 = 3h13, h6g8 = h14,

g6g6 = 4h12, g6g7 = 4h13, g6g8 = 2h14, g6h7 = 2h13,

g6h8 = 0, h7h7 = 2h14, h7g7 = h14, g7g7 = 2h14.

19



The multiplication table for X2:

h4h4 = 2h8 + 2g8, h4h5 = 4h9 + 2g9, h4h6 = 4h10 + g10, h4h7 = 2h11 + 2g11,

h4h8 = h12, h4h9 = h13, h4h10 = h14, h4g4 = 2h8 + 3g8,

h4g5 = h9 + g9, h4g6 = 2h10 + g10, h4g7 = 2h11 + 3g11, h4g8 = 2h12,

h4g9 = h13, h4g10 = 0, g4g4 = 3h8 + 4g8, g4g5 = 2h9 + g9,

g4g6 = 3h10 + g10, g4g7 = 3h11 + 4g11, g4g8 = 3h12, g4g9 = 2h13,

g4g10 = h14, g4h5 = 5h9 + 3g9, g4h6 = 5h10 + 2g10, g4h7 = 2h11 + 3g11,

g4h8 = h12, g4h9 = h13, g4h10 = h14, h5h5 = 6h10 + 2g10,

h5h6 = 4h11 + 5g11, h5h7 = 4h12, h5h8 = h13, h5h9 = h14,

h5g5 = 2h10 + g10, h5g6 = 2h11 + 3g11, h5g7 = 5h12, h5g8 = 2h13,

h5g9 = h14, g5g5 = h10, g5g6 = h11 + g11, g5g7 = 2h12,

g5g8 = h13, g5g9 = h14, g5h6 = h11 + 2g11, g5h7 = h12,

g5h8 = 0, g5h9 = 0, h6h6 = 6h12, h6h7 = 3h13,

h6h8 = h14, h6g6 = 3h12, h6g7 = 3h13, h6g8 = h14,

g6g6 = 2h12, g6g7 = 2h13, g6g8 = h14, g6h7 = h13,

g6h8 = 0, h7h7 = 2h14, h7g7 = h14, g7g7 = 2h14.

Appendix II

In this appendix we describe how we obtained the necessary multiplication
tables. Our root enumeration follows Bourbaki ([Bou]). We fix an orthonor-
mal base {e1, e2, e3, e4} in R

4. F4 has the following simple roots:

α1 = e3 − e2, α2 = e2 − e1,

α3 = e1, α4 = −
1

2
e1 −

1

2
e2 −

1

2
e3 +

1

2
e4.

The set of fundamental weights:

ω̄1 = e3 + e4, ω̄2 = e2 + e3 + 2e4,

ω̄3 =
1

2
e1 +

1

2
e2 +

1

2
e3 +

3

2
e4, ω̄4 = e4.

For the expressions of other positive roots by the base roots we refer to
[Bou]. We list the expressions of these roots in the basis of fundamental
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weights:

−ω̄3 + 2ω̄4, − ω̄2 + 2ω̄3 − ω̄4, −ω̄1 + 2ω̄2 − 2ω̄3, 2ω̄1 − ω̄2,

−ω̄2 + ω̄3 + ω̄4, − ω̄1 + ω̄2 − ω̄4, −ω̄1 + 2ω̄3 − 2ω̄4, ω̄1 + ω̄2 − 2ω̄3,

−ω̄1 + ω̄2 − ω̄3 + ω̄4, ω̄1 − ω̄4, −ω̄1 + 2ω̄4, ω̄1 − ω̄2 + 2ω̄3 − 2ω̄4,

−ω̄1 + ω̄3, ω̄1 − ω̄3 + ω̄4, ω̄1 − ω̄2 + 2ω̄4, ω̄2 − 2ω̄4,

ω̄1 − ω̄2 + ω̄3, ω̄2 − 2ω̄3 + 2ω̄4, ω̄2 − ω̄3, − ω̄2 + 2ω̄3,

ω̄3 − ω̄4, − ω̄1 + ω̄2, ω̄4, ω̄1.

We denote by d the product of all positive roots.
Using the Giambelli formula, we obtain the preimages of g4

i in S∗(P ).
Here is the list:

g4
1 = c(

1

3
ω̄4

4 −
2

3
ω̄3ω̄

3
4 + ω̄2

3ω̄
2
4 −

4

3
ω̄2ω̄3ω̄

2
4 −

2

3
ω̄1ω̄2ω̄

2
3 +

2

3
ω̄2

2ω̄
2
4+

2

3
ω̄2

1ω̄
2
4 + ω̄1ω̄3ω̄

2
4 +

2

3
ω̄1ω̄2ω̄3ω̄4 − ω̄1ω̄

2
3ω̄4 −

2

3
ω̄2

1ω̄3ω̄4 +
4

3
ω̄2ω̄

2
3ω̄4−

2

3
ω̄3

3ω̄4 −
2

3
ω̄2

2ω̄3ω̄4 −
1

2
ω̄3

1ω̄2 −
2

3
ω̄2ω̄

3
3 −

2

3
ω̄2

1ω̄2ω̄3 +
1

3
ω̄2

2ω̄
2
3+

1

2
ω̄4

1 +
1

3
ω̄4

3 +
2

3
ω̄2

1ω̄
2
3 +

1

2
ω̄2

1ω̄
2
2 −

1

3
ω̄1ω̄

2
2ω̄3 +

1

3
ω̄1ω̄2ω̄

2
3),

g4
2 = c(

11

6
ω̄4

4 −
7

6
ω̄3

4ω̄3 +
11

12
ω̄2

4ω̄
2
1 +

3

2
ω̄2

4ω̄
2
3 −

11

6
ω̄3ω̄

2
4ω̄2 +

11

12
ω̄2

4ω̄
2
2

−
11

12
ω̄2

4ω̄1ω̄2 −
2

3
ω̄4ω̄

3
3 −

1

2
ω̄4ω̄

2
1ω̄2 +

1

3
ω̄4ω̄3ω̄

2
1 +

4

3
ω̄2

3ω̄4ω̄2 +
1

2
ω̄4ω̄1ω̄

2
2−

2

3
ω̄3ω̄4ω̄

2
2 −

1

3
ω̄4ω̄3ω̄1ω̄2 +

1

3
ω̄4

3 −
1

3
ω̄3ω̄1ω̄

2
2 +

1

3
ω̄2

3ω̄1ω̄2 −
1

3
ω̄2

1ω̄
2
3+

1

3
ω̄3ω̄

2
1ω̄2 +

1

3
ω̄2

3ω̄
2
2 −

2

3
ω̄3

3ω̄2),

Multiplying the correspondent polynomials and taking the c function, we
find the products.
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