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Abstract

Fixing a field F of characteristic different from 2 and 3, we consider

pairs (A, V ) consisting of a degree 3 central simple F -algebra A and a

3-dimensional vector subspace V of the reduced trace zero elements of A

which is totally isotropic for the trace quadratic form. Each such pair

gives rise to a cubic form mapping an element of V to its cube; therefore

we call it a cubic pair over F . Using the Okubo product in the case where

F contains a primitive cube root of unity, and extending scalars otherwise,

we give an explicit description of all isomorphism classes of such pairs over

F . We deduce that a cubic form associated with an algebra in this manner

determines the algebra up to (anti-)isomorphism.

Introduction

Consider a field F of characteristic different from 2. Let A be a quaternion

algebra over F and let A0 denote the subspace of reduced trace zero elements

of A. Then for all x ∈ A0 we have x2 ∈ F . We thus obtain a quadratic form on

A0 mapping x to x2. Up to the sign, this quadratic form is the norm form of

the quaternion algebra restricted to A0. By Theorem 2.5, p. 57, in [Lam, 2005],

this quadratic form determines the quaternion algebra up to isomorphism.

In this paper we shall generalize this construction for algebras of degree 3.

Consider a field F of characteristic different from 2 and 3 and let A be a degree

3 central simple algebra over F . Again let A0 denote the subspace of reduced

trace zero elements of A. Then the cube of an arbitrary element x ∈ A0 need

not be in F in general. In fact, it is in F if and only if the reduced trace of x2

is equal to zero. Let q : A0 → F be the trace quadratic form on A0 (mapping x

to the reduced trace of x2). Then the Witt index of q is equal to 4 if F contains

a primitive cube root of unity and is equal to 3 otherwise (see Lemma 0.1). In

both cases there exist 3-dimensional subspaces of A0 which are totally isotropic

for the trace quadratic form. Each such vector subspace V ⊂ A0 gives rise to
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a cubic form. In this paper we shall prove that this cubic form determines the

algebra up to isomorphism or anti-isomorphism.

In the first two sections we shall give an explicit description of the pairs

(A, V ) where A and V are as above. In the first section we assume that the field

F contains a primitive cube root of unity and we use the fact that we may write

V in terms of the Okubo product. In the second section we assume that F does

not contain a primitive cube root of unity, and we shall minimally extend the

field F to use the results of the previous case. In the last section we use these

descriptions to prove that a cubic form associated with a pair (A, V ) determines

A up to (anti-)isomorphism.

Throughout the paper, we denote by F a field of characteristic different from

2 and 3, by Fs a separable closure of F , and by Γ the absolute Galois group

Gal(Fs/F ). We fix ω ∈ Fs a primitive cube root of unity. We say that a pair

(A, V ) is a cubic pair over F if A is a degree 3 central simple F -algebra and V is

a 3-dimensional subspace of A0 (= the subspace of reduced trace zero elements

of A) which is totally isotropic for the trace quadratic form. For a cubic pair

(A, V ) over F we define a cubic form

fA,V : V → F : x 7→ x3.

We say that Θ: (A, V ) → (B, W ) is an isomorphism of cubic pairs over F if

Θ: A → B is an F -algebra isomorphism such that Θ(V ) = W . Note that if

(A, V ) and (B, W ) are isomorphic then fA,V and fB,W are isometric (i.e. there

exists an F -vector space isomorphism Θ: V → W such that fA,V = fB,W ◦ Θ).

For a field extension L over F we write AL (resp. VL) for A⊗F L (resp. V ⊗F L).

Further we let TrdA denote the reduced trace of A, and for an F -algebra K, we

denote by TrK (resp. NK) the trace (resp. the norm) of K.

Acknowledgement. Most results in this paper were already found in my PhD

thesis (see [Raczek, 2007]). I would like to thank Jean-Pierre Tignol, my thesis

supervisor, for his help during this work.

0. Some results on quadratic forms

Before we start the classification of cubic pairs, we need preliminary results on

quadratic forms.

Let A be a degree 3 central simple algebra over F . First we shall compute

the Witt index of the trace quadratic form of A.

Lemma 0.1 Let q be the trace quadratic form on A0. Then the Witt index of

q is equal to 4 if F contains a primitive cube root of unity and is equal to 3

otherwise.
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Proof : There exists a splitting field L of A of odd degree over F . Indeed, we

may choose L := F if A is split and we choose a splitting field of degree 3 over F

otherwise. Then straightforward computations show that the class of the form

qL : A0
L → L is equal to the class of 2〈1, 3〉 in the Witt ring of L. Hence, by

Springer’s Theorem about odd degree extensions (see Theorem 2.7, p. 194, in

[Lam, 2005]), the Witt index of q is greater than or equal to 3 and it is 4 if and

only if F contains a primitive cube root of unity. 2

Suppose that F contains a primitive cube root of unity.

Lemma 0.2 Let V be a 3-dimensional totally isotropic subspace of A0. Then

there exist exactly two maximal totally isotropic subspaces W1, W2 of A0 con-

taining V ; thus V = W1 ∩ W2.

Proof : A more general fact is proved in III.1.11 of [Chevalley, 1997]: in a

quadratic space with a Witt index equal to n, all (n − 1)-dimensional totally

isotropic subspaces are contained in exactly two maximal totally isotropic sub-

spaces. 2

1. Classification of cubic pairs over a field with a primitive

cube root of unity

We assume that F contains a primitive cube root of unity.

1.1. Okubo product

Let A be a degree 3 central simple F -algebra. In [Knus et al., 1998] the Okubo

product over A0 is defined as follows:

x ⋆ y := µxy + (1 − µ)yx −
1

3
TrdA(xy) =

1

1 − ω
(yx − ωxy) −

1

3
TrdA(xy)

where µ := 1−ω
3 . Let q denote the trace quadratic form on A0. Because F con-

tains a primitive cube root of unity, the Witt index of q is equal to 4. In [2008],

Matzri interprets the results of van der Blij and Springer [1960] on triality, in

the language of the Okubo product: he gives a description of the 4-dimensional

subspaces of A which are totally isotropic for q, in terms of the Okubo product.

Theorem 1.1 (Matzri) Let u ∈ A0 \ {0} be such that TrdA(u2) = 0. Then

u ⋆A0 and A0 ⋆ u are 4-dimensional totally isotropic subspaces of A0. Moreover

any 4-dimensional totally isotropic subspace is of this form.
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We may also write the 3-dimensional totally isotropic subspaces of A0 in terms

of the Okubo product. By Lemma 0.2, the 3-dimensional totally isotropic sub-

spaces of A0 are the intersections of two subspaces of the form u ⋆ A0 or A0 ⋆ u.

We can be more precise using the following:

Theorem 1.2 (Matzri) Let u, v ∈ A0 \ {0} be such that TrdA(u2) = 0 and

TrdA(v2) = 0. Then

1. the dimension of u ⋆ A0 ∩ v ⋆ A0 is even;

2. if u ⋆ v 6= 0, then dim(u ⋆ A0 ∩ A0 ⋆ v) = 1;

3. if u ⋆ v = 0, then dim(u ⋆ A0 ∩ A0 ⋆ v) = 3.

Note that the Okubo product depends on the choice of the primitive cube root

of unity. If we set, for a primitive cube root of unity ρ,

x ⋆ρ y := µρxy + (1 − µρ)yx −
1

3
TrdA(xy)

where µρ := 1−ρ
3 , then x ⋆ω y = y ⋆ω2 x. So by Theorem 1.2, the dimension of

A0 ⋆ u ∩ A0 ⋆ v is also even.

Corollary 1.3 Let (A, V ) be a cubic pair over F . Then there exist nonzero

u, v ∈ A0 with TrdA(u2) = 0, TrdA(v2) = 0 and u ⋆ v = 0 such that V =

u ⋆ A0 ∩ A0 ⋆ v. 2

The vectors u and v are in fact uniquely determined up to scalars. We shall

prove this as a part of a more general statement:

Lemma 1.4 If (B, W ) is another cubic pair over F with W = r ⋆ B0 ∩ B0 ⋆ s

as in Corollary 1.3, then an F -algebra isomorphism Θ: A → B induces an

isomorphism Θ: (A, V ) → (B, W ) of cubic pairs if and only if Θ(u)F = rF and

Θ(v)F = sF .

Proof : Assume that Θ: A → B is an F -algebra isomorphism. If Θ(V ) = W ,

then W = Θ(u) ⋆ B0 ∩ B0 ⋆ Θ(v) = r ⋆ B0 ∩ B0 ⋆ s. By Lemma 0.2, we have

{Θ(u) ⋆ B0, B0 ⋆ Θ(v)} = {r ⋆ B0, B0 ⋆ s}.

If r ⋆ B0 = B0 ⋆ Θ(v), then W = Θ(u) ⋆ B0 ∩ r ⋆ B0 and by Theorem 1.2, the

dimension of W is even. Hence Θ(u) ⋆ B0 = r ⋆ B0 and B0 ⋆ Θ(v) = B0 ⋆ s. By

Theorem 2.10 in [Matzri, 2008], we then have Θ(u)F = rF and Θ(v)F = sF .

The converse is obvious. 2
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1.2. Classification

We shall describe a cubic pair (A, V ) over F up to isomorphism. By Corol-

lary 1.3, there exist nonzero u, v ∈ A0 such that TrdA(u2) = 0, TrdA(v2) = 0,

u ⋆ v = 0 and V = u ⋆ A0 ∩ A0 ⋆ v. Since TrdA(v) = TrdA(v2) = 0 we have

v3 ∈ F , and similarly u3 ∈ F . Note that u ⋆ v = 0 implies that

vu =
1 − ω

3
TrdA(uv) + ωuv.

Set t := uv − 1
3TrdA(uv). Then

tu = uvu −
1

3
TrdA(uv)u =

1 − ω

3
TrdA(uv)u + ωu2v −

1

3
TrdA(uv)u = ωut

and similarly vt = ωtv. We deduce that t3 ∈ F . Indeed,

t2 = t
(

uv −
1

3
TrdA(uv)

)

= ωutv −
1

3
TrdA(uv)t

= ωu2v2 +
ω2

3
TrdA(uv)uv +

1

9
TrdA(uv)2

and thus

t3 = t2
(

uv −
1

3
TrdA(uv)

)

= ω2ut2v −
1

3
TrdA(uv)t2

= u3v3 −
1

27
TrdA(uv)3 ∈ F. (1)

This implies in particular that TrdA(t2) = 0, so TrdA(u2v2) = 1
3TrdA(uv)2.

We shall prove that t2, t2u, t2v ∈ V . First we observe that

u ⋆ A0 = {x ∈ A0 | x ⋆ u = 0}.

Indeed, by Proposition (34.19) in [Knus et al., 1998] we have (u ⋆ x) ⋆ u =
1
6TrdA(u2)x = 0 for all x ∈ A0. Hence

u ⋆ A0 ⊂ {x ∈ A0 | x ⋆ u = 0} = ker(Ru)

where Ru : A0 → A0 : x 7→ x ⋆ u. But dim ker(Ru) + dim im(Ru) = 8, thus

dim ker(Ru) = dim(u ⋆ A0) = 4. Similarly,

A0 ⋆ v = {x ∈ A0 | v ⋆ x = 0}.
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One can see that t2 ∈ V since ut2 = ωt2u and t2v = ωvt2. Also u(ut2) = ω(ut2)u

and (vt2)v = ωv(vt2) imply (ut2) ⋆ u = 0 and v ⋆ (vt2) = 0. Now

v ⋆ (ut2) =
1

1 − ω
(ut2v − ωvut2) −

1

3
TrdA(ut2v)

=
1

1 − ω

(

ut2v − ω
1 − ω

3
TrdA(uv)t2 − ω2uvt2

)

−
1

3
TrdA(ut2v)

= ut2v −
ω

3
TrdA(uv)t2 −

1

3
TrdA(ut2v)

=
ω2

27
TrdA(uv)3 −

ω2

9
TrdA(uv)TrdA(u2v2)

= 0.

Since (vt2)⋆u = ω2v ⋆ (ut2) = 0, we obtain that ut2, vt2 ∈ V . So t2, t2u, t2v ∈ V

because vt = ωtv and tu = ωut.

To work out the classification of cubic pairs we shall distinguish different

situations:

First case: We assume that u, v, t ∈ A×. Observe that t = 1
1−ω

(uv − vu) 6= 0,

hence u and v are linearly independent. Since TrdA(u) = TrdA(v) = 0, the

vectors 1, u, v are also linearly independent. Therefore t2, t2u, t2v span V . Set

ξ := t2, η := t2v and λ := 1
3t3

TrdA(uv). Because t = uv − 1
3TrdA(uv), we have

u = tv−1 + 1
3TrdA(uv)v−1. One can check that

t2u =
ω

v3t3

(

ξη2 + λξ2η2
)

.

Finally A is the symbol algebra (a, b)ω,F generated by ξ and η such that ξ3 = a,

η3 = b, ξη = ωηξ, and V is the vector subspace spanned by ξ, η and ξη2 +λξ2η2

where 1 + λ3a 6= 0 since u3 6= 0. In this basis of V , the cubic form fA,V takes

the generalized Hesse normal form:

fA,V

(

xξ + yη + z(ξη2 + λξ2η2)
)

= ax3 + by3 + ab2(1 + λ3a)z3 − 3ω2abλxyz.

The form fA,V is nonsingular.

Conversely, suppose that B is the symbol algebra (a, b)ω,F generated by ξ, η

such that ξ3 = a, η3 = b, ξη = ωηξ, and W the vector subspace spanned by ξ,

η, ξη2 + λξ2η2, for some a, b ∈ F× and λ ∈ F such that 1 + λ3a 6= 0. Then one

can check that (B, W ) is a cubic pair over F such that fB,W is nonsingular.

Second case: We suppose that u, v ∈ A× and t = 0. Then uv = 1
3TrdA(uv) ∈

F×. Thus we may assume that u = v2. We need the following:

Lemma 1.5 Let ξ ∈ A0 be such that ξ3 ∈ F×. Then there exists η ∈ A such

that η3 ∈ F× and ξη = ωηξ.
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Proof : Assume that ξ3 6∈ F×3, then F (ξ) is a subfield of A. Let σ : F (ξ) → F (ξ)

be the F -automorphism defined by σ(ξ) = ω2ξ. By the Skolem-Noether Theo-

rem, there exists η ∈ A× such that ηxη−1 = σ(x) for all x ∈ F (ξ). In particular

ξη = ωηξ. Because η = ωξ−1ηξ and η2 = ω2ξ−1η2ξ, we have TrdA(η) = 0,

TrdA(η2) = 0; so η3 ∈ F×.

Now we suppose that ξ3 ∈ F×3. Then we may assume that ξ3 = 1 and

A = M3(F ). The minimal polynomial of ξ divides t3 − 1, so ξ is diagonalizable

and its eigen values are cube roots of unity. Hence we may assume that

ξ =





λ1 0 0

0 λ2 0

0 0 λ3





with λi ∈ {1, ω, ω2}. Since tr(ξ) = 0 we have {λ1, λ2, λ3} = {1, ω, ω2}. Conju-

gating by




1 0 0

0 0 1

0 1 0





if necessary, we may assume that λ1 = 1, λ2 = ω, λ3 = ω2. Then

η :=





0 0 1

1 0 0

0 1 0





is such that η3 ∈ F× and ξη = ωηξ. 2

Let w ∈ A be such that w3 ∈ F× and vw = ωwv. Then the subspace of the

elements x in A such that vx = ω2xv is spanned by w2, vw2, v2w2, and it is

contained in V ; therefore

V = {x ∈ A | vx = ω2xv}.

Set ξ := w2 and η := vw2, then A is the symbol algebra (a, b)ω,F generated by

ξ and η such that ξ3 = a, η3 = b and ξη = ωηξ, and V is the vector subspace

spanned by ξ, η and ξ2η2. In this basis of V , the form fA,V takes the generalized

Hesse normal form:

fA,V (xξ + yη + zξ2η2) = ax3 + by3 + a2b2z3 − 3ω2abxyz.

The form fA,V is singular; more precisely, it is triangular, i.e., there exist linearly

independent forms ϕ1, ϕ2, ϕ3 ∈ (V ⊗F Fs)
⋆ such that fA,V = ϕ1ϕ2ϕ3 as a cubic

form over V ⊗F Fs.

Conversely, suppose that B is the symbol algebra (a, b)ω,F generated by ξ, η

such that ξ3 = a, η3 = b, ξη = ωηξ, and W is the vector subspace spanned by
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ξ, η, ξ2η2, for some a, b ∈ F×. Then (B, W ) is a cubic pair over F and fB,W is

triangular.

Third case: We suppose that either u 6∈ A×, or v 6∈ A×, or t 6∈ A× and t 6= 0.

Then the algebra A is split, so we may assume that A = M3(F ). This case

is less interesting and thus we shall not give an explicit description of the pair

(A, V ), but we shall only prove that the cubic form fA,V is singular and not

triangular (it is possible to describe V by matrix computations distinguishing

several cases; details can be found in [Raczek, 2007]).

To show that fA,V is not triangular, we first prove a more general Lemma

on triangular forms.

Lemma 1.6 Suppose that (B, W ) is any cubic pair over F such that fB,W is

triangular. Then W = s2 ⋆B0∩B0 ⋆s for some s ∈ B0 such that s is invertible.

Proof : We may assume that F = Fs and B = M3(F ). Let e1, e2, e3 ∈ W be

such that

fB,W (x1e1 + x2e2 + x3e3) = x1x2x3

for all x1, x2, x3 ∈ F . Observe that x3 = 1
3 tr(x3) for all x ∈ W , hence

fB,W (x1e1 + x2e2 + x3e3) is equal to

3
∑

i=1

e3
i x

3
i +

∑

i6=j

tr(e2
i ej)x

2
i xj + tr(e1e2e3 + e2e1e3)x1x2x3

for all x1, x2, x3 ∈ F . We deduce that tr(e2
i ej) = 0 for all i, j. Set e2 = (xij)

and e3 = (yij).

Suppose that e2
1 6= 0. Since e3

1 = 0, we may assume that

e1 =





0 1 0

0 0 1

0 0 0



 .

Because tr(e2) = 0, tr(e1e2) = 0 and tr(e2
1e2) = 0, we have

x33 = −x11 − x22, x32 = −x21, x31 = 0.

From tr(e1e
2
2) = 0 we deduce that x21(2x11+x22) = 0. If x21 = 0 then tr(e2

2) = 0

and e3
2 = 0 imply x11 = x22 = 0. Then e1e2 + e2e1 = (x12 + x23)e

2
1 and it

contradicts the fact that tr(e2
1e3) = 0 and tr(e1e2e3+e2e1e3) = 1. If x22 = −2x11

then

e1e2 + e2e1 =





x21 −x11 x12 + x23

0 0 −x11

0 0 −x21



 .
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By symmetry we know that

e3 =





y11 y12 y13

y21 −2y11 y23

0 −y21 y11



 ,

thus tr(e1e2e3 + e2e1e3) = 1 is impossible.

Therefore e2
1 = 0 (by symmetry we also have e2

2 = 0, e2
3 = 0) and we may assume

that

e1 =





0 0 1

0 0 0

0 0 0



 .

Since tr(e2) = 0 and tr(e1e2) = 0, we have x33 = −x11 − x22 and x31 = 0. Then

e2
2 = 0 implies x21x32 = 0. Observe that

e1e2 + e2e1 =





0 x32 −x22

0 0 x21

0 0 0



 .

Because tr(e1e2e3 + e2e1e3) = 1 we have either x21 = 0 = y32 and x32, y21 6= 0

or x21, y23 6= 0 and x32 = 0 = y21. Thus we may assume that x21 = 0 and

x32 = 1. From e2
2 = 0 we deduce that

e2 =





0 α −αβ

0 β −β2

0 1 −β





for some α, β ∈ F . We may assume that α = β = 0 since the invertible matrix

m =





1 0 −α

0 1 −β

0 0 1





is such that me1m
−1 = e1 and

me2m
−1 =





0 0 0

0 0 0

0 1 0



 .

Similarly we see that

e3 =





α −α2 0

1 −α 0

0 0 0





for some α ∈ F . Again we may assume that α = 0 conjugating by




1 −α 0

0 1 0

0 0 1
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if necessary.

Then one can check that W = s2 ⋆ B0 ∩ B0 ⋆ s with

s =





1 0 0

0 ω2 0

0 0 ω



 .

2

In our case, the subspace V is equal to u ⋆ A0 ∩ A0 ⋆ v where either u 6∈ A×, or

v 6∈ A×, or t 6∈ A× and t 6= 0. Observe that if u, v ∈ A×, then uF = v2F if and

only if t = 0. Thus, by the previous Lemma, the form fA,V is not triangular.

To prove that fA,V is singular we shall distinguish different cases.

1. Suppose that v 6∈ A×.

If tr(uv) 6= 0 then, by the relation (1), t is invertible; hence V is spanned by

t2, t2u and t2v. Since tr
(

x(t2v)2
)

= 0 for all x ∈ V , the point t2vFs of the

projective plane PV (Fs) is a singular zero of fA,V .

If v2 6= 0 and tr(uv) = 0, then v2 ∈ V and v2Fs is a singular zero of fA,V .

If v2 = 0, then we may assume that

v =





0 0 1

0 0 0

0 0 0



 , so u =





ω2α1 α2 α3

0 ωα1 α4

0 0 α1





for some αi ∈ F . If α1 = 0 then vFs is a singular zero of fA,V . If α1 6= 0 then

V is spanned by





α1 0 −α3

0 ωα1 0

0 0 ω2α1



 ,





0 (ω − 1)α1 α4

0 0 0

0 0 0



 ,





0 0 α2

0 0 (ω − ω2)α1

0 0 0





and the cubic curve associated with fA,V is a triple line.

2. Suppose that u 6∈ A×, then, by symmetry, we deduce that fA,V is also

singular.

3. Suppose that u, v ∈ A×, t 6∈ A× and t 6= 0.

If t2 6= 0 then t2Fs is a singular zero of fA,V .

If t2 = 0, we shall prove that there exists a nonzero s ∈ A such that s2 = 0,

vs = ω2sv, s(tv−1) = (tv−1)s = 0. Since u = tv−1 + 1
3 tr(uv)v−1, we then have

s ∈ V and so sFs is a singular zero of fA,V . Let w ∈ A be such that w3 ∈ F×

and vw = ωwv. Since v(tv−1) = ω(tv−1)v and tv−1 6= 0, there exist αi ∈ F not

all zero such that tv−1 = α0w + α1vw + α2v
2w. But (tv−1)2 = ω2t2v−2 = 0, so

α0 6= 0, α2 = α2
1α

−1
0 and α3

0 = v3α3
1. Hence v3 ∈ F×3 and we may assume that
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v3 = 1. Replacing w by α−1
0 w if necessary, we may assume that α0 = 1. Then

α1 = 1, ω or ω2. Conjugating by w or w−1 if necessary, we may assume that

tv−1 = w + vw + v2w. Then we may choose s = w2 + vw2 + v2w2.

We summarize the above classification in the following Theorem.

Theorem 1.7 Suppose that F contains a primitive cube root of unity. Let

(A, V ) be a cubic pair over F .

1. If fA,V is nonsingular, then

(A, V ) ∼=
(

(a, b)ω,F , spanF 〈ξ, η, ξη2 + λξ2η2〉
)

for some a, b ∈ F×, λ ∈ F such that 1+λ3a 6= 0, where ξ, η are generators

of the symbol algebra such that ξ3 = a, η3 = b, ξη = ωηξ. Conversely, let

a, b ∈ F×, λ ∈ F be such that 1 + λ3a 6= 0. Let B be the symbol algebra

(a, b)ω,F generated by ξ, η such that ξ3 = a, η3 = b, ξη = ωηξ, and W

the subspace spanned by ξ, η, ξη2 + λξ2η2. Then (B, W ) is a cubic pair

over F and fB,W is nonsingular. In the basis (ξ, η, ξη2 +λξ2η2), the form

fB,W takes the generalized Hesse normal form:

(

xξ + yη + z(ξη2 + λξ2η2)
)3

= ax3 + by3 + ab2(1 + λ3a)z3 − 3ω2abλxyz.

2. If fA,V is triangular, then

(A, V ) ∼=
(

(a, b)ω,F , spanF 〈ξ, η, ξ2η2〉
)

for some a, b ∈ F×, where ξ, η are generators of the symbol algebra such

that ξ3 = a, η3 = b and ξη = ωηξ. Conversely, let a, b ∈ F×, let B be

the symbol algebra (a, b)ω,F generated by ξ, η such that ξ3 = a, η3 = b,

ξη = ωηξ, and W the subspace spanned by ξ, η, ξ2η2. Then (B, W ) is

a cubic pair over F and fB,W is triangular. In the basis (ξ, η, ξ2η2), the

form fB,W takes the generalized Hesse normal form:

(xξ + yη + zξ2η2)3 = ax3 + by3 + a2b2z3 − 3ω2abxyz.

3. If fA,V is singular and not triangular, then A is split.

2. Classification of cubic pairs over a field without

primitive cube root of unity

Suppose that F does not contain a primitive cube root of unity. We shall give the

classification of cubic pairs over F in the case where the associated cubic form is

nonsingular or triangular. For the remaining cases we know by Theorem 1.7 that

11



the algebra is split and it is just a matter of matrix computations to describe

all the possible subspaces up to conjugacy (see [Raczek, 2007] for details). We

shall extend the scalars to F (ω) to use the previous classification. To simplify

notations, let T denote the reduced trace of AF (ω). Throughout this section, we

denote by σ the F -automorphism of F (ω) such that σ(ω) = ω2.

2.1. Nonsingular form

Let (A, V ) be a cubic pair over F such that fA,V is nonsingular. By Subsec-

tion 1.2, there exist nonzero u, v ∈ A0
F (ω) such that T(u2) = 0, T(v2) = 0,

u ⋆ v = 0 and

VF (ω) =
(

u ⋆ A0
F (ω)

)

∩
(

A0
F (ω) ⋆ v

)

where u, v, t := uv − 1
3T(uv) ∈ A×

F (ω). Then VF (ω) is spanned by t2, t2v and

t2u.

We extend σ to an F -automorphism of AF (ω): for x ∈ AF (ω) and λ ∈ F (ω),

define σ(x⊗ λ) = x⊗ σ(λ). Then A (resp. V ) consists of the elements of AF (ω)

(resp. VF (ω)) which are fixed under σ. Note that σ(x ⋆ y) = σ(y) ⋆ σ(x) for all

x, y ∈ AF (ω). Since σ(VF (ω)) = VF (ω), we have

(

σ(v) ⋆ A0
F (ω)

)

∩
(

A0
F (ω) ⋆ σ(u)

)

=
(

u ⋆ A0
F (ω)

)

∩
(

A0
F (ω) ⋆ v

)

.

Hence there exists λ ∈ F (ω)× such that σ(u) = λv. Replacing v by λv if

necessary we may assume that σ(u) = v and thus σ(v) = u. Recall that

vu =
1 − ω

3
T(uv) + ωuv,

hence we have

σ(t) = σ(uv) −
1

3
σ
(

T(uv)
)

= σ(u)σ(v) −
1

3
T
(

σ(uv)
)

= vu −
1

3
T(vu)

= ωt.

Therefore ω2t ∈ A and ωt2 ∈ V . Set e := ωt2, then V is spanned by e, e(v + u)

and e(ωv + ω2u).

We shall find a Galois Z/3Z-algebra (L, ρ) such that L ⊂ A, the vector e

and L generate A, and ex = ρ(x)e for all x ∈ L. To do this we first construct

an element η ∈ AF (ω) such that eη = ωηe, η3 ∈ F (ω)× and σ(η)η ∈ F×. Recall

that t3 = u3v3 − 1
27T(uv)3, vt = ωtv, tu = ωut and

t2 = ωu2v2 +
ω2

3
T(uv)uv +

1

9
T(uv)2.

12



Set

η :=
T(uv)

3
v +

1

t3
e2v,

then eη = ωηe, η3 = u3v6 and

σ(η)η =
T(uv)2

9
uv −

ωT(uv)

3
utv + ω2ut2v

= u3v3.

We set λ := u3v3, so η + λη−1 is fixed under σ.

If η3 6∈ F (ω)×3, then set L := F (η + λη−1) and let ρ : L → L be the F -

automorphism defined by ρ(η + λη−1) = ωη + ω2λη−1. Then L is a cyclic

extension of degree 3 over F which is contained in A and with a Galois group

generated by ρ. Moreover ex = ρ(x)e for all x ∈ L.

If η3 ∈ F (ω)×3, then η3 = ν3 for some ν ∈ F (ω)×. Replacing η by ν−1η if

necessary, we may assume that η3 = 1 and σ(η)η = 1. Set

L := F · 1 + F · (η + η−1) + F · (ωη + ω2η−1)

and define ρ as the F -automorphism of L such that ρ(η + η−1) = ωη + ω2η−1

and ρ(ωη + ω2η−1) = ω2η + ωη−1. Since (η + η−1)2 = η + η−1 + 2, the algebra

L is isomorphic to F × F × F . Again (L, ρ) is a Galois Z/3Z-algebra such that

L ⊂ A and ex = ρ(x)e for all x ∈ L.

In both cases we obtain that A =
⊕2

i=0 Lei where the multiplication in A is

determined by e3 = a ∈ F× and ex = ρ(x)e for all x ∈ L.

To finish the description of the pair (A, V ), we shall write ev in function of

e and η:

ev = e
(T(uv)

3
+

1

t3
e2
)−1

η

=
1

u3v3
(α + a−1α2e + e2)η

where α := −T(uv)t3/3. Hence VF (ω) is spanned by e, (α + a−1α2e + e2)η and

(α + a−1α2e + e2)λη−1. Note that α3 6= a2 since ev is invertible. We obtain

that

V = spanF 〈e, (α + a−1α2e + e2)θ, (α + a−1α2e + e2)ρ(θ)〉

where θ = η + λη−1 ∈ L \ {0} is such that θ + ρ(θ) + ρ2(θ) = 0.

We shall prove that the cubic form fA,V is isometric to the form

TrK,β − 3bNK : K → F : x 7→ TrK(βx3) − 3bNK(x)

for K = F × F (ω) and, for some β ∈ K× and b ∈ F . We set

v1 := e, v2 := (α + a−1α2e + e2)θ, v3 := (α + a−1α2e + e2)ρ(θ)
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so that V is the vector space spanned by v1, v2, v3. Then fA,V (xv1 + yv2 + zv3)

is equal to
(

xu1 +
(

y + ωz
)

u2 +
(

y + ω2z
)

u3

)3

where u1 := e, u2 := (α + a−1α2e + e2)η, u3 := (α + a−1α2e + e2)λη−1. But

(xu1 + yu2 + zu3)
3 is equal to

ax3 + η3(a−1α3 − a)2y3 + σ(η3)(a−1α3 − a)2z3 − 3λα(a−1α3 − a)xyz.

Therefore fA,V is isometric to the form TrK,β − 3bNK where K := F × F (ω),

β :=
(

a, η3(a−1α3 − a)2
)

and b := λα(a−1α3 − a).

Observe that if (L, ρ) is a Galois Z/3Z-algebra, then there exist λ ∈ F× and

φ ∈ L ⊗F F (ω) such that φ3 ∈ F (ω)×, φ 6∈ F (ω), σ(φ3) = λ3φ−3 and

L = F · 1 + F · (φ + λφ−1) + F · (ωφ + ω2λφ−1).

Indeed, suppose that (L, ρ) is not split, then L(ω) ∼= L ⊗F F (ω) is a Galois

extension of F with a Galois group isomorphic to Z/2Z × Z/3Z. Let σ̃, τ be

F -automorphisms of L(ω) such that L (resp. F (ω)) is the subfield of L(ω) which

is fixed under σ̃ (resp. τ). Let φ ∈ L(ω) be such that φ3 ∈ F (ω)× and φ 6∈ F (ω).

Replacing φ by φ−1 if necessary, we may assume that τ(φ) = ωφ. Hence

τσ̃(φ) = σ̃τ(φ) = σ̃(ωφ) = ω2σ̃(φ).

Thus σ̃(φ) = λφ−1 for some λ ∈ F (ω)×. But

φ = σ̃(λφ−1) = σ̃(λ)λ−1φ,

so σ̃(λ) = λ and λ ∈ F×. Then we have L = F (φ + λφ−1) with

σ(φ3) =
(

σ̃(φ)
)3

= (λφ−1)3 = λ3φ−3.

Suppose that L = F × F × F , then we may choose λ = 1 and φ = (1, ω, ω2).

Now let (L, ρ) be a Galois Z/3Z-algebra, a ∈ F× and α ∈ F such that

α3 6= a2. Set

(B, W ) :=
(

2
⊕

i=0

Lei, spanF 〈e, (α + a−1α2e + e2)θ, (α + a−1α2e + e2)ρ(θ)〉
)

,

where the multiplication in B is defined by e3 = a, ex = ρ(x)e for all x ∈ L,

and θ ∈ L \ {0} is such that θ + ρ(θ) + ρ2(θ) = 0. Then one can check that

(B, W ) is a cubic pair over F and fB,W is nonsingular.

We summarize this subsection by the following Theorem:
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Theorem 2.1 Suppose that F does not contain a primitive cube root of unity.

Let (A, V ) be a cubic pair over F such that fA,V is nonsingular. Then (A, V )

is isomorphic to

(

2
⊕

i=0

Lei, spanF 〈e, (α + a−1α2e + e2)θ, (α + a−1α2e + e2)ρ(θ)〉
)

for some Galois Z/3Z-algebra (L, ρ), a ∈ F×, α ∈ F such that α3 6= a2, where

e3 = a, ex = ρ(x)e for all x ∈ L and θ ∈ L \ {0} is such that θ + ρ(θ) +

ρ2(θ) = 0. Conversely, let (L, ρ) be a Galois Z/3Z-algebra, a ∈ F×, α ∈ F

such that α3 6= a2. Let B =
⊕2

i=0 Lei be the algebra with multiplication defined

by e3 = a, ex = ρ(x)e for all x ∈ L, and let W be the subspace spanned

by e, (α + a−1α2e + e2)θ, (α + a−1α2e + e2)ρ(θ), where θ ∈ L \ {0} is such

that θ + ρ(θ) + ρ2(θ) = 0. Then (B, W ) is a cubic pair over F and fB,W

is nonsingular. Let φ ∈ L ⊗F F (ω) and λ ∈ F× be such that φ3 ∈ F (ω)×,

φ 6∈ F (ω), σ(φ3) = λφ−3 and 1, φ + λφ−1, ωφ + ω2λφ−1 span L, where σ is the

nontrivial F -automorphism of F (ω). Then fB,W is isometric to TrK,β − 3bNK

where K = F × F (ω), β =
(

a, φ3(a−1α3 − a)2
)

and b = λα(a−1α3 − a).

2.2. Triangular form

Let (A, V ) be a cubic pair over F such that fA,V is triangular. By Subsection 1.2,

there exists v ∈ A0
F (ω) such that T(v2) = 0, v ∈ A×

F (ω) and

V =
(

v2 ⋆ A0
F (ω)

)

∩
(

A0
F (ω) ⋆ v

)

;

then V = {x ∈ AF (ω) | vx = ω2xv}. Fix e ∈ V , then ev = ωve. We extend the

F -automorphism σ of F (ω) to AF (ω). Then σ(v) = λv2 for some λ ∈ F (ω)×.

Since

v = σ(λv2) = σ(λ)λ2v4,

we deduce that σ(λ)λ2v3 = 1. Hence

σ(λv) = σ(λ)σ(v) = λ−2v−3λv2 = (λv)−1;

so we may assume that σ(v) = v−1. Set

L := F · 1 + F · (v + v−1) + F · (ωv + ω2v−1)

and define ρ as the F -automorphism of L such that ρ(v + v−1) = ωv + ω2v−1

and ρ(ωv + ω2v−1) = ω2v + ωv−1. Then (L, ρ) is a Galois Z/3Z-algebra (note

that (L, ρ) is split if and only if v3 ∈ F (ω)×3). Moreover L ⊂ A, ex = ρ(x)e for

all x ∈ L, A =
⊕2

i=0 Lei and V = eL. It is easy to check that fA,V is isometric

to aNL, where a := e3.

15



Conversely, let (L, ρ) be a Galois Z/3Z-algebra and a ∈ F×. Set

(B, W ) :=
(

2
⊕

i=0

Lei, eL
)

where the multiplication in B is defined by e3 = a and ex = ρ(x)e for all x ∈ L.

Then (B, W ) is a cubic pair over F and fB,W is triangular.

Thus we obtain:

Theorem 2.2 Suppose that F does not contain a primitive cube root of unity.

Let (A, V ) be a cubic pair over F such that fA,V is triangular. Then (A, V ) is

isomorphic to
(

2
⊕

i=0

Lei, eL
)

for some Galois Z/3Z-algebra (L, ρ) and a ∈ F×, where e3 = a and ex = ρ(x)e

for all x ∈ L. Conversely, let (L, ρ) be a Galois Z/3Z-algebra and a ∈ F×. Let

B =
⊕2

i=0 Lei be the algebra with multiplication defined by e3 = a, ex = ρ(x)e

for all x ∈ L, and set W := eL. Then (B, W ) is a cubic pair over F and fB,W

is triangular. Moreover fB,W is isometric to aNL.

3. The form determines the algebra

Let (A, V ) and (A′, V ′) be cubic pairs over F and suppose that fA,V and fA′,V ′

are isometric. In this section we shall prove that A and A′ are either isomorphic

or anti-isomorphic.

We may assume that F contains a primitive cube root of unity. Indeed,

if A ⊗F F (ω) ∼= A′ ⊗F F (ω), then A ∼= A′ since A and A′ are central simple

algebras of degree 3 and F (ω)/F is an extension of degree at most 2. We may

also assume that A is division, because there is nothing to prove if A and A′ are

split. Therefore, by Theorem 1.7, the cubic form fA,V is either nonsingular or

triangular.

First case: Suppose that fA,V is nonsingular, then so is fA′,V ′ . By Theo-

rem 1.7, there exist ai, a
′
i ∈ F×, λ, λ′ ∈ F such that 1 + λ3a1, 1 + λ′3a′

1 6= 0

and

A = (a1, a2)ω,F , V = spanF 〈ξ1, ξ2, ξ1ξ
2
2 + λξ2

1ξ2
2〉

A′ = (a′
1, a

′
2)ω,F , V ′ = spanF 〈ξ

′
1, ξ

′
2, ξ

′
1ξ

′2
2 + λ′ξ′21 ξ′22 〉

where A (resp. A′) is generated by ξ1, ξ2 such that ξ3
i = ai and ξ1ξ2 = ωξ2ξ1

(resp. ξ′1, ξ
′
2 such that ξ′3i = a′

i and ξ′1ξ
′
2 = ωξ′2ξ

′
1). Set

ξ3 := ξ1ξ
2
2 + λξ2

1ξ2
2 , a3 := ξ3

3 , ξ′3 := ξ′1ξ
′2
2 + λ′ξ′21 ξ′22 , a′

3 := ξ′33 .
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We recall properties of nonsingular cubic forms and we refer to [Brieskorn

and Knörrer, 1986] or [Hirschfeld, 1979] for more details. A nonsingular cubic

form f on a 3-dimensional vector space V has 9 inflexion points in the projec-

tive plane PV (Fs). There are four triangles (i.e. cubic curves associated with

triangular cubic forms) in PV (Fs) with the property that each inflexion point is

incident with one and only one line of the triangle and each line of the triangle

passes through exactly 3 inflexion points. These triangles are called inflexional

triangles of f . For a triangular cubic form g = ϕ1ϕ2ϕ3 over V , we denote by

g = 0 the triangle formed by the zeros of the linear forms ϕi in PV (Fs).

The map V → K := F × F × F which sends ξ1, ξ2, ξ3 on the canonical

basis of K is an F -vector space isomorphism. Under this isomorphism, fA,V is

isometric to the form

TrK,α − 3bNK : K → F : x 7→ TrK(αx3) − 3bNK(x)

where α = (a1, a2, a3) and b = ω2a1a2λ. The inflexional triangles of the form

TrK,α − 3bNK are NK = 0 and TrK,α − 3θNK = 0 for all θ ∈ Fs such that

θ3 = NK(α). Let (ϕ1, ϕ2, ϕ3) denote the dual basis of (ξ1, ξ2, ξ3), then under

the previous isomorphism V → K, the form ϕ1ϕ2ϕ3 is isometric to NK . Hence

Γ acts trivially on the lines of the corresponding inflexional triangle. In fact, we

have the following:

Lemma 3.1 There exists a unique inflexional triangle of fA,V whose lines are

defined over F .

Proof : Suppose that Γ acts trivially on the lines of TrK,α −3θNK = 0, for some

θ ∈ Fs such that θ3 = NK(α). For x = (x1, x2, x3) ∈ K, TrK(αx3) − 3θNK(x)

is equal to

(θ1x1 + θ2x2 + θ3x3)(θ1x1 + ωθ2x2 + ω2θ3x3)(θ1x1 + ω2θ2x2 + ωθ3x3)

for some θi ∈ Fs such that θ3
i = ai and θ1θ2θ3 = θ. Since Γ acts trivially

on the line θ1x1 + θ2x2 + θ3x3 = 0, there exists a nonzero u ∈ F such that

θ2 = uθ1. This implies that a2 = u3a1, which contradicts the assumption that

A is division. 2

Let (ϕ′
1, ϕ

′
2, ϕ

′
3) be the dual basis of (ξ′1, ξ

′
2, ξ

′
3). Then ϕ′

1ϕ
′
2ϕ

′
3 = 0 is an inflex-

ional triangle of fA′,V ′ whose lines are defined over F . Let Θ: V → V ′ be an

F -vector space isomorphism such that fA,V = fA′,V ′ ◦ Θ, then

ϕ1ϕ2ϕ3F = (ϕ′
1ϕ

′
2ϕ

′
3 ◦ Θ)F.

Thus there exist λi ∈ F× and a permutation π of {1, 2, 3} such that

ϕ′
i ◦ Θ = λπ(i)ϕπ(i) for all i ∈ {1, 2, 3}.
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For all i, j ∈ {1, 2, 3}, we have

ϕ′
i ◦ Θ(ξπ(j)) = λπ(i)ϕπ(i)(ξπ(j)) = δijλπ(i),

hence Θ(ξπ(j)) = λπ(j)ξ
′
j . We obtain that aπ(j) = λ3

π(j)a
′
j and b = λ1λ2λ3b

′

where b′ = ω2a′
1a

′
2λ

′. But a1 is the only scalar among the ai’s such that

a1a2a3 − b3

a2
i

∈ F×3.

Indeed a1a2a3 − b3 = a2
1a

3
2, thus a−2

1 (a1a2a3 − b3) ∈ F×3; if a−2
2 (a1a2a3 −

b3) ∈ F×3, then a1F
×3 = a2F

×3 and it contradicts the assumption that A

is division; similarly, a−2
3 (a1a2a3 − b3) 6∈ F×3. On the other hand, we have

a′−2
1 (a′

1a
′
2a

′
3 − b′3) ∈ F×3 and

a1a2a3 − b3

aπ(1)2
=

(

λ1λ2λ3

λ2
π(1)

)3
a′
1a

′
2a

′
3 − b′3

a′2
1

∈ F×3;

therefore π(1) = 1. If π(2) = 2, then

(λiξ
′
i)

3 = ai and (λ1ξ
′
1)(λ2ξ

′
2) = ω(λ2ξ

′
2)(λ1ξ

′
1),

thus A′ ∼= A. If π(2) = 3, then

(λ1ξ
′
1)

3 = a1, (λ2ξ
′
3)

3 = a2 and (λ1ξ
′
1)(λ2ξ

′
3) = ω2(λ2ξ

′
3)(λ1ξ

′
1),

thus A′ ∼= Aop.

Second case: Suppose that fA,V is triangular. Then there exist ai, a
′
i ∈ F×

such that

A = (a1, a2)ω,F , V = spanF 〈ξ1, ξ2, ξ
2
1ξ2

2〉

A′ = (a′
1, a

′
2)ω,F , V ′ = spanF 〈ξ

′
1, ξ

′
2, ξ

′2
1 ξ′22 〉

where A (resp. A′) is generated by ξ1, ξ2 such that ξ3
i = ai and ξ1ξ2 = ωξ2ξ1

(resp. ξ′1, ξ
′
2 such that ξ′3i = a′

i and ξ′1ξ
′
2 = ωξ′2ξ

′
1). Let θ ∈ Fs be a cube root of

a−1
1 a2. Since A is division, θ 6∈ F . We have

fA,V (x1ξ1 + x2ξ2 + x3ξ
2
1ξ2

2) = a1NF (θ)(x1 + x2θ + ω2a1x3θ
2).

Let θ′ ∈ Fs be a cube root of a′−1
1 a′

2. Similarly, fA′,V ′(x1ξ
′
1 + x2ξ

′
2 + x3ξ

′2
1 ξ′22 ) is

equal to

a′
1(x1 + x2θ

′ + ω2a′
1x3θ

′2)(x1 + ωx2θ
′ + ωa′

1x3θ
′2)(x1 + ω2x2θ

′ + a′
1x3θ

′2).

Since fA,V
∼= fA′,V ′ , we have θ′ 6∈ F and, by Proposition 8 in [Raczek and

Tignol, 2008], the fields F (θ) and F (θ′) are isomorphic. We deduce that either
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θ′F = θF or θ′F = θ2F . Identifying θ with ξ−1
1 ξ2 (resp. θ′ with ξ′−1

1 ξ′2), we

have

A =
2
⊕

i=0

F (θ)ξi
1 and A′ =

2
⊕

i=0

F (θ′)ξ′i1

where ξ1θ = ωθξ1 and ξ′1θ
′ = ωθ′ξ′1. Because fA,V is isometric to fA′,V ′ , there

exist ui ∈ F such that

a1NF (θ)(u1 + u2θ + u3θ
2) = a′

1.

Set η1 := ξ1(u1 + u2θ + u3θ
2), then

η3
1 = a1NF (θ)(u1 + u2θ + u3θ

2) = a′
1 and η1θ = ωθη1.

Hence A =
⊕2

i=0 F (θ)ηi
1 with η3

1 = a′
1 and η1θ = ωθη1. So

A ∼=

{

A′ if θ′F = θF,

A′op if θ′F = θ2F.

We thus obtain the following:

Theorem 3.2 Let (A, V ) and (A′, V ′) be cubic pairs over F . Suppose that fA,V

and fA′,V ′ are isometric, then the algebras A and A′ are either isomorphic or

anti-isomorphic.
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