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Abstract

We construct a functor from the category of modules over the trigonometric (resp. rational)
Cherednik algebra of type gll to the category of integrable modules of level l over a Yangian
for the loop algebra sln (resp. over a subalgebra of this Yangian called the Yangian deformed
double loop algebra) and we establish that it is an equivalence of categories if l + 2 < n.

1 Introduction

One of the most important classical results in representation theory is an equivalence, called Schur-
Weyl duality, between the category of modules over the symmetric group Sl and the category of
modules of level l over the Lie algebra sln if l ≤ n− 1. When quantum groups were invented in the
1980’s, it became an interesting problem to generalize the Schur-Weyl correspondence and similar
equivalences were obtained between finite Hecke algebras and quantized enveloping algebras [Ji],
between degenerate affine Hecke algebras and Yangians [Dr1, Ch1], between affine Hecke algebras
and quantized affine Lie algebras [ChPr1], and between double affine Hecke algebras and toroidal
quantum algebras [VaVa]. In this paper, we prove a similar equivalence of categories between the
trigonometric (resp. rational) Cherednik algebra associated to the symmetric group Sl and a (resp.
subalgebra L of a) Yangian LY for the loop algebra Lsln = sln ⊗C C[u, u−1].

The algebra on the other side of our equivalence from the Cherednik algebra is barely known. The
author is not aware of any paper devoted to a study of Yangians of affine type; the only mention
he could find of this notion anywhere in the literature is in [Va]. By contrast, there has been a
recent surge of interest in the representation theory of Cherednik algebras and their relations to
the geometry of Hilbert schemes, integrable systems and other important mathematical objects.
Our duality theorem indicates a new route to those questions via a careful study of the Yangian
and makes the study of this algebra more relevant and interesting.

Affine Hecke algebras are very important in representation theory and have been studied extensively
over the last few decades, along with their degenerate (graded) version introduced in [Dr1] and in
[Lu]. About fifteen years ago, I. Cherednik introduced the notion of double affine Hecke algebra
[Ch2], abbreviated DAHA, which he used to prove important conjectures of I. Macdonald. His
algebra also admits degenerate versions, the trigonometric one and the rational one, which are called
Cherednik algebras. The trigonometric DAHA is generated by two subalgebras, one isomorphic to
a degenerate affine Hecke algebra and the other one isomorphic to the group algebra of an affine
Weyl group. For this reason, and because of the results mentioned above, we can expect its Schur-
Weyl dual to be built from one copy of the Yangian Y for sln and from one copy of the loop algebra
Lsln. This is indeed true for LY .

An epimorphic image of L, defined in terms of operators acting on a certain space, appeared for
the first time in [BHW]; this was known to P. Etingof and V. Ginzburg. However, the algebra
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considered in that paper is not described in a very precise way and no equivalence of categories
is established. One motivation for the present article comes from our desire to find exactly the
relations between the generators of the Schur-Weyl dual of a Cherednik algebra of type gll.

In the next two sections, we define Cherednik algebras and Yangians and explore some of their
basic properties. The fourth section states the main result (theorem 4.2) for the trigonometric
case, which is proved in the following one. After that, we look more closely at the action of certain
elements of LY since this is useful in the last section, which concerns the rational case (theorem 7.1).
Most of our results in the rational case follows from the observation that the rational Cherednik
algebra of type gll is contained in the trigonometric one. Furthermore, our equivalence restricts to
an equivalence between two categories of BGG-type (theorem 7.2).

Acknowledgments During the preparation of this paper, the author was supported by a Pionier
grant of the Netherlands Organization for Scientific Research (NWO). He warmly thanks E. Opdam
for his invitation to spend the year 2005 at the University of Amsterdam. He also thanks I.
Cherednik, P. Etingof, V. Ginzburg, I. Gordon and T. Nevins for their comments.

2 Hecke algebras and Cherednik algebras

The definitions given in this section could be stated for any Weyl group W . However, in this
paper, we will be concerned only with the symmetric group Sl, so we will restrict our definitions
to the case W = Sl. We set h = C

l. The symmetric group Sl acts on h by permuting the
coordinates; associated to h are two polynomial algebras: C[h] = Sym(h∗) = C[x1, . . . , xl] and
C[h∗] = Sym(h) = C[y1, . . . , yl], where {x1, . . . , xl} and {y1, . . . , yl} are dual bases of h∗ and h,
respectively. For i 6= j, we set αij = xi − xj , α

∨
ij = yi − yj, R = {αij |1 ≤ i 6= j ≤ l} and

R+ = {αij |1 ≤ i < j ≤ l}. The set Π = {xi − xi+1|1 ≤ i ≤ n − 1} is a basis of simple roots. The
reflection in h with respect to the hyperplane α = 0 is denoted sα, so sα(y) = y − 〈α, y〉α∨, where
〈 , 〉 : h∗ × h → C is the canonical pairing. We set sij = sαij

.

The finite Hecke algebra Hq associated to Sl is a deformation of the group algebra C[Sl] and the

affine Hecke algebra H̃q is a deformation of the group algebra of the (extended) affine Weyl group

S̃l = P ⋊ Sl where P is the lattice ⊕l
i=1Zxi ⊂ h∗ (so C[S̃l] = C[x±

1 , . . . , x±
l ] ⋊ Sl). The algebra H̃q

admits a degenerate form Hc first introduced by Drinfeld [Dr1] and by Lusztig [Lu].

Definition 2.1. The degenerate affine Hecke algebra Hc of type gll is the algebra generated by the
polynomial algebra Sym(h) = C[z1, . . . , zl] and the group algebra C[Sl] with the relations

sα · z − sα(z)sα = −c〈α, z〉 ∀z ∈ h,∀α ∈ Π

Remark 2.1. The algebras Hc1 and Hc2 are isomorphic if c1 6= 0 and c2 6= 0. Clearly, H0
∼= C[h]⋊Sl.

The double affine Hecke algebra H introduced by I. Cherednik [Ch2] also admits degenerate versions:
the trigonometric one and the rational one. Recall that the group S̃l is generated by sα ∀α ∈ R

and by the element π = x1s12s23 · · · sl−1,l.

Definition 2.2 (Cherednik). Let t, c ∈ C. The degenerate (trigonometric) double affine Hecke
algebra of type gll is the algebra Ht,c generated by the group algebra of the (extended) affine Weyl
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group C[S̃l] and the polynomial algebra C[z1, . . . , zl] = Sym(h) subject to the following relations:

sα · z − sα(z)sα = −c〈α, z〉 ∀z ∈ h,∀α ∈ Π

πzi = zi+1π, 1 ≤ i ≤ l − 1 πzl = (z1 − t)π

Remark 2.2. The subalgebra generated by C[Sl] and the polynomial algebra C[z1, . . . , zl] is iso-
morphic to the degenerate affine Hecke algebra Hc.

The rational version of the double affine Hecke algebra has been studied quite intensively in the past
few years (see, for example, [BEG1],[GGOR]) and is usually referred to as the rational Cherednik
algebra.

Definition 2.3. Let t, c ∈ C. The rational Cherednik algebra Ht,c of type gll is the algebra generated
by C[h], C[h∗] and C[Sl] subject to the following relations:

w · x · w−1 = w(x) w · y · w−1 = w(y) ∀x ∈ h∗, ∀y ∈ h

[y, x] = yx − xy = t〈y, x〉 + c
∑

α∈R+

〈α, y〉〈x, α∨〉sα

Remark 2.3. The rational Cherednik algebra of type Al−1 is the subalgebra of Ht,c generated by
C[xi − xj ] ⊂ C[x1, . . . , xl], by C[yi − yj] ⊂ C[y1, . . . , yl] and by C[Sl].

The exists a simple relation between Ht,c and Ht,c. (See also [Su].)

Proposition 2.1. The algebra C[x±
1 , . . . , x±

l ] ⊗C[h] Ht,c is isomorphic to Ht,c.

Before giving a proof of this proposition, we need to introduce elements in Ht,c which will be very
important later. For 1 ≤ i ≤ l, set Ui = t

2 + xiyi + c
∑

j<i sij and Yi = Ui + c
2

∑
j 6=i sign(j − i)sij =

t
2 + xiyi + c

2

∑
j 6=i sij.

Proposition 2.2. [DuOp],[EtGi]

1. Yi = 1
2 (xiyi + yixi).

2. UiUj = UjUi for any i, j.

3. w · Yi · w
−1 = Yw(i).

4. The elements Ui, 1 ≤ i ≤ l, and C[Sl] generate a subalgebra of Ht,c isomorphic to the degen-
erate affine Hecke algebra Hc.

Remark 2.4. The elements Yi are not pairwise commutative if c 6= 0:

[Yj ,Yk] =
c2

4

l∑

i=1

i6=j,k

[sij , sjk].
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Proof. The first statement follows from the equality

yixi − xiyi = t + c

l∑

j=1,j 6=i

〈xi − xj , yi〉〈xi, yi − yj〉sij = t + c

l∑

j=1,j 6=i

sij.

The second part is proved in [DuOp]. The third part is obvious, so we prove only the fourth one.
If |k − i| > 1, then sk,k+1Ui = Uisk,k+1, so the non-trivial relations that we have to check involve
si−1,i and si,i+1:

si−1,iUi = (
t

2
+ xi−1yi−1)si−1,i + c

∑

j<i−1

si−1,jsi−1,i + c = Ui−1si−1,i + c

si,i+1Ui = (
t

2
+ xi+1yi+1)si,i+1 + c

∑

j<i+1

si+1,jsi+1,i − c = Ui+1si,i+1 − c

These two equalities, combined with the PBW-property of Ht,c [EtGi] and of Hc, complete the proof
of part 4.

In the proof of the two main theorems, we will need the following identities.

Proposition 2.3. 1. If i 6= j, then [yj, xi] = −csij and [x−1
i , yj] = −cx−1

i x−1
j sij .

2. [yi, xi] = t + c
∑

k 6=i sij and [x−1
i , yi] = tx−2

i + c
∑

j 6=i x
−1
i x−1

j sij.

3. If i 6= j, then [Yj , xi] = − c
2(xi + xj)sij and [x−1

i ,Yj ] = − c
2(x−1

i + x−1
j )sij .

4. [Yi, xi] = txi + c
2

∑
j 6=i(xi + xj)sij and [x−1

i ,Yi] = tx−1
i + c

2

∑
j 6=i(x

−1
i + x−1

j )sij .

Proof. These are all immediate consequences of the definition of Ht,c.

Proof. (of proposition 2.1) Because of proposition 2.2, part 4, and the PBW-property of Ht,c and
Ht,c, we only have to check the relation involving π in definition 2.2. First, assume that i 6= l.

πUi = (x1s12 · · · sl−1,l)(Ui) = x1(Ui+1 − cs1,i+1)s12 · · · sl−1,l

= ([x1,Ui+1] + Ui+1x1 − cx1s1,i+1)s12 · · · sl−1,l

=
(
cxi+1s1,i+1 + c[x1, s1,i+1] + Ui+1x1 − cx1s1,i+1

)
s12 · · · sl−1,l

= (Ui+1)x1s12 · · · sl−1,l = Ui+1π

If i = l, we obtain:

πUl = x1(U1 + c

l∑

j=2

s1,j)s12 · · · sl−1,l =
(
x1[x1, y1] + cx1

l∑

j=2

s1,j + U1x1

)
s12 · · · sl−1,l

=
(
x1(−t − c

∑

i6=1

si,1) + cx1

l∑

j=2

s1,j + U1x1

)
s12 · · · sl−1,l = (U1 − t)π
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Corollary 2.1 (of proposition 2.1). The algebra Ht,c can also be defined as the algebra generated
by the elements x±

1 , . . . , x±
l , Y1, . . . ,Yl and Sl with the relations

w · xi · w
−1 = xw(i) w · Yi · w

−1 = Yw(i) [Yj,Yk] =
c2

4

l∑

i=1

i6=j,k

(sjksik − skjsij)

xiYj − Yjxi = tδijxi +
c

2

∑

α∈R+

〈α, yj〉〈xi, α
∨〉(xisα + sαxi).

3 Finite and loop Yangians

The Yangians of finite type are quantum groups, introduced by V. Drinfeld in [Dr1], which are
quantizations of the enveloping algebra of the polynomial loop algebra g ⊗C C[u] of a semisimple
Lie algebra g. The second definition in [Dr2] is given in terms of a finite Cartan matrix. If we
replace it with a Cartan matrix of affine type, we obtain algebras that we call loop Yangians LYβ,λ.
(The only occurrence of these algebras in the literature that the author could find is in a remark in
[Va].) Let C = (cij)1≤i,j≤n−1 (Ĉ = (cij)0≤i,j≤n−1) be a Cartan matrix of finite (resp. affine) type

An−1 (resp. Ân−1). If n ≥ 3:

Ĉ =




2 −1 0 · · · · · · 0 −1
−1 2 −1 0 · · · · · · 0
0 −1 2 −1 0 · · · 0
...

...
...

...
0 · · · 0 −1 2 −1 0
0 · · · · · · 0 −1 2 −1
−1 0 · · · · · · 0 −1 2




Definition 3.1. [Dr2], [ChPr2] Let λ ∈ C. The Yangian Yλ associated to C is the algebra generated
by X±

i,r,Hi,r, i = 1, . . . n − 1, r ∈ Z≥0, which satisfy the following relations :

[Hi,r,Hj,s] = 0, [Hi,0,X
±
j,s] = ±cijX

±
j,s (1)

[Hi,r+1,X
±
j,s] − [Hi,r,X

±
j,s+1] = ±

λ

2
cij(Hi,rX

±
j,s + X±

j,sHi,r) (2)

[X+
i,r,X

−
j,s] = δijHi,r+s [X±

i,r,X
±
j,s] = 0 if 1 < |j − i| < n − 1 (3)

[X±
i,r+1,X

±
j,s] − [X±

i,r,X
±
j,s+1] = ±

λ

2
cij(X

±
i,rX

±
j,s + X±

j,sX
±
i,r) (4)

[
X±

i,r1
, [X±

i,r2
,X±

j,s]
]
+

[
X±

i,r2
, [X±

i,r1
,X±

j,s]
]

= 0 ∀r1, r2, s ≥ 0 if j − i ≡ ±1 mod n (5)

Remark 3.1. The Yangian Yλ1
is isomorphic to Yλ2

if λ1 6= 0 and λ2 6= 0.
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Definition 3.2. Let β, λ ∈ C. The Yangian LYβ,λ associated to Ĉ is the algebra generated by
X±

i,r,Hi,r, i = 0, . . . n−1, r ∈ Z≥0, which satisfy the relations of definition 3.1 for i, j ∈ {0, . . . , n−1}
except that the relations (2),(4) must be modified for i = 0 and j = 1, n − 1 in the following way
when n ≥ 3:

[H1,r+1,X
±
0,s] − [H1,r,X

±
0,s+1] = (β −

λ

2
∓

λ

2
)H1,rX

±
0,s + (

λ

2
∓

λ

2
− β)X±

0,sH1,r (6)

[H0,r+1,X
±
1,s] − [H0,r,X

±
1,s+1] = (

λ

2
∓

λ

2
− β)H0,rX

±
1,s + (β −

λ

2
∓

λ

2
)X±

1,sH0,r (7)

[H0,r+1,X
±
n−1,s] − [H0,r,X

±
n−1,s+1] = (β −

λ

2
∓

λ

2
)H0,rX

±
n−1,s + (

λ

2
∓

λ

2
− β)X±

n−1,sH0,r (8)

[Hn−1,r+1,X
±
0,s] − [Hn−1,r,X

±
0,s+1] = (

λ

2
∓

λ

2
− β)Hn−1,rX

±
0,s + (β −

λ

2
∓

λ

2
)X±

0,sHn−1,r (9)

[X±
1,r+1,X

±
0,s] − [X±

1,r,X
±
0,s+1] = (β −

λ

2
∓

λ

2
)X±

1,rX
±
0,s + (

λ

2
∓

λ

2
− β)X±

0,sX
±
1,r (10)

[X±
0,r+1,X

±
n−1,s] − [X±

0,r,X
±
n−1,s+1] = (β −

λ

2
∓

λ

2
)X±

0,rX
±
n−1,s + (

λ

2
∓

λ

2
− β)X±

n−1,sX
±
0,r (11)

We will also impose the relation
∑n−1

i=0 Hi,0 = 0.

Remark 3.2. We will write X±
i and Hi instead of X±

i,0 and Hi,0. If β = λ
2 , the relations defining

LYβ,λ are the same as those in definition 3.1 with i, j ∈ {0, . . . , n− 1}. Note also that the relations
(6),(7),(8) and (9) all follow from (10) and (11) using relation (3); they were added above as a
convenient reference since they will be useful later in our computations. We should also note that
LYβ1,λ1

∼= LYβ2,λ2
if β2 = ηβ1 and λ2 = ηλ1 for some η 6= 0.

Remark 3.3. When β = 0, LYλ,β is isomorphic to the enveloping algebra of the universal central
extension of sln(Aβ) where Aβ is isomorphic to the ring of algebraic differential operators on C

∗

(see [Gu]).

Let ∆ = {ǫij , 1 ≤ i 6= j ≤ n} be the root system of type An−1. For a positive root ǫ ∈ ∆+, we
denote by X±

ǫ the corresponding standard root vector of sln. If ǫ = ǫij , i < j, then X+
ǫ = Eij

and X−
ǫ = Eji, where Ers is the matrix with 1 in the (r, s)-entry and zeros everywhere else. In

particular, X+
θ = E1n and X−

θ = En1, where θ is the longest root of sln. If ǫ = ǫi = ǫi,i+1, then
X±

ǫ = X±
i .

One useful observation is that these two Yangians are generated by X±
i,r,Hi,r, i = 1, . . . n− 1 (resp.

i = 0, . . . , n − 1) with r = 0, 1 only. The other elements are obtained inductively by the formulas:

X±
i,r+1 = ±

1

2
[Hi,1,X

±
i,r] −

1

2
(HiX

±
i,r + X±

i,rHi), Hi,r+1 = [X+
i,r,X

−
i,1]. (12)

Furthermore, the subalgebra generated by the elements with r = 0 is isomorphic to the enveloping
algebra of the Lie (resp. loop) algebra sln (resp. Lsln = sln ⊗C C[u, u−1]). We identify X+

0 with
X−

θ ⊗ u and X−
0 with X+

θ ⊗ u−1. The subalgebra Y 0
λ generated by the elements with i 6= 0 is a

quotient of the Yangian Yλ.
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The two subalgebras Y 0
λ and U(Lsln) generate LYβ,λ. Indeed, combining the observations in the

previous two paragraphs, we see that we only have to show that the subalgebra they generate
contains X±

0,1. From the relation (1) in definition 3.2 with i = 1, we know that [H1,X
±
0,1] = ∓X±

0,1,
so, substituting into equation (6), we obtain

[H1,1,X
±
0 ] ± X±

0,1 = (β −
λ

2
∓

λ

2
)H1X

±
0 + (

λ

2
∓

λ

2
− β)X±

0 H1.

Thus X±
0,1 (hence also H0,1) belongs to the subalgebra of LYβ,λ generated by Y 0

λ and U(Lsln). When
no confusion is possible, we will write LY and Y instead of LYβ,λ and Yλ.

For 1 ≤ i ≤ n − 1, set

J(X±
i ) = X±

i,1 + λω±
i where ω±

i = ±
1

4

∑

ǫ∈∆+

(
[X±

i ,X±
ǫ ]X∓

ǫ + X∓
ǫ [X±

i ,X±
ǫ ]

)
−

1

4
(X±

i Hi + HiX
±
i )

J(Hi) = Hi,1 + λνi where νi =
1

4

∑

ǫ∈∆+

(ǫ, ǫi)(X
+
ǫ X−

ǫ + X−
ǫ X+

ǫ ) −
1

2
H2

i .

More explicitly, since X+
i = Ei,i+1, X−

i = Ei+1,i and Hi = Eii −Ei+1,i+1 for 1 ≤ i ≤ n− 1, we can
write

ω+
i =

1

4

n∑

j=1

j 6=i,i+1

sign(j − i)(Ej,i+1Eij + EijEj,i+1) −
1

4
(Ei,i+1Hi + HiEi,i+1) (13)

ω−
i =

1

4

n∑

j=1

j 6=i,i+1

sign(j − i)(Ei+1,jEji + EjiEi+1,j) −
1

4
(Ei+1,iHi + HiEi+1,i) (14)

It is possible to define elements J(z) ∈ Y for any z ∈ sln in such a way that [J(z1), z2] = J([z1, z2]):
this follows from the isomorphism given in [Dr2] between two different realizations of the Yangian
Yλ: the one given above and the one first given in [Dr1] in terms of generators z, J(z) ∀z ∈ sln (the
J(z)’s satisfy a“deformed” Jacobi identity).

In the proof of our first main theorem, the following algebra automorphism will be very important.

Lemma 3.1. It is possible to define an automorphism ρ of LY by setting

ρ(Hi,r) =

r∑

s=0

(
r

s

)(
λ

2

)r−s

Hi−1,s, ρ(X±
i,r) =

r∑

s=0

(
r

s

)(
λ

2

)r−s

X±
i−1,s for i 6= 0, 1

ρ(Hi,r) =
r∑

s=0

(
r

s

)
βr−sHi−1,s, ρ(X±

i,r) =
r∑

s=0

(
r

s

)
βr−sX±

i−1,s for i = 0, 1

We use the convention that X±
−1,r = X±

n−1,r and H−1,r = Hn−1,r. Note that, in particular, ρ(X±
i ) =

X±
i−1, ρ(Hi) = Hi−1 ∀i and ρ(X±

i,1) = X±
i−1,1 + λ

2X±
i−1, ρ(Hi,1) = Hi−1,1 + λ

2Hi−1 if i 6= 0, 1, whereas

ρ(X±
i,1) = X±

i−1,1 + βX±
i−1, ρ(Hi,1) = Hi−1,1 + βHi−1 if i = 0, 1 The automorphism ρ is very similar

to the automorphism τλ
2

(or τβ) in [ChPr2] followed by a decrement of the indices.
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Proof of lemma 3.1. We have to verify that ρ is indeed an automorphism of LY , that is, that it
respects the defining relations of LY . In the case when i, j 6= 0, 1 in the relations (1)-(5), this
follows from the fact that ρ is the same as the automorphism τλ

2

from [ChPr2] followed by a

decrement of the indices. A short verification shows that ρ preserves the relations (1),(3) and (5)
when i = 0, 1 or j = 0, 1. (In the case of equation (3) and i = j, , one has to use the identity
∑

a+b=k

(
r

a

)(
s

b

)
=

(
r + s

k

)
.) Since the relations (6)-(9) follow from (10) and (11) by

applying [·,X∓
?,0], ? = 0, 1, n − 1, there are three cases left that require a more detailed verification.

We will use the identity

(
r

a

)
=

(
r − 1

a

)
+

(
r − 1
a − 1

)
.

Case 1: We start with the relation (4) with i = 2, j = 1. We find that ρ
(
[X±

2,r+1,X
±
1,s] −

[X±
2,r,X

±
1,s+1]

)
is equal to

=

r+1∑

a=0

s∑

b=0

(
r + 1

a

)(
s

b

)[(
λ

2

)r+1−a

X±
1,a, β

s−bX±
0,b

]

−

r∑

a=0

s+1∑

b=0

(
r

a

)(
s + 1

b

)[(
λ

2

)r−a

X±
1,a, β

s+1−bX±
0,b

]

=

r+1∑

a=0

s∑

b=0

((
r

a

)
+

(
r

a − 1

))(
s

b

)(
λ

2

)r+1−a

βs−b[X±
1,a,X

±
0,b]

−

r∑

a=0

s+1∑

b=0

(
r

a

)((
s

b

)
+

(
s

b − 1

))(
λ

2

)r−a

βs+1−b[X±
1,a,X

±
0,b]

=

r∑

a=0

s∑

b=0

(
r

a

)(
s

b

) (
λ

2

)r−a

βs−b(
λ

2
− β)[X±

1,a,X
±
0,b]

+

r+1∑

a=0

s∑

b=0

(
r

a − 1

)(
s

b

)(
λ

2

)r−a+1

βs−b[X±
1,a,X

±
0,b]

−
r∑

a=0

s+1∑

b=0

(
r

a

)(
s

b − 1

)(
λ

2

)r−a

βs−b+1[X±
1,a,X

±
0,b]

=

r∑

a=0

s∑

b=0

(
r

a

)(
s

b

) (
λ

2

)r−a

βs−b(
λ

2
− β)[X±

1,a,X
±
0,b]

+

r∑

ã=0

s∑

b=0

(
r

ã

)(
s

b

)(
λ

2

)r−ã

βs−b[X±
1,ã+1,X

±
0,b]

−

r∑

a=0

s∑

b̃=0

(
r

a

)(
s

b̃

)(
λ

2

)r−a

βs−b̃[X±
1,a,X

±

0,b̃+1
]
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=

r∑

a=0

s∑

b=0

(
r

a

)(
s

b

)(
λ

2

)r−a

βs−b(
λ

2
− β)[X±

1,a,X
±
0,b]

+
r∑

ã=0

s∑

b̃=0

(
r

ã

)(
s

b̃

) (
λ

2

)r−ã

βs−b̃
(
[X±

1,ã+1,X
±

0,b̃
] − [X±

1,ã,X
±

0,b̃+1
]
)

=
r∑

ã=0

s∑

b̃=0

(
r

ã

)(
s

b̃

)(
λ

2

)r−ã

βs−b̃(
λ

2
− β)[X±

1,ã,X
±

0,b̃
]

+

r∑

ã=0

s∑

b̃=0

(
r

ã

)(
s

b̃

) (
λ

2

)r−ã

βs−b̃
(
(β −

λ

2
∓

λ

2
)X±

1,ãX
±

0,b̃
+ (

λ

2
∓

λ

2
− β)X±

0,b̃
X±

1,ã)
)

=

r∑

ã=0

s∑

b̃=0

(
r

ã

)(
s

b̃

)(
λ

2

)r−ã

βs−b̃

(
∓

λ

2

)
(X±

1,ãX
±

0,b̃
+ X±

0,b̃
X±

1,ã)

= ρ

((
∓

λ

2

)
(X±

2,rX
±
1,s + X±

1,sX
±
2,r)

)

Case 2: i = 1, j = 0. We have to prove that

ρ
(
[X±

1,r+1,X
±
0,s] − [X±

1,r,X
±
0,s+1]

)
= ρ

(
(β −

λ

2
∓

λ

2
)X±

1,rX
±
0,s + (

λ

2
∓

λ

2
− β)X±

0,sX
±
1,r

)
.

This case is analogous to case 1, but a little bit simpler since the term (λ
2 − β) above becomes

(β − β) = 0.

Case 3: i = 0, j = n − 1. We have to show that

ρ
(
[X±

0,r+1,X
±
n−1,s] − [X±

0,r,X
±
n−1,s+1]

)
= ρ

(
(β −

λ

2
∓

λ

2
)X±

0,rX
±
n−1,s + (

λ

2
∓

λ

2
− β)X±

n−1,sX
±
0,r

)
.

The computations are again very similar to those of case 1: the main difference is that the factor
(λ

2 − β) gets replaced by (β − λ
2 ).

4 Schur-Weyl duality functor

The Schur-Weyl duality established by M. Varagnolo and E. Vasserot [VaVa] involves, on one side,
a toroidal quantum algebra (a quantized version of the enveloping algebra of the enveloping algebra
of the universal central extension of the double-loop algebra sln[s±, t±]) and, on the other side, a
double affine Hecke algebra for Sl. Theorem 4.2 establishes a similar type of duality between the
trigonometric DAHA Ht,c and the loop Yangian LYβ,λ, which extends the duality for the Yangian
of finite type due to V. Drinfeld [Dr1].

Before stating the more classical results on the theme of Schur-Weyl duality, we have to define the
notion of module of level l over sln and the quantized enveloping algebra Uqsln. Fix a positive
integer n and set V = C

n.

Definition 4.1. A finite dimensional representation of sln or Uqsln (q not a root of unity) is of
level l if each of its irreducible components is isomorphic to a direct summand of V ⊗l.

9



Theorem 4.1. [Ji, Dr1, ChPr1] Fix l ≥ 1, n ≥ 2 and assume that q ∈ C
× is not a root of unity.

Let A be one of the algebras C[Sl],Hq(Sl), H1(Sl), H̃q(Sl), and let B be the corresponding one (in

the same order) among Usln,Uqsln, Y (sln),Uq ŝln. There exists a functor F from the category of
finite dimensional right A-modules to the category of finite dimensional left B-modules which are
of level l as sln-modules in the first and third case (and as Uqsln-modules in the second and fourth
case) which is given by

F(M) = M ⊗C V ⊗l

where C = C[Sl] (first and third case) or C = Hq(Sl) (second and fourth case). Furthermore, this
functor is an equivalence of categories if l ≤ n − 1.

The sln module structure on V ⊗l commutes with the Sl-module structure obtained by simply
permuting the factors in the tensor product. Let M be a right module over Ht,c. Since C[Sl] ⊂ Ht,c,
we can form the tensor product F(M) = M ⊗C[Sl] V ⊗l.

On one hand, since Ht,c contains the degenerate affine Hecke algebra Hc, M can be viewed as a
right module over Hc, so it follows from [Dr1] that F(M) is a module of level l over the Yangian
Yλ of sln with λ = c. On the other hand, Ht,c also contains a copy of the group algebra of the

extended affine Weyl group S̃l, so it follows from [ChPr1] (the case q = 1) that F(M) is also a
module of level l over the loop algebra Lsln. These two module structures can be glued together
to obtain a module over LY . This is the content of our first main theorem. Before stating it, we
need one definition.

Definition 4.2. A module M over Lsln is called integrable if it is the direct sum of its integral
weight spaces under the action of h and if each generator X±

i,r acts locally nilpotently on M .

Theorem 4.2. Suppose that l ≥ 1, n ≥ 3 and set λ = c, β = t
2 − nc

4 + c
2 . The functor F : M 7→

M ⊗C[Sl] V ⊗l sends a right Ht,c-module to an integrable LYβ,λ-module of level l (as sln-module).
Furthermore, if l + 2 < n, this functor is an equivalence.

Remark 4.1. This theorem is very similar to the main result of [VaVa] where Ht,c is replaced
by a double affine Hecke algebra and LYβ,λ is replaced by a toroidal quantum algebra, under the
assumption that the parameter q is not a root of unity.

5 Proof of theorem 4.2

The proof of theorem 4.2 consists of two parts. First, we show how to obtain an integrable LYβ,λ-
module structure on F(M), and then we prove that any integrable representation of LY of level
l is of the form F(M). If there is no confusion possible for the values of the parameters, we will
write H, H,H, LY instead of Ht,c, Hc,Ht,c, LYβ,λ.

5.1 Proof of theorem 4.2, part 1

Fix m ∈ M , v = vi1 ⊗· · ·⊗vil ∈ V ⊗l, where {v1, . . . , vn} is the standard basis of C
n and 1 ≤ ij ≤ n.

The subalgebra sln generated by the elements X±
i ,Hi, 1 ≤ i ≤ n − 1, acts on V ⊗l as usual. The

10



element z ⊗ u± ∈ Lsln acts on F(M) in the following way:

(z ⊗ u±k)(m ⊗ v) =

l∑

j=1

mx±k
j ⊗ vi1 ⊗ · · · ⊗ (zvij ) ⊗ · ⊗ vil .

For z ∈ sln, we will write zj(v) for vi1 ⊗ · · · ⊗ (zvij ) ⊗ · ⊗ vil . The elements J(X±
i ), J(Hi) and

X±
i,1,Hi,1, 1 ≤ i ≤ n − 1, act on F(M) in the following way (see [Dr1],[ChPr2]):

J(X±
i )(m ⊗ v) =

l∑

j=1

mYj ⊗ X
±,j
i (v), X±

i,1(m ⊗ v) = J(X±
i )(m ⊗ v) − λω±

i (m ⊗ v),

J(Hi)(m ⊗ v) =

l∑

j=1

mYj ⊗ H
j
i (v), Hi,1(m ⊗ v) = J(Hi)(m ⊗ v) − λνi(m ⊗ v).

Following one of the main ideas in [VaVa], we define a linear automorphism T of M ⊗C[Sl] V ⊗l in
the following way:

T (m ⊗ vi1 ⊗ · · · ⊗ vil) = (mx
−δi1,n

1 · · · x
−δil,n

l ) ⊗ vi1+1 ⊗ · · · ⊗ vil+1,

with the convention that vn+1 = v1. (Here, δij is the usual delta function.) One can check
that T ◦ ϕ(X±

i−1) = ϕ(X±
i ) ◦ T and T ◦ ϕ(Hi−1) = ϕ(Hi) ◦ T for any 0 ≤ i ≤ n − 1, where

ϕ : Y −→ EndC(F(M)) is the algebra map coming from the Y -module structure on F(M). Recall
the automorphism ρ from section 3.

The following lemma will be crucial.

Lemma 5.1. Let M be a module over H. For any 2 ≤ i ≤ n − 1 and any r ≥ 0, the following
identities between operators on F(M) hold:

ϕ
(
ρ(X±

i,r)
)

= T−1 ◦ ϕ(X±
i,r) ◦ T ϕ

(
ρ(Hi,r)

)
= T−1 ◦ ϕ(Hi,r) ◦ T (15)

ϕ
(
ρ2(X±

1,r)
)

= T−2 ◦ ϕ(X±
1,r) ◦ T 2 ϕ

(
ρ2(H1,r)

)
= T−2 ◦ ϕ(H1,r) ◦ T 2 (16)

Proof. Since the elements X±
i,r,Hi,r with r = 0, 1 generate LY (see equation (12)), it is enough to

prove the lemma for r = 0, 1. First, we prove relation (15) for X+
i,1 with 2 ≤ i ≤ n − 1. The proof

for X−
i,1 is exactly the same and we omit it, and the proof for Hi,1 follows from either of these two

cases using identity (3). The following observation will be used repeatedly throughout this article:
the action of sjk on V ⊗l if given in terms of matrices by: sjk =

∑n
r,s=1 E

j
rsE

k
sr.

Recall that X+
i,1 = J(X+

i ) − λω+
i . To simplify the notation, will not use ϕ in the proof. (We used

it only to state the lemma in a convenient way.) We have to check the equality

(J(X+
i ) − λω+

i )
(
T (m ⊗ v)

)
= T

(
(J(X+

i−1) − λω+
i−1 +

λ

2
X+

i−1)(m ⊗ v)
)
. (17)
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With v as before, suppose that j1 < · · · < jp are exactly the values of j for which ij = n. Then
T (m ⊗ v) = mx−1

j1
· · · x−1

jp
⊗ v+1 where v+1 = vi1+1 ⊗ · · · ⊗ vil+1. We will use the abbreviation

x−1
j1,...,jp

for the product x−1
j1

· · · x−1
jp

.

J(X+
i )

(
T (m ⊗ v)

)
= J(X+

i )(mx−1
j1,...,jp

⊗ v+1) =
l∑

k=1

mx−1
j1,...,jp

Yk ⊗ Ek
i,i+1(v+1)

=

l∑

k=1

p∑

r=1

mx−1
j1

· · · x−1
jr−1

[x−1
jr

,Yk]x
−1
jr+1

· · · x−1
jp

⊗ Ek
i,i+1(v+1) (18)

+
l∑

k=1

mYkx
−1
j1,...,jp

⊗ Ek
i,i+1(v+1) (19)

Note that Ei,i+1(v+1) =
(
Ei−1,i(v)

)
+1

since we are assuming that 2 ≤ i ≤ n − 1.

l∑

k=1

mYkx
−1
j1,...,jp

⊗ Ek
i,i+1(v+1) =

l∑

k=1

mYkx
−1
j1,...,jp

⊗
(
Ek

i−1,i(v)
)
+1

= T
(
J(X+

i−1)(m ⊗ v)
)

(20)

Therefore, it follows from (18), (19) and (20) that the identity (17) that we must prove can be
written as

(18) − λω+
i

(
T (m ⊗ v)

)
= −λT

(
ω+

i−1(m ⊗ v)
)

+
λ

2
T

(
X+

i−1(m ⊗ v)
)

(21)

In the sum (18), note that if k = js for some s, then Ek
i,i+1(v+1) = 0 since vik+1 = vijs+1 = v1 and

Ei,i+1(v1) = 0. Therefore, using proposition 2.3, we can simplify expression (18):

(18) =

p∑

r=1

l∑

k=1

k 6=js ∀s

mx−1
j1

· · · x−1
jr−1

(
−

c

2

)
(x−1

jr
+ x−1

k )sk,jr
x−1

jr+1
· · · x−1

jp
⊗ Ek

i,i+1(v+1)

(18) = −
c

2

p∑

r=1

l∑

k=1

k 6=js∀s

mx−1
j1

· · · x−1
jr−1

x−1
jr

x−1
jr+1

· · · x−1
jp

⊗ E
jr

i,i+1

(
sk,jr

(v+1)
)

(22)

−
c

2

p∑

r=1

l∑

k=1

k 6=js∀s

mx−1
j1

· · · x−1
jr−1

x−1
k x−1

jr+1
· · · x−1

jp
⊗ E

jr

i,i+1

(
sk,jr

(v+1)
)

(23)

We now turn to the second term on the left-hand side in (21). We distinguish two cases: when
Ej,i+1 and Eij act on the same tensorand, and when they act on different ones.
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λω+
i

(
T (m ⊗ v)

)
=

λ

4

n∑

j=1

j 6=i,i+1

l∑

k=1

sign(j − i)mx−1
j1,...,jp

⊗ Ek
i,i+1(v+1) (24)

+
λ

2

n∑

j=1

j 6=i,i+1

l∑

k=1

ik=j−1

l∑

d=1

id=i

sign(j − i)mx−1
j1,...,jp

⊗ Ek
i,i+1

(
skd(v+1)

)
(25)

−
λ

4
mx−1

j1,...,jp
⊗

(
Ei,i+1Hi + HiEi,i+1)(v+1

)
(26)

The term (24) can be simplified:

(24) =
λ

4
(n − 2i)

l∑

k=1

mx−1
j1,...,jp

⊗ Ek
i,i+1(v+1) = λ

(
n − 2i

4

)
T

(
l∑

k=1

m ⊗ Ek
i−1,i(v)

)
(27)

We now consider λT
(
ω+

i−1(m ⊗ v)
)
. As for ω+

i above, we distinguish two cases.

λT
(
ω+

i−1(m ⊗ v)
)

= T




λ

4

n∑

j=1

j 6=i−1,i

l∑

k=1

sign(j − i + 1)m ⊗ Ek
i−1,i(v)


 (28)

+T




λ

2

n∑

j=1

j 6=i−1,i

l∑

k=1

ik=j

l∑

d=1

id=i

sign(j − i + 1)m ⊗ Ek
i−1,i

(
skd(v)

)

 (29)

−
λ

4
T

(
(Ei−1,iHi−1 + Hi−1Ei−1,i)(m ⊗ v)

)
(30)

The expressions (26) and (30) are identical and the difference between the sums (28) and (24) is

equal to λ
2T

(∑l
k=1 m ⊗ Ek

i−1,i(v)
)

(see (27)), that is, λ
2T

(
X+

i−1(m ⊗ v)
)
. Therefore, the equality

(21) that we have to prove simplifies to (18) = (25) − (29).

In expression (25), we consider two different cases: j 6= 1 and j = 1 (hence ik = n):

(25) =
λ

2

n∑

j=2

j 6=i,i+1

l∑

k=1

ik=j−1

l∑

d=1

id=i

sign(j − i)mx−1
j1,...,jp

⊗
(
Ek

i−1,i(skd(v))
)
+1

(31)

−
λ

2

l∑

k=1

ik=n

l∑

d=1

id=i

mx−1
j1,...,jp

⊗ Ek
i,i+1

(
skd(v+1)

)
(32)

We can also decompose expression (29) into two sums by considering separately the cases j 6= n
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and j = n.

(29) =
λ

2
T




n−1∑

j=1

j 6=i−1,i

l∑

k=1

ik=j

l∑

d=1

id=i

sign(j − i)m ⊗ Ek
i−1,i

(
skd(v)

)

 (33)

+
λ

2
T




l∑

k=1

ik=n

l∑

d=1

id=i

m ⊗ Ek
i−1,i

(
skd(v)

)

 (34)

Note that the sums (31) and (33) are equal, so the difference (25) − (29) is equal to (32) − (34).
The equality (18) = (25) − (29) is now a consequence of the observation that the sums (22) and
(32) are identical, and so are (23) and −(34). (Indeed, if ik = n, then k = jr for some r and we
have to interchange the roles of d and k to see that these expressions are indeed equal.) We also
need our hypothesis that λ = c.

We now consider the case i = 1 in our proof of lemma 5.1. The identity (13) gives the following
expression for ω+

1 and ω+
n−1:

ω+
1 =

1

4

n∑

j=3

(Ej2E1j + E1jEj2) −
1

4
(E12H1 + H1E12)

ω+
n−1 = −

1

4

n−2∑

j=1

(EjnEn−1,j + En−1,jEjn) −
1

4
(En−1,nHn−1 + Hn−1En−1,n)

Suppose that j1, . . . , jp (resp. γ1, . . . , γe) are exactly the values of j (resp. of γ) such that ij = n

(resp. iγ = n− 1). Then T 2(m⊗ v) = mx−1
j1

· · · x−1
jp

x−1
γ1

· · · x−1
γe

⊗ v+2. Since X+
1,1 = J(X+

1 )− λω+
1 ,

we obtain:

X+
1,1

(
T 2(m ⊗ v)

)
=

l∑

k=1

mx−1
j1,...,jp

x−1
γ1,...,γe

Yk ⊗ Ek
12(v+2) (35)

−
λ

4

n∑

j=3

mx−1
j1,...,jp

x−1
γ1,...,γe

⊗ (Ej2E1j + E1jEj2)(v+2) (36)

+
λ

4
mx−1

j1,...,jp
x−1

γ1,...,γe
⊗ (E12H1 + H1E12)(v+2) (37)

In the summation (35), we can assume that k = js for some s, since otherwise Ek
12(v+2) = 0.

(35) =

p∑

s=1

e∑

u=1

mx−1
j1,...,jp

x−1
γ1

· · · x−1
γu−1

[x−1
γu

,Yjs ]x
−1
γu+1

· · · x−1
γe

⊗ E
js

12(v+2) (38)

+

p∑

s=1

p∑

r=1

mx−1
j1

· · · x−1
jr−1

[x−1
jr

,Yjs ]x
−1
jr+1

· · · x−1
jp

x−1
γ1,...,γe

⊗ E
js

12(v+2) (39)

+
l∑

k=1

mYkx
−1
j1,...,jp

x−1
γ1,...,γe

⊗ Ek
12(v+2) (40)
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The last term is equal to T 2
(
J(X+

n−1)(m⊗v)
)
. The term (37) above is equal to λ

4T 2
(
(En−1,nHn−1+

Hn−1En−1,n)(m ⊗ v)
)
. Therefore,

X+
1,1

(
T 2(m ⊗ v)

)
= (38) + (39) + (36) + T 2

(
X+

n−1,1(m ⊗ v)
)

+ (50).

(The expression (50) appears explicitly below.)

We need to decompose the sums (38) and (39).

(38) =

p∑

s=1

e∑

u=1

mx−1
j1,...,jp

x−1
γ1

· · · x−1
γu−1

(
−

c

2

)
(x−1

γu
+ x−1

js
)sγu,jsx

−1
γu+1

· · · x−1
γe

⊗ E
js

12(v+2)

= −
c

2

p∑

s=1

e∑

u=1

mx−1
j1,...,jp

x−1
γ1

· · · x−1
γu−1

x−1
γu

x−1
γu+1

· · · x−1
γe

⊗ E
γu

12

(
sγu,js(v+2)

)
(41)

−
c

2

p∑

s=1

e∑

u=1

mx−1
j1,...,jp

x−1
γ1

· · · x−1
γu−1

x−1
js

x−1
γu+1

· · · x−1
γe

⊗ E
γu

12

(
sγu,js(v+2)

)
(42)

(39) =

p∑

a=1

p∑

d=1

d6=a

mx−1
j1

· · · x−1
jd−1

[x−1
jd

,Yja ]x−1
jd+1

· · · x−1
jp

x−1
γ1,...,γe

⊗ E
ja

12(v+2)

+

p∑

a=1

mx−1
j1

· · · x−1
ja−1

[x−1
ja

,Yja ]x−1
ja+1

· · · x−1
jp

x−1
γ1,...,γe

⊗ E
ja

12(v+2)

=

p∑

a=1

p∑

d=1

d6=a

mx−1
j1,...,jd−1

(
−

c

2

)
(x−1

jd
+ x−1

ja
)sjd,jax

−1
jd+1,...,jp

x−1
γ1,...,γe

⊗ E
ja

12(v+2)

+

p∑

a=1

mx−1
j1,...,ja−1


tx−1

ja
+

c

2

∑

q 6=ja

(x−1
ja

+ x−1
q )sja,q


 x−1

ja+1,...,jp
x−1

γ1,...,γe
⊗ E

ja

12(v+2)

= −
c

2

p∑

a=1

p∑

d=1

d6=a

mx−1
j1,...,jd−1

x−1
jd

sja,jd
(x−1

jd+1,...,jp
x−1

γ1,...,γe
) ⊗ E

jd

12(sja,jd
(v+2)) (43)

−
c

2

p∑

a=1

p∑

d=1

d6=a

mx−1
j1,...,jd−1

x−1
ja

sjd,ja(x
−1
jd+1,...,jp

x−1
γ1,...,γe

) ⊗ E
jd

12(sja,jd
(v+2)) (44)

+t

p∑

a=1

mx−1
j1,...,jp

x−1
γ1,...,γe

⊗ E
ja

12(v+2) (45)

+
c

2

p∑

a=1

l∑

q=1

q 6=ja

mx−1
j1,...,ja−1

x−1
ja

sja,q(x
−1
ja+1,...,jp

x−1
γ1,...,γe

) ⊗ E
q
12(sja,q(v+2)) (46)

+
c

2

p∑

a=1

l∑

q=1

q 6=ja

mx−1
j1,...,ja−1

x−1
q sja,q(x

−1
ja+1,...,jp

x−1
γ1,...,γe

) ⊗ E
q
12(sja,q(v+2)) (47)
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We now focus on ω+
1

(
T 2(m⊗v)

)
and T 2

(
ω+

n−1(m⊗v)
)
. We’ve used the equality ω+

1 (T 2(m⊗v)) =
−(36) − (37) earlier. We can decompose (36) by considering the cases when E1j and Ej2 act on
the same tensorand and on different ones:

−(36) = λ

(
n − 2

4

)
mx−1

j1,...,jp
x−1

γ1,...,γe
⊗ E12(v+2) (48)

+
λ

2

n∑

j=3

l∑

q=1

iq+2=j

p∑

b=1

mx−1
γ1,...,γe

⊗ E
q
12

(
sq,jb

(v+2)
)

(49)

λT 2
(
ω+

n−1(m ⊗ v)
)

= −
λ

4
T 2




n−2∑

j=1

(EjnEn−1,j + En−1,jEjn)(m ⊗ v)


 (50)

−
λ

4
T 2

(
(En−1,nHn−1 + Hn−1En−1,n)(m ⊗ v)

)
(51)

We observe that −(37) = (51). As with (36), we can decompose (50):

(50) = −λ

(
n − 2

4

)
mx−1

j1,...,jp
x−1

γ1,...,γe
⊗ (En−1,n(v))+2 (52)

−
λ

2
T 2




n−2∑

j=1

l∑

q=1

iq=j

p∑

b=1

m ⊗ E
q
n−1,n

(
sq,jb

(v)
)

 (53)

We observe that (48) − (52) = λ
(

n−2
2

)
T 2

(
En−1,n(m ⊗ v)

)
.

(53) = −
λ

2

n−2∑

j=1

l∑

q=1

iq=j

p∑

b=1

mx−1
j1,...,jp

xjb

xq
x−1

γ1,...,γe
⊗ E

q
12(sq,jb

(v+2))

To obtain the last expression, note that iq 6= ja, γh for any a, h since iq = j and we consider values
of j different from n and n − 1.

We now decompose the sums (46) and (47) into three different sums. In the first case, q = jd 6= ja;
in the second one, q = γh; and in the third case q 6= ja, γh for any a, h.

(46) =
c

2

p∑

a=1

p∑

d=1

d6=a

mx−1
j1,...,ja−1

x−1
ja

sja,jd
(x−1

ja+1,...,jp
x−1

γ1,...,γe
) ⊗ E

jd

12

(
sja,jd

(v+2)
)

(54)

+
c

2

p∑

a=1

e∑

h=1

mx−1
j1,...,ja−1

x−1
ja

x−1
ja+1,...,jp

x−1
γ1,...,γh−1

x−1
ja

x−1
γh+1,...,γe

⊗ E
γh

12 (sja,γh

(
v+2)

)
(55)

+
c

2

p∑

a=1

l∑

q=1

q 6=jd,γh

mx−1
j1,...,ja−1

x−1
ja

x−1
ja+1,...,jp

x−1
γ1,...,γe

⊗ E
q
12

(
sja,q(v+2)

)
(56)
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(47) =
c

2

p∑

a=1

p∑

d=1

d6=a

mx−1
j1,...,ja−1

x−1
jd

sja,jd
(x−1

ja+1,...,jp
x−1

γ1,...,γe
) ⊗ E

jd

12

(
sja,jd

(v+2)
)

(57)

+
c

2

p∑

a=1

e∑

h=1

mx−1
j1,...,ja−1

x−1
γh

x−1
ja+1,...,jp

x−1
γ1,...,γh−1

x−1
ja

x−1
γh+1,...,γe

⊗ E
γh

12

(
sja,γh

(v+2)
)

(58)

+
c

2

p∑

a=1

l∑

q=1

q 6=jd,γh

mx−1
j1,...,ja−1

x−1
q x−1

ja+1,...,jp
x−1

γ1,...,γe
⊗ E

q
12

(
sja,q(v+2)

)
(59)

The following equalities hold since we are assuming that λ = c:

(37) = −(51), (56) = (49), (59) = −(53), (58) = −(41), (42) = −(55), (43) = −(57), (44) = −(54)

Using our assumption that β = t
2 − λ(n−2)

4 , we can prove that X+
1,1

(
T 2(m ⊗ v)

)
= T 2

(
(X+

n−1,1 +

2βX+
n−1)(m ⊗ v)

)
:

X+
1,1

(
T 2(m ⊗ v)

)
− T 2

(
X+

n−1,1(m ⊗ v)
)

= (35) + (36) + (37)

= (38) + (39) + (41) + T 2
(
J(X+

n−1)(m ⊗ v)
)
− T 2

(
X+

n−1,1(m ⊗ v)
)

= (41) + . . . + (47) + (36) + (37) + (50) + (51)

= (41) + . . . (45) + (54) + (55) + (56) + (57) + (58) + (59) − (48) − (49)

+(37) + (51) + (52) + (53)

= ((37) + (51)) + ((41) + (58)) + ((42) + (55)) + ((43) + (57)) + ((44) + (54)) + (45) − (48)

+(−(49) + (56)) + ((53) + (59)) + (52)

= (45) − (48) + (52) =

(
t − λ

(
n − 2

2

))
T 2

(
En−1,n(m ⊗ v)

)
= 2βT 2

(
X+

n−1(m ⊗ v)
)

Using the lemma, we can now define the action of X±
0,1 and of H0,1 on F(M) by setting

X±
0,1(m ⊗ v) = T−1

(
X±

1,1

(
T (m ⊗ v)

))
− βX±

0 (m ⊗ v)

and
H0,1(m ⊗ v) = T−1

(
H1,1

(
T (m ⊗ v)

))
− βH0(m ⊗ v).

Note that lemma 5.1 implies that X±
0,1

(
T (m ⊗ v)

)
= T

(
X±

n−1,1(m ⊗ v) + βX±
n−1(m ⊗ v)

)
and

similarly for H0,1. In other words, and more generally, we set

ϕ(X±
0,r) = T ◦ ϕ

(
ρ(X±

0,r)
)
◦ T−1, ϕ(H0,r) = T ◦ ϕ

(
ρ(H0,r)

)
◦ T−1 ∀r ≥ 0.

We now have to check that this indeed gives F(M) a structure of integrable module over LY .
Choose i, j, k ∈ {0, 1, . . . , n − 1} with k 6= i, k 6= j. We have to verify that ϕ(X±

i,r), ϕ(Hi,r), ϕ(X±
j,s)
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and ϕ(Hj,s) satisfy the defining relations of LY . This is true when k = 0 from theorem 1 of [Dr1].
Using lemma 5.1, we conclude that it is also true for k 6= 0. This means that we have a well-defined
algebra homomorphism ϕ from LY to EndC(F(M)). That F(M) is integrable follows from the
fact that V ⊗l is an integrable sln-module, and that it is of level l follows from theorem 4.1 in the
case of C[Sl] and Usln.

5.2 Proof of theorem 4.2, part 2

For the rest of this section, we assume that l + 2 < n. In the second step of the proof, we have
to show that, given an integrable module M̂ of level l over LY , we can find a module M over H
such that F(M) = M̂ . Integrable Usln-modules are direct sums of finite dimensional ones, so, by
the results of Drinfeld [Dr1] and Chari-Pressley [ChPr1], we know that there exists modules M1

and M2 over, respectively, H and C[S̃l], such that M̂ = F(M1) as Y -module and M̂ = F(M2) as
Lsln-module. Since C[Sl] ⊂ H and C[Sl] ⊂ C[S̃l], we have an isomorphism M1 ∼= M2 of Sl-modules,
so we can denote them simply by M . We have to show that M is actually a module over H.

The following observation will be useful.

Lemma 5.2. If v = vi1 ⊗ · · · ⊗ vil is a generator of V ⊗l as a module over Usln (that is, if ij 6= ik
for any j 6= k), then m ⊗ v = 0 =⇒ m = 0.

Fix 1 ≤ j, k ≤ l, j 6= k. We choose v to be the following generator of V ⊗l as Usln-module:
v = vi1 ⊗ vi2 ⊗· · ·⊗ vil where id = d+3 if d < j, d 6= k, id = d+2 if d > j, d 6= k, ij = 2 and ik = 1.

We can express ω−
2 as an operator on V ⊗l in the following way:

ω−
2 |V ⊗l = −

1

2

n∑

d=1

d6=2,3

l∑

r=1

l∑

s=1

s 6=r

sign(2 − d)(Er
3dE

s
d2) −

(
n − 2

4

) l∑

r=1

Er
32 −

1

2

l∑

r=1

l∑

s=1

s 6=r

Er
32H

s
2

Therefore, [Ea
n1, ω

−
2 ] = −1

2

∑l
r=1

r 6=a
Er

31E
a
n2 −

1
2

∑l
s=1

s 6=a
Ea

31E
s
n2 and applying this to m⊗v with a = j, k

gives

[Ej
n1, ω

−
2 ](m ⊗ v) = −

1

2
Ek

31E
j
n2(m ⊗ v) and [Ek

n1, ω
−
2 ](m ⊗ v) = −

1

2
Ek

31E
j
n2(m ⊗ v).

(X−
2,1X

+
0 − X+

0 X−
2,1)(m ⊗ v) =

l∑

r=1

l∑

s=1

(
mxrYs ⊗ X

−,s
2,0 Er

n1(v) − mYsxr ⊗ Er
n1X

−,s
2,0 (v)

)

−λ[ω−
2 ,X+

0 ](m ⊗ v)

=

l∑

r=1

l∑

s=1

m[xr,Ys] ⊗ Es
32E

r
n1(v) + λ

s∑

a=1

mxa ⊗ [Ea
n1, ω

−
2 ](v)
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(X−
2,1X

+
0 − X+

0 X−
2,1)(m ⊗ v) = m[xk,Yj ] ⊗ E

j
32E

k
n1(v) −

λ

2
mxj ⊗ Ek

31E
j
n2(v)

−
λ

2
mxk ⊗ Ek

31E
j
n2(v)

= m
(
[xk,Yj] −

λ

2
(xj + xk)sjk

)
⊗ ṽ

where ṽ = E
j
32E

k
n1(v) = va1

⊗ · · · ⊗ val
with ad = id if d 6= j, k, aj = 3 and ak = n. We

know from relation (3) that [X−
2,1,X

+
0 ] = 0, so the last expression is equal to 0. Since ṽ is a

generator of V ⊗l as a Usln-module, it follows, from lemma 5.2 and our assumption that λ = c, that
m

(
[xk,Yj ] −

c
2 (xj + xk)sjk

)
= 0.

We consider now the relation between xk and Yk. From the definition of ν1:

ν1 =
1

4

n∑

d=3

(E1dEd1 + Ed1E1d) +
1

2
(E12E21 + E21E12) −

1

4

n∑

d=3

(E2dEd2 + Ed2E2d) −
1

2
H2

1

whence, as an operator on V ⊗l, it is equal to

ν1|V ⊗l =
1

2

n∑

d=3

l∑

j=1

l∑

s=1

s 6=j

(Ej
1dE

s
d1 − E

j
2dE

s
d2) +

l∑

j=1

l∑

s=1

s 6=j

E
j
12E

s
21 −

1

2

l∑

j=1

l∑

s=1

s 6=j

H
j
1Hs

1 +

(
n − 2

4

) l∑

j=1

H
j
1 .

Therefore,

[Er
n1, ν1] =

1

2

n−1∑

d=3

l∑

s=1

s 6=r

Er
ndE

s
d1 +

1

2

l∑

s=1

s 6=r

(Hr
0Es

n1 + Er
21E

s
n2) +

l∑

s=1

s 6=r

Er
n2E

s
21 −

l∑

s=1

s 6=r

Er
n1H

s
1 +

(
n − 2

4

)
Er

n1.

Fix k, 1 ≤ k ≤ l. We now choose v to be equal to v = vi1 ⊗ · · · ⊗ vil with id = d + 2 if d < k,
id = d + 1 if d > k and ik = 1. Note that vid 6= 2, n, n − 1∀d since l + 1 < n − 1 by assumption.
Applying the previous expression for [Er

n1, ν1] to v, we obtain the following:

[Er
n1, ν1](v) =

1

2

n∑

d=3

Er
ndE

k
d1(v) =

1

2
skrE

k
n1(v) if r 6= k [Ek

n1, ν1](v) =

(
n − 2

4

)
Ek

n1(v). (60)

Note that Hs
1,0(v) = 0 if s 6= k. We need (60) to obtain equation (61) below.

(H1,1X
+
0 − X+

0 H1,1)(m ⊗ v) =

l∑

r=1

l∑

s=1

mxrYs ⊗ Hs
1,0E

r
n1(v)

−

l∑

s=1

l∑

r=1

mYsxr ⊗ Er
n1H

s
1,0(v) − λ[ν1,X

+
0 ](m ⊗ v)

= −mYkxk ⊗ Ek
n1H

k
1,0(v) + λ

l∑

r=1

mxr ⊗ [Er
n1, ν1](v)
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(H1,1X
+
0 − X+

0 H1,1)(m ⊗ v) = −mYkxk ⊗ Ek
n1(v) +

λ

2

l∑

r=1

r 6=k

mxr ⊗ skrE
k
n1(v)

+λ

(
n − 2

4

)
m ⊗ Ek

n1(v)

= −mYkxk ⊗ ṽ +
λ

2

l∑

r=1

r 6=k

mxrskr ⊗ ṽ + λ

(
n − 2

4

)
m ⊗ ṽ (61)

where ṽ = Ek
n1(v) = va1

⊗ · · · ⊗ val
with ad = id if d 6= k and ak = n. We want to obtain a similar

relation with H1,1 replaced by Hn−1,1.

From the definition of νn−1,

νn−1 =
1

4

n−2∑

d=1

(EdnEnd + EndEdn) +
1

2
(En−1,nEn,n−1 + En,n−1En−1,n)

−
1

4

n−2∑

d=1

(Ed,n−1En−1,d + En−1,dEd,n−1) −
1

2
H2

n−1

whence, as an operator on V ⊗l, it is equal to

νn−1|V ⊗l =
1

2

n−2∑

d=1

l∑

j=1

l∑

s=1

s 6=j

(Ej
dnEs

nd − E
j
d,n−1E

s
n−1,d) +

l∑

j=1

l∑

s=1

s 6=j

(Ej
n−1,nEs

n,n−1)

−
1

2

l∑

j=1

l∑

s=1

s 6=j

H
j
n−1H

s
n−1 −

(
n − 2

4

) l∑

j=1

H
j
n−1.

Therefore,

[Er
n1, νn−1] = −

1

2

n−2∑

d=2

l∑

s=1

s 6=r

Er
d1E

s
nd +

1

2

l∑

s=1

s 6=r

(Hr
0Es

n1 − Er
n,n−1E

s
n−1,1)

−

l∑

s=1

s 6=r

Er
n−1,1E

s
n,n−1 −

l∑

s=1

s 6=r

Er
n1H

s
n−1 −

(
n − 2

4

)
Er

n1.

Applying the previous expression for [Er
n1, νn−1] to v, we conclude that [Er

n1, νn−1](v) = 0 if r 6= k

and

[Ek
n1, νn−1](v) = −

1

2

n−2∑

d=2

l∑

s=1

s 6=k

Ek
d1E

s
nd(v) −

(
n − 2

4

)
Ek

n1(v) = −
1

2

l∑

s=1

s 6=k

sksE
k
n1(v) −

(
n − 2

4

)
Ek

n1(v)

(62)
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The equation (62) allows us to compute [Hn−1,1,X
+
0 ](m ⊗ v):

(Hn−1,1X
+
0 − X+

0 Hn−1,1)(m ⊗ v) =

l∑

r,s=1

(
mxrYs ⊗ Hs

n−1,0E
r
n1(v) − mYsxr ⊗ Er

n1H
s
n−1,0(v)

)

−λ[νn−1,X0](m ⊗ v)

= mxkYk ⊗ Hk
n−1,0E

k
n1(v) + λ

s∑

r=1

mxr ⊗ [Er
n1, νn−1](v)

= −mxkYk ⊗ Ek
n1(v) −

λ

2

l∑

s=1

s 6=k

mxk

(
sks +

n − 2

2

)
⊗ Ek

n1(v)

= −mxkYk ⊗ Ek
n1(v) −

λ

2

l∑

s=1

s 6=k

mxk

(
sks +

n − 2

2

)
⊗ ṽ (63)

From the relations (1), (6) and (9) in LY , we know that

−X+
0,1 = [H1,1,X

+
0 ] + ((λ − β)H1X

+
0 + βX+

0 H1) (64)

= [Hn−1,1,X
+
0 ] + (βHn−1X

+
0 + (λ − β)X+

0 Hn−1) (65)

Applying these two expressions for −X+
0,1 to m ⊗ v, using equalities (61),(63) and the fact that

H1X
+
0 (v) = 0 and X+

0 Hn−1(v) = 0 because of our choice of v, we obtain:

−mYkxk ⊗ ṽ +
λ

2

l∑

r=1

r 6=k

mxr ⊗ skrṽ + λ

(
n − 2

4

)
mxk ⊗ ṽ + βX+

0 H1(m ⊗ v) =

−mxkYk ⊗ ṽ −
λ

2

l∑

s=1

s 6=k

mxksks ⊗ ṽ − λ

(
n − 2

4

)
mxk ⊗ ṽ + βHn−1X

+
0 (m ⊗ v)

=⇒ m[xk,Yk] ⊗ ṽ +
λ

2

l∑

r=1

r 6=k

m(xr + xk)skr ⊗ ṽ + λ

(
n − 2

2

)
mxk ⊗ ṽ + 2βmxk ⊗ ṽ = 0

Since ṽ is a generator of V ⊗l as a Usln-module, it follows from lemma 5.2 and our assumptions
that 2β + λ(n−2)

2 = t, λ = c that

m
(
[xk,Yk] +

c

2

l∑

r=1

r 6=k

(xr + xk)skr + txk

)
= 0

We proved above that m([xk,Yj ] −
c
2(xj + xk)sjk) = 0 if j 6= k. These last two equalities imply

that M is a right module over H.
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Therefore, we have shown that the H- and the C[S̃l]-module structure on M can be glued to yield
a module over H. To prove that F is an equivalence, we are left to show that it is fully faithful.
That F is injective on morphisms is true because this is true for the Schur-Weyl duality functor
between C[S̃l] and U(Lsln), so suppose that f : F(M1) −→ F(M2) is a LY -homomorphism. From
the main results of [ChPr1] and [Dr1], f is of the form f(m1 ⊗ v) = g(m1) ⊗ v,∀m1 ∈ M1, where
g ∈ HomC(M1,M2) is a linear map which is also a homomorphism of right C[S̃l]- and H-modules.
Since H is generated by its two subalgebras C[S̃l] and H, g is even a homomorphism of H-modules.
Therefore, f = F(g) and this completes the proof of theorem 4.2. 2

6 Action of the elements X±
0,1, H0,1

Now that we know that F(M) is a module over LY , it may be interesting to see explicitly how the
elements X±

0,1 and H0,1 act on it. What we will discover will be useful in the next section. We will

assume throughout this section that λ = c and β = t
2 − nc

4 + c
2 .

6.1 Action of X+
0,1

Equations (64) and (65) yield

X+
0,1 = −

1

2
[H1,1 + Hn−1,1,X

+
0 ] −

1

2

(
((λ − β)H1 + βHn−1)X

+
0 + X+

0 (βH1 + (λ − β)Hn−1)
)
.

We will use the notation Kr(z) to denote the element z ⊗ ur ∈ Lsln for z ∈ sln; in particular,
K1(En1) = X+

0 and K−1(E1n) = X−
0 . The element Kr(z) maps to the operator in EndC(F(M))

given by Kr(z)(m ⊗ v) =
∑l

k=1 mxr
k ⊗ zk(v). Writing H1,1 as H1,1 = J(H1) − λν1, and similarly

for Hn−1,1, we can express X+
0,1 in the following way. (We will use that [Hn−1 − H1,X

+
0 ] = 0.)

X+
0,1 = −

1

2
[J(H1 + Hn−1),X

+
0 ] −

λ

8

n−1∑

d=3

(
K1(End)Ed1 + Ed1K1(End)

)

+
λ

8

((
K1(E11) − K1(Enn)

)
En1 + En1

(
K1(E11) − K1(Enn)

))
+

λ

4
(H1X

+
0 + X+

0 H1)

−
λ

4

(
K1(En2)E21 + E21K1(En2)

)
−

λ

8

(
K1(E21)En2 + En2K1(E21)

)

+
λ

8

n−2∑

d=2

(
K1(Ed1)End + EndK1(Ed1)

)
+

λ

8

((
K1(E11) − K1(Enn)

)
En1

+En1

(
K1(E11) − K1(Enn)

))
+

λ

4

(
K1(En−1,1)En,n−1 + En,n−1K1(En−1,1)

)

+
λ

8

(
K1(En,n−1)En−1,1 + En−1,1K1(En,n−1)

)

+
λ

4
(X+

0 Hn−1 + Hn−1X
+
0 ) −

1

2

(
((λ − β)H1 + βHn−1)X

+
0 + X+

0 (βH1 + (λ − β)Hn−1)
)
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X+
0,1 = −

1

2
[J(H1 + Hn−1),X

+
0 ] −

λ

8

n−2∑

d=3

(
K1(End)Ed1 + Ed1K1(End)

)

−
λ

4

(
K1(En2)E21 + E21K1(En2)

)
+

λ

8

n−2∑

d=3

(
K1(Ed1)End + EndK1(Ed1)

)

+
λ

4

((
K1(E11) − K1(Enn)

)
En1 + En1

(
K1(E11) − K1(Enn)

))

+
λ

4

(
K1(En−1,1)En,n−1 + En,n−1K1(En−1,1)

)

= −
1

2
[J(E11 − Enn),X+

0 ] +
1

2
[H2,1 + · · ·Hn−2,1,X

+
0 ] +

1

2
[ν2 + · · · + νn−2,X

+
0 ] (66)

−
λ

8

n−2∑

d=2

(
K1(End)Ed1 + Ed1K1(End)

)
+

λ

8

n−1∑

d=3

(
K1(Ed1)End + EndK1(Ed1)

)

+
λ

8

(
K1(En2)E21 + E21K1(En2)

)
−

λ

4

(
K1(H0)En1 + En1K1(H0)

)

+
λ

8

(
K1(En−1,1)En,n−1 + En,n−1K1(En−1,1)

)

=
1

2
[J(Enn − E11),X

+
0 ] −

λ

8

n−1∑

d=2

(
K1(End)Ed1 + Ed1K1(End)

)

+
λ

8

n−1∑

d=2

(
K1(Ed1)End + EndK1(Ed1)

)
−

λ

4

(
K1(H0)En1 + En1K1(H0)

)

= J(X+
0 ) −

λ

8

∑

ǫ∈∆+

(
[X+

0 ,X+
ǫ ]X−

ǫ + X−
ǫ [X+

0 ,X+
ǫ ]

)
−

λ

8

(
K1(H0)En1 + En1K1(H0)

)
.

We define J(X+
0 ) to be equal to 1

2 [J(Enn − E11),X
+
0 ]. In line (66), we used the fact that

1

2
[ν2 + · · · + νn−2,X

+
0 ] =

1

8
[E12E21 + E21E12 − E1,n−1En−1,1 + E2nEn2 + En2E2n

−En−1,1E1,n−1 − En,n−1En−1,n − En−1,nEn,n−1,X
+
0 ]

Recall that H0 = Enn − E11 = −H1 − . . . − Hn−1. Set Ỹj = 1
2(xjYj + Yjxj). The element J(X+

0 )
acts on F(M) in the following way:

J(X+
0 )(m ⊗ v) =

1

2

l∑

j=1

l∑

k=1

k 6=j

m[xk,Yj ] ⊗ H
j
0E

k
n1(v) +

1

2

l∑

j=1

m(xjYj + Yjxj) ⊗ E
j
n1(v)

=
λ

4

l∑

j=1

l∑

k=1

k 6=j

m(xk + xj)sjk ⊗ H
j
0Ek

n1(v) +

l∑

j=1

mỸj ⊗ E
j
n1(v)
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J(X+
0 )(m ⊗ v) =

λ

4

l∑

j=1

l∑

k=1

k 6=j

m(xk + xj) ⊗ (Ej
nnEk

n1 − E
j
n1E

k
11)(v) +

l∑

j=1

mỸj ⊗ E
j
n1(v)

=




l∑

j=1

Ỹj ⊗ E
j
n1 +

λ

8

(
X+

0 H0 + H0X
+
0 + En1K1(H0) + K1(H0)En1

)

 (m ⊗ v)

Set J̃(X+
0 ) = J(X+

0 ) − λ
8 (X+

0 H0 + H0X
+
0 + En1K1(H0) + K1(H0)En1), so

X+
0,1 = J̃(X+

0 ) −
λ

8

∑

ǫ∈∆+

(
[X+

0 ,X+
ǫ ]X−

ǫ + X−
ǫ [X+

0 ,X+
ǫ ]

)
+

λ

8
(X+

0 H0 + H0X
+
0 )

6.2 Action of H0,1

We set ǫ0 = −ǫ1 − . . . − ǫn−1 = −θ and ǫ0 = (ǫ, ǫ0) for ǫ ∈ ∆+. From relation (3), we know that
[X+

0,1,X
−
0 ] = H0,1, so

H0,1 = [J̃(X+
0 ),X−

0 ] +
λ

4
H2

0 −
λ

4
(X+

0 X−
0 + X−

0 X+
0 ) +

λ

4
(E1nEn1 + En1E1n)

−
λ

4
K1(H0)K−1(H0) −

λ

8

∑

ǫ∈∆+

ǫ 6=−ǫ0

(ǫ, ǫ0)(X
+
ǫ X−

ǫ + X−
ǫ X+

ǫ )

+
λ

8

∑

ǫ∈∆+

ǫ 6=−ǫ0

(ǫ, ǫ0)(Kǫ0(X
+
ǫ )K−ǫ0(X

−
ǫ ) + K−ǫ0(X

−
ǫ )Kǫ0(X

+
ǫ ))

= [J̃(X+
0 ),X−

0 ] − λν̃0 (67)

where

ν̃0 =
1

8

∑

ǫ∈∆+

(ǫ, ǫ0)
(
X+

ǫ X−
ǫ + X−

ǫ X+
ǫ − Kǫ0(X

+
ǫ )K−ǫ0(X

−
ǫ ) − K−ǫ0(X

−
ǫ )Kǫ0(X

+
ǫ )

)

−
1

4
H2

0 +
1

4
K1(H0)K−1(H0)

We can use this to find how H0,1 acts on F(M), so let us see explicitly how [J̃(X+
0 ),X−

0 ] acts on
F(M):

[J̃(X+
0 ),X−

0 ](m ⊗ v) =

l∑

j=1

l∑

k=1

k 6=j

m[x−1
k , Ỹj ] ⊗ E

j
n1E

k
1n(v)

+

l∑

j=1

mx−1
j Ỹj ⊗ E

j
n1E

j
1n(v) −

l∑

j=1

mỸjx
−1
j ⊗ E

j
1nE

j
n1(v)
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[J̃(X+
0 ),X−

0 ](m ⊗ v) = −
λ

4

l∑

j=1

l∑

k=1

k 6=j

m(xj + xk)(x
−1
j + x−1

k )sjk ⊗ E
j
n1E

k
1n(v)

+
1

2

l∑

j=1

m(Yj + x−1
j Yjxj) ⊗ Ej

nn(v) −
1

2

l∑

j=1

m(xjYjx
−1
j + Yj) ⊗ E

j
11(v)

= −
λ

4

l∑

j=1

l∑

k=1

k 6=j

m(2 + x−1
j xk + x−1

k xj) ⊗ E
j
11E

k
nn(v) +

l∑

j=1

mYj ⊗ H0(v)

+
1

2

l∑

j=1

m[x−1
j ,Yj]xj ⊗ Ej

nn(v) −
1

2

l∑

j=1

mxj [Yj, x
−1
j ] ⊗ E

j
11(v)

= −
λ

4

l∑

j=1

l∑

k=1

k 6=j

m(2 + x−1
j xk + x−1

k xj) ⊗ E
j
11E

k
nn(v) +

l∑

j=1

mYj ⊗ H0(v)

+
λ

4

l∑

j=1

l∑

k=1

k 6=j

mxk(x
−1
j + x−1

k )sjk ⊗ Ej
nn(v)

+
λ

4

l∑

j=1

l∑

k=1

k 6=j

mxj(x
−1
j + x−1

k )sjk ⊗ E
j
11(v) +

t

2
(Enn + E11)(m ⊗ v)

= −λ
(1

2
E11Enn +

1

4
K−1(E11)K1(Enn) +

1

4
K−1(Enn)K1(E11)

)
(m ⊗ v)

+

l∑

j=1

mYj ⊗ H0(v) −
λn

4
Enn(m ⊗ v) −

λ

2

n∑

d=1

Edd(m ⊗ v) −
λn

4
E11(m ⊗ v)

+
λ

8

n∑

d=1

(
EndEdn + EdnEnd + K1(End)K−1(Edn) + K−1(Edn)K1(End)

)
(m ⊗ v)

+
λ

8

n∑

d=1

(
E1dEd1 + Ed1E1d + K−1(E1d)K1(Ed1) + K−1(Ed1)K−1(E1d)

)
(m ⊗ v)

+
t

2
(Enn + E11)(m ⊗ v) (68)

Putting together equations (67) and (68), we conclude that H0,1 acts on F(M) in the following
way:

H0,1(m ⊗ v) = J(H0)(m ⊗ v) −
λ

2

n∑

d=1

Edd(m ⊗ v) +
λ

2
(En1E1n + E1nEn1)(m ⊗ v)

+
λ

4

n−1∑

d=2

(EndEdn + EdnEnd + E1dEd1 + Ed1E1d)(m ⊗ v)

+
λ

2
H2

0 (m ⊗ v) + (β −
λ

2
)(E11 + Enn)(m ⊗ v)
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H0,1(m ⊗ v) = J(H0)(m ⊗ v) − λν0(m ⊗ v) − l

(
2t

n
− λ

)
(m ⊗ v)

+(β −
λ

2
)

n∑

j=1

(
E11 − Ejj

n
+

Enn − Ejj

n
)(m ⊗ v)

where

ν0 = −
1

4

n−1∑

d=2

(EndEdn + EdnEnd + E1dEd1 + Ed1E1d) −
1

2
(En1E1n + E1nEn1) −

1

2
H2

0

=
1

4

∑

ǫ∈∆+

(ǫ, ǫ0)(X
+
ǫ X−

ǫ + X+
ǫ X−

ǫ ) −
1

2
H2

0 .

6.3 Action of X−
0,1

Our goal now is to find elements that act on F(M) by m ⊗ v 7→
∑l

j=1 myj ⊗ Ej(v), E ∈ sln. Set

Y +
0 = 1

2 [X−
0 , H̃0,1] where H̃0,1 = J(H0) + λξ0 and

ξ0 =
1

4

n−1∑

d=2

(E1dEd1 + Ed1E1d + EndEdn + EdnEnd) +
1

2
(En1E1n + E1nEn1)

Y +
0 (m ⊗ v) =

1

2
[X−

0 , J(H0)](m ⊗ v) +
λ

2
[X−

0 , ξ0](m ⊗ v) =
1

2

l∑

j=1

l∑

k=1

k 6=j

m[Yj , x
−1
k ] ⊗ Ek

1nH
j
0(v)

+
1

2

l∑

j=1

m(Yjx
−1
j + x−1

j Yj) ⊗ E
j
1n(v) +

λ

2
[X−

0 , ξ0](m ⊗ v)

=
λ

4

l∑

j=1

l∑

k=1

k 6=j

m(x−1
j + x−1

k )sjk ⊗ Ek
1nH

j
0(v) +

1

2

l∑

j=1

myj ⊗ E
j
1n(v)

+
1

4

l∑

j=1

m(xjyjx
−1
j + x−1

j yjxj) ⊗ E
j
1n +

λ

2
[X−

0 , ξ0](m ⊗ v)

=
λ

4

l∑

j=1

l∑

k=1

k 6=j

m(x−1
j + x−1

k )sjk ⊗ Ek
1nH

j
0(v) +

l∑

j=1

myj ⊗ E
j
1n(v)

+
1

4

l∑

j=1

m(xj [yj, x
−1
j ] + [x−1

j , yj ]xj) ⊗ E
j
1n(v) +

λ

2
[X−

0 , ξ0](m ⊗ v)
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=
λ

4

l∑

j=1

l∑

k=1

k 6=j

m(x−1
j + x−1

k )sjk ⊗ Ek
1nH

j
0(v) +

l∑

j=1

myj ⊗ E
j
1n(v) +

λ

2
[X−

0 , ξ0](m ⊗ v)

+
1

4

l∑

j=1

m
(
xj

(
− tx−2

j − λ
∑

k 6=j

x−1
j x−1

k sjk

)
+

(
tx−2

j + λ
∑

k 6=j

x−1
j x−1

k sjk

)
xj

)
⊗ E

j
1n(v)

=
λ

4

l∑

j=1

l∑

k=1

k 6=j

m(x−1
j + x−1

k )sjk ⊗ Ek
1nH

j
0(v) +

l∑

j=1

myj ⊗ E
j
1n(v)

+
λ

4

l∑

j=1

l∑

k=1

k 6=j

m(x−1
j − x−1

k )sjk ⊗ E
j
1n(v) +

λ

2
[X−

0 , ξ0](m ⊗ v)

=
λ

4

l∑

j=1

l∑

k=1

k 6=j

m(x−1
j + x−1

k ) ⊗ (Ek
nnE

j
1n − Ek

1nE
j
11)(v)

+
l∑

j=1

myj ⊗ E
j
1n(v) +

λ

2
[X−1

0 , ξ0](m ⊗ v) +
λ

4

l∑

j=1

l∑

k=1

k 6=j

n∑

d=1

m(x−1
j − x−1

k ) ⊗ Ek
1dE

j
dn

=
λ

8

(
EnnK−1(E1n) + K−1(E1n)Enn + K−1(Enn)E1n + E1nK−1(Enn)

)
(m ⊗ v)

−
λ

8

(
E1nK−1(E11) + K−1(E11)E1n + K−1(E1n)E11 + E11K−1(E1n)

)
(m ⊗ v)

+
l∑

j=1

myj ⊗ E
j
1n(v) +

λ

2
[X−

0 , ξ0]

+
λ

8

n∑

d=1

(
E1dK−1(Edn) + K−1(Edn

)
E1d)(m ⊗ v) −

nλ

8
K−1(E1n)(m ⊗ v)

−
λ

8

n∑

d=1

(
K−1(E1d)Edn + EdnK−1(E1d)

)
(m ⊗ v) +

nλ

8
K−1(E1n)(m ⊗ v)

=
l∑

j=1

myj ⊗ E
j
1n(v)

It is actually easy to express Y +
0 in terms of the generators of LY given in definition 3.2. Since

H0 = −H1 − . . . − Hn−1, we can write

H̃0,1 = J(H0) + λξ0 = −J(H1) − . . . − J(Hn−1) + λξ0

= −(H1,1 + . . . Hn−1,1) − λ(ν1 + . . . + νn−1) + λξ0

= −(H1,1 + . . . Hn−1,1) +
λ

2
(H2

1 + . . . + H2
n−1)

27



Therefore, using relations (6) and (9), we obtain

Y +
0 =

1

2
[X−

0 , H̃0,1]

= −
1

2
[X−

0 ,H1,1] −
1

2
[X−

0 ,Hn−1,1] −
λ

4
(X−

0 H1 + H1X
−
0 ) −

λ

4
(X−

0 Hn−1 + Hn−1X
−
0 )

=
1

2
X−

0,1 +
1

2
(βH1X

−
0 + (λ − β)X−

0 H1) +
1

2
X−

0,1 +
1

2
((λ − β)Hn−1X

−
0 + βX−

0 Hn−1)

−
λ

4
(X−

0 H1 + H1X
−
0 ) −

λ

4
(X−

0 Hn−1 + Hn−1X
−
0 )

= X−
0,1

The element X−
0,1 will become important in the next section.

It can be seen from the relations in LY that the subalgebra of LY generated by Y +
0 and sln

is isomorphic to U(sln ⊗C C[u]). (See also proposition 7.1 below.) We introduce the notation
Qr(z), r ∈ Z≥0, to denote z ⊗ ur as an element of this subalgebra; in particular, Q1(E1n) = Y +

0 .
There are three types of operators in EndC(M ⊗C[Sl] V ⊗l) which are of particular interest to us:
those coming from the action of J(z),Kr(z) and Qr(z). They are related to each other in the
following way.

Proposition 6.1 (See also [BHW]). Suppose that a 6= b and c 6= d. Then we have the equality
[Q1(Eab),K1(Ecd)] + [K1(Eab), Q1(Ecd)] = 2

(
δbcJ(Ead) − δdaJ(Ecb)

)
.

Proof. First, we will prove the equality

[Q1(E1n),K1(H0)] + [K1(E1n), Q1(H0)] = 4J(E1n) (69)

[Q1(E1n),K1(H0)] + [K1(E1n), Q1(H0)] =
[
X−

0,1, [X
+
0 , E1n]

]
+

1

2

[[
E1n, [X+

0 , E1n]
]
, [En1,X

−
0,1]

]

= −[H0,1, E1n] −
1

2

[[
H0, [X

+
0 , E1n]

]
,X−

0,1

]

−
1

2

[[
E1n, [X+

0 ,H0]
]
,X−

0,1

]

+
1

2

[
En1,

[
E1n, [[X+

0 ,X−
0,1], E1n]

]]

= −[H0,1, E1n] +
[
[E1n,X+

0 ],X−
0,1

]

+
1

2

[
En1,

[
E1n, [H0,1, E1n]

]]

= 2[E1n,H0,1] +
1

2

[
En1,

[
E1n, [H0,1, E1n]

]]
(70)

[H0,1, E1n] =
[
[H0,1, E12], E2n

]
+

[
E12,

[
E23, [· · · [En−2,n−1, [H0,1, En−1,n

]
· · ·

]

= [−X+
1,1 − (βH0X

+
1 + (λ − β)X+

1 H0), E2n]

+
[
E12,

[
E23, [· · · [En−2,n−1,−X+

n−1,1 − ((λ − β)H0X
+
n−1 + βX+

n−1H0)
]
· · ·

]
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[H0,1, E1n] = [−J(X+
1 ) + λω+

1 − (βH0X
+
1 + (λ − β)X+

1 H0), E2n] +[
E12,

[
E23, [· · · [En−2,n−1,−J(X+

n−1) + λω+
n−1 − ((λ − β)H0X

+
n−1 + βX+

n−1H0)
]
·
]

[H0,1, E1n] = −J(E1n) − (βH0E1n + (λ − β)E1nH0) + (βE2nE12 + (λ − β)E12E2n)

+λ[ω+
1 , E2n] − J(E1n) + λ[E1,n−1, ω

+
n−1]

−
[
E12,

[
E23, [· · · [En−2,n−1, ((λ − β)H0X

+
n−1 + βX+

n−1H0)
]
· · ·

]
(71)

The expression
[
E12,

[
E23, [· · · [En−2,n−1, ((λ − β)H0X

+
n−1 + βX+

n−1H0)
]
· · ·

]
is equal to

[E12, (λ − β)H0E2n + βE2nH0] = ((λ − β)E12E2n + βE2nE12) + ((λ − β)H0E1n + βE1nH0) (72)

[E1,n−1, ω
+
n−1] = −

1

4

n−2∑

j=2

(EjnE1j + E1jEjn) −
1

4

(
E1n(E11 − En−1,n−1) + (E11 − En−1,n−1)E1n

)

−
1

4
(E1nHn−1 + Hn−1E1n) −

1

4
(En−1,nE1,n−1 + E1,n−1En−1,n)

= −
1

4

n−1∑

j=2

(EjnE1j + E1jEjn) +
1

4
(E1nH0 + H0E1n) (73)

[ω+
1 , E2n] =

1

4

n−1∑

j=3

(EjnE1j + E1jEjn) −
1

4

(
(E22 − Enn)E1n + E1n(E22 − Enn)

)

−
1

4
(E1nH1 + H1E1n) +

1

4
(E12E2n + E2nE12)

=
1

4

n−1∑

j=2

(EjnE1j + E1jEjn) +
1

4
(E1nH0 + H0E1n) (74)

Therefore, combining equations (71),(73),(74) and (72), we obtain the following simple expression
for [H0,1, E1n]:

[H0,1, E1n] = −2J(E1n) −
λ

2
(H0E1n + E1nH0) (75)

Putting together equations (70) and (75) yields equality (69):

[Q(E1n),K1(H0)] + [K1(E1n), Q(H0)] = 4J(E1n) + λ(H0E1n + E1nH0)

−
1

2
[En1, [E1n, 2J(E1n) +

λ

2
(H0E1n + E1nH0)]]

= 4J(E1n) + λ(H0E1n + E1nH0) − λ[En1, E
2
1n]

= 4J(E1n)
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Applying [En1, ·] to both sides of equation (69) yields

[K1(En1), Q1(E1n)] + [Q1(En1),K1(E1n)] = 2J(H0) (76)

This proves proposition 6.1 when a = n, b = 1, c = 1, d = n. If a = n, b = c = 1, d 6= 1, n,
we apply [·, End] to the previous equation to obtain [K1(En1), Q1(E1d)] + [Q1(En1),K1(E1d)] =
2J(End). To obtain equation (6.1) for a = n, b = 1, c 6= 1, d, d 6= n, 1, we use [Ec1, ·], which yields
[K1(En1), Q1(Ecd)] + [Q1(En1),K1(Ecd)] = 0. Under the assumption c 6= 1, we apply [·, Ed1] to the
previous equation and get [K1(En1), Q1(Ec1)] + [Q1(En1),K1(Ec1)] = 0. Apply [Ec1, ·] if c 6= 1, n
to (76) give [K1(En1), Q1(Ecn)] + [Q1(En1),K1(Ecn)] = −2J(Ec1). We have covered all the cases
with a = n, b = 1.

Now suppose that a = n but b̃ 6= 1. Equation (6.1) in the case a = n, b = c = 1, , b 6= n, d 6= 1
along with [·, E1b̃

] yields [K1(Enb̃
), Q1(E1d)] + [Q1(Enb̃

),K1(E1d)] = −2δadJ(E1b̃
). To recover the

case when c 6= 1, b̃, we apply [Ec1, ·] to the previous equation, so we have shown the equality

[K1(Enb̃), Q1(Ecd)] + [Q1(Enb̃),K1(Ecd)] = −2δadJ(Ecb̃). (77)

Using equation (77) along with [E
b̃c

, ·] yields equation (6.1) in the case a = n and b = c, d are
arbitrary. The remaining cases can be obtained using similar computations.

7 Schur-Weyl dual of the rational Cherednik algebra

Our goal in this section is to establish an equivalence of categories for the rational Cherednik
algebra similar to the one given in theorem 4.2 and to identify the Schur-Weyl dual of H with a
subalgebra of LY .

7.1 Case of type gll

Definition 7.1. The subalgebra of LY generated by X±
i , 1 ≤ i ≤ n − 1,X+

0 and Y +
0 is denoted by

Lβ,λ and called a Yangian deformed double-loop algebra, as suggested in [BHW]. The polynomial
loop algebra generated by X±

i , 1 ≤ i ≤ n − 1 and X+
0 (resp. Y +

0 ) is denoted LX (resp. LY ).

Remark 7.1. The algebra LYβ,λ is the same as the subalgebra generated by z,K1(z), Q1(z),∀z ∈
sln. Furthermore, proposition 6.1 implies that Lβ,λ contains all the elements X±

i,r,Hi,r for 1 ≤

i ≤ n, r ≥ 0 and relation (12) shows that it also contains X+
0,r,∀r ≥ 0 and X−

0,r,∀r ≥ 1. We will
abbreviate Lβ,λ by L.

The computations for the action of X−
0,1 on M ⊗C[Sl] V l and the anti-symmetric role of h and h∗

in the definition of Ht,c, along with the last proposition of the previous section, suggest that the
following result is true.

Proposition 7.1. There exists an anti-involution ι of L which interchanges LX and LY and which
is given on the generators by the formulas

ι(X±
i,r) = X∓

i,r if i 6= 0, ι(Hi,r) = Hi,r
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ι(X+
0,r) = X−

0,r+1 for r ≥ 0, ι(X−
0,r) = X+

0,r−1 for r ≥ 1

Proof. This can be checked using the relations given in definition 3.2.

Theorem 7.1. Suppose that l ≥ 1, n ≥ 3. Set λ = c and β = t
2 − cn

4 + c
2 . The functor M 7→

M ⊗C[Sl] V ⊗l sends a right H-module to an integrable left L-module of level l. Furthermore, if
l + 2 < n, this functor is an equivalence.

Proof. As for theorem 4.2, the proof is in two parts. First, it is enough to take M = H and show
that F(M) is a module over L. We can view H⊗C[Sl] C

⊗l as a subspace of H⊗C[Sl] C
⊗l; the later is

a module over L since it is even a module over LY . The subspace F(H) is stable under the action
of the subalgebras LX and LY , so it is a module over the subalgebra of LY generated by LX and
LY , which is exactly L. The fact that F(M) is integrable of level l follows from the same argument
as in the proof of theorem 4.2.

Now let N be an integrable module of level l over L and suppose that l+2 < n. We have to show that
there exists a module M over H such that F(M) = N . We can argue as for the trigonometric case
to conclude that there exists an Sl-module M , which is also a C[h] ⋊ W - and a C[h∗] ⋊ W -module,
such that F(M) ∼= N . As before, we must show that M is actually a module over H.

Fix 1 ≤ j, k ≤ l, j 6= k. Choose v = vi1 ⊗ · · · ⊗ vil such that ik = 2, ij = n − 1, ir = r + 2 if

r < j, r 6= k, ir = r + 1 if r > j, r 6= k. Set ṽ = Ek
n2E

j
1,n−1(v).

On one hand,
(
Q1(E1,n−1)K1(En2) − K1(En2)Q1(E1,n−1)

)
(m ⊗ v) =

l∑

s=1

l∑

r=1

mxrys ⊗ Es
1,n−1E

r
n2(v) −

l∑

s=1

l∑

r=1

mysxr ⊗ Er
n2E

s
1,n−1(v) = m(xkyj − yjxk) ⊗ ṽ (78)

On the other hand, Q1(E1,n−1) = [Y +
0 , En,n−1] and K1(En2) = [X+

0 , E12], so:

[Q1(E1,n−1),K1(En2)] =
[
[Y +

0 , En,n−1], [X
+
0 , E12]

]
=

[
[X−

0,1, [X
+
0 , E12]], En,n−1

]

=
[[

[X−
0,1,X

+
0 ],X+

1

]
, En,n−1

]
= −

[
[H0,1,X

+
1 ], En,n−1

]

= −[−X+
1,1 − (βH0X

+
1 + (λ − β)X+

1 H0),X
−
n−1]

= [βH0X
+
1 + (λ − β)X+

1 H0,X
−
n−1]

= βEn,n−1E12 + (λ − β)E12En,n−1

Therefore,

[Q1(E1,n−1),K1(En2)](m ⊗ v) = m ⊗ (βEn,n−1E12 + (λ − β)E12En,n−1)(v)

= λm ⊗ Ek
12E

j
n,n−1(v) = λmsjk ⊗ ṽ (79)

Equations (78) and (79) imply that m(xkyj − yjxk − λsjk) ⊗ ṽ = 0. From lemma 5.2 and our
assumption that λ = c, we conclude that

m(xkyj − yjxk − csjk) = 0. (80)
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Now let v be determined by ik = n − 1, ij = j + 1 if j 6= k. Set v̂ = Ek
n,n−1(v). On one hand,

[K1(En1), Q1(E1,n−1)](m ⊗ v) = mykxk ⊗ Ek
n1E

k
1,n−1(v) = mykxk ⊗ v̂ (81)

On the other hand,

[K1(En1), Q1(E1,n−1)] = [X+
0 , [Y −

0 , En,n−1]] = [X+
0 , [X−

0,1,X
−
n−1]]

= [H0,1,X
−
n−1] = X−

n−1,1 + (βH0X
−
n−1 + (λ − β)X−

n−1H0)

= J(X−
n−1) − λω−

n−1 + (βH0X
−
n−1 + (λ − β)X−

n−1H0)

where

ω−
n−1 = −

1

4

n−2∑

d=1

(EndEd,n−1 + Ed,n−1End) −
1

4
(X−

n−1Hn−1 + Hn−1X
−
n−1).

Therefore, we also have:

[K1(En1), Q1(E1,n−1)](m ⊗ v) =
(
J(X−

n−1) − λω−
n−1 + (βH0X

−
n−1 + (λ − β)X−

n−1H0)
)
(m ⊗ v)

= mYk ⊗ Ek
n,n−1(v) − λm ⊗ (ω−

n−1(v)) + βm ⊗ Hk
0 Ek

n,n−1(v)

= mYk ⊗ v̂ +
λ

2

n−2∑

d=1

l∑

r=1

l∑

s=1

s 6=d

m ⊗ (Es
ndE

r
d,n−1)(v)

+λ

(
n − 2

4

)
m ⊗ En,n−1(v) +

λ

4
m ⊗ (X−

n−1Hn−1

+Hn−1X
−
n−1)(v) + βm ⊗ Hk

0 Ek
n,n−1(v)

= mYk ⊗ v̂ +
λ

2

n−2∑

d=1

l∑

j=1

j 6=k

m ⊗ (Ej
ndE

k
d,n−1)(v) + λ

(
n − 2

4

)
m ⊗ v̂

+
λ

4
m(Ek

n,n−1E
k
n−1,n−1 − Ek

nnEk
n,n−1)(v) + βm ⊗ Ek

n,n−1(v)

=
1

2
m(xkyk + ykxk) ⊗ v̂ +

λ

2

l∑

j=1

j 6=k

msjk ⊗ v̂

+(
λn

4
−

λ

2
+ β)m ⊗ v̂ (82)

From the equations (81) and (82) and our hypothesis that β = t
2 −

λn
4 + λ

2 , we deduce the following
equality:

mykxk ⊗ v̂ =
1

2
m(xkyk + ykxk) ⊗ v̂ +

λ

2

l∑

j=1

j 6=k

msjk ⊗ v̂ +
t

2
m ⊗ v̂

which implies that m
(
ykxk − xkyk − t − λ

∑l
j=1

j 6=k
sjk

)
⊗ v̂ = 0. Since λ = c by assumption and v̂ is

a generator of V ⊗l as Usln-module, we conclude, using again lemma 5.2, that the equality

m
(
ykxk − xkyk − t − c

l∑

j=1

j 6=k

sjk

)
= 0 (83)
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must be satisfied. Equations (80) and (83) show that M is a right module over H. Finally, that
F is bijective on the set of morphisms follows from an argument similar to the one used in the
trigonometric case.

7.2 Category O

One important category of modules over Ht,c (when t 6= 0) is the category O studied in [GGOR].

Definition 7.2. We define Ot,c for t 6= 0 to be the category of right modules over Ht,c which are
finitely generated over Ht,c and locally nilpotent over C[h∗]. We set O = Ot,c.

We see from the definition of the L-module structure on F(M) that if M ∈ O then F(M) is locally
nilpotent over the subalgebra A of L generated by Qr(z),∀z ∈ sln,∀r ≥ 1. This leads us to our
last theorem.

Theorem 7.2. Assume that l + 2 < n, λ = c and β = t
2 − cn

4 + c
2 . The functor F establishes an

equivalence between the category O and the category of finitely generated left modules over L which
are locally nilpotent over the subalgebra A and integrable of level l.

Proof. We prove this theorem for H. If m1, . . . ,mk are generators of M , then {mi ⊗ v, 1 ≤ i ≤
k,v ∈ V l} is a finite set of generators for F(M). To see this, we can assume that M is generated
over C[h] by m1, . . . ,mk. Take an element m ⊗ v ∈ F(M) with m = m1x

a1

1 · · · xal

l . We suppose
first that v = v1 ⊗ v2 ⊗ v3 ⊗ · · · ⊗ vl and set v′ = v1 ⊗ v3 ⊗ v4 ⊗ · · · ⊗ vl+1. Then

m ⊗ v = Kal
(El,l+1) · · ·Ka2

(E23)Ka1
(H1)(m1 ⊗ v′).

Now we can apply elements of Usln to v1 ⊗ v2 ⊗ · · · ⊗ vl to obtain any other element of V l. The
general case when m =

∑k
j=1 mjx

a1,j

1 · · · x
al,j

l ⊗ vj follows from this. Conversely, suppose that N

is a finitely generated integrable module over L of level l and N = F(M). Let {n1, . . . , nk} be a
set of generators of N and write ni =

∑ki

j=1 mij ⊗ vij for some mij ∈ M and some vij ∈ V l. Then
{mij |1 ≤ i ≤ k, 1 ≤ j ≤ ki} is a set of generators of M .

Now suppose that N is an integrable left module over L of level l which is locally nilpotent over
A. By theorem 7.1, we know that N = F(M) for a right module M over H. Pick m ∈ M . It is
enough to show that mys

i = 0 for some s. Set v = v1 ⊗ · · · ⊗ vi ⊗ vi+2 ⊗ · · · ⊗ vl+1 and choose s so
that Q1(Hi)

s(m⊗v) = 0. Then Q1(Hi)(m⊗v) = myi ⊗v, so mys
i ⊗v = Q1(Hi)

s(m⊗v) = 0 and
lemma 5.2 implies that mys

i = 0.

References

[BEG1] Y. Berest, P. Etingof, V. Ginzburg, Cherednik algebras and differential operators on quasi-
invariants, Duke Math. J. 118 (2003), no. 2, 279–337.

[BEG2] Y. Berest, P. Etingof, V. Ginzburg, Finite-dimensional representations of rational Chered-
nik algebras, Int. Math. Res. Not. 2003, no. 19, 1053–1088.

33



[BHW] D. Bernard, K. Hikami, M. Wadati, The Yangian Deformation of the W -algebras and the
Calogero-Sutherland System, in ‘New Developments of Integrable Systems and Long-Ranged
Interaction Models’, pp. 1-9, World Scientific, Singapore (1995). Proceeding of 6th Nankai
Workshop.

[Ch1] , I. Cherednik, A new interpretation of Gelfand-Tzetlin bases. Duke Math. J. 54 (1987), no.
2, 563–577.

[Ch2] I. Cherednik, Double affine Hecke algebras and Macdonald’s conjectures, Ann. of Math. (2)
141 (1995), no. 1, 191–216.

[ChPr1] V. Chari, A. Pressley, Quantum affine algebras and affine Hecke algebras, Pacific J. Math.
174 (1996), no. 2, 295–326.

[ChPr2] V. Chari, A. Pressley, A guide to quantum groups, Cambridge University Press, Cambridge,
1994. xvi+651 pp.

[Dr1] V. Drinfeld, Degenerate affine Hecke algebras and Yangians, (Russian) Funktsional. Anal. i
Prilozhen. 20 (1986), no. 1, 69–70.

[Dr2] V. Drinfeld, A new realization of Yangians and of quantum affine algebras, Soviet Math.
Dokl. 36 (1988), no. 2, 212–216

[DuOp] C. Dunkl, E. Opdam, Dunkl operators for complex reflection groups, Proc. London Math.
Soc. (3) 86 (2003), no. 1, 70–108.

[EtGi] P. Etingof, V. Ginzburg, Symplectic reflection algebras, Calogero-Moser space, and deformed
Harish-Chandra homomorphism, Invent. Math. 147 (2002), no. 2, 243–348.

[GGOR] V. Ginzburg, N. Guay, E. Opdam, R. Rouquier, On the category O for rational Cherednik
algebras, Invent. Math. 154 (2003), no. 3, 617–651.

[Go] I. Gordon, On the quotient ring by diagonal invariants, Invent. Math. 153 (2003), no. 3,
503–518.

[Gu] N. Guay, in preparation.

[Ji] M. Jimbo, A q-analogue of U(g(N + 1)), Hecke algebra, and the Yang-Baxter equation, Lett.
Math. Phys. 11 (1986), no. 3, 247–252.

[Lu] G. Lusztig, Cuspidal local systems and graded Hecke algebras I, Inst. Hautes Études Sci. Publ.
Math. No. 67 (1988), 145–202.

[Su] T. Suzuki, Rational and trigonometric degeneration of the double affine Hecke algebra of type
A, math.RT/0502534.

[Va] M. Varagnolo, Quiver varieties and Yangians, Lett. Math. Phys. 53 (2000), no. 4, 273–283.

[VaVa] E. Vasserot, M. Varagnolo, Schur duality in the toroidal setting, Comm. Math. Phys. 182
(1996), no. 2, 469–483.

34



Korteweg-De Vries Institute for Mathematics

University of Amsterdam

Plantage Muidergracht 24

1018 TV Amsterdam

The Netherlands

E-mail: nguay@science.uva.nl

and

Department of Mathematics

University of Illinois at Urbana-Champaign

Altgeld Hall

1409 W. Green Street

Urbana, IL 61801

USA

E-mail: nguay@math.uiuc.edu

35


