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Abstract. For a quadric Q over a real field k, we investigate whether finite-

ness of the Pythagoras number of the function field k(Q) implies the existence

of a uniform bound on the Pythagoras numbers of all finite extensions of k. We

give a positive answer if the quadratic form that defines Q is weakly isotropic.

In the case where Q is a conic, we show that the Pythagoras number of k(Q)

is 2 only if k is hereditarily pythagorean.

1. Introduction

For a field K we denote by K× the multiplicative group, further by K×2 the

subgroup of nonzero squares and by
∑

K2 the subgroup of nonzero sums of squares.

For x ∈ K we set

ℓK(x) = inf
{

n ∈ N | ∃x1, . . . , xn ∈ K s.t. x = x2
1 + · · · + x2

n

}

and call it the length of x in K. Two interesting field invariants for the study of

sums of squares in K are the level

s(K) = ℓK(−1)

and the Pythagoras number

p(K) = sup
{

ℓK(x) | x ∈ ∑

K2
}

.

By the Artin-Schreier Criterion ([Lam, Chap. VIII, (1.11)]), K admits a field

ordering if and only if s(K) = ∞. In this case we say that K is real, otherwise

nonreal. For nonreal fields, Pfister [Pf, Chap. 3, Thm 1.3, Thm 1.4] showed that

the possible values for the level are exactly the powers of 2. For the Pythagoras

number, Hoffmann [H] showed that for any positive integer n, there exists a real

(even uniquely ordered) field K with p(K) = n. Given a field extension L/K of

a certain type (e.g. quadratic, finite, or finitely generated) little is known about

the relation between p(L) and p(K). If L/K is a finite field extension, then it is
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known that p(L) ≤ [L : K]p(K) ([Pf, Chap. 7, Proposition 1.13]), but at present

one doesn’t know of any finite extension L/K where p(L) > p(K) + 1.

A field K is called pythagorean if p(K) = 1, i.e. if
∑

K2 = K×2. A real field

K is called hereditarily pythagorean if every finite real field extension of K is

pythagorean.

Theorem 1.1 (Diller-Dress). Let L/K be a finite field extension. If L is pythagorean,

then so is K.

For a proof, see [Lam, Chap.VIII, Theorem 5.7]. Note that this ’Going Down’ does

not generalise to Pythagoras numbers other than 1, since for any field K with p(K)

arbitrarily large, we can find a quadratic extension L/K with p(L) = 2, just take

L = K(
√
−1). Moreover and less trivially, in [Pr] examples of real quadratic exten-

sions L/K are constructed, where p(L) = 2 and p(K) is larger than an aribtrary

given integer, and K is uniquely ordered.

We now fix a ground field k and consider function fields F/k. If k is real closed and

the transcendence degree of F/k is n, then we have the Pfister bound p(F ) ≤ 2n ([Pf,

Chap.6, Corollary 3.4]). This leads naturally to the search for weaker conditions

on the field k that imply bounds on p(F ) in terms of p(k) and the transcendence

degree of F/k. It is not even known whether finiteness of the Pythagoras number

of k goes up to k(X). Conversely, p(k(X)) < ∞ implies p(k) < ∞.

In fact, p(k(X)) < ∞ is equivalent to the existence of a common upper bound

on p(L) for all finite extensions L/k by the following statement obtained in [BvG,

Theorem 3.5].

Theorem 1.2. Let k be a real field and n ∈ N. Then the following are equivalent:

(i) p(k(X)) ≤ 2n

(ii) p(L) < 2n for every finite real extension L/k.

(iii) s(M) ≤ 2n−1 for every finite nonreal extension M/k.

This leads us to the qualitative question, for what kind of function fields F/k does

finiteness of p(F ) imply the existence of an n ∈ N such that p(L) ≤ n for all finite

L/k ?

In this work, we focus on function fields F of (projective) quadrics. We show, that

if the quadratic form defining the quadric is weakly isotropic in k, then p(F ) < ∞
implies the existence of a common upper bound on the Pythagoras numbers of all

finite extensions of k. In the case of certain projective conics, we also give explicit

upper bounds on the Pythagoras numbers of the finite extensions of k.
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Theorem 1.2 generalises a characterisation of hereditarily pythagorean fields given

in [Bk].

Corollary 1.3 (Becker). For a real field k, we have p(k(X)) = 2 if and only if k

is hereditarily pythagorean.

We generalise the ‘only if’ implication of this result, replacing the rational function

field in one variable by the function field of an arbitrary (not necessarily rational)

conic.

Theorem 1.4. Let k be a real field. If there exists a conic C over k such that

p(k(C)) = 2, then k is hereditarily pythagorean.

In [TY, Theorem 3], the converse implication in Becker’s result was already gen-

eralised to real function fields of conics. Both results together yield the following

generalisation of Corollary 1.3.

Corollary 1.5. Let C be a conic over k with real function field k(C). Then

p(k(C)) = 2 if and only if k is hereditarily pythagorean.

2. Valuations on Function Fields of Hyperelliptic Curves

In this section, we explain how k-valuations on the rational function field k(X) ex-

tend to a quadratic extension (i.e. the function field of a hyperelliptic curve over k).

More precisely, we determine the extension of the residue field. But first, we make a

general observation for valuations with nonreal residue fields and value group tthat

is not 2-divisible, namely that the Pythagoras number of the valued field is a strict

upper bound on the level of the residue field.

Let w be a valuation on K with valuation ring Ow, maximal ideal mw, residue

field κw and value group Γw. We call w a non 2-divisible valuation, if there is an

isomorphism Γw 6= 2Γw.

Proposition 2.1. Let w be a non 2-divisible valuation on K with nonreal residue

field κw of characteristic different from 2. Then p(K) > s(κw).

Proof. Let s = s(κw). Then there exist x0, . . . , xs ∈ O ×
w with x̄2

0 + . . . + x̄2
s = 0.

We may assume that w(x2
0 + . . . + x2

s) is odd; in fact, if w(x2
0 + . . . + x2

s) ∈ 2Γw, we

simply replace xs by (xs + t) for some t ∈ K with 0 < w(t) < w(x2
0 + . . . + x2

s) and

w(t) /∈ 2Γw. We show, that x2
0+. . .+x2

s cannot be written as a sum of less than s+1

squares in K. Assume there are y1, . . . , ys ∈ K with y2
1 + . . . + y2

s = x2
0 + . . . + x2

s,

and where w(y1) ≤ w(yi) for 1 ≤ i ≤ s, thus zi = yi

y1

∈ Ow for 2 ≤ i ≤ s. Since
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w(y2
1 + . . .+ y2

s) is odd, it follows that w(1+ z2
1 + ...z2

s) > 0. We obtain the equality

−1 = z2
2 + . . . + z2

s in κw, contradicting s = s(κw). �

Let L/K be a field extension. Let v be a valuation on K. We call a valuation w on

L an extension of v to L if Γv ⊆ Γw and w|K = v. By Chevalley’s Theorem, such

a extension always exists (a general reference for extensions of valuations is [EP,

Chap. 3]). Consider now the situation where L/K is finite. If Γv is not 2-divisible,

then so is Γw, since [Γw : Γv] < ∞. Also the inertia degree [κw : κv] is finite. For

quadratic separable extensions L/K, the following can be said about extensions of

valuations.

Remark 2.2. Let v be a valuation on K, let L/K be a quadratic separable extension,

and : L → L the nontrivial K-automorphism of L. Let w be an extension of v

to L. Then w and w ◦ are all extensions of v to L, and if w ◦ 6= w then the

value groups of both extensions are just Γv (i.e. v is nonramified in L) and the

residue fields of both extensions are just κv. In general the fundamental inequality

2 ≥ [Γw : Γv][κw : κv] holds. (See [EP, Theorem 3.2.15, Theorem 3.3.5])

Consider the rational function field in one variable k(X) over k and an irreducible

polynomial p ∈ k[X ]. Then there is a unique k-valuation vp : k(X) → Z ∪ {∞}
with vp(p) = 1. The residue field of vp is k[X ]/(p), the root field of p. Now consider

the hyperelliptic curve Y 2 = g(X) for some square free polynomial g ∈ k[X ]. (We

call g ∈ k[X ] square free, if h2 6 |g for all h ∈ k[X ] \ k). Let F denote its function

field, i.e. the quadratic extension k(X)(
√

g) of the rational function field k(X).

Lemma 2.3. Let k be a field with char(k) 6= 2 and F = k(X)(
√

g) for some

square free polynomial g ∈ k[X ]. Let p ∈ k[X ] be an irreducible polynomial and

vp : k(X) → Z∪ {∞} the corresponding k-valuation. Let α be a root of p. Let w be

an extension of vp to F . Then the residue field of w is k(α)(
√

g(α)).

Proof. Note that w(
√

g) = 1
2vp(g) ≥ 0 and in κw we have (

√
g)2 = ḡ = g(α). This

shows, that k(α)(
√

g(α)) ⊆ κw. From Remark 2.2 we know that [κw : k(α)] ≤ 2.

Hence, if
√

g(α) /∈ k(α), then k(α)(
√

g(α)) = κw follows immediately.

Suppose now that g(α) is a square in k(α). Let be the nontrivial k(X)-automorphism

of F . If w 6= w ◦ , then κw = κvp
= k(α) = k(α)(

√

g(α)) by Remark 2.2. Hence

we can suppose that w = w ◦ . Since g(α) = ḡ is a square in the residue field of

vp, we can choose some h ∈ k[X ] with vp(h
2 − g) > 0. Replacing h by h + p if

neccessary, we can even arrange that vp(h
2 − g) = 1. (Note that vp(0

2 − g) = 1 if

p | g in k[X ], since g is assumed to be square free).
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We write z = h +
√

g ∈ F and obtain h2 − g = zz. Since w = w ◦ , using Remark

2.2 we get

1 = vp(h
2 − g) = w(z) + w (z) = 2w(z).

We see that 1
2 ∈ Γw and thus [Γw : Γv] = 2. With Remark 2.2 it follows that

[κw : κv] = 1, i.e. κw = κvp
= k(α) = k(α)(

√

g(α)). �

3. Certain primitive elements for nonpythagorean extensions

In this section, we will show that for a finite real nonpythagorean extensions L/k,

one can always find primitive elements for L/k that are sums of squares in L with

some additional properties. This result, together with our considerations on residue

field extensions in the previous section, will enable us to construct a k-valuation on

a function field of a give conic over k, that has a nonreal residue field where −1 is

not a square. Applying Proposition 2.1 to this situation afterwards, this will show

us that the Pythagoras number of the function field is larger than 3.

Proposition 3.1. Let L/k be a finite field extension such that L is real and non-

pythagorean.

(i) Let c ∈ L×, d ∈ L and ν ∈ L such that L = k(ν). Then

(a) L = k
(

c(ν + x)2 + d
)

for almost every1 x ∈ k.

(b) for almost every α ∈ k×, there are infinitely many x ∈ k such that

L = k
(

c α2

(ν+x)2 + d
)

.

(ii) There exists ξ ∈ L such that L = k(ξ2) and ξ2 + 1 /∈ L×2.

(iii) There exists σ ∈ ∑

L2 \ L×2 such that L = k(σ) and σ + 1 /∈ L×2.

Proof. (i): Suppose

G =
{

x ∈ k | k
(

c(ν + x)2 + d
)

( L
}

is infinite. Since L/k has only finitely many intermediate extensions, there exists a

proper subfield K of L that contains k, for which

{

x ∈ G | c(ν + x)2 + d ∈ K
}

is infinite. Let x1, x2, x3 ∈ k be three distinct elements from this set. Then








1 x1 x2
1

1 x2 x2
2

1 x3 x2
3

















cν2 + d

2cν

c









=









c(ν + x1)
2 + d

c(ν + x2)
2 + d

c(ν + x3)
2 + d









∈ K3.

Since the Vandermonde matrix has determinant (x3 − x2)(x2 − x1)(x1 − x3) 6=
0, we can multiplying with its inverse in M3(K) from the left and obtain that

1‘almost every’ in our context means ‘all but finitely many’
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(cν2 + d, 2cν, c) ∈ K3. So c ∈ K×, 2cν ∈ K contradicting the assumption that

ν /∈ K.

For the second part, we assume there are infinitely many α ∈ k× such that

k(c α2

(ν+x)2 + d) 6= L for all but finitely many x ∈ k. Let n denote the number

of proper subfields of L containing k. Choose α0, . . . , αn such that the Nαi
:= {x ∈

k | k(c
α2

i

(ν+x)2 + d) 6= L} is cofinite in k for 0 ≤ i ≤ n. Then Nα0
∩ · · · ∩ Nαn

is cofinite in k. For every x ∈ Nα0
∩ · · · ∩ Nαn

there are 0 ≤ ix < jx ≤ n such

that c
α2

ix

(ν+x)2 + d and c
α2

jx

(ν+x)2 + d generates a common proper subfield of L over k.

Renumbering α0, ..., αn, we can assume that ix = 0 and jx = 1 for infinitely many

x ∈ Nα0
∩ · · · ∩ Nαn

. Furthermore, we can assume that, for those x, the elements

c
α2

0

(ν+x)2 + d and c
α2

1

(ν+x)2 + d generate the same proper subfield K ( L. Hence

c
α2

0

(ν + x)2
+ d −

(

c
α2

1

(ν + x)2
+ d

)

=
c(α2

0 − α2
1)

ν + x2
∈ K

for infinitely many x ∈ k, contradicting that k
(

(ν+x)2

c(α2

0
−α2

1
)

)

= L for all but finitely

many x ∈ k by what we have shown in the first part of the proof.

(ii): If L = k, then the assertion is trivial. Let k ( L. As L/k is finite and

separable, we can choose ν ∈ L with k(ν) = L. Since L is nonpythagorean, we can

choose z ∈ L such that z2 + 1 is not a square in L. For any α ∈ k× consider

Hα =

{

x ∈ k

∣

∣

∣

∣

(ν + x)2

α2
+ z2 + 1 /∈ L×2

}

and H′
α =

{

x ∈ k

∣

∣

∣

∣

α2(z2 + 1)2

(ν + x)2
+ z2 + 1 /∈ L×2

}

.

Since α2(z2+1)
(ν+x)2 is not a square in L, and with

α2(z2 + 1)

(ν + x)2

(

(ν + x)2

α2
+ z2 + 1

)

=
α2(z2 + 1)2

(ν + x)2
+ z2 + 1,

we conclude that k = Hα ∪H′
α.

Case 1: Hα is infinite for some α ∈ k×.

Let M =
{

x ∈ Hα | (ν+x)2

α2 + z2 ∈ L×2
}

.

Case 1.1 : M is infinite.

For any x ∈ M, let ξx ∈ L such that ξ2
x = (ν+x)2

α2 + z2. Then k(ξ2
x) = L for all

but finitely many x ∈ M by (i). We choose one of the infinitely many x ∈ M with

k(ξ2
x) = L, and ξ = ξx will satisfy the assertion of (ii).

Case 1.2: M is finite.

For all x ∈ Hα \M we have (ν+x)2

α2 + z2 /∈ L×2 , thus also (ν+x)2

α2z2 + 1 /∈ L×2. With

ξx = (ν+x)
αz

, we have that k(ξ2
x) = L for all but finitely many x ∈ Hα \M, applying
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(i) for c = 1
α2z2 , d = 0. Since Hα \M is infinite, we can choose x ∈ Hα \M, such

that k(ξ2
x) = L. Then ξ = ξx satisfies the assertion of (ii).

Case 2: Hα is finite for each α ∈ k×.

In particular k \ H′
α is finite for all α ∈ k×. For α ∈ k× and x ∈ H′

α we denote

ζα,x = α(z2+1)
(ν+x) and we set M′

α = {x ∈ H′
α | ζ2

α,x + z2 ∈ L×2}. For x ∈ M′
α we set

ξα,x =
√

ζ2
α,x + z2.

Case 2.1: H′
α \M′

α is finite for each α ∈ k×.

Putting c = z2 + 1, we get with (i), that for all but finitely many α ∈ k× there

are infinitely many x ∈ k such that k(α2(z2+1)
(ν+x)2 ) = L. Since M′

α is cofinite in k for

each α, there is an appropriate α and x ∈ M′
α, such that k(ξ2

α,x) = L. Then the

assertion of (ii) holds for ξα,x, since

ξ2
α,x + 1 =

α2(z2 + 1)

(ν + x)2

(

(ν + x)2

α2
+ z2 + 1

)

/∈ L×2.

Case 2.2: H′
α \M′

α is infinite for some α ∈ k×.

Let α ∈ k× be such that H′
α \ M′

α is infinite. We have that
ζ2

α,x

z2 + 1 /∈ L×2 for

all x ∈ H′
α \ M′

α. We show, that for some x ∈ H′
α \ M′

α the element ξ =
ζα,x

z

satisfies (ii), i.e. that k(ξ2) = L. Assume on the contrary that k
(

ζ2

α,x

z2

)

( L for

all x ∈ H′
α \ M′

α. Then there is a field extension K/k with K ( L such that
z2

ζ2
α,x

= z2

α2(z2+1)2 (ν + x)2 ∈ K for infinitely many x ∈ H′
α \M′

α. This contradicts

the assertion of (i), which says that for c = z2

α2(z2+1)2 , we have k
(

c(ν + x)2
)

( L

only for finitely many x ∈ k.

(iii): Let ξ ∈ L as in (ii), then η = ξ2 + 1 ∈ ∑

L2 \L×2. Thus, either η + 1 /∈ L×2,

or 1
η

+ 1 = 1
η

(η + 1) /∈ L×2. Since k(η) = k( 1
η
) = L, σ = η or σ = 1

η
satisfies the

claim. �

Remark 3.2. The statement of Proposition 3.1 holds more generally for separable

finite extensions L/k of infinite fields where L is nonpythagorean, but the proof for

this becomes even more technical.

Corollary 3.3. Let L/k be a finite real extension where L is nonpythagorean. Let

a, b ∈ k such that either a, b ∈ L×2 or a, b ∈ −L×2. Then there exists η ∈ ∑

L2\L×2

such that L = k(η) and
√
−1 /∈ L(

√−η)(
√−aη + b).

Proof. If a, b ∈ L×2, we set η = b
a
(σ + 1), where σ ∈ ∑

L2 \ L×2 is chosen such

that k(σ) = L and σ + 1 ∈ ∑

L2 \ L×2; such σ exists by Proposition 3.1(iii).

If a, b ∈ −L×2, we set η = b
a
(ξ2 + 1), where ξ ∈ L is such that ξ2 + 1 ∈ ∑

L2 \L×2

and L = k(ξ2), which exists by Proposition 3.1(ii).
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By the choice of η, we see that neither η, nor (aη − b), nor −η(aη − b) is a square

in L. Therefore
√
−1 /∈ L(

√−η)(
√−rη + t). �

4. Results for function fields of quadrics

Let k be of characteristic 6= 2. A regular quadratic form ϕ ∈ k[X0, ..., Xn] of dimen-

sions n+1 defines a (n−1)-dimensional projective quadric Qϕ by the homogeneous

equation ϕ(x0, . . . , xn) = 0. If ϕ is isotropic, i.e. if Qϕ has a k-rational point, then

the function field k(Qϕ) is the rational function field in (n − 1) variables ([Lam,

Chap. X, Theorem 4.1]).

If dim(ϕ) = 3, then C = Qϕ is a projective conic over k, and since q ∼ 〈1,−a,−b〉
for some a, b ∈ k×, we get the representation

k(C) ∼= k(X)(
√

aX2 + b)

for its function field.

We first prove some general ‘Going Downs’ for the finiteness Pythagoras number

for function fields of quadrics defined by weakly isotropic forms. Later we skip the

assumption that the defining form is weakly isotropic, but consider conics (i.e. one

dimensional quadrics) only. The proof of Theorem 1.4 does not need any of the

results for quadrics of arbitrary dimension, so readers that are interested in that

part only should read on from Theorem 4.7.

Lemma 4.1. K be a field. Let a, b ∈ ∑

K2 and L = K(
√

a). Let r ∈ N be such

that either (i) ℓL(b) ≤ 2r or (ii) ℓK(a) ≤ 2r.

Let m1 ∈ {0, . . . , 2r − 1} such that m1 ≡ ℓK(a)( mod 2r) and m2 ∈ {0, . . . , 2r − 1}
such that m2 ≡ ℓL(b)( mod 2r).

In case (i), we have ℓK(b) ≤ ℓL(b) + ℓK(a) − m1 + 2r and in case (ii), we have

ℓK(b) ≤ 2ℓL(b) − m2 + 2r.

Remark 4.2. For each n ∈ N, the set DK(2n) = {x ∈ ∑

K2 | ℓK(x) ≤ 2n} is a

multiplicative subgroup of
∑

K2.

Proof of the lemma. Let n = ℓL(b), then there are y1, . . . , yn ∈ K and x1, . . . , xn ∈
K such that

b =
∑

1≤i≤n

(xi + yi

√
a)2

2 =
∑

1≤i≤n

x2
1 + a

∑

1≤i≤n

y2
i .
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We find some z1, . . . , zs ∈ K with a = z2
1 + . . . z2

s for s = ℓK(a), hence

b =
∑

1≤i≤n

x2
1 + (

∑

1≤i≤s

z2
i )(

∑

1≤i≤n

y2
i ).

(i): Suppose ℓL(b) ≤ 2r. We show ℓK(b) ≤ ℓL(b) + ℓK(a)− m1 + 2r. We rearrange

a = z2
1 + . . . z2

s = σ1 + · · · + σt + η, with t ∈ N0 and σj , η ∈ ∑

K2, such that

ℓK(σj) = 2r for 1 ≤ j ≤ t and ℓK(η) = m1 and s = t2r + m2. Then we get

b =
∑

1≤i≤n

x2
i +

∑

1≤j≤t



σj

∑

1≤i≤n

y2
i



 + η
∑

1≤i≤n

y2
i .

By Remark 4.2, we get ℓK

(

σj

∑

1≤i≤n y2
i

)

≤ 2r = ℓK(σj) for 1 ≤ j ≤ t, as well as

ℓK

(

η
∑

1≤i≤n y2
i

)

≤ 2r. Hence, ℓK(b) ≤ n + t2r + 2r = ℓL(b) + ℓK(a) − m1 + 2r.

(ii): Suppose ℓK(a) ≤ 2r. We rearrange y2
1 + · · · + y2

n = σ1 + . . . σt + η for some

t ∈ N0 and σj , η ∈ ∑

K2 with ℓK(σj) = 2r and ℓ(η) = m2 and n = t2r + m2. Then

we get

b =
∑

1≤i≤n

x2
i +

∑

1≤j≤t

σja + ηa.

Thus, since ℓK(a) ≤ 2r and ℓK(σj) = 2r, as well as ℓK(η) ≤ 2r, by Remark 4.2, we

get ℓK(b) ≤ n + t2r + 2r = ℓL(b) + ℓL(b) − m2 + 2r. �

Corollary 4.3. Let K be a real field, σ ∈ ∑

K2, and L = K(
√

σ). Let r ∈ N such

that ℓK(σ) ≤ 2r and p(L) ≤ 2r Then p(K) ≤ p(L) + 2r ≤ 2r+1.

Proposition 4.4. Let k be a real field, Q a projective quadric defined by a weakly

isotropic regular quadratic form over k. If p(k(Q)) < ∞, then there exists an n ∈ N,

such that p(L) ≤ n for all finite extensions L/k.

Proof. Let ϕ be a weakly isotropic regular form of dimension n ≥ 3 such that

Q = Qϕ. Since ϕ is weakly isotropic, there are certain sums of squares σ1, . . . , σn,

such that ϕ becomes isotropic over K = k(
√

σ1, . . . ,
√

σn). Hence K(Q) is a rational

function field in n − 2 variables. We have p(K(Q)) ≤ [K(Q) : k(Q)]p(k(Q)) < ∞,

and thus p(K(X)) < ∞ for the rational function field K(X) in one variable.

Since K(X) = k(X)(
√

σ1) . . . (
√

σn) is a multiquadratic totally positive extension

of k(X), corollary 4.3 yields that p(k(X)) < ∞. Now the rest follows with theorem

1.2. �

Presumably the strong condition ‘weakly isotropic’ on the quadratic form ϕ is not

necessary for the statement. However, the weaker condition that ϕ is ‘not totally

2since b ∈ K, the coefficient to
√

a has to vanish.
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definite in k’ cannot be omitted, since for totally definite forms ϕ, the function field

k(Qϕ) is nonreal, and hence p(k(Qϕ)) < ∞, even if p(k) = ∞.

In the following, we look at quadrics of dimension 1 (i.e. conics), that are defined

by a special kind of weakly isotropic 3-dimensional forms. We consider forms ϕ =

〈1, 1,−σ〉 with σ ∈ ∑

k2. For the function fields of the corresponding conics, we

get, in certain sense, two complementary quantitative bounds on the pythagoras

number of all finite extensions L/k, in terms of the Pythagoras number of the

function field.

Proposition 4.5. Let k be a real field and σ ∈ ∑

k2 with ℓk(σ) ≤ 2n + 1. Let

C be the projective conic defined by 〈1, 1,−σ〉 and F = k(C). If p(F ) < 2n then

p(L) < 2n+1 for all finite extensions L/k.

Proof. We can assume, that σ = 1 + u for some u ∈ ∑

k2 with ℓk(u) ≤ 2n. The

field F ′ = F (
√

u) is a rational function field over k′ = k(
√

u), since 〈1, 1,−(1 + u)〉
becomes isotropic over k′, and p(F ′) ≤ 2n, following [BL, Prop 3.5, Thm 3.10].

Assume there is a finite extensions L/k with p(L) ≥ 2n+1. We can assume that L

is real, by the equivalence ((ii) ⇔ (iii)) of Theorem 1.2. Then L′ = L(
√

u) is a

finite real extension of k′. Thus we have p(L′) < 2n by equivalence ((i) ⇔ (ii)) of

theorem 1.2, since p(F ′) ≤ 2n.

This implies p(L) < 2n+1 by Corollary 4.3, since ℓL(u) ≤ 2n. �

Proposition 4.6. Let k be a real field and σ ∈ ∑

k2 with ℓk(σ) < 2n. Let C be the

projective conic defined by 〈1, 1,−σ〉 and F = k(C). If p(F ) ≤ 2n then p(L) ≤ 2n+1

for all finite extensions L/k.

Proof. We can assume that σ − 1 ∈ ∑

k2 with ℓk(σ − 1) = ℓk(σ) − 1. Let L be a

finite real extension of k with p(L) > 2n+1 (we can assume, as in the proof of the

previous theorem, that L is real).

Let η ∈ ∑

L2 with ℓL(η) > 2n+1. Then also ℓL( 4η
(η−1)2 ) > 2n, since 4, (η − 1)2 ∈

DL(2n). By

η =
(η + 1)2

4
− (η − 1)2

4
,

we see, that 4η
(η−1)2 + 1 ∈ L×2.

Denote τ = 4η
(η−1)2 . We have ℓL (τ + σ) < 2n, since τ + σ = τ + 1 + (σ − 1), where

τ + 1 ∈ L×2 and ℓL(σ − 1) = ℓL(σ) − 1.

Now for ν ∈ L with L = k(ν), we know that ρx = (ν + x)2 + τ ∈ ∑

L2 generates

L/k for all but finitely many x ∈ k, by Proposition 3.1 (i).

And there are infinitely many x ∈ k such that ρ̃x = τ2

(ν+x)2 + τ is a generator for

L/k, also by Proposition 3.1 (i).
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Hence, for infinitely many x ∈ k, both k(ρx) = L and k(ρ̃x) = L. For any of those

x, note that

ρ̃x =
τ

(ν + x)2
ρx,

and since ℓL

(

τ
(ν+x)2

)

> 2n+1, we see, thet either ℓL(ρx) > 2n+1 or ℓL(ρ̃x) > 2n+1,

as DL(2n) is a multiplicative subgroup of
∑

L2. For one x ∈ k with k(ρx) =

k(ρ̃x) = L, we set either ρ := ρx or ρ := ρ̃x, so that ℓL(ρ) > 2n+1. Note that in

either case, we have

ℓL(ρ + σ) ≤ 1 + ℓL(τ + 1) + ℓL(σ − 1) ≤ 1 + 1 + (2n − 2) = 2n.

Now consider the nonreal extension L(
√−ρ)/L. By the choice of ρ we have

k(
√−ρ) = L(

√−ρ). Hence we can consider L(
√−ρ) as the residue field of the k-

valuation vp on k(X) associated to the minimal polynomial p ∈ k[X ] of
√−ρ. When

we extend this valuation to F = k(X)(
√
−X2 + σ), we obtain M = k(

√−ρ)(
√

ρ + σ)

as the residue field extension. We can write M = L(
√

ρ + σ)(
√−ρ).

We show s(M) ≥ 2n by showing, that ℓL(
√

ρ+σ)(ρ) ≥ 2n. Assume that on the

contrary ℓL(
√

ρ+σ)(ρ) < 2n. By case (ii) of Lemma 4.1, choosing r = n and

thus we get m2 = ℓL(
√

ρ + σ)(ρ). This yields the contradiction 2n+1 < ℓL(ρ) ≤
ℓL(

√
ρ + σ)(ρ) + 2n ≤ 2n+1.

Hence s(M) ≥ 2n and consequently p(F ) > 2n by Proposition 2.1. Contradiciton.

�

Having stated these explicit ‘Going Down’ results for the Pythagoras numbers of

function fields of conics that are defined by a certain kind of ternary forms, we widen

our focus to arbitrary conics now. While we cannot give a general ’Going Down’

result for the finiteness of the Pythagoras number, we show that in the special case

where the Pythagoras number of the function field of the conic is assumed to be 2,

the ground field k was necessarily herditarily pythagorean. This is the statement

of Theorem 1.4, which we now reformulate and prove.

Theorem 4.7. Let k be a real field that is not hereditarily pythagorean. Let C be

a conic over k and F = k(C). Then p(F ) ≥ 3.

Proof. Let L be a finite real extension of k that is not pythagorean. C is given by

3-dimensional regular quadratic form ϕ over k.

We first consider the case, where ϕ is indefinite with respect to some ordering � of

L. We can assume, that ϕ = 〈1,−a,−b〉 for some a, b ∈ k× with a ≻ 0 and b ≻ 0.

Furthermore, we can assume, that a, b ∈ L×2, since we could replace L by the real

extension L(
√

a,
√

b), which is also not pythagorean by Theorem 1.1.
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In the case where ϕ is totally definite over L, we can assume, that ϕ = 〈1,−a,−b〉
for some a, b ∈ k× that are totally negative in L. We can assume that a, b ∈ −L×2,

(otherwise we replace L by L(
√−a,

√
−b)).

In any case, according to Corollary 3.3, one can find a suitable η ∈ ∑

L2 \ L×2,

such that k(η) = L and such that the nonreal field M = L(
√−η)(

√−aη + b) has

level at least 2.

We show that M is the residue field of a discrete rank one valuation of F . Let

p ∈ k[X ] be the minimal polynomial of the algebraic element
√−η and let vp be the

corresponding k-valuation of k(X). The residue field of this valuation is k(
√−η).

By the choice of η, we have k(η) = L, hence k(
√−η) = L(

√−η). Thus we can write

M = k(
√−η)(

√−aη + b). Let w be a extension of vp to F ∼= k(X)(
√

aX2 + b).

Then M = k(
√−η)(

√−aη + b) is the residue field of w according to Lemma 2.3.

With Proposition 2.1 we get p(F ) > s(M) ≥ 2. �

Corollary 4.8. Let Q be a quadric of dimension at least 2 over the real field k.

Then p (k(Q)) ≥ 3.

Proof. Let ϕ be a regular quadratic form over k with Q = Qϕ. Then dim(ϕ) ≥ 4,

i.e. ϕ(X0, . . . , Xn) = a0X
2
0 + · · · + anX2

n for some n ≥ 3 and some ai ∈ k×. Then

k(Qϕ) ∼= k(X1, . . . , Xn−1)

(

√

−an(an−1X2
n−1 + an−2X2

n−2 + · · · + a1X2
1 + a0)

)

can be considered as the function field of the conic defined by the 3-dimensional

form

〈1, anan−1, an(an−2x
2
n−2 + · · · + a1x

2
1 + a0)〉

over k(X1, . . . , Xn−2). By the Cassels-Pfister Theorem ([Lam, Chap. IX, Corol-

lary 2.3]), the rational function field in at least one variable k(X1, . . . , Xn−2) is

nonpythagorean, hence by Theorem 4.7, we get p(k(Qϕ)) ≥ 3. �
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