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ABSTRACT. Essential dimension is a numerical invariant of an algebraic
group G which reflects the complexity of G-torsors over a field K. In
the past 10 years it has been studied by many authors in a variety
of contexts. In this paper we extend this notion to algebraic stacks.
As an application of the resulting theory we obtain new results about
the essential dimension of certain algebraic (and, in particular, finite)
groups which occur as central extensions. In particular, we show that the
essential dimension of the spinor group Spin,, grows exponentially with
n, improving previous lower bounds of Chernousov-Serre and Reichstein-
Youssin. In the last section we apply the result on spinor groups to show
that quadratic forms with trivial discriminant and Hasse-Witt invariant
are more complex, in high dimensions, than previously expected.
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1. INTRODUCTION

Let k be a field. We will write Fieldsy for the category of field extensions
K/k. Let F: Fields; — Sets be a covariant functor.
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Definition 1.1. Let a € F(L), where L is an object of Fields;. We say
that a descends to an intermediate field ¥ C K C L if a is in the image of
the induced map F(K) — F(L).

The essential dimension ed(a) of a € F(L) is the minimum of the tran-
scendence degrees trdeg; K taken over all fields £ C K C L such that a
descends to K.

The essential dimension ed(a;p) of a at a prime integer p is the minimum
of ed(ay/), taken over all finite field extensions L'/L such that the degree
[L': L] is prime to p.

The essential dimension ed F' of the functor F' (respectively, the essential
dimension ed(F; p) of F at a prime p) is the supremum of ed(a) (respectively,
of ed(a;p)) taken over all a € F(L) with L in Fieldsy.

These notions are relative to the base field k. To emphasize this, we
will sometimes write edi(a), edi(a;p), edx F' or edg(F;p) instead of ed(a),
ed(a;p), ed F' or ed(F;p), respectively.

If the functor F is limit-preserving, a condition that is satisfied in all cases
that interest us, every element a € F(L) has a field of definition K that is
finitely generated over k, so ed(a) is finite; c¢f. Remark 2.5. On the other
hand, ed F' may be infinite even in cases of interest.

The following example describes a class of functors which will play a key
role in the sequel.

Example 1.2. Let G be an algebraic group. Consider the Galois cohomol-
ogy functor F = H!(x,G) sending K to the set H'(K,G) of isomorphism
classes of G-torsors over Spec(K), in the fppf topology. The essential dimen-
sion of this functor is a numerical invariant of GG, which, roughly speaking,
measures the complexity of G-torsors over fields. This number is usually
denoted by edy G or (if k is fixed throughout) simply by ed G. Essential di-
mension was originally introduced and has since been extensively studied in
this context; see [BR97, Rei00, RY00, Kor00, Led02, JLY02, BF03, Lem04,
CS06, Gar]. The more general Definition 1.1 is due to A. Merkurjev; see
[BF03, Proposition 1.17].

In this paper we define the notion of essential dimension for algebraic
stacks and apply it in the “classical” setting of Example 1.2. The stacks
that play a special role in these applications are gerbes banded by the mul-
tiplicative group p,; see §§3-4. Before proceeding to state out main results,
we remark that the notion of essential dimension introduced in this paper
also leads to interesting results for other types of stacks. In particular, in
the forthcoming paper [BRV07] we will compute the essential dimension of
the moduli stack M, ;,, of smooth curves of genus g for every g > 0. We also
note that a related (but not equivalent) notion of arithmetic dimension has
been studied by C. O’Neil [O’N05, O’N].

We will now describe the main results of this paper. Let

(1.3) 1l —7Z—G—Q—1
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denote an exact sequence of algebraic groups over a field k with Z central
and isomorphic to p, for some integer n > 1. For every field extension K /k
the sequence (1.3) induces a connecting map Ox: HY(K,Q) — H*(K, Z).
We define ind(G, Z) as the maximal value of ind(9x(t)), as K ranges over
all field extensions of k and ¢ ranges over all torsors in H! (K, Q). (Note that
ind(G, Z) does not depend on the choice of the isomorphism Z ~ p,.) In §5
we will prove the following inequality.

Theorem 1.4. Let G be an extension as in (1.3). Assume that n a power
of a prime integer p. Then ed(G;p) > ind(G,Z) — dimG.

In §6 we will use Theorem 1.4 to give an alternative proof of a recent
theorem of Florence about the essential dimension of a cyclic group (in a
slightly strengthened form). We will then use Florence’s theorem to settle
a particular case of a conjecture of Ledet [Led02, Section 3], relating the
essential dimensions of the cyclic group C,, and the dihedral group D,, (n
odd); see Corollary 6.2.

In §§7-9 we continue to study essential dimensions of finite p-groups. Let
G be a finite abstract group. We write edy G (respectively, edi(G;p)) for
the essential dimension (respectively, for the essential dimension at p) of the
constant group Gy over the field k. Let exp(G) denote the exponent of G
and let C(G) denote the center of G.

Theorem 1.5. Let G be a p-group whose commutator |G, G] is central and
cyclic. Then

edi(G;p) = edx G = \/|G/C(G)| + rank C(G

for any base field k of characteristic # p which contains a primitive root of
unity of degree exp(Q).

Note that with the above hypotheses, |G/C(G)| is a complete square.
In the case where G is abelian we recover the identity ed G = rank(G);
see [BR97, Theorem6.1]. For most finite groups G the best previously known
lower bounds on ed G were of the form

(1.6) ed G > rank(A),

where A was taken to be an abelian subgroup A of G of maximal rank.
Theorem 1.5 represents a substantial improvement over these bounds. For
example, if G is a non-abelian group of order p® and k contains a primitive
root of unity of degree p? then Theorem 1.5 tells us that ed G = p, while (1.6)
yields only ed G > 2.

In §9 we record several interesting corollaries of Theorem 1.5. In partic-
ular, we show that ed(G;p) > p for any non-abelian p-group G; see Corol-
lary 9.3. We also answer a question of Jensen, Ledet and Yui [JLY02, p.204]
by giving an example of a finite group G with a normal subgroup N such
that ed(G/N) > ed Gj; see Corollary 9.6.
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Another consequence of Theorem 1.5 is the following new bound on
ed Spin,,. Here by Spin,, we will mean the totally split form of the spin
group in dimension n over a field k.

Theorem 1.7. Suppose k is a field of characteristic # 2, and that /—1 € k.
If n is not divisible by 4 then

oln-1)/2] _ @ <ed(Spin,;2) < ed(Spin, ) < 2=D/2] |
If n is divisible by 4 then

ol(n=1)/2] _ 771(”2_ D) + 1 <ed(Spin,,;2) < ed Spin,, < olt=1)/2] 4 1,

Theorem 1.7 is proved in §10, where we also prove similar estimates for
the essential dimensions of pin and half-spin groups.

The lower bound of Theorem 1.7 was surprising to us because previously
the best known lower bound, due of V. Chernousov and J.—P. Serre [CS06],

was

In/2]+1 ifn>7andn=1,00r —1 (mod 8)

1.8 d Spin,, >
(18)  edSpin, = {Ln/QJ for all other n > 11.

(The first line is due to B. Youssin and the second author in the case that
chark = 0 [RY00].) Moreover, in low dimensions, M. Rost [Ros99] (cf.
also [Gar]) computed the following table of exact values:

ed Spiny =0 edSpingy =0 edSping =0 edSping =0

ed Spin; =4 edSping =5 edSping =5 edSpin;; =4

ed Spin;; =5 edSpin;y =6 edSpin;3 =6 edSpin, =7.
Taken together these results seemed to suggest that ed Spin,, should be a
slowly increasing function of n and gave no hint of its exponential growth.

The computation of ed Spin,, gives an example of a split, semisimple,
connected linear algebraic group whose essential dimension exceeds its di-
mension. (Note that for a semisimple adjoint group G, ed G < dim G; cf.
Example 10.10.) Since ed SO,, = n — 1 for every n > 3 (cf. [Rei00, Theo-
rem 10.4]), it also gives an example of a split, semisimple, connected linear
algebraic group G with a central subgroup Z such that ed G > ed G/Z.

In the last section we follow a suggestion of A. Merkurjev and B. Totaro
to apply our results on ed Spin,, to a problem in the theory of quadratic
forms. Let K be a field of characteristic different from 2 containing a square
root of —1, W(K) be the Witt ring of K and I(K) be the ideal of classes
of even-dimensional forms in W(K). It is well known that if ¢ is a non-
degenerate n-dimensional quadratic form whose class [¢] in W(K) lies in
I*(K), then [g] can be expressed as the class a sum of a-fold Pfister forms.
It is natural to ask how many Pfister form are needed. When a = 1 or 2 it
is easy to see that n Pfister forms always suffice; see Proposition 11.1. We
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prove the following result, which shows that the situation is quite different
when a = 3.

Theorem 1.9. Let k be a field of characteristic different from 2 and n
an even positive integer. Then there is a field extension K/k and a class
[q] € I?(K) represented by an n-dimensional quadratic form q/K such that
[q] cannot be written as the sum of fewer than

2(n+4)/4 —n—29

7

3-fold Pfister forms over K.

Finally we remark that the stack-theoretic approach to computing ed G
developed in this paper has been recently extended and refined by Karpenko
and Merkurjev [KMO7]. Their main result is a general formula for the essen-
tial dimension of any finite p-group over any field k containing a primitive
pth root of unity. This formula may be viewed as a common generalization
of our Theorems 1.5 and 6.1.

Notation. Throughout this paper, a variety over a field k will be a geomet-
rically integral separated scheme of finite type over k. Cohomology groups
Hi(X ,G), where X is a scheme and G is an abelian group scheme over X,
will be taken with respect to the fppf topology unless otherwise specified.
We will write u, for the group scheme of n-th roots of unity. If k is a field
whose characteristic is prime to n, (, will denote a primitive n-th root of
unity in the algebraic closure of k. (Using the axiom of choice, we choose
the ¢, once and for all.) For typographical reasons, we sometimes write C,
for the cyclic group Z/n.

Acknowledgments. We would like to thank the Banff International Re-
search Station in Banff, Alberta (BIRS) for providing the inspiring meeting
place where this work was started. We are grateful to K. Behrend, C.-
L. Chai, D. Edidin, N. Fakhruddin, M. Florence, A. Merkurjev, B. Noohi,
G. Pappas, D. Saltman and B. Totaro for helpful conversations.

2. THE ESSENTIAL DIMENSION OF A STACK: DEFINITION AND FIRST
PROPERTIES

We now return to the general setting of Definition 1.1. As we mentioned in
Example 1.2 most of the existing theory is specific to the Galois cohomology
functors F' = H'(x, G) for various algebraic k-groups G. On the other hand,
many naturally arising functors where the essential dimension is of interest
are not of the form F(K) = H'(K,G) for any algebraic group G. Two such
examples are given below. In this section we identify a class of functors which
is sufficiently broad to include most such examples, yet “geometric” enough
to allow one to get a handle on their essential dimension. These functors
are isomorphism classes of objects of an algebraic stack; see Definition 2.3
below. As we shall see in the sequel, these “new” functors turns out to
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be very useful even if one is only interested in the “classical” setting of
Example 1.2.

Example 2.1. Let X/k be a scheme of finite type over a field k, and let
Fx: Fieldsy — Sets denote the functor given by K +— X(K). Then an
easy argument due to Merkurjev shows that ed Fx = dim X; see [BF03,
Proposition 1.17].

In fact, this equality remains true for any algebraic space X. Indeed,
an algebraic space X has a stratification by schemes X;. Any K-point
n: Spec K — X must land in one of the X;. Thus ed X = maxed X; =
dim X. 'y

Example 2.2. Let Curves, be the functor that associates to a field K/k
the set of isomorphism classes of smooth algebraic curves of genus g over K.
The essential dimension of this functor is computed in [BRV07].

We are now ready to give the main definition of this section.

Definition 2.3. Suppose X is an algebraic stack over k. The essential
dimension ed X of X' (respectively, the essential dimension ed(&X’;p) of X
at a prime integer p) is the essential dimension (respectively, the essential
dimension at p) of the functor Fy: Fields; — Sets which sends a field L/k
to the set of isomorphism classes of objects in X'(L).}

As in Definition 1.1, we will write ed(X /k), or edy, X when we need to be
specific about the dependence on the base field k. Similarly for ed({/k) or
edy &, where £ is an object of Fly, and for ed(X/k;p), edx(X;p), ed(&/k; p),
edy(&;p).-

All of the examples we have considered so far may be viewed as special
cases of Definition 2.3. If X is a scheme of finite type (or an algebraic space),
we recover Example 2.1. At the other extreme, if X = BG is the classifying
stack of an agebraic group G defined over k (so that BG(T) is the category
of G-torsors on T'), we recover Example 1.2. If X = M, is the stack of
smooth algebraic curves of genus g, we recover Example 2.2.

Remark 2.4. If G is an algebraic group, we will often write ed G for ed BG.
That is, we will write ed G for the essential dimension of the stack BG
and not the essential dimension of the scheme underlying G. We do this
to conform to the, now standard, notation introduced at the beginning of
this paper (and in Example 1.2). Of course, by Example 2.1, the essential
dimension of the underlying scheme is dim G.

In fact, the reader may notice that we prefer to write ed BG earlier in
the paper, where we are working in a general stack-theoretic setting and
ed G later on, where we are primarily concerned with essential dimensions
of algebraic groups.

In the literature the functor Fx is sometimes denoted by X or X.
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Remark 2.5. ed X' takes values in the range {£o0}UZ>( (with —oo occur-
ring if and only if X' is empty). On the other hand, ed £ is finite for every
object £ € X(K) and every field extension K/k.

Indeed, any field K/k can be written as a filtered direct limit K =
colim; K; of its subfields K; of finite transcendence degree. Since X is limit
preserving (cf. [LMBO0O, Proposition 4.18]), & lies in the essential image of
X (K;) — X(K) for some i € I and thus ed{ < trdeg(K;) < oo.

We now recall Definitions (3.9) and (3.10) from [LMBO00]. A morphism
f: X — Y of algebraic stacks (over k) is said to be representable if, for every
k-morphism 7" — ), where 7' is an affine k-scheme, the fiber product X xyT'
is representable by a scheme over T. A representable morphism f: X — )
is said to be locally of finite type and of fiber dimension < d if the projection
X xy T — T is locally of finite type over T" and every fiber has dimension
<d.

Proposition 2.6. Let d be an integer X — ) be a representable k-morphism
of algebraic stacks which is locally of finite type and of fiber dimension at
most d. Let L/k be a field, £ € X(L) and p be a prime integer. Then

(a) ed & < edp(f(€)) +d,
(b) edi(&p) < edi(f(€);p) +d,
(c) edpx X <edy Y +d,
(d) edi(X;p) < edy(Vsp) +d.
Proof. (a) By the definition of edy(f(£)) we can find an intermediate field

k C K C L and a morphism 7n: Spec K — Y such that trdeg; L < ed f(&)
and the following diagram commutes.

Spec L L) X

| L

Spec K SN y
Let Xk < x xy Spec K. By the hypothesis, Xk is an algebraic space,
locally of finite type over K and of relative dimension at most d. By the
commutativity of the above diagram, the morphism £: Spec L — X factors
through X7:

Spec L
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Let p denote the image of &y in Xk . Since Xk has dimension at most d, we
have trdeg, k(p) < d. Therefore trdegy, k(p) < ed(f(£)) + d. Since £ factors
through Spec k(p), part (a) follows.

(b) Let L'/L be a field extension. By part (a), edg (1) < edp(f(£r)) +d.
Taking the minimum over all prime-to p extensions L’/L, we obtain the
desired inequality, edi(&;p) < edi(f(€);p) + d.

(c) follow from (a) and (d) follows from (b) by taking the maximum on
both sides over all L/k and all { € X(L). [ )

Corollary 2.7. Let G be an algebraic group defined over k and H be a
closed subgroup of G. Then

(a) edH < edG +dimG — dim H and

(b) ed(H;p) < ed(G;p) + dim G — dim H.

More generally, suppose G is acting on an algebraic space X (over k).
Then

(c) ed [ X/H] < ed [X/G] +dimG — dim H and

(d) ed([X/H];p) < ed([X/G];p) + dim G — dim H.

Here [X/G] and [X/H] denote the quotient stacks for the actions of G
and H on X.

Recall that the objects in [X/G](K) are, by definition, diagrams of the
form

T—f>X

lw
Spec(K),

where 7 is a G-torsor and f is a G-equivariant morphism.

Proof. The natural morphism [X/H] — [X/G] of quotient stacks is easily
seen to be representable, of finite type and with fibers of dimension d =
dim G — dim H. Applying Proposition 2.6(c) and (d) to this morphism, we
obtain the inequalities (c¢) and (d) respectively. Specializing X to a point
(i.e., to Spec(k)) with trivial G-action, we obtain (a) and (b). [ )

In general, the inequality of Proposition 2.6 only goes in one direction.
However, equality holds in the following important special case. We will say
that a morphism f: X — Y of stacks is isotropic if for every field extension
K of k and every object n of Y(K) there exists an object & of X(K) such
that f(&) is isomorphic to 7.

Proposition 2.8. Let f: X — Y be an isotropic morphism of stacks fibered
over Pointsg. Then ed X > edY and ed(X;p) > ed(Y;p) for every prime p.

Proof. Both inequalities are immediate consequences of the following obser-
vation.
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Let K be an extension of k and 7 an object of Y(K). If £ is an object of
X (K) such that f(&) is isomorphic to 7, then clearly a field of definition for
¢ is also a field of definition for 7. Thus ed & > edn. [

Proposition 2.8 can be used to deduce the following well-known inequality.
See [BF03] for another proof.

Theorem 2.9. Let G be a linear algebraic group over a field k admitting a
generically free representation on a vector space V. Then

ed BG <dimV —dimG.

Proof. Let U denote a dense G-stable Zariski open subscheme of V' on which
G acts freely. Then [U/G] is an algebraic space of dimension dim V' —dim G
and the map [U/G] — BG is representable and isotropic. A

3. PRELIMINARIES ON GERBES AND CANONICAL DIMENSION

Let X be a gerbe defined over a field K banded by an abelian K-group
scheme G. For background material on gerbes we refer the reader to [Mil80,
p. 144] and [Gir71, IV.3.1.1].

There is a natural notion of equivalence of gerbes banded by G; the set of
equivalence classes is in a natural bijective correspondence with the group
H%(K,G). Given a gerbe X banded by G, we write [X] for its class in
H?(K,G). The identity is the class [BxG] of the neutral gerbe BxG.

We remark that it makes sense to talk about a gerbe banded by G, where
G is not necessarily abelian, but we will not need to work in this more
general setting, which makes the definition considerably more involved.

Let K be a field and let G,,, denote the multiplicative group scheme over
K. Recall that the group H2(K , G,) is canonically isomorphic to the Brauer
group Br(K) of Brauer equivalence classes of central simple algebras (CSAs)
over K. By Wedderburn’s structure theorem, any CSA over K isomorphic
to the matrix algebra M,, (D) for D a division algebra over K which is unique
up to isomorphism. Moreover, if A and B are two Brauer equivalent CSAs,
the division algebras D and F corresponding to A and B respectively are
isomorphic. For a class [A] € Br(K), the index of A is v/dimg D.

Let a € HQ(K, Un), where n is a positive integer prime to char K. We
define the index ind a to be the index of the image on a under the compo-
sition

H2(K, pn) — HX(K,G,,) — Br(K).
Note that the index of « is the smallest integer d such that « is in the image
of the (injective) connecting homomorphism

(3.1) 9: H'(K,PGL,) — Br(K).
arising from the short exact sequence

(3.2) 11— G, — GL; — PGL; — 1.
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The exponent ord([A]) of a class [A] € Br K is defined to be its or-
der in the Brauer group. The exponent ord([A]) always divides the index
ind([A4]) [Her68, Theorem 4.4.5].

In the next section, we address the problem of computing the essential
dimension of a pg-gerbe over a field K. Our computation will rely, in a key
way, on the notion of canonical dimension introduced in [BR05] and [KMO06],
which we shall now recall.

Let X be a smooth projective variety defined over a field K. We say that
L/K is a splitting field for X if X(K) # (). A splitting field L/K is called
generic if for every splitting field Lo/K there exists a K-place L — L.
The canonical dimension of X is defined as the minimal value of trdegy (L),
where L/K ranges over all generic splitting fields. Note that the function
field L = K(X) is a generic splitting field of X; see [KMO06, Lemma 4.1]. In
particular, generic splitting fields exist and cdim(X) is finite.

If X is a K-scheme and p is a prime integer, we also recall the relative
variant of this notion from [KMO06]. We say that L/K is a p-generic splitting
field for X if for every splitting field Ly/K there is a prime-to-p extension
L1/L and a K-place L — Lj. The minimal value of tr deg, (L'), as L' ranges
over all p-generic splitting fields, is called the p-canonical dimension of X
and is denoted by cdim,(X). (Here, as usual, by a prime-to-p extension we
mean a finite field extension whose degree is prime to p.)

Lemma 3.3. If L/K is a p-generic extension for X then

(a) any intermediate extension M/K, where K C M C L is also p-
generic, and

(b) any finite prime-to-p extension L'/K is also p-generic.

Proof. (a) Let Ly/K be a splitting field for X. Since L is generic, there is a
prime-to-p extension Li/Ly and a K-place L — Lj. Restricting this place
to M, we obtain a desired place M — L.

Part (b) is an immediate consequence of [KM06, Lemma 3.2]. [ )

The determination functor Dx : Fieldsxg — Sets is defined as follows: D
associates to a field L/K the empty set, if X(L) = ), and a set consisting
of one point, which we will denote by a(L), if X(L) # (. The natural map
D(L;) — D(Lg) is then uniquely determined for any K C L; C Lo.

Lemma 3.4. Let X be a complete regular K-variety then

(a) cdim(X) = ed(Dx).

(b) cdim,(X) = ed(Dx;p).
Proof. (a) Let L be a generic splitting field for X. By [KM06, Lemma 2.1],
any subfield of L containing F' is also a generic splitting field. Therefore
edDx >eda(L) > cdim(X).

To prove the opposite inequality, it suffices to show that eda(F) <
trdegy L for any splitting field F//K and any generic splitting field L/K
of X. In other words, given F' and L as above, we want to construct an
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intermediate splitting field K C Fy C F with trdegy (Fp) < trdegy (L). By
the definition of a generic splitting field, there is a place L — F. That is,
there is a valuation ring R with quotient field L and a local homomorphism
f: R — F. We claim that the residue field Fy = R/m, where m is the
maximal ideal of R, has the desired properties. Clearly K C Fy C F, and
trdegy (Fy) < trdegy(R) = trdegy (L), so we only need to check that Fj
is a splitting field for X.
Since L is itself a splitting field, we have a diagram

SpecL ——— X

|

Spec R —— Spec K.

By the valuative crition, we obtain a map Spec R — X and hence, a map
Spec Fy = Spec R/m — X. Thus Fj is splitting field for X, as claimed.

(b) Let L be a p-generic splitting field for X. Lemma 3.3 tells us that
if L'/L is a prime-to-p extension and K C M C L’ is an intermediate
splitting field then M is again p-generic. Thus ed(a(L);p) = minimal value
of trdegy (M) > cdimy,(X).

To prove the opposite inequality, we need to show that ed(a(F);p) <
tr deg (L) for any splitting field F//K and any p-generic splitting field L/ K.
Indeed, after replacing F' by a prime-to-p-extension F’, we obtain a K-
place L — F’. Now the same argument as in part (a) shows that there is
an intermediate splitting subfield K C Fy C F’ such that trdegg (Fy) <
trdegy (L). Thus

ed(a(F);p) <ed(a(F")) < trdegg(Fp) < trdegy (L),
as claimed. 'y

Of particular interest to us will be the case where X is a Brauer-Severi
variety over K. Let m be the index of X. If m = p® is a prime power then

(3.5) cdim(X) = cdim,(X) =p* — 1;

see [KMO06, Example 3.10] or [BR0O5, Theorem 11.4]. If the highest power of
p dividing m is p* then

(3.6) cdimy,(X) =p* —1;

see [KMO06, Example 5.10]. On the other hand, if m is divisible by more
than one prime, cdim(X) is not known in general. Suppose m = pi* ...pgr.

Then the class of P in Br L is the sum of classes «q, ..., o, whose indices
are p{*, ..., p%. Denote by Xi, ..., X, the Brauer—Severi varieties with
classes aq, ..., a,. It is easy to see that K(X; x --- x X,) is a generic

splitting field for X. Hence,
cdim(X) < dim(X; x -+ x X,.) = pit 4+ p¥ — 7.
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In [CTKMO6], Colliot-Théléne, Karpenko and Merkurjev conjectured that
equality holds, i.e.,

(3.7) cdim(X) =p* +---+pir —r

for all m > 2. As we mentioned above, this in known to be true of m is a
prime power (i.e., r = 1). Colliot-Thélene, Karpenko and Merkurjev also
proved (3.7) for m = 6; see [CTKMO06, Theorem 1.3].

4. THE ESSENTIAL DIMENSION OF A ji3-GERBE
We are now ready to proceed with our main theorem on gerbes.

Theorem 4.1. Let d be an integer with d > 1. Let K be a field and
r € H3(K, q), where char K does not divide d. Denote the image of = in
H2(K, Gm) by y, the pq-gerbe associated to x by X, the G,,-gerbe associated
toy by YV, and the Brauer—Severi variety associated toy by P. Then

(a) ed(Y) = cdim P and (b) ed X = cdim P + 1.
Moreover, if the index of x is a prime power p” then
(c) ed(V;p) =ed(Y) =p" — 1 and (d) ed(X;p) =ed X =p".

Proof. The functor Fy : Fieldsxg — Sets sends a field L/K to the empty
set, if P(L) = 0, and to a set consisting of one point, if P(L) # (. In
other words, Fy is the determination functor Dp introduced in the previous
section. Thus ed(Y) = ed(Dp) and ed(Y;p) = ed(Dp;p). On the other
hand, by Lemma 3.4, ed(Dp) = cdim(P) and ed(Dp;p) = cdim,(P). This,
in combination with (3.5), proves parts (a) and (c).

(b) First note that the natural map X — ) is finite type and representable
of relative dimension 1. By Proposition 2.6 this implies that ed X < ed(Y)+
1. By part (a) it remains to prove the opposite inequality, ed X > ed())+ 1.
We will do this by constructing an object o of X whose essential dimension
is >ed(Y) + 1.

We will view X as a torsor for Bug in the following sense: One has maps

XXB,LLd—>X
XXX—>BMd

satisfying various compatibilities, where the first map is the action of By
on X and the second map is the “difference” of two objects of X. For the
definition and a discussion of the properties of these maps, see [Gir71, Chap-
ter IV, Sections 2.3, 2.4 and 3.3]. (Note that, in the notation of Giraud’s
book, X A Bug = X and the action operation above arises from the map
X X Bupg — X A Bug given in Chapter 1V, Proposition 2.4.1. The “differ-
ence” operation — which we will not use here — arises similarly from the
fact that, in Giraud’s notation, HOM(X, X') = Bpu,.)

Let L = K(P) be the function field of P. Since L splits P, we have a
natural map a : Spec L. — ). Moreover since L is a generic splitting field



ESSENTIAL DIMENSION AND ALGEBRAIC STACKS I 13

for P,
(4.2) ed(a) = cdim(P) = ed()),
(4.3) ed(a;p) = cdim,(P) = ed(Y;p).

where we view a as an object in Y. Non-canonically lift a : Spec L — ) to
a map Spec L — X using the fact that X — ) is isotropic. Let Spec L(t) —
By denote the map classified by (t) € HY(L(t), ug) = L(t)*/L(t)*¢. Com-
posing these two maps, we obtain an object

a:SpecL(t) — X x Bug — X.

in X(L(t)). Our goal is to prove that ed(a) > ed()) + 1. In other words,
given a diagram of the form

(4.4) Spec L(t) —— X

| =~
Spec M

where K C M C L is an intermediate field, we want to show that tr deg z (
ed())+1. Assume the contrary: there is a diagram as above with tr deg z (
ed()). Let v: L(t)* — Z be the usual discrete valuation corresponding to ¢
and consider two cases.

M) >
M) <

Case 1. Suppose the restriction v, of v to M is non-trivial. Let My
denote the residue field of v and Ms>q denote the valuation ring. Since
SpecM — X — Y, there exists an M-point of P. Then by the valuative
criterion of properness for P, there exists an M>p-point and thus an M-
point of P. Passing to residue fields, we obtain the diagram

SpecL *— 7y

|~

Spec My
which shows that ed(a) < trdegy My = trdegy M —1 < ed(Y) — 1, contra-
dicting (4.2).

Case 2. Now suppose the restriction of v to M is trivial. The map
Spec L — X sets up an isomorphism Xy, = Bpug. The map Spec L(t) — X
factors through X7 and thus induces a class in Bug(L(t)) = HY(L(t), p1q)-
This class is (t). Tensoring the diagram (4.4) with L over K, we obtain

Spec L(t) ® L —*— X1, = Brug
l /
Spec M ® L

Recall that L = K(P) is the function field of P. Since P is absolutely
irreducible, the tensor products L(t) ® L and M ® L are fields. The map
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Spec M ® L — Brug is classified by some m € (M ® L)*/(M @ L)*¢ =
HY(M ® L, png). The image of m in L(t) ® L would have to be equal to t
modulo d-th powers. We will now derive a contradiction by comparing the
valuations of m and t¢.

To apply the valuation to m, we lift v from L(t) to L(t) ® L. That is,
we define v, as the valuation on L(t) ® L = (L ® L)(t) corresponding to t.
Since v, (t) = v(t) = 1, we conclude that vy (m) = 1 (mod d). This shows
that v, is not trivial on M ® L and thus v is not trivial on M, contradicting
our assumption. This contradiction completes the proof of part (b).

The proof of part (d) proceeds along similar lines, except for a small
complication in prime characteristic, which is resolved by Lemma 4.7 below.
For the sake of completeness we outline the argument.

Once again, applying Proposition 2.6 to the representable projection map
X — Y of relative dimension 1, we obtain the inequality ed(X; p) < ed(Y;p)+
1. By part (c) it remains to show that ed(X;p) > ed(Y;p) + 1. We will do
this by showing that

(4.5) ed(a;p) > ed(YV;p) + 1,

where a: Spec L(t) — X is the same object in X'(L(t)) we constructed in
the proof of part (b). Here we continue to denote the function field of P
by L = K(P). Once again, assume the contrary: there exists a finite field
extension L'/L(t) of degree prime to p, such that ed(ar/) < ed(Y;p). Let
L, be the separable closure of L(t) in L'. By Lemma 4.7 ed(az) = ed(ay).
Hence, after replacing L' by L., we may assume that L’ is a finite separable
extension of L(t) of degree prime to p. The assumption that ed(ar/) <
ed();p) means, by definition, that there exists a commutative diagram

(4.6) Spec(L’)

prime-to-p Spec M

N

Spec L(t) X

where K C M C L’ is an intermediate field and trdegy (M) < ed(Y;p).

Let v: L(t)* — Z be the discrete valuation corresponding to t and v1, ..., v,
be the liftings of v to L. Since L'/ L is separable, [Lan65, Proposition XII.18]
tells us that

erfi+--+efr= [L,ZL],
where e; and f; are, respectively, the ramification index and the residue
class degree of v//. Since [L' : L] is prime to p, at least one of the valuations
vi,... vl say v (L))" — %Z, has the property that its ramification index
e and residue class degree f are both prime to p.
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Once again we consider two cases. If the restriction of v/ to M is non-
trivial then after passing to residue fields and arguing as in Case 1 of the
proof of part (b), we arrive at the diagram

Spec(Lj)
degree f Spec My
Spec L \ y

which shows that ed(a;p) < trdegy My = trdeg,e M — 1 < ed(Y;p) — 1,
contradicting (4.3).

If the restriction of v/ to M is trivial then the induced valuation on M ® g
L’ is trivial, and we argue as in Case 2 in the proof of part (b). Tensoring
the diagram 4.6 with L over K and identifying X with By g via our chosen
map ¢: Spec(L) — X, we obtain the diagram

Spec(L' ®k L)
prime-to-p Spec M ®K L
W
Spec L(t) @ L O Brpd-

Since L is absolutely irreducible, L' ® x L, M ® g L and L(t) @k L are fields.

The map Spec M ® ¢ L — Br g gives rise toan m € (M@ L)* /(M @ L)*? =

HY(M ® L, ug) whose image in L' @ L is equal to ¢, modulo d-th powers.
Lifting p from L' to L' ® x L (so that v/} is trivial on 1 ®x L), we see that

vi(m) —vp(t) =v(m)—1¢€ déZ.

Since d and e are relatively prime, this shows that v} (m) # 0. We conclude
that v} is non-trivial on M ®x L. Consequently, v/ is non-trivial on M,
contradicting our assumption. This contradiction completes the proof of
part (d) (modulo Lemma 4.7 below). [ )

Lemma 4.7. Let F be a functor from the category of field extensions of K
to the category of sets.

(a) Suppose that the natural map F(A) — F(B) is bijective for every
algebraic inseparable field extension B/A. Then ed(a) = ed(ap) for every
algebraic inseparable field extension B/A and every a € F(A).

(b) Let X be a gerbe over a field K banded by pq, A a field over K, and

B/A an algebraic inseparable field extension. Suppose d is not divisible by
char K. Then ed(a) = ed(ap) for every a € X(A).
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Proof. (a) The inequality ed(a) > ed(ap) follows immediately from Defini-
tion 1.1. To prove the opposite inequality it suffices to show that if ap de-
scends to an intermediate field M, where K C M C B, then a descends to an
intermediate field My, where K C My C A and trdegg (Mp) < trdegy (M).
To prove this assertion, set My = M N A and p = char K. Then for every
m € M there is a power of p, say e = p" such that m® lies in both A and
M (and hence, in My). This shows that M is algebraic and inseparable
over Mp; cf. [Lan65, VIL.7]. Since My is a subfield of M, the inequality
trdegy (My) < trdegy (M) is obvious. (In fact, equality holds, since M is
algebraic over My.) The commutative diagram

F(M) —— F(B) 3 ag

]
F(My) — F(A) € a

shows that a descends to M.

(b) By part (a) it suffices to show that the natural map X' (A) — X (B) is
an isomorphism for every algebraic inseparable extension B/A. If A doesn’t
split the class [X] € HY(K, ug) then neither does B, so, X(A) = X(B) = 0,
and there is nothing to prove. If A splits [X], i.e., there is a map Spec(A4) —
X then we can use this map to trivialize X. The map X(A4) — X (B) can
then be identified with the natural map H(A, pg) — HY(B, pg) or equiva-
lently,

We want to show that this map is an isomorphism. To do this, we recall
that for every y € B* there exists an r > 0 such that y?" lies in A. Since
p and d are relatively prime, both injectivity and surjectivity of the above
map follow. [

In view of Theorem 4.1(a), Conjecture (3.7) of Colliot-Thélene, Karpenko
and Merkurjev be restated in the language of essential dimension of gerbes
as follows.

Conjecture 4.8. If X is a gerbe banded by ji,, over a field K, let p{* ... pS"
be the decomposition into prime factors of the index of the class of X in the
Brauer group of K. Then

edX =pi" +---+pir —r+1

When the index is 6 this follows from [CTKMO06, Theorem 1.3].

In view of the fact that the conjecture holds for » = 1, it can also be
rephrased as follows: if m and n are relatively prime positive integers, X
and ) are gerbes banded by u.,, and u,, then

ed(X xY)=edX +ed) — 1.

Back to the language of canonical dimension, one could ask the following
more general question. Let X and Y be smooth projective varieties over a
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field K. Assume that there are no rational functions X --» Y or Y --» X.
Then is it true that cdim(X x Y) = edim(X) 4 cdim(Y)? A positive answer
to this question would imply Conjecture 4.8.

5. PROOF OF THEOREM 1.4

In this section k is a field and p is a prime number not equal to char k.
We begin with some preliminary facts.

Proposition 5.1. Let U be an integral algebraic space locally of finite type

def

over k with function field K = k(U), and let f: X — U be a stack over U.
Let X denote the pullback of X to Spec K. Then,

ed X > ed (X /K) + dim U;
ed(X;p) > ed(Xx /K;p) + dim U.

Proof. Let j : X — X denote the inclusion. If £ : Spec L — Xk be a
morphism, then it is easy to see that ed({/K) = ed(j o £/k) + dimU. This
implies the first inequality of the proposition directly. The second inequality
then follows by taking the infinum of ed (£, /K) for all prime-to-p extensions
M/L. [ )

Let X be a locally noetherian stack over a field k with presentation
P: X — X. Recall that the dimension of X at a point £: Spec K — X
is given by dim, (X) — dim, P where z is an arbitrary point of X lying over
¢ [LMBO00, (11.14)]. Let ) be stack-theoretic closure of the image of £; that
is, the intersection of all the closed substacks ); such that £~1();) = Spec K.
The morphism ¢ factors uniquely through Y C X. We defined the dimension
of the point £ to be the dimension of the stack ) at the point Spec K — ).

Proposition 5.2. Let X — Y be a morphism of algebraic stacks over a
field k. Let K/k be a field extension and let y: Spec K — Y be a point of

dimension d € 7. Let X = X xy Spec K. Then

ed(Xx/K) <ed(X/k) —d;
ed(Xx/K;p) < ed(X/k;p) — d.

Proof. By [LMBO00, Theorem 11.5], ) is the disjoint union of a finite family
of locally closed, reduced substacks ); such that each ); is an fppf gerbe
over an algebraic space Y; with structural morphism A;: ); — Y;. We can
therefore replace ) by one of the ); and assume that ) is an fppf gerbe over
an algebraic space Y. Without loss of generality, we can assume that Y is
an integral affine scheme of finite type over k.

Let p be the image of y in Y. Since ) is limit-preserving, we can find
an integral affine scheme U equipped with a morphism i: U — ) and a
dominant morphism j: Spec K — U such that y is equivalent to i o 5. We
can also assume that the composition U — ) — Y is dominant.
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Since )Y is a gerbe over Y, it follows that U — ) is representable of
fiber dimension at most dimU — d. Now, form the following diagram with
Cartesian squares.

Xg — Spec K

|

Xy ——U

|

X —>)Y
Since the vertical maps in the lower square are finite type and representable
of fiber dimension at most dim U —d, it follows from Propositions 2.6 and 5.1
that

ed(Xg/K) < ed(Xyw)/k(U))

<edXy —dimU

<edX +dimU —d+ dimU

<edX —d. [ )

Similarly, ed(Xx/K;p) < ed(X;p) — d,

We now proceed with the proof of Theorem 1.4, which we restate for the
convenience of the reader. Let

(5.3) l1—7Z—G—Q—1

denote an extension of groups over a field k, with Z central and isomorphic
to py, for some integer n > 1. Recall from the introduction, that we defined
ind(G, Z) as the maximal value of the index ind(dk(t)), as K ranges over
all field extensions of k and ¢ ranges over all torsors in H* (K, Q).

Theorem 5.4. Let G be an extension as in (5.3). Assume that n = p" for
some non-negative integer r. Then edi(G;p) > ind(G, Z) — dim G.

Proof. Let K/k be a field extension and let ¢ : Spec K — B(Q be a Q-torsor
over Spec K. The dimension of BQ at the point ¢ is —dim @ = —dimG.
Let X denote the pull-back in the following diagram.

X —— Spec K

| ]

BG —— BQ

By Proposition 5.2, ed(X /K;p) < ed(BG/k;p)+dim G. On the other hand,
since BG is a gerbe banded by Z over BQ, X is a gerbe banded by Z
over Spec K. Therefore, by Theorem 4.1(d), ed(X/K;p) = ind 9k (t). By
substitution, ind Ok (t) —dim G < ed;(BG;p). Since this inequality holds for
all field extensions K /k and all Q-torsors t over K, the theorem follows. &
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Remark 5.5. Suppose G is a simple algebraic group whose center Z is
cyclic. It is tempting to apply Theorem 1.4 to the natural sequence

1—7Z—G—GM —1

where the adjoint group G is G/Z. Given a torsor t € HY(K,G*), the
central simple algebra representing O (t) € H3(K, Z) is called the Tits alge-
bra of t. The values of the index of the Tits algebra were studied in [Tit92],
where this index is denoted by b(X) (for a group of type X) and its pos-
sible values are listed on p. 1133. A quick look at this table reveals that
for most types these indices are smaller than dim G, so that the bound of
Theorem 1.4 becomes vacuous. The only exception are groups of types B
and D, in which case Theorem 1.4 does indeed, give interesting bounds; cf.
Remark 10.7.

Remark 5.6. If n > 2 is not necessarily a prime power, then the above
argument shows that

edx G > cdim(9k (t)) — dim G .

Here by cdim(0k (t)) we mean the canonical dimension of the Brauer-Severi
variety representing the class of dx (t) in H?(K, p1,,). Assuming that Conjec-
ture 4.8 holds, we obtain the following (conjectural) inequality: if ind(G, Z) =
p{...p¢ is the prime factorization of ind(G, Z) then

edp, G >pli+--+pm —r+1—dimG.

As we remarked at the end of §4, Conjecture 4.8 (and thus the above in-
equality) is known to be true if ind(G, Z) is a prime power (i.e., r = 1) or
ind(G, Z) = 6.

6. FLORENCE’S THEOREM

In this section we give an alternative proof of a recent theorem of Flo-
rence (in a slightly strengthened form) by combining the lower bound of
Theorem 1.4 with the Brauer—-Rowen Theorem. The idea to use the Brauer—
Rowen theorem in this context is due to Florence. Thus while our proof is
different from the one in [Flo], it is not entirely independent.

Theorem 6.1 (M. Florence [Flo]). Let p be a prime, k a field of character-
istic # p. Suppose (pn € k but (i1 ¢ k for some integer n > 1. Moreover,
if p=2 and n =1, assume also that k((4) # k((s). Then

P dfn < m,

edi(Cpm;p) = edy, Cpm = {1 > m

Before proceeding with the proof, we remark that, in general, the value of
edy, Cpm is not known if ¢, ¢ k. On the other hand, for the sake of computing
ed;(Cpm;p), we may replace k by k((,) and then apply Theorem 6.1. Indeed,
since [k((p) : k] is prime to p, edg(Cpm;p) = edyc,)(Cpm;p).
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Proof. If m < n, then Cpm = pym. Therefore edCpm = 1 (see [BF03,
Example 2.3]) and hence, ed(Cpm;p) = 1 as well. We can therefore restrict
our attention to the case where n < m.

We first show that ed C,m < p™~". To do this, pick a faithful character

x: Cpn — Gy, defined over K and set V' o indgz f X. A simple calculation

shows that V is faithful, thus, V is generically free since Cpm is finite. By
Theorem 2.9, it follows that ed Cym < dimV = p™~".

It remains to show that ed(Cpm;p) > p™~". By Theorem 1.4 it suffices to
show that ind(Cpm, Cpn) > p™~". To establish this inequality, we will view
the representation V' as a homomorphism p: Cpm — GL(V') of algebraic
groups. Let 7w : GL(V) — PGL(V) denote the obvious projection and note
that the kernel of mop is exactly Cpn. It follows that we have a commutative
diagram

0 > Cpn Opm P > Cpmfn — 1
1 Gm GL(V) —=PGL(V) —— 1

where the rows are exact and the columns are injective.

Let K/k be a field extension and let + € H'(K,Cym) be a torsor. Let
L HY(K, Cpm-—n) — H! (K,PGL(V)) denote the map induced by ¢. Then,
from the commutativity of the above diagram (and the injectivity of the
columns), it follows that indx (¢) is the index of the CSA .(¢).

We claim that there is a field extension K/k and a t € H'(K, Cpm) such
that ¢.(t) is a division algebra. From this it will easily follow that indg (t) =
dimV = p™~". In fact, we will take t € H!(K, Cpm) to be a versal element,
constructed as follows. Let L = K(z1,...,7,m-n) denote the field obtained
by adjoining p™~" independent variables to K, and let Cpm-n act on L by
cyclically permuting the variables, i.e., a - 2; = xj+, (mod p™~ ™) for any
a€ Cymn. Let K = LEm=_ Then L/K defines a Cpm-n-torsor t over K.

The CSA corresponding to t,(t) € H'(K,PGL,) is the Brauer-Rowen
algebra Ryn pm ,m; cf. [Row88, §7.3]. The fact that this algebra has index n
is a variant of a theorem of Brauer; for a proof see [Flo, Theorem 2.17] or
(for k = Q(¢p) only) [Row88, Theorem 7.3.8]. [ )

Let D,, be the dihedral group of order 2n. Ledet [Led02, Section 3] conjec-
tured that if n is odd then ed; C,, = edy D,, over any field k of characteristic
zero. As an application of Theorem 6.1 we will now prove Ledet’s conjecture
in the case where n = p” is a prime power and k contains a primitive pth
root of unity.

Corollary 6.2. Let p be an odd prime, m > 1 be an integer, and k be a
field containing a primitive pth root of unity. Then edy Dpm = edy, Cpym.
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Proof. If (ym € k then we know that
edy Cpm = edy, Dpm =1

see the proof of [BR97, Theorem 6.2]. Thus we may assume (,m € k. Let n
be the largest integer such that (,» € k. By our assumption 1 <n <m —1.
Since Cpm C Dpm, we have edy, Dym > edy, Cpym.

To prove the opposite inequality, note that Dpm ~ Cpm x Co has a sub-
group isomorphic to Dyn = Cpn X Cy of index p™™". As we pointed out
above, (pn» € k implies edy Dpyn = 1. Thus

edk me < (edk Dpn) : [me : Dpn] =1- pm—n =ed Cpm .

where the inequality is given by [Led02, Section 3| and the last equality by
Theorem 6.1. 'Y

7. A THEOREM ABOUT THE ESSENTIAL DIMENSION OF A FINITE GROUP

The following proposition, extending [BR97, Theorem 5.3] and [Kan06,
Theorem 4.5, will be used in the proof of Theorem 1.5 in the next section.

Theorem 7.1. Let G be a finite group, H be a central cyclic subgroup of
G, and x: G — k* be a character of G whose restriction to H is faithful.
Assume char k does not divide |G|. If H is mazimal among central cyclic
subgroups of G then

(a) edi G = edx(G/H) + 1.

(b) Moreover, if G is a p-group then edi(G;p) = edx(G/H;p) + 1.

Proof. Let ¢: G — G/H — GL(V) be a faithful representation of G/H.
Then ¢ @ x: G — GL(V x A!) is a faithful representation of G.

(a) To prove the inequality ed G < ed(G/H) + 1, recall that ed(G/H) is
the minimal dimension of a faithful G/H-variety X which admits a dominant
G/ H-equivariant rational map f: V --» X; see [BR97]. Then

fxid: Vx Al =5 X x Al
is a dominant rational map of G-varieties. Thus
ed G < dim(X x A') =ed(G/H) +1.

We will now prove the opposite inequality, ed G > ed(G/H) + 1. Choose

a dominant rational map

VxA -5 Y
of faithful G-varieties such that dimY = ed G. Equivalently, if K = k(V),
we choose G-invariant subfield F© C K (t) such that the G-action on F' is
faithful and trdeg,(F) = ed G. (Here, of course, F' = k(Y').)

Let v: K(t) — Z be the natural valuation associated to ¢ (and trivial on
K). Restricting v to I’ we obtain a discrete valuation v of F. Denote the
residue field for this valuation by Fy.

Claim: (i) v|r is non-trivial, and (ii) the inertia group of v (i.e., the
subgroup of G that acts trivially on Fp) is precisely H.
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To prove (i), assume the contrary. Then there is a natural G-equivariant
embedding of F in the residue field K(t)g = K. Since H acts faithfully on
F and trivially on K, this is impossible.

To prove (ii), let Hr C G be the inertia group for v|z. By our construction
H is the inertia group for the valuation v on K (t). Hence, H C Hp. On the
other hand, since char k is prime to |G|, Hr is cyclic (see [Ser79, Corollaries
2 and 3 to Proposition IV.7]) and central (see [Ser79, Propositioni IV.10]).
By our assumption H is maximal among central cyclic subgroups of G; thus
H = Hp, proving (ii).

We are now ready to complete the proof of the inequality ed G > ed(G/H )+
1 (and thus of part (a)). By (i) the G-equivariant inclusion F' — K(t) in-
duces a G/H-equivariant inclusion Fy — K(t)o = K of residue fields. In
other words, we have a rational dominant G/H-equivariant map V --» Yy
where k(Yy) = Fy. Moreover, by (ii) G/H acts faithfully on Fy (or equiva-
lently, on Yp). Since V is a faithful linear representation of G/H, we have
ed(G/H) < dimYj. On the other hand,

dim Yy = trdeg (Fo) = trdeg,(F) —1=dimY — 1 <edG — 1.

and the desired inequality ed(G/H) < ed G — 1 follows.

(b) To prove the inequality ed(G; p) < ed(G/H;p)+1, recall that ed(G/H)
is the minimal dimension of a faithful G/H-variety X which admits a dia-
gram

V/
(BN

. N
prime-to-p | N

4 N
V X7

of dominant rational G/H-equivariant maps, where X is a generically free
G-variety, dimV’/ = dim V' and [k(V') : k(V)] is prime to p. (Note that, in
the definition of ed(G;p) we require that G should transitively permute the
connected components of V/ (and of X). However, if G is a p-group and the
degree of the cover V/ — V is prime to p, a simple counting argument shows
that G has to fix an irreducible component of V’. Consequently, in this
situation V’ and X are necessarily irreducible.) Multiplying every variety in
the above diagram by A! (on which G acts via the character y), we obtain
the diagram
V! x Al
AN

. ~
prime-to-p | ~

+ 3
V x Al X x Al
of dominant rational map of faithful G-varieties, which shows that

ed(G;p) < dim(X x A') = ed(G/H;p) + 1.
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To prove the opposite inequality, ed(G;p) < ed(G/H;p) + 1, choose a
diagram

W

| N
prime-to-p | S ~
+ N
V x Al Ya
of rational maps of faithful G-varieties, where [k(W) : k(V x Al)] is finite
and prime to p and dimY = edi(G;p). Equivalently, we have a diagram of

field extensions

K(#) F,

where K, K(t), L and F are the function fields of V, V x Al, W and Y,
respectively.

First observe that after replacing L by the separable closure Ly of K(t)
in L and F by F'N Ls;, we may assume without loss of generality that L
is separable over K (t). Indeed, the G-action on L and F descends to (and
remains faithful on) Ls and F' N Ls. Moreover, some power of every x € F
lies in F'N Lg; hence, F' is algebraic over F'N Ly, i.e., the two have the same
transcendence degree over k.

From now on we will assume that L is separable over K (t) (or equivalently,
W is separable over V x A!). Let v be the natural discrete valuation on
K(t), by the degree in t (the same valuation we considered in part (a)).
We claim that there exists a G-invariant lifting n of v to L whose residue
degree (i.e., the degree of the induced extension Lo/K of the residue fields)
in prime to p.

Clearly the inertia group Hy C G of L (with respect to 1) is contained
in the inertia group of K (t), which is equal to H by our construction. On
the other hand, the cyclic p-group H/H|, faithfully acts on the extension
Lo/K whose degree is prime to p. This is only possible if H/Hy = {1},
i.e., H = Hp. Thus if the above claim is established, we can use the same
argument as in part (a) (with K(¢), v replaced by L, n) to complete the
proof of the inequality ed(G;p) <ed(G/H;p) + 1.

To prove the claim, denote the liftings of v on K(t) to L by n1,...,n.
As usual, we will denote the ramification index of n; by e; and the residue
degree by f;. By [Lan65, Proposition XII.18§]

61f1+“‘+erf7‘:[L:K(t)]

L

prime-to-p

or, equivalently,
> Veglef =[L: K(t)]
e,f>1

where V. ¢ be the subset of {n1,...,7,} consisting of those valuations 7; with
e; = e and f; = f. (Note that V, ; = () for all but finitely many pairs (e, f).)
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Thus there exist integers e, f > 1 such that e, f, and |V, ¢| are all prime to
p. The p-group G permutes the elements of V; ¢; since |V, ¢| is prime to p,
G must fixed a valuation n € V, ;. This is the valuation we were looking
for. (Note that the residue degree f of n is prime to p by our construction.)
This completes the proof of the claim and thus of part (b). [

Corollary 7.2. Let G be a finite p-group and S be a direct summand of
C(G) such that [G,G] NS = {1}. If (. € k, where e is the exponent of S
then edy, G = edy(G/S) + rank(S).

Remark 7.3. The following elementary observation will be useful in the
sequel.

Let G be a finite group and S be a normal subgroup such that [G,G|NS =
{1}. Then C(G/S) = C(G)/S.

To prove this assertion, suppose g € G projects to a central element of
G/S. Then for every z € G the commutator ¢ = gzg~'z~! lies in both
[G,G] and S. Hence, ¢ = 1, and thus g € C(G), as desired. '

Proof of Corollary 7.2. Suppose C(G) as S&T. Write S = H1@---® H, as
a direct sum of cyclic groups, where r = rank(S). We argue by induction on
r. When r = 0, i.e., S = {1}, there is nothing to prove. For the induction
step, note that by Remark 7.3,

S/H,~Hy @& H,_,

is a direct summand of C(G/H,) = S/H, @& T. Thus by the induction
assumption ed(G/H,) = ed(G/S)+r—1. On the other hand, by Theorem 7.1
edG = ed(G/H,) + 1, and the corollary follows. [

8. PROOF OF THEOREM 1.5

Let Z be a maximal cyclic subgroup of C(G) containing [G,G]. Then
C(G) = Z @ S for some central subgroup W of G. By Corollary 7.2,

ed G = ed(G/S) + rank(S) = ed(G/S) + rank C(G) —

By Remark 7.3, |C(G/S)| = |C(G)|/|S]. Thus the quantity |G/C(G)| does
not change when we replace G by G/S. We conclude that it suffices to
prove Theorem 1.5 for G/S. In other words, we may assume without loss of
generality that the center Z = C(G) of G is cyclic. In this case the theorem
reduces to the identity

ed(G;p) =edG =+/|G/Z|.
To prove this identity it suffices to establish Lemma 8.1 below. Indeed,
part (a) of this lemma tells us that ed(G;p) > /|G/Z| (see Theorem 1.4),

and part (b) implies the inequality, ed G < /|G /Z| (see Theorem 2.9), and
Theorem 1.5 follows.
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Lemma 8.1. Let G be a p-group such that the center Z = C(G) is cyclic

and the quotient group A < G/Z is abelian. (or equivalently, |G,G]| C Z).
Then

(a) ind(G, Z) > \/|4|, and
(b) G has a faithful linear representation of dimension \/|A|.

Proof. We will use additive notation for the groups Z and A, multiplicative
for G. In this situation we can define a skew-symmetric bilinear form w: A x
A — Z by

wlar,as) = g19207 '95

where a; = g;, modulo Z, for i = 1,2. (Note that w(aj,as) is independent
of the choice of g; and go.) Clearly g lies in C(G) if and only if its image
a lies in the kernel of w; i.e., w(a,b) = 0 for every b € A. Since we are
assuming that C(G) = Z, we conclude that the kernel of w is trivial; i.e., w
is a symplectic form on A. It is well known (see for example [TA86, §3.1])
that the order of A, which equals the order of G/C(G), is a complete square.

Fix a generator z of Z. We recall the basic result on the structure of
a symplectic form w on a finite abelian group A (the proof is easy; it can
be found, e.g., in [Wal63, §3.1] or [TA86, §7.1]). There exist elements aq,
..., agy in A and positive integers dy, ..., d, with the following properties.

(a) d; divides d;_1 for each i =2, ..., r, and d, > 1.

(b) Let ¢ be an integer between 1 and r. If A; denotes the subgroup of
A generated by a; and a,;;, then there exists an isomorphism A; ~
(Z/d;7,)* such that a; corresponds to (1,0) and a,; to (0,1).

(¢) The subgroups A; are pairwise orthogonal with respect to w.

(d) w(as,ari) =2"% € Z.

() A=A - DA,

Then the order of A is d3...d2, hence \/|A] = d; ...d,.

Let G; be the inverse image of A; in G; note that G; commutes with G;
for any i # j.

Let wq, ..., ug, be indeterminates, and set K © k(uq,...,us ). Identify
Z with p, by sending z into (,. Consider the boundary map

0i: HY(K, A;) — H*(K, Z)
obtained from the exact sequence

1—7Z—G — A — 1.

Claim. There exists a class & € H(K, A;) such that 0;&; is the class of the
cyclic algebra (u;, uy44)q, in Br K.
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To see that part (a) follows from the claim, consider the commutative
diagram
1— 72" — [,Gi— [[; 4i — 1
ol
1 > Z G > A

in which m is defined by the formula m(z1,...,2,) = z1...2,, and the
homomorphism [[, G; — G is induced by the inclusions G; C G. This
yields a commutative diagram

> 1

I, 1 (5, A 1% m2(k, 2y

| [

H(K, A) —2— H2(K, Z)
in which the map m, is given by my(a1,...,a,) = a1...q,. So, if £ €
HY(K, A) is the image of (&1,...,&.) then O is the class of the product

(w1, Urg1)d, QK (U2, Ury2)dy QK -+ DK (Ur, Uy )d,

whose index is d; ...d,. Hence ind(G,Z) > d; ...d, = \/W, as needed.

We now proceed with the proof of the claim. Choose a power of p, call it
d, that is divisible by the order of Z and by the order of each a;. Consider
the group A(d) defined by the presentation

(@1, 0,y |2 = 2§ = y? =1, 2129 = y2ow1, 1y = ya1, T2y = y32).
Call p;: A(d) — G; the homomorphism obtained by sending 1 to a;, x2 to
arti, and y to 2% = w(ai, apyi).

Let {4 be a primitive d-th root of 1 in k£ such that ¢, = ZZ/ 4 The subgroup
(y) in A(d) is cyclic of order d; we fix the isomorphism (y) ~ pg4 so that y
corresponds to (4. The restriction of p; to (y) — Z corresponds to the

homomorphism pig — g, defined by a — a%/%. We have a commutative
diagram
1 Id s> A(d) (Z.)dZ)? —1
adl/dzl lﬁi l
1 Hn GZ Ai > 1.

We have H' (K, (Z/dZ)*) = (K*/K*%)2. According to [Vel00, Example 7.2],
the image of the element (u;,u,4;) € H' (K, (Z/dZ)?) is the cyclic algebra
(i, Ury)q; hence, if &; is the image in HY (K, A;) of (u;, 1), the image of &
in H2(K, p1q) is the algebra (u;, ur+i)§d/ 4 which is equivalent to (Uiy Upti)d
This concludes the proof of Lemma 8.1(a).

it
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We now turn to the proof of Lemma 8.1(b). Suppose |C(G)| = p* and
|A| = p*™; we want to construct a faithful representation of G of dimen-
sion p™. By [TAS86, §3.1] A contains a Lagrangian subgroup L of order p™.
Denote by H the inverse image of L in G; then H is an abelian subgroup of
G of order p"*™. Since Cpe € k we can embed Z in k* and extend this em-
bedding to a homomorphism x: H — k*. We claim that the representation
p: G — GLpm induced by y is faithful.

It is enough to show that p(g) # id for any g € G of order p, or, equiva-
lently, that p |4 is non-trivial for any such g. If s € G consider the subgroup

H, = 5(g)s~' N H of H, which is embedded in (g) via the homomorphism
r — s 'zs. By Mackey’s formula ([Ser77, §7.3]), p gy contains all the
representations of (g) induced by the restrictions x |g, via the embedding
above.

If g ¢ H then Hi = (¢9) N H = {1}: we take s = 1, and we see that
) \<g> contains a copy of the regular representation of (g), which is obviously
non-trivial.

Assume g € H. Then H, = (sgs™!) for any s € G; it is enough to
prove that x(sgs™!) # 1 for some s € G. If x(g) # 1 then we take s = 1.
Otherwise x(g) = 1; in this case g ¢ C(G), because x |c(q): C(G) — k* is
injective. Hence the image § of g in A is different from 0, and we can find
s € G such that w(5,g) # 1. Then

X(sg9s™") = x(w(5,9)9) = x(w(5,9))x(9) = x(w(5,9)) # 1.
This concludes the of Lemma 8.1 and thus of Theorem 1.5. 'y

9. MORE ON p-GROUPS

In this section we will discuss some consequences of Theorem 1.5.

Example 9.1. Recall that a p-group G is called extra-special if its center Z
is cyclic of order p, and the quotient G/Z is elementary abelian. The order
of an extra special p-group G is an odd power of p; the exponent of G is
either p or p?; cf. [Rob96, pp. 145-146]. Note that every non-abelian group
of order p3 is extra-special. For extra-special p-groups Theorem 1.5 reduces
to the following.

Let G be an extra-special p-group of order p . Assume that the char-
acteristic of k is different from p, that ¢, € k, and (2 € k if the exponent
of G is p*. Then ed(G;p) = ed G = p™.

2m—+1

Example 9.2. Let p be an odd prime and G = Cj,r X Cps be the natural
semidirect product of cyclic groups of order p” and p® (in other words, Cps
is identified with the unique subgroup of C; of order p®). If s <r/2 then

edi(Cpr X Cps;p) = edi(Cpr x Cps) = p*,

for any field £ containing a primitive pth root of unity ¢,.
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Proof. The center C(G) of G is the (unique) subgroup of Cpr of order p®.
Since s < /2, this subgroup is central. Thus, if (,» € k, the equality
ed; G = p® is an immediate consequence of Theorem 1.5. But we are only
assuming that ¢, € k, so Theorem 1.5 only tells us that ed;, G > p®. To prove
the opposite inequality, we argue as follows. Let F' be the prime subfield of
k. By [Led02, Corollary to Proposition 2|, edp(,)(G) < p°. Since we are
assuming that F'((,) C k, we conclude that ed, G < p® as well. [ )

Corollary 9.3. Suppose k is a base field of characteristic # p. If G is a
non-abelian finite p-group then ed(G;p) > p.

Proof. Assume the contrary: let G be a non-abelian p-group of smallest
possible order such that ed G < p. Since G has a non-trivial center, there
exists a cyclic central subgroup Z C G. The short exact sequence

(9.4) 1—272—G—G/Z—1

gives rise to the exact sequence of pointed sets
H'(K,G) — H'(K,G/Z) 2% HA(K, Z)

for any field extension K of our base field k. We will now consider two cases.

Case 1. Suppose the map H*(K,G) — H'(K,G/Z) is not surjective for
some K /k. Then Ok is non-trivial, and Theorem 1.4 tells us that ed(G;p) >
p, a contradiction.

Case 2. Suppose the map HY(K,G) — H'(K,G/Z) is surjective for every
K/k. Then the morphism BG — B(G/Z) is isotropic, and Proposition 2.8
implies that p > ed(G;p) > ed(G/Z;p). By the minimality of G, the group
G/Z has to be abelian. Consequently, [G,G] C Z is cyclic and central in G.
Since G is non-abelian, |G/C(G)| > p?. Theorem 1.5 now tells us that

ed(G;p) = VI|G|/|C(G)| +rank C(G) —1 > p,

a contradiction. 'Y

We will conclude this section by answering the following question of
Jensen, Ledet and Yui [JLY02, p. 204].

Question 9.5. Let G be a finite group and N be a normal subgroup. Is it
true that ed G > ed(G/N)?

The inequality ed G > ed(G/N) is known to hold in many cases; cf., e.g.,
Theorem 7.1. We will now show that it does not hold in general, even if H
is assumed to be central.

Corollary 9.6. For every real number A > 0 there exists a finite p-group
G, with a central subgroup H C G such that ed(G/H) > Aed G.

Proof. Let T’ be a non-abelian group of order p®. The center of I" has order
p; denote it by C. The center of I'" =T X --- x I' (n times) is then C".
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Let H,, be the subgroup of C™ consisting of n-tuples (¢1,...,¢,) such that
c1...c, = 1. Clearly

edT™ <n-edl =np;
see Example 9.1.

On the other hand, I'"/H,, is easily seen to be extra-special of order
p?" 1 so ed(I™/H,) = p", again by Example 9.1. Setting G = I'™ and
H = H,, we see that the desired inequality ed(G/H) > Aed G, holds for
suitably large n. »

10. SPINOR GROUPS

In this section we will prove Theorem 1.7 stated in the introduction.

As usual, we will write (aq,...,a,) for the rank n-quadratic form ¢ given
by q(z1,...,2n) = >y a;z?. Set h to be the standard hyperbolic quadratic
form given by h(z,y) = xy. (Thus h = (1, —1)). For each n > 0 define

(10.1) B, — @(n_a/z) if n is even,
hn, @ (1), ifnis odd.

Set Spin,, = Spin(h,); this is the totally split spin group which appears in
the statement of Theorem 1.7. We also denote the totally split orthogonal
and special orthogonal groups by O,, & O(hy) and SO,, o SO(hy,).

Now, one of the hypotheses of Theorem 1.7 is that {4 € k. Therefore we
can write Spin,, as Spin(q), where

q(z1,...,2p) = —(x%—l-"'—l-x%).

Consider the subgroup I',, C SO,, consisting of diagonal matrices, which
is isomorphic to ,ug‘_l. Call G,, the inverse image of I, in Spin,,. It is a con-
stant group scheme over k. Denote by us the kernel of the homomorphism
Spin,, — SO,,.

Lemma 10.2. Every Spin,,-torsor over an extension K of k admits reduc-
tion of structure to G,; i.e., the natural map H (K, G,,) — H(K, Spin,,) is
surjective for any field extension K/k.

Proof. Let P — Spec K be a Spin,-torsor: we are claiming that the K-
scheme P/G,, has a rational point. We have P/G,, = (P/u2)/Ty. However
P/uy — Spec K is the SO, torsor associated with P — Spec K, and every
SO,-torsor admits reduction of structure group to I';,. N

This means that the natural morphism BG, — BSpin,, is isotropic; so
from Corollary 2.7 and Proposition 2.8 we get the bounds

(10.3) ed G,, — dim Spin,, < ed Spin,, < ed Gy;

cf. also [BF03, Lemma 1.9]. Of course dim Spin,, = n(n — 1)/2; we need to
compute ed Gy,. The structure of GG, is well understood; in particular, it is
very clearly described in [Woo89]. Recall that Spin,, is a subgroup of the
group of units in the Clifford algebra A,, of the quadratic form — (22 + -+
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x;). The algebra A, is generated by elements e, ..., e,, with relations

e? = —1 and e;ej +eje; = 0 for all 7 # j. The element e; is in Pin,,, and

image of ¢; in O,, is the diagonal matrix with —1 as the i-th diagonal entry,
and 1 as all the other diagonal entries. The kernel of the homomorphism
Pin,, — O, is {£1}. (For background material on the theory of Clifford
algebras and spin modules, we refer the reader to [Cheb4], [FHI1, §20.2]
or [Ada96]).

For any I C {1,...,n} write I = {i1,...,i,} with i3 < iy < --- < i, and
set e et éi, . ..¢€;,.. The group G, consists of the elements of A,, of the form
+ey, where I C {1,...,n} has an even number of elements. The element
—1 is central, and the commutator [er, e;] is given by

ler,es] = (—1)‘10‘]‘.
It is clear from this description that G, is a 2-group of order 2™, the com-
mutator (G, G| = {£1} is cyclic, and the center C(G) is given by
{£1} ~Z/27Z, if n is odd,
C(Gn) = {£1, feq,. oy} ~ Z/4Z, if n = 2 (mod 4),
{£l,+eq, ) = Z/2Z x Z/2Z, if n is divisible by 4.
Theorem 1.5 now tells us that
2(n=1)/2 "if p is odd,
ed(Gy) = { 2"=2/2 if n = 2 (mod 4),
2(n=2)/2 4 1 if n is divisible by 4.
Substituting this into (10.3), we obtain the bounds of Theorem 1.7. [ )

Remark 10.4. The same argument can be applied to Pin groups. (For the
definition of Pin groups, see, e.g., [Ada96].) Here we replace G,, the inverse
image G, of the diagonal subgroup of O,, in Pin,. One easily checks that

Z7./27, if n is even,
C(G)) ~ { ZJ4Z, if n =1 (mod 4),
Z)27 x Z)2Z, if n = 3 (mod 4).

This yields the following bounds on the essential dimensions of Pin,:

aln/2) — w <ed,Pin, <2"2 ifn#1 (mod 4),

—1
gln/2) _ % +1<edyPin, <22 41, ifn=1 (mod 4).
for any field k of characteristic # 2 containing (4.

Remark 10.5. When n < 14 the lower bound of Theorem 1.7 is negative
and the upper bound is much larger than the true value of ed Spin,,. For
n = 15 and 16 our inequalities yield

23 < ed Spin;5 < 128
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and
9 < ed Sping < 129.

When n = 16 our lower bound coincides with the lower bound (1.8) of
Reichstein—Youssin and Chernousov—Serre, while for n = 15 it is substan-
tially larger. When n > 17 the exponential part of the lower bound takes
over, the growth becomes fast and the gap between the lower bound and the
upper bound proportionally small. For values of n close to 15 our estimates
are quite imprecise; it would be interesting to improve them.

Remark 10.6. The lower bounds in Theorem 1.7 hold over any field of
characteristic different from 2 (and for any form of the Spin group).

On the other hand, if we do not assume that {4 € k, we have the following
slightly weaker upper bound

ed Spin,, < 2l=D/2 4y g

for the totally split form of the spin group in dimension n, over k. To
prove this inequality, we observe that a generically free representation of
Spin,, can be constructed by taking a spin, or half-spin, representation V' of
Spin,, of dimension 2l(n=1)/2] " and adding a generically free representation
W of SO,,. Since the essential dimension of SO,,_1 is n — 1 over any field of
characteristic different from 2, there is an SO,,-equivariant dominant rational
map f: W --» X, where dim X = dimSO,,+n—1. Nowid x f: V.xW --»
V x X is a Spin,,-equivariant dominant rational map V' x W. Consequently,

ed Spin,, > dim(V x X) — dim Spin,,
= 2l=D/2) | 4im SO,, + n — 1 — dim Spin,,
=oll=D/2 |
as claimed.

Remark 10.7. It is natural to ask whether the inequality

ed Spin, > 2L0-1/2] _ w
can be proved by a direct application of Theorem 1.7 to the exact sequence
(10.8) 1 — pe — Spin,, — SO, — 1

without considering the finite subgroup G,, of Spin,,. The answer is °

Indeed, consider the associated coboundary map

‘yes'”

HY (K, SOm) — H2(K, ).
A class in H'(K,S0O,,) is represented by a m-dimensional quadratic form ¢
of discriminant 1 defined over K. The class of dx(q) € H?(K, ) is then
the Hasse-Witt invariant of ¢; following Lam [Lam73], we will denote it by
¢(q). (Note that since we are assuming that —1 is a square in k, the Hasse
invariant and the Witt invariant coincide; see [Lam73, Proposition V.3.20].)
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Our goal is thus to show that for every n > 1 there exists a quadratic form
¢n of dimension n and discriminant 1 such that ¢(g,) has index 2L(*=1)/2],

If n is even this is proved in [Mer91, Lemma 5]. (Note that in this case
c(q) € H?(K, o) is the class of the Clifford algebra of ¢.) If n = 2r +1
is odd, set K = k(ay,b1,a9,be,...), where ay,by,as,bs,... are independent
variables, and define g9, 41 recursively by

q1 = <1> and qo,41 = <ar, br> S?) arbr> ® Q2r—1>-

One easily sees by induction on r that every go,41 has discriminant 1. More-
over, a direct computation using basic properties of the Hasse-Witt invariant
(see, e.g., [Lam73, V.3.15 and 3.16]) shows that ¢(ga,+1) is the class of the
tensor product (a1, b1)2®k - - - QK (ar, by )2 of quaternion algebras. This class
has index 2", as claimed. '

In summary, this approach recovers the lower bound of Theorem 1.7 in
the case where n is not divisible by 4. In the case where n is divisible by 4
Theorem 1.7 gives a slightly stronger lower bound.

To conclude this section, we will now prove similar bounds on the essential
dimensions on half-spin groups. We begin with the following simple corollary
of [CGRO6, Theorem 1.1}, which appears to have been previously overlooked.

Lemma 10.9. Let G be a closed (but not necessarily connected) subgroup
of GL,, defined over a field k. Assume that chark = 0 and either k is
algebraically closed or G is connected. Then ed G < n.

Proof. By [CGRO06, Theorem 1.1], there exists a finite k-subgroup S C G
such that every G-torsor over Spec K, admits reduction of structure to .S,
for any field extension K/k. This means that the morphism BS — BG is
isotropic and thus

edG <edS;

cf. also [BF03, Lemma 1.9]. The restriction of the representation G C GL,
to .S is faithful; since S is a finite group over a field of characteristic zero, any
faithful representation of S is necessarily generically free. By Theorem 2.9,
ed S < n, and hence, ed G < n, as claimed. [

Example 10.10. Suppose G/k satisfies one of the conditions of Lemma 10.9
and the centralizer C;(G?) of the connected component of G is trivial. Then
the adjoint representation of G is faithful and Lemma 10.9 tells us that
edG < dimG. In particular, this inequality is valid for every connected
semisimple adjoint group G. (In the case of simple adjoint groups, a stronger
bound is given by [Lem04, Theorem 1.3].)

We are now ready to proceed with our bounds on the essential dimension
of half-spin groups. Recall that the half-spin group HSpin,, is defined, for
every n divisible by 4, as Spin,,/(n), where 7 is an element of the center of
Spin,, different from —1. (There are two such elements, but the resulting
quotients are isomorphic.)
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Theorem 10.11. (a) Suppose k is a field of characteristic 0 and (4 € k.
Then

2(n )/2 _ 771(” ) <ed HSpin < 2(n )/
2 — n —
for any positive ’l"llt@g@? n divisible by 4.

The conditions that chark = 0 and {4 € k are used only in the proof of
the upper bound. The lower bound of Theorem 10.11 remains valid for any
base field k of characteristic # 2.

Proof. The group HSpin,, contains G, /(1) ~ G,_1, which is an extra-special
group of order 2"~1. By Example 9.1 ed(G,,/(n)) = 2("=2/2 and thus

ed HSpin,, > ed(Gy /() — dim HSpin,, = 2("~2)/2 @ :

as in the proof of Theorem 1.7.

For the upper bound notice that one of the two half-spin representations
of Spin,, descends to HSpin,,, and is a faithful representation of HSpin,, of
dimension 2("=2)/2. The upper bound now follows from Lemma 10.9 [ )

11. PFISTER NUMBERS

Let k be a field of characteristic not equal to 2 and write W(k) for the
Witt ring of k; see [Lam73, Chapter 2]. Let I = I(k) denote the ideal of
all even dimensional forms in the Witt ring. Then, for any integer a > 0,
I is generated as an abelian group by the a-fold Pfister forms [Lam73,
Proposition 1.2].

Let ¢ be a quadratic form of rank n > 0 whose class [¢] in W(k) lies in
1% for a > 0. Define the a-Pfister number of ¢ to be the minimum number
T appearing in a representation

T
g=Y  +pi
=1

with the p; being a-fold Pfister forms. The (a,n)-Pfister number Pfy(a,n)
is the supremum of the a-Pfister number of g taken over all field extensions
K /k and all n-dimensional forms ¢ such that [¢] € I*(K).

We have the following easy (and probably well-known) result.

Proposition 11.1. Let k be a field of characteristic not equal to 2 and let
n be a positive even integer.

(a) Pfr(1,n) <n.
(b) Pfr(2,n) <n—2.

Proof. (a) Immediate from the identity
(a,a2) = (1,a1) — (1, —ag) = K —a1> — <ay>
in the Witt ring.
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(b) Let ¢ = {(as,-..,ay) be an n-dimensional quadratic form over K. Re-
call that ¢ € I?(K) iff n is even and d4(q) = 1, modulo (K*)? [Lam73, Corol-
lary I1.2.2]. Here d(q) is the signed determinant given by (—1)""=1/2(q)
where d(q) =[]}, a, is the determinant [Lam73, p. 38].

To explain how to write ¢ as a sum of n — 2 Pfister forms, we will tem-
porarily assume that (4 € K. In this case we may assume that a;...a, = 1.
Since (a,a) is hyperbolic for every a € K*, we see that ¢ = (aq,...,a,) is
Witt equivalent to

<L a2,a1 > O Kaz,a1a9 > D - <K Ap-1,01...Apn—2 > .

By inserting appropriate powers of —1, we can modify this formula so that
it remains valid even if we do not assume that {4 € K, as follows:
n
g=(a1,...,an) = > (1)< (1) a;, (-1 ey g > A
i=2

We do not have an explicit upper bound on Pfy(3,n); however, we do
know that Pfy(3,n) is finite for any k£ and any n. To explain this, let
us recall that I3(K) is the set of all classes [¢] € W(K) such that ¢ has
even dimension, trivial signed determinant and trivial Hasse-Witt invari-
ant [KMRT98|.

Let n be a positive integer. Let ¢ be a non-degenerate n-dimensional
quadratic form over K whose whose signed determinant is 1. The class of
q in HY(K,0,) lies in H'(K,S0,,). We say that ¢ admits a spin structure
if its class is in the image of H (K, Spin,,) into H(K,SO,,). As pointed out
in Remark 10.7, the obstruction to admitting a spin structure is the Hasse-
Witt invariant c¢(g). Thus, the forms in I® are exactly the even dimensional
forms admitting a spin structure. The following result was suggested to us
by Merkurjev and Totaro.

Proposition 11.2. Let k be a field of characteristic different from 2. Then
Pfr(3,n) is finite.

Sketch of proof. Let E be a versal torsor for Spin,, over a field extension L/k;
cf. [GMS03, Section I.V]. Let ¢z, be the quadratic form over L corresponding
to E under the map H'(L, Spin,,) — H(L,0,,). The 3-Pfister number of ¢r,
is then an upper bound for the 3-Pfister number of any n-dimensional form
in I? over any field extension K/k. ®

Remark 11.3. For a > 3 the finiteness of Pfy(a,n) is an open problem.

The goal of this section is to prove Theorem 1.9 stated in the introduction,
which says that
o(n+4)/4 _ 9
7
for any field k be a field of characteristic different from 2 and any positive
even integer n. Since this is a lower bound on Pfi(3,n), we may assume,
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without loss of generality that k£ contains (4 in the proof. To simplify mat-
ters, this assumption will be in force for the remainder of this section.

For each extension K of k, denote by T, (K) the image of H' (K, Spin,,)
in HY(K,SO,,). We will view T,, as a functor Fields; — Sets. The essential
dimension of this functor is closely related to the essential dimension of
Spin,,.

Lemma 11.4. ed Spin,, — 1 <edT,, < ed Spin,,.

Proof. In the language of [BF03, Definition 1.12], we have a fibration of
functors

Hl (— ) N2) ~ Hl (— ) Spinn) - Tn(— )
The first inequality then follows from [BF03, Proposition 1.13] and the sec-
ond follows from Proposition 2.8 (or [BF03, Lemma 1.9]). [

Lemma 11.5. Let ¢ and ¢' be non-degenerate even-dimensional quadratic
forms over K. Suppose that q admits a spin structure. Then q @ q' admits
a spin structure if and only if ¢ admits a spin structure.

Proof. Immediate from the fact that I?(K) is an ideal of W (K). [ )

Let hx be the standard 2-dimensional hyperbolic form hx (x,y) = zy over
an extension K of k. For each n-dimensional quadratic form ¢ € I*(K), let
ed,(q) denote the essential dimension of the class of ¢ in T,,(K).

Lemma 11.6. Let q be an n-dimensional quadratic form over K whose class
in W(K) lies in I*(K). Then for any positive integer s

s(s+2n—1)
—

Proof. Set m < edn+23(h§'?s @ q). Let F be a field of definition of h??s @ q of
transcendence degree m, and let ¢ be an (n+2s)-dimensional quadratic form
with a spin structure over F' such that gx is K-isomorphic to h??s @©q. Let X
be the Grassmannian of s-dimensional subspaces of 2% which are totally
isotropic with respect to ¢; the dimension of X is precisely s(s + 2n —1)/2.

The variety X has a rational point over K; hence there exists an inter-
mediate extension F' C E C K such that trdegy E < s(s+ 2n — 1)/2, with
the property that ¢g has a totally isotropic subspace of dimension s. Then
¢r splits as h%, @ ¢/. By Witt’s Cancellation Theorem, ¢} is K-isomorphic
to ¢; hence ed,,(q) < m+ s(s+2n —1)/2, as claimed. [ )

edn+2s(h§%8 @ Q) > edn(Q) -

Proof of Theorem 1.9. If n < 10 then the statement is vacuous, because
then 2(+4/4 _ 9 < 0, so we assume that n > 12. We may also assume
without loss of generality that ¢4 € k. In this case W(K) is a Z/2-vector
space; it follows that the 3-Pfister number of a form ¢ is the smallest r
appearing in an expression

T
q=> <aibici>.

i=1
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in W(K). Choose an n-dimensional form ¢ such that [¢] € I3(K) and
ed,(¢) =edT,. (Here we view ¢ as an object in T,,(K).) Suppose that ¢ is
equivalent in the Witt ring to > |_; <aj, b;, ¢;>.

Let us write a Pfister form < a,b,c> as

<a, b,C>> = <1> D <a, b,C>>0,

where
def
La,b, >0 = (as, bi, ¢, aibs, a;ci, bici, azbicy).
Set

T
o= Z <ag, bi, ci>
1=1
if r is even, and

r
$E ()@Y <aibi,ci>g
1=1

if 7 is odd. Then g is equivalent to ¢ in the Witt ring, and hence, ¢ € I3(K).
The dimension of ¢ is 7r or 7r + 1, depending on the parity of r.

We claim that n < 7r. Indeed, assume the contrary. Then the dimension
of ¢ is less than of equal to the dimension of ¢, so ¢ is isomorphic to a form
of type hj @ ¢. Thus

by Lemma 11.4

3
7” >3r >edu(q) =edT, >  edSpin, — 1.

The resulting inequality fails for every even n > 12 because, for such n,
ed Spin,, > n/2; see (1.8).

So we may assume that 7r > n; then there is an isomorphism between the
quadratic forms ¢ and a form of the type h??s @ ¢q. By comparing dimensions
we get the equality 7r = n + 2s when r is even, and 7r + 1 = n 4+ 2s when
r is odd. The essential dimension of the form ¢ as an element of T7,(K)
or T741(K) is at most 3r, while Lemma 11.6 tells us that this essential
dimension is at least ed(q) — s(s + 2n — 1)/2. From this, Lemma 11.4 and
Theorem 1.7 we obtain the chain of inequalities

s(s+2n—1)
> B
3r > ed,(q) 5
B s(s+2n—1)
(11.7) =edT, — —
2 2<n_2)/2 _ TL(TL2— 1) 1 S(S + 2271 — 1) ‘

Now suppose 7 is even. Substituting s = (7r — n)/2 into the inequal-
ity (11.7), we obtain

4912 4 (14n 4 10)r — 200+9/2 _ 2 £ op — 8

> 0.
3 2




ESSENTIAL DIMENSION AND ALGEBRAIC STACKS I 37

We interpret the left hand side as a quadratic polynomial in r. The constant
term of this polynomial is negative for all n > 8; hence this polynomial has
one positive real root and one negative real root. Denote the positive root
by ry. The above inquality is then equivalent to » > r;. By the quadratic
formula

/49 - 200+9/2 1 168n — 367 — (Tn + 5) L 20— 2
i 49 = 7 ‘
This completes the proof of Theorem 1.9 when r is even. If r is odd then
substituting s = (7r+1—n)/2 into (11.7), we obtain an analogous quadratic
inequality, whose positive root is

. \/49 .2(n+4)/2 4 1680 — 199 — (Tn + 12) - o(n+4)/4 _ 9
o 49 = 7 )
and Theorem 1.9 follows. P

b
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