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Preface

A Mathematician Said Who
Can Quote Me a Theorem that’s True?
For the ones that I Know
Are Simply not So,
When the Characteristic is Two!

This pretty limerick first came to my ears in May 1998 during a talk by
T.Y. Lam on field invariants from the theory of quadratic forms.1 It is –
poetic exaggeration allowed – a suitable motto for this monograph.

What is it about? In the beginning of the seventies I drew up a special-
ization theory of quadratic and symmetric bilinear forms over fields [K4]. Let
λ:K → L∪∞ be a place. Then one can assign a form λ∗(ϕ) to a form ϕ over
K in a meaningful way if ϕ has “good reduction” with respect to λ (see §1).
The basic idea is to simply apply the place λ to the coefficients of ϕ which
therefore of course have to be in the valuation ring of λ.

The specialization theory of that time was satisfactory as long as the
field L, and therefore also K, had characteristic 6= 2. It served me in the
first place as the foundation for a theory of generic splitting of quadratic
forms [K5], [K6]. After a very modest beginning, this theory is now in full
bloom. It became important for the understanding of quadratic forms over
fields, as can be seen from the book [IKKV] of Izhboldin-Kahn-Karpenko-
Vishik for instance. One should note that there exists a theory of (partial)
generic splitting of central simple algebras and reductive algebraic groups,
parallel to the theory of generic splitting of quadratic forms (see [Ke R] and
the literature cited there).

In this book I would like to present a specialization theory of quadratic
and symmetric bilinear forms with respect to a place λ:K → L∪∞, without
the assumption that charL 6= 2. This is where complications arise. We have
to make a distinction between bilinear and quadratic forms and study them
both over fields and valuation rings. From the viewpoint of reductive algebraic
groups, the so-called regular quadratic forms (see below) are the natural
objects. But, even if we are only interested in such forms, we have to know
a bit about specialization of nondegenerate symmetric bilinear forms, since

1 “Some reflections on quadratic invariants of fields”, 3 May 1998 in Notre Dame
(Indiana) on the occasion of O.T. O’Meara’s 70th birthday.

Page: VII job: 372 macro: PMONO01 date/time: 15-Dec-2009/22:24



VIII Specialization of Quadratic and Symmetric Bilinear Forms

they occur as “multipliers” of quadratic forms: if ϕ is such a bilinear form
and ψ is a regular quadratic form, then we can form a tensor product ϕ⊗ψ,
see §5. This is a quadratic form, which is again regular when ψ has even
dimension (dimψ = number of variables occurring in ψ). However – and here
already we run into trouble – when dimψ is odd, ϕ ⊗ ψ is not necessarily
regular.

Even if we only want to understand quadratic forms over a fieldK of char-
acteristic zero, it might be necessary to look at specializations with respect to
places from K to fields of characteristic 2, especially in arithmetic investiga-
tions. When K itself has characteristic 2, an often more complicated situation
may occur, for which we are not prepared by the available literature. Surely,
fields of characteristic 2 were already allowed in my work on specializations
in 1973 [K4], but from today’s point of view satisfactory results were only
obtained for symmetric bilinear forms. For quadratic forms there are gaping
holes. We have to study quadratic forms over a valuation ring in which 2
is not a unit. Even the beautiful and extensive book of Ricardo Baeza [Ba]
doesn’t give us enough for the theory of specializations, although Baeza even
allows semilocal rings instead of valuation rings. He only studies quadratic
forms whose associated bilinear forms are nondegenerate. This forces those
forms to have even dimension.

Let me now discuss the contents of this book. After an introduction to the
problem in §1, which can be understood without any previous knowledge of
quadratic and bilinear forms, the specialization theory of symmetric bilinear
forms is presented in §2 - §3. There are good, generally accessible sources
available for the foundations of the algebraic theory of symmetric bilinear
forms. Therefore many results are presented without a proof, but with a
reference to the literature instead. As an important application, the outlines
of the theory of generic splitting in characteristic 6= 2 are sketched in §4,
nearly without proofs.

From §5 onwards we address the theory of quadratic forms. In charac-
teristic 2 fewer results can be found in the literature for such forms than
for bilinear forms, even at the basic level. Therefore we present most of the
proofs. We also concern ourselves with the so-called “weak specialization”
(see §1) and get into areas which may seem strange even to specialists in the
theory of quadratic forms. In particular we have to require a quadratic form
over K to be “obedient” in order to weakly specialize it with respect to a
place λ:K → L∪∞ (see §7). I have never encountered such a thing anywhere
in the literature.

At the end of Chapter I we reach a level in the specialization theory of
quadratic forms that facilitates a generic splitting theory, useful for many
applications. In the first two sections (§9, §10) of Chapter II we produce such
a generic splitting theory in two versions, both of which deserve interest in
their own right.

We call a quadratic form ϕ over a field k nondegenerate when its quasi-
linear part (cf. Arf [A]), which we denote by QL(ϕ), is anisotropic. We fur-
ther call – deviating from Arf [A] – ϕ regular when QL(ϕ) is at most one-
dimensional and strictly regular when QL(ϕ) = 0 (cf. §6, Definition 3). When
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Preface IX

k has characteristic 6= 2, every nondegenerate form is strictly regular, but in
characteristic 2 the quasilinear part causes complications. For in this case ϕ
can become degenerate under a field extension L ⊃ k. Only in the regular
case is this impossible.

In §9 we study the splitting behaviour of a regular quadratic form ϕ
over k under field extensions, while in §10 any nondegenerate form ϕ, but
only separable extensions of k are allowed. The theory of §9 incorporates the
theory of §4, and so the missing proofs of §4 are subsequently filled in.

Until the end of §10 our specialization theory is based on an obvious
“canonical” concept of good reduction of a form ϕ over a field K (quadratic
or symmetric bilinear) to a valuation ring o of K, similar to what is known
under this name in other areas of mathematics (e.g. abelian varieties). There
is nothing wrong with this theory, however for many applications it is too
limited.

This is particularly clear when studying specializations with respect to
a place λ:K → L ∪ ∞ with charK = 0, charL = 2. If ϕ is a nondegener-
ate quadratic form over K with good reduction with respect to λ, then the
specialization λ∗(ϕ) is automatically strictly regular. However, we would like
to have a more general specialization concept, in which forms with quasilin-
ear part 6= 0 can arise over L. Conversely, if the place λ is surjective, i.e.
λ(K) = L ∪∞, we would like to “lift” every nondegenerate quadratic form
ψ over L with respect to λ to a form ϕ over K, i.e. to find a form ϕ over
K which specializes to ψ with respect to λ. Then we could use the theory of
forms over K to make statements about ψ.

We present such a general specialization theory in §11. It is based on the
concept of “fair reduction”, which is less orthodox than good reduction, but
which possesses nevertheless quite satisfying properties.

Next, in §12, we present a theory of generic splitting, which unites the
theories of §4, §9 and §10 under one roof and which incorporates fair reduc-
tion. This theory is deepened in §13 and §14 through the study of generic
splitting towers and so we reach the end of Chapter II.

Chapter III (§15 - §27) is a long chapter in which we present a panorama of
results about quadratic forms over fields for which specialization and generic
splitting of forms play an important role. This only scratches the surface of
applications of the specialization theory of Chapters I and II. Certainly many
more results can be unearthed.

We return to the foundations of specialization theory in the final short
Chapter IV (§28 - §32). Quadratic and bilinear forms over a field can be
specialized with respect to a more general “quadratic place” Λ:K → L ∪∞
(defined in §28) instead of a usual place λ:K → L ∪ ∞. This represents a
considerable broadening of the specialization theory of Chapters I and II. Of
course we require again “obedience” from a quadratic form q over K in order
for its specialization Λ∗(q) to reasonably exist. It then turns out that the
generic splitting behaviour of Λ∗(q) is governed by the splitting behaviour
of q and Λ, in so far good or fair reduction is present in a weak sense, as
elucidated for ordinary places in Chapter II.
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X Specialization of Quadratic and Symmetric Bilinear Forms

Why are quadratic places of interest, compared to ordinary places? To
answer this question we observe the following. If a form q over K has bad
reduction with respect to a place λ:K → L∪∞ , it often happens that λ can
be “enlarged” to a quadratic place Λ:K → L∪∞ such that q has good or fair
reduction with respect to Λ in a weak sense, and the splitting properties of
q are handed down to Λ∗(q) while there is no form λ∗(q) available for which
this would be the case. The details of such a notion of reduction are much
more tricky compared to what happens in Chapters I and II. The central
term which renders possible a unified theory of generic splitting of quadratic
forms is called “stably conservative reduction”, see §31.

One has to get used to the fact that for bilinear forms there is in general
no Witt cancellation rule, in contrast to quadratic forms. Nevertheless the
specialization theory is in many respects easier for bilinear forms than for
quadratic forms.

On the other hand we do not have any theory of generic splitting for
symmetric bilinear forms over fields of characteristic 2. Such a theory might
not even be possible in a meaningful way. This may well be connected to
the fact that the automorphism groups of such forms can be very far from
being reductive groups (which may also account for the absence of a good
cancellation rule).

This book is intended for audiences with different interests. For a math-
ematician with perhaps only a little knowledge of quadratic or symmetric
bilinear forms, who just wants to get an impression of specialization theory,
it suffices to read §1 - §4. The theory of generic splitting in characteristic 6= 2
will acquaint him with an important application area.

From §5 onwards the book is intended for scholars, working in the alge-
braic theory of quadratic forms, and also for specialists in the area of algebraic
groups. They have always been given something to look at by the theory of
quadratic forms.

When a reader has reached §10 of the book, he can lean back in his chair
and take a well-deserved break. He has then learned about the specialization
theory which is based on the concept of good reduction and has gained a
certain perspective on specific phenomena in characteristic 2. Furthermore he
has been introduced to the foundations of generic splitting and so has seen the
specialization theory in action. Admittedly he has not yet seen independent
applications of the weak specialization theory (§3, §7), for this theory has
only appeared up to then as an auxiliary one.

The remaining sections §11 - §14 of Chapter II develop the specialization
theory sufficiently far to allow an understanding of the classical algebraic
theory of quadratic forms (as presented in the books of Lam [L], [L′] and
Scharlau [S]) without the usual restriction that the characteristic should be
different from 2. Precisely this happens in Chapter III where the reader will
also obtain sufficient illustrations, enabling him to relieve other classical theo-
rems from the characteristic 6= 2 restriction, although this is often a nontrivial
task.

The final Chapter IV is ultimately intended for the mathematician who
wants to embark on a more daring expedition in the realm of quadratic forms
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Preface XI

over fields. It cannot be a mere coincidence that the specialization theory for
quadratic places works just as well as the specialization theory for ordinary
places. It is therefore a safe prediction that quadratic places will turn out to
be generally useful and important in a future theory of quadratic forms over
fields.

Manfred Knebusch

Regensburg, June 2007

Postscriptum (October 2009)

I had the very good luck to find a translator of the German text into English,
who beside two languages also could understand the mathematical content
of this book in depth. I met Professor Thomas Unger within the framework
of the European network “Linear Algebraic Groups, Algebraic K-theory, and
Related Topics”, and most of the translation and our collaboration has been
done under the auspices of this network, which we acknowledge gratefully.

I further owe deep thanks to my former secretary Rosi Bonn, who typed the
whole German text in various versions and large parts of the English text.

The German text, Spezialisierung von quadratischen und symmetrischen
bilinearen Formen, can be found on my homepage http://www-nw.uni-

regensburg.de/∼.knm22087.mathematik.uni-regensburg.de.
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2 Chapter I. Fundamentals of Specialization Theory
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§1 Introduction: on the Problem of

Specialization of Quadratic and Bilinear

Forms

Let ϕ be a nondegenerate symmetric bilinear form over a field K, in other
words

ϕ(x, y) =

n∑

i,j=1

aijxiyj ,

where x = (x1, . . . , xn) ∈ Kn and y = (y1, . . . , yn) ∈ Kn are vectors, (aij) is
a symmetric (n×n)-matrix with coefficients aij = aji ∈ K and det(aij) 6= 0.
We like to write ϕ = (aij). The number of variables n is called the dimension
of ϕ, n = dimϕ.

Let also λ:K → L ∪∞ be a place, o = oλ the valuation ring associated
to K and m the maximal ideal of o. We denote the group of units of o by o∗,
o∗ = o \ m.

We would like λ to “specialize” ϕ to a bilinear form λ∗(ϕ) over L. When
is this possible in a reasonable way? If all aij ∈ o and if det(aij) ∈ o∗, then
one can associate the nondegenerate form (λ(aij)) over L to ϕ. This naive
idea leads us to the following

Definition. We say that ϕ has good reduction with respect to λ when ϕ is
isometric to a form (cij) over K with cij ∈ o, det(cij) ∈ o∗. We then call
the form (λ(cij)) “the” specialization of ϕ with respect to λ. We denote this
specialization by λ∗(ϕ).

Note. ϕ = (aij) is isometric to (cij) if and only if there exists a matrix
S ∈ GL(n,K) with (cij) = tS(aij)S. In this case we write ϕ ∼= (cij).

We also allow the case dimϕ = 0, standing for the unique bilinear form
on the zero vector space, the form ϕ = 0. We agree that the form ϕ = 0 has
good reduction and set λ∗(ϕ) = 0.

Problem 1. Is this definition meaningful? Up to isometry λ∗(ϕ) should be
independent of the choice of the matrix (cij).

We will later see that this indeed the case, provided 2 6∈ m, so that L has
characteristic 6= 2. If L has characteristic 2, then λ∗(ϕ) is well-defined up to
“stable isometry” (see §3).

Problem 2. Is there a meaningful way in which one can associate a sym-
metric bilinear form over L to ϕ, when ϕ has bad reduction?
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4 Chapter I. Fundamentals of Specialization Theory

With regards to this problem we would like to recall a classical result of
T.A. Springer, which lets us suspect that finding a solution to the problem is
not completely beyond hope. Let v:K → Z ∪∞ be a discrete valuation of a
field K with associated valuation ring o. Let π be a generator of the maximal
ideal m of o, so that m = πo. Finally, let k = o/m be the residue class field of
o and λ:K → k ∪∞ the canonical place with valuation ring o. We suppose
that 2 6∈ m, so that char k 6= 2 is.

Let ϕ be a nondegenerate symmetric bilinear form over K. Then there
exists a decomposition ϕ ∼= ϕ0 ⊥ πϕ1, where ϕ0 and ϕ1 have good reduction
with respect to λ. Indeed, we can choose a diagonalisation ϕ ∼= 〈a1, . . . , an〉.

{As usual 〈a1, . . . , an〉 denotes the diagonal matrix

(
a1 0

. . .
0 an

)
.} Then we

can arrange that v(ai) = 0 or 1 for each i, by multiplying the ai by squares
and renumbering indices to get ai ∈ o∗ for 1 ≤ i ≤ t and ai = πεi, where
εi ∈ o∗ for t < i ≤ n. {Possibly t = 0, so that ϕ0 = 0, or t = n, so that
ϕ1 = 0.}

Theorem (Springer 1955 [Sp]). Let K be complete with respect to the discrete
valuation v. If ϕ is anisotropic (i.e. there is no vector x 6= 0 in Kn with
ϕ(x, x) = 0), then the forms λ∗(ϕ0) and λ∗(ϕ1) are anisotropic and up to
isometry independent of the choice of decomposition ϕ ∼= ϕ0 ⊥ πϕ1.

Conversely, if ψ0 and ψ1 are anisotropic forms over k, then there exists
up to isometry a unique anisotropic form ϕ over K with λ∗(ϕ0) ∼= ψ0 and
λ∗(ϕ1) ∼= ψ1.

Given any place λ:K → L∪∞ and any form ϕ overK, Springer’s theorem
suggests to look for a “weak specialization” λW (ϕ) by orthogonally decom-
posing ϕ in a form ϕ0 with good reduction and a form ϕ1 with “extremely
bad” reduction, subsequently forgetting ϕ1 and setting λW (ϕ) = λ∗(ϕ0).

Given an arbitrary valuation ring o, this sounds like a daring idea.
Nonetheless we will see in §3 that a weak specialization can be defined in
a meaningful way. Admittedly λW (ϕ) is not uniquely determined by ϕ and
λ up to isometry, but up to so-called Witt equivalence. In the situation of
Springer’s theorem, λW (ϕ) is then the Witt class of ϕ0 and λW (πϕ) the Witt
class of ϕ1.

A quadratic form q of dimension n over K is a function q:Kn → K,
defined by a homogeneous polynomial of degree 2,

q(x) =
∑

1≤i≤j≤n

aijxixj

(x = (x1, . . . , xn) ∈ Kn). We can associate (a possibly degenerate) symmetric
bilinear form

Bq(x, y) = q(x + y) − q(x) − q(y) =

n∑

i=1

2aiixiyi +
∑

i<j

aij(xiyj + xjyi)

to q. It is clear that Bq(x, x) = 2q(x) for all x ∈ Kn.
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§1 Introduction 5

If charK 6= 2, then any symmetric bilinear form ϕ over K corresponds
to just one quadratic form q over K with Bq = ϕ, namely q(x) = 1

2 ϕ(x, x).
In this way we can interpret a quadratic form as a symmetric bilinear form
and vice versa. In characteristic 2 however, quadratic forms and symmetric
bilinear forms are very different objects.

Problem 3. Let λ:K → L ∪∞ be a place.

(a) To which quadratic forms q over K can we associate “specialized”
quadratic forms λ∗(q) over L in a meaningful way?
(b) Let charL = 2 and charK 6= 2, hence charK = 0. Should one specialize
a quadratic form q over K with respect to λ as a quadratic form, or rather
as a symmetric bilinear form?

In what follows we will present a specialization theory for arbitrary non-
degenerate symmetric bilinear forms (§3), but only for a rather small class of
quadratic forms, the so-called “obedient” quadratic forms (§7). Problem 3(b)
will be answered unequivocally. If q is obedient, Bq will determine a really
boring bilinear form λ∗(Bq) (namely a hyperbolic form) which gives almost no
information about q. However, λ∗(q) can give important information about q.
If possible, a specialization in the quadratic sense is thus to be preferred over
a specialization in the bilinear sense.

Page: 5 job: 372 macro: PMONO01 date/time: 15-Dec-2009/22:24



6 Chapter I. Fundamentals of Specialization Theory

Page: 6 job: 372 macro: PMONO01 date/time: 15-Dec-2009/22:24



§2 An Elementary Treatise on Symmetric

Bilinear Forms

In this section a “form” will always be understood to be a nondegenerate
symmetric bilinear form over a field. So let K be a field.

Theorem 1 (“Witt decomposition”).
(a) Any form ϕ over K has a decomposition

ϕ ∼= ϕ0 ⊥
(
a1

1

1

0

)
⊥ . . . ⊥

(
ar
1

1

0

)

with ϕ0 anisotropic and a1, . . . , ar ∈ K (r ≥ 0).

(b) The isometry class of ϕ0 is uniquely determined by ϕ. (Therefore dimϕ0

and the number r are uniquely determined.)

To clarify these statements, let us recall the following:

(1) A form ϕ0 over K is called anisotropic if ϕ0(x, x) 6= 0 for all vectors
x 6= 0.

(2) If charK 6= 2, then we have for every a ∈ K∗ that
(
a

1

1

0

)
∼=
(

0

1

1

0

)
∼= 〈1,−1〉 ∼= 〈a,−a〉.

Is charK = 2 however and a 6= 0, then
(
a
1

1
0

)
6∼=
(

0
1

1
0

)
. Indeed if ϕ =

(
0
1

1
0

)

we have ϕ(x, x) = 0 for every vector x ∈ K2, while this is not the case for
ϕ =

(
a
1

1
0

)
. In characteristic 2 we still have

(
a
1

1
0

) ∼= 〈a,−a〉 (a ∈ K∗),

but
(
a
1

1
0

)
need not be isometric to

(
1
1

1
0

) ∼= 〈1,−1〉.
(3) The form

(
0
1

1
0

)
is given the name “hyperbolic plane” (even in character-

istic 2), and every form ϕ, isometric to an orthogonal sum r×
(

0
1

1
0

)
of r

copies of
(

0
1

1
0

)
, is called “hyperbolic” (r ≥ 0).

(4) Forms which are isometric to an orthogonal sum
(
a1

1
1
0

)
⊥ . . . ⊥

(
ar

1
1
0

)

are called metabolic (r ≥ 0). If charK 6= 2, then every metabolic form is
hyperbolic. This is not the case if charK = 2.

(5) If charK = 2, then ϕ is hyperbolic exactly when every vector x of the
underlying vector spaceKn is isotropic, i.e. ϕ(x, x) = 0. If ϕ is not hyper-
bolic, we can always find an orthogonal basis such that ϕ ∼= 〈a1, . . . , an〉
for suitable ai ∈ K∗.
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8 Chapter I. Fundamentals of Specialization Theory

One can find a proof of Theorem 1 in any book about quadratic forms
when charK 6= 2 (see in particular [Bo1], [L], [S]). Part (b) of the theorem
is then an immediate consequence of Witt’s Cancellation Theorem. There is
no general cancellation theorem in characteristic 2, as the following example
shows:

(∗)
(
a

1

1

0

)
⊥ 〈−a〉 ∼=

(
0

1

1

0

)
⊥ 〈−a〉

for all a ∈ K∗. If e, f, g is a basis of K3 which has the left-hand side of (∗)
as value matrix, then e+ g, f, g will be a basis which has the right-hand side
of (∗) as value matrix. For characteristic 2 one can find proofs of Theorem 1
and the other statements we made in [MH, Chap.I and Chap.III, §1], [K1,
§8], [M, §4]. The following is clear from formula (∗):

Lemma 1. If a form ϕ with dimϕ = 2r is metabolic, then there exists a
form ψ such that ϕ ⊥ ψ ∼= r ×

(
0
1

1
0

)
⊥ ψ.

Definition 1. (a) In the situation of Theorem 1, we call the form ϕ0 the ker-
nel form of ϕ and r the (Witt) index of ϕ. We write ϕ0 = ker(ϕ), r = ind(ϕ).
{In the literature one frequently sees the notation ϕ0 = ϕan (“anisotropic
part” of ϕ).}

(b) Two forms ϕ, ψ over K are called Witt equivalent, denoted by ϕ ∼ ψ,
if kerϕ ∼= kerψ. We write ϕ ≈ ψ when kerϕ ∼= kerψ and dimϕ = dimψ. On
the basis of the next theorem, we then call ϕ and ψ stably isometric.

Theorem 2. ϕ ≈ ψ exactly when there exists a form χ such that ϕ ⊥ χ ∼=
ψ ⊥ χ.

We omit the proof. It is easy when one uses Theorem 1, Lemma 1 and
the following lemma.

Lemma 2. The form χ ⊥ (−χ) is metabolic for every form χ.

Proof. From Theorem 1(a) we may suppose that χ is anisotropic. If χ is
different from the zero form, then χ ∼= 〈a1, . . . , an〉 with elements ai ∈ K∗

(n ≥ 1). Finally, 〈ai〉 ⊥ 〈−ai〉 ∼=
(
ai

1
1
0

)
.

As is well-known, Witt’s Cancellation Theorem (already mentioned above)
is valid if charK 6= 2. It says that two stably isometric forms are already iso-
metric: ϕ ≈ ψ ⇒ ϕ ∼= ψ.

Let ϕ be a form over K. We call the equivalence class of ϕ with respect to
the relation ∼, introduced above, the Witt class of ϕ and denote it by {ϕ}.
We can add Witt classes together as follows:

{ϕ} + {ψ}: = {ϕ ⊥ ψ}.

The class {0} of the zero form, whose members are exactly the metabolic
forms, is the neutral element of this addition. From Lemma 2 it follows that

Page: 8 job: 372 macro: PMONO01 date/time: 15-Dec-2009/22:24



§2 An Elementary Treatise on Symmetric Bilinear Forms 9

{ϕ} + {−ϕ} = 0. In this way, the Witt classes of forms over K form an
abelian group, which we denote by W (K). We can also multiply Witt classes
together:

{ϕ} · {ψ}: = {ϕ⊗ ψ}.

Remark. The definition of the tensor product ϕ⊗ψ of two forms ϕ, ψ belongs
to the domain of linear algebra [Bo1, §1, No. 9]. For diagonalizable forms we
have

〈a1, . . . , an〉 ⊗ 〈b1, . . . , bm〉 ∼= 〈a1b1, . . . , a1bm, a2b1, . . . , anbm〉.

We also have 〈a1, . . . , an〉 ⊗
(

0
1

1
0

) ∼= n×
(

0
1

1
0

)
. Finally, for a form

(
b
1

1
0

)
with

b 6= 0 we have

〈a〉 ⊗
(
b

1

1

0

)
∼= 〈a〉 ⊗ 〈b,−b〉 ∼= 〈ab,−ab〉 ∼=

(
ab

1

1

0

)
.

Now it is clear that the tensor product of any given form and a metabolic
form is again metabolic. {For a conceptual proof of this see [K1, §3], [MH,
Chap. I].} Therefore the Witt class {ϕ⊗ψ} is completely determined by the
classes {ϕ}, {ψ}, independent of the choice of representatives ϕ, ψ.

With this multiplication, W (K) becomes a commutative ring. The iden-
tity element is {〈1〉}. We call W (K) the Witt ring of K. For charK 6= 2 this
ring was already introduced by Ernst Witt in 1937 [W].

We would like to describe the ring W (K) by generators and relations. In
characteristic 6= 2 this was already known by Witt [oral communication] and
is implicitly contained in his work [W, Satz 7].

First we must recall the notion of determinant of a form. For a ∈ K∗, the
isometry class of a one-dimensional form 〈a〉 will again be denoted by 〈a〉. The
tensor product 〈a〉⊗ 〈b〉 will be abbreviated by 〈a〉〈b〉. We have 〈a〉〈b〉 = 〈ab〉
and 〈a〉〈a〉 = 〈1〉. In this way the isometry classes form an abelian group
of exponent 2, which we denote by Q(K). Given a, b ∈ K∗, it is clear that
〈a〉 = 〈b〉 exactly when b = ac2 for a c ∈ K∗. So Q(K) is just the group of
square classes K∗/K∗2 in disguise. We identify Q(K) = K∗/K∗2.

It is well-known that for a given form ϕ = (aij) the square class of the
determinant of the symmetric matrix (aij) only depends on the isometry class
of ϕ. We denote this square class by det(ϕ), so det(ϕ) = 〈det(aij)〉, and call
it the determinant of ϕ. A slight complication arises from the fact that the
determinant is not compatible with Witt equivalence. To remedy this, we
introduce the signed determinant

d(ϕ): = 〈−1〉
n(n−1)

2 · det(ϕ)

(n: = dimϕ). One can easily check that d(ϕ ⊥
(
a
1

1
0

)
) = d(ϕ), for any a ∈ K.

Hence d(ϕ) depends only on the Witt class {ϕ}. The signed determinant
d(ϕ) also has a disadvantage though. In contrast with det(ϕ), d(ϕ) does not
behave completely well with respect to the orthogonal sum. Let ν(ϕ) denote
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10 Chapter I. Fundamentals of Specialization Theory

the dimension index of ϕ, ν(ϕ) = dimϕ+ 2Z ∈ Z/2Z. Then we have (cf. [S,
I §2])

d(ϕ ⊥ ψ) = 〈−1〉ν(ϕ)ν(ψ)d(ϕ)d(ψ).

Let us now describe W (K) by means of generators and relations. Every
one-dimensional form 〈a〉 satisfies d(〈a〉) = 〈a〉. This innocent remark shows
that the map from Q(K) to W (K), which sends every isometry class 〈a〉 to
its Witt class {〈a〉}, is injective. We can thus interpret Q(K) as a subgroup
of the group of units of the ring W (K), Q(K) ⊂W (K)∗.

W (K) is additively generated by the subset Q(K), since every non-
hyperbolic form can be written as 〈a1, . . . , an〉 = 〈a1〉 ⊥ . . . ⊥ 〈an〉. Hence
Q(K) is a system of generators of W (K). There is an obviously surjective
ring homomorphism

Φ: Z[Q(K)] ։ W (K)

from the group ring Z[Q(K)] to W (K). Recall that Z[Q(K)] is the ring of
formal sums

∑
g
ngg with g ∈ Q(K), ng ∈ Z, and almost all ng = 0. Φ

associates to such a sum the in W (K) constructed sum
∑
g
ngg.

The elements of the kernel of Φ are the relations on Q(K) we are looking
for. We can write down some of those relations immediately: for every a ∈ K∗

is 〈a〉 + 〈−a〉 clearly a relation. For a, b ∈ K∗ and given λ, µ ∈ K∗, the form
〈a, b〉 represents the element c: = λ2a + µ2b. If c 6= 0, then we can find
another element d ∈ K∗ with 〈a, b〉 ∼= 〈c, d〉 Comparing determinants shows
that 〈d〉 = 〈abc〉. Hence 〈a〉 + 〈b〉 − 〈c〉 − 〈abc〉 = (〈a〉 + 〈b〉)(〈1〉 − 〈c〉) is also
a relation. We have the technically important

Theorem 3. The ideal Ker Φ of the ring Z[Q(K)] is additively generated
(i.e. as abelian group) by the elements 〈a〉 + 〈−a〉, a ∈ K∗ and the elements
〈a〉+〈b〉−〈c〉−〈abc〉 with a, b ∈ K∗, 〈b〉 6= 〈−a〉, c = λ2a+µ2b with λ, µ ∈ K∗.

Remark. Ker Φ is therefore generated as an ideal by the element 〈1〉 + 〈−1〉
and the elements (〈1〉+〈a〉)(1−〈c〉) with 〈a〉 6= 〈−1〉, c = 1+λ2a with λ ∈ K∗.
For application in the next section, the additive description of Ker Φ above
is more favourable though.

A proof of Theorem 3, which also works in characteristic 2, can be found
in [K1, §5], [KRW, §1], [K2 II, §4] (even over semi-local rings instead of over
fields2), [MH, p.85]. For characteristic 6= 2 the proof is a bit simpler, since
every form has an orthogonal basis in this case, see [S, I § 9].

2 The case where K has only 2 elements, K = F2, is not covered by the more general
theorems there. The statement of Theorem 3 for K = F2 is trivial however, since
K has only one square class 〈1〉 and 〈1, 1〉 ∼ 0.
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§3 Specialization of Symmetric Bilinear

Forms

In this section, a “form” will again be understood to be a nondegenerate
symmetric bilinear form. Let λ:K → L ∪ ∞ be a place from the field K
to a field L. Let o = oλ be the valuation ring associated to λ and m its
maximal ideal. As usual for rings, o∗ stands for the group of units of o, so
that o∗ = o \ m. This is the set of all x ∈ K with λ(x) 6= 0,∞.

We will now denote the Witt class of a one-dimensional form 〈a〉 over K
(or L) by {a}. The group of square classes Q(o) = o∗/o∗2 can be embedded
in Q(K) = K∗/K∗2 in a natural way via ao∗2 7→ aK∗2. We interpret Q(o)
as a subgroup of Q(K), so Q(o) = {〈a〉 | a ∈ o∗} ⊂ Q(K). Our specialization
theory is based on the following

Theorem 1. There exists a well-defined additive map λW :W (K) → W (L),
given by λW ({a}) = {λ(a)} if a ∈ o∗, and λW ({a}) = 0 if 〈a〉 6∈ Q(o) (i.e.
(aK∗2) ∩ o∗ = ∅).3

Proof. (Copied from [K4, §3].) Our place λ is a combination of the canonical
place K → (o/m) ∪∞ with respect to o, and a field extension λ: o/m →֒ L.
Thus it suffices to prove the theorem for the canonical place. So let L = o/m
and λ(a) = a: = a+ m for a ∈ o.

We have a well-defined additive map Λ: Z[Q(K)] → W (L) such that
Λ(〈a〉) = {a} if a ∈ o∗, and Λ(〈a〉) = 0 if 〈a〉 6∈ Q(o). Clearly Λ vanishes
on all elements 〈a〉+ 〈−a〉 with a ∈ K∗. According to §2, Theorem 3 we will
be finished if we can show that Λ also disappears on every element

Z = 〈a1〉 + 〈a2〉 − 〈a3〉 − 〈a4〉

with ai ∈ K∗ and 〈a1, a2〉 ∼= 〈a3, a4〉.
This will be the case when the four square classes 〈ai〉 are not all in Q(o).

Suppose from now on, without loss of generality, that a1 ∈ o∗. Then we have
Z = 〈a1〉y, where

y = 1 + 〈c〉 − 〈b〉 − 〈bc〉
is an element such that 〈1, c〉 ∼= 〈b, bc〉. So b = u2+w2c for elements u,w ∈ K.
Clearly the equation Λ(〈a〉x) = {a}Λ(x) is satisfied for any a ∈ o∗, x ∈
Z[Q(K)]. Therefore it is enough to verify that Λ(y) = 0. We suppose without
loss of generality that u and w are not both zero, otherwise we already have
that y = 0.

3 The letter W in the notation λW refers to “Witt” or “weak”, see §1 and §7.
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12 Chapter I. Fundamentals of Specialization Theory

Let us first treat the case 〈c〉 ∈ Q(o), so without loss of generality c ∈ o∗.
Then we have

Λ(y) = (1 + {c})Λ(1 − 〈b〉).
If {c} = {−1}, we are done. So suppose from now on that {c} 6= {−1}.
Then the form 〈1, c〉 is anisotropic over L. Since we are allowed to replace u
and v by gu and gv for some g ∈ K∗, we may additionally assume that u
and v are both in o, but not both in m. Since 〈1, c〉 is anisotropic, we have
b = u2 + cw2 6= 0 and

Λ(y) = (1 + {c})(1 − {u2 + cw2}) = 0.

The case which remains to be tackled is when the square class cK∗2

doesn’t contain a unit from o. Then u−2w2c is definitely not a unit and
either b = u2(1 + d) or b = w2c(1 + d) with d ∈ m. Hence Λ(1 − 〈b〉) is 0 or
1 − {c}, and both times Λ(y) = 0.

Scholium. The map λW :W (K) →W (L) can be described very conveniently
as follows: Let ϕ be a form over K. If ϕ is hyperbolic (or, more generally
metabolic), then λW ({ϕ}) = 0. If ϕ is not hyperbolic, then consider a diag-
onalisation ϕ ∼= 〈a1, a2, . . . , an〉. Multiply each coefficient ai, for which it is
possible, by a square so that it becomes a unit in o, and leave the other coef-
ficients as they are. Let for example ai ∈ o∗ for 1 ≤ i ≤ r and 〈ai〉 6∈ Q(o) for
r < i ≤ n (possibly r = 0 or r = n). Then λW ({ϕ}) = {〈λ(a1), . . . , λ(ar)〉}.

Let us now recall a definition from the Introduction §1.

Definition 1. We say that a form ϕ overK has good reduction with respect to
λ, or that ϕ is λ-unimodular if ϕ is isometric to a form (aij) with aij ∈ o and
det(aij) ∈ o∗. We call such a representation ϕ ∼= (aij) a λ-unimodular repre-
sention of ϕ (or a unimodular representation with respect to the valuation
ring o).

This definition can be interpreted geometrically as follows. We associate
to ϕ a couple (E,B), consisting of an n-dimensional K-vector space E (n =
dimϕ) and a symmetric bilinear form B:E×E → K such that B represents
the form ϕ after a choice of basis of E. We denote this by ϕ =̂ (E,B). Since
ϕ has good reduction with respect to λ, E contains a free o-submodule M
of rank n with E = KM , i.e. E = K ⊗o M , and with B(M ×M) ⊂ o, such
that the restriction B|M ×M :M ×M → o is a nondegenerate bilinear form
over o, i.e. gives rise to an isomorphism x 7→ B(x,−) from the o-module M

to the dual o-module
∨
M = Homo(M, o).

By means of Theorem 1 we can now quite easily find a solution of the
first problem posed in §1.

Theorem 2. Suppose that the form ϕ over K has good reduction with respect
to λ. Let ϕ ∼= (aij) be a unimodular representation of ϕ. Then the Witt
class λW ({ϕ}) is represented by the (nondegenerate! ) form (λ(aij)) over L.
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§3 Specialization of Symmetric Bilinear Forms 13

Consequently the form (λ(aij)) is up to stable isometry independent of the
choice of unimodular representation. (Recall that, if two forms ψ and ψ′ are
Witt equivalent and dimψ = dimψ′, then ψ ≈ ψ′.)

To prove this theorem, we need the following easy lemma about lifting
orthogonal bases.

Lemma. Let M be a finitely generated free o-module, equipped with a non-
degenerate symmetric bilinear form B:M × M → o. Let k: = o/m and let
π:M → M/mM be the natural epimorphism from M to the k-vector space
M/mM . Further, let B be the (again nondegenerate) bilinear form induced
by B on M/mM , B(π(x), π(y)): = B(x, y)+m. Suppose that the vector space
M/mM has a basis e1, . . . , en, orthogonal with respect to B. Then M has a
basis e1, . . . , en, orthogonal with respect to B, with π(ei) = ei (1 ≤ i ≤ n).

Proof. By induction on n, which obviously is the rank of the free o-module
M . For n = 1 nothing has to be shown. So suppose that n > 1. We choose
an element e1 ∈M with π(e1) = e1. Then B(e1, e1) ∈ o∗ since B(e1, e1) 6= 0.
Hence the restriction of B to the module oe1 is a nondegenerate bilinear form
on oe1. Invoking a very simple theorem (e.g. [MH, p.5, Th.3.2], §5, Lemma
1 below) yields M = (oe1) ⊥ N with N = (oe1)

⊥ = {x ∈ M | B(x, e1) =
0}. The restriction π|N :N → M/mM is then a homomorphism from N to

(ke1)
⊥ =

n⊕
i=2

kei with kernel mN . By our induction hypothesis, N contains

an orthogonal basis e2, . . . , en with π(ei) = ei (2 ≤ i ≤ n) which can be
completed by e1 to form an orthogonal basis of M which has the required
property.

Remark. Clearly the lemma and its proof remain valid when o is an arbitrary
local ring with maximal ideal m, instead of a valuation ring.

We also need the following

Definition 2. A bilinear o-module is a couple (M,B) consisting of an o-
moduleM and a symmetric bilinear formB:M×M → o. A bilinear module is
called free when the o-moduleM is free of finite rank. If e1, . . . , en is a basis of
M , we write (M,B) ∼= (aij) with aij : = B(ei, ej). If e1, . . . , en is an orthogonal
basis (B(ei, ej) = 0 for i 6= j), then we also write (M,B) ∼= 〈a1, . . . , an〉 with
ai: = B(ei, ei).

Note. The form B is nondegenerate exactly when det(aij) is a unit in o,
respectively when all ai are units in o.

All this makes sense and remains correct when o is an arbitrary commu-
tative ring (with 1), instead of a valuation ring. As before, “∼=” stands for
“isometric”, also for bilinear modules.

Proof of Theorem 2. For a ∈ o, let a denote the image of a in o/m. We suppose
for the moment that the bilinear space (aij) over o/m is not hyperbolic. Then
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14 Chapter I. Fundamentals of Specialization Theory

it has an orthogonal basis. By the lemma, the bilinear module (aij) over o

also has an orthogonal basis. Hence over o,

(∗) (aij) ∼= 〈a1, . . . , an〉

for certain ai ∈ o∗. The isometry (∗) is then also valid over K, and so we
have in W (L)

λW ({ϕ}) = {〈λ(a1), . . . , λ(an)〉}.
On the other hand (∗) implies that

(aij) ∼= 〈a1, . . . , an〉 over o/m.

If we now apply the (injective) homomorphism λ: o/m → L induced by λ
(thus we tensor with the field extension given by λ), we obtain

(λ(aij)) ∼= 〈λ(a1), . . . , λ(an)〉

over L. Consequently the Witt class λW ({ϕ}) is represented by the form
(λ(aij)).

Let us now tackle the remaining case, where the form (aij) over o/m is
hyperbolic. We can apply what we just have proved to the form ψ: = ϕ ⊥ 〈1〉.
This gives us

λW ({ψ}) = {(λ(aij)) ⊥ 〈1〉}
= {(λ(aij))} + {〈1〉}

in W (L). On the other hand we have λW ({ψ}) = λW ({ϕ}) + {〈1〉}, and we
find again that λW ({ϕ}) = {(λ(aij))}.

Remark. If charL 6= 2, a hyperbolic form over o/m also has an orthogonal
basis, so that the distinction between the two cases above is unnecessary.

Definition 3. If ϕ has good reduction with respect to λ, ϕ ∼= (aij) with
aij ∈ o, det(aij) ∈ o∗, we denote the form (λ(aij)) over L by λ∗(ϕ) and call
it “the” specialization of ϕ with respect to λ.

If charL = 2 we run into trouble with this definition, since λ∗(ϕ) is only
up to stable isometry uniquely determined by ϕ . We nevertheless use it, since
it is so convenient. If charL 6= 2, λ∗(ϕ) is up to isometry uniquely determined
by ϕ.

Example. Every metabolic form ϕ over K has good reduction with respect
to λ. Of course is λ∗(ϕ) ∼ 0.

Proof. It suffices to prove this in the case dimϕ = 2, so ϕ =
(
a
1

1
0

)
with

a ∈ K. Let ϕ=̂(E,B) and let e, f be a basis of E with value matrix
(
a
1

1
0

)
.

Choose an element c ∈ K∗ with ac2 ∈ o. Then ce, c−1f is a basis of E with

value matrix
(
ac2

1
1
0

)
.
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§3 Specialization of Symmetric Bilinear Forms 15

Theorem 3. Let ϕ and ψ be forms over K, having good reduction with respect
to λ. Then ϕ ⊥ ψ also has good reduction with respect to λ and

λ∗(ϕ ⊥ ψ) ≈ λ∗(ϕ) ⊥ λ∗(ψ).

Proof. This is clear.

Until now we got on with our specialization theory almost without any
knowledge of bilinear forms over o. Except for the lemma above about the
existence of orthogonal bases, we needed hardly anything from this area. We
could even have avoided using this little bit of information if we would only
have considered diagonalised forms over fields.

We are still missing one important theorem of specialization theory (es-
pecially for applications later on), Theorem 4 below. For a proof of this
theorem we need the basics of the theory of forms over valuation rings, which
we will present next using a “geometric” point of view. In other words, we
interpret a form ϕ over a field as an “inner product” on a vector space
and use more generally “inner products” on modules over rings, while until
now a form was usually interpreted as a polynomial in two sets of variables
x1, . . . , xn, y1, . . . , yn.

For the moment we allow local rings instead of the valuation ring o since
this won’t cost us anything extra. So let A be a local ring.

Definition 4. A bilinear space M over A is a free A-module M of finite
rank, equipped with a symmetric bilinear form B:M × M → A which is
nondegenerate, i.e. which determines an isomorphism x 7→ B(x,−) from M

on the dual module
∨
M = HomA(M,A).

Remark. We usually denote a bilinear space by the letter M . If confusion is
possible, we write (M,B) or even (M,BM ).

In what follows, M denotes a bilinear space over A, with associated bi-
linear form B.

Definition 5. A subspace V of M is a submodule V of M which is a direct
summand of M , i.e. for which there exists another submodule W of M with
M = V ⊕W .

To a subspace V we can associate the orthogonal submodule

V ⊥ = {x ∈M | B(x, V ) = 0},
and we have an exact sequence

0 −→ V ⊥ −→M
ϕ−→

∨
V −→ 0.

Here
∨
V = HomA(V,A) and ϕ maps x ∈ M to the linear form y 7→ B(x, y)

on V . The sequence splits since
∨
V is free. Thus V ⊥ is again a subspace of

M .
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16 Chapter I. Fundamentals of Specialization Theory

Definition 6. A subspace V of M is called totally isotropic when B(V, V ) =
{0}, i.e. when V ⊂ V ⊥. V is called a Lagrangian subspace ofM when V = V ⊥.
If M contains a Lagrangian subspace, M is called metabolic. M is called
anisotropic if it doesn’t contain any totally isotropic subspace V 6= {0}.

Lemma 1.
(a) Every bilinear space M over A has a decomposition

M ∼= M0 ⊥M1

with M0 anisotropic and M1 metabolic.

(b) Every metabolic space N over A is the orthogonal sum of spaces of the
form

(
a
1

1
0

)
,

N ∼=
(
a1

1

1

0

)
⊥ . . . ⊥

(
ar
1

1

0

)

with a1, . . . , ar ∈ A.

These statements can be inferred from more general theorems, which can
be found in e.g. [Ba, §1], [K1, §3], [K2, I §3], [KRW, §1].

Remark. If 2 is a unit in A, Witt’s Cancellation Theorem ([K3], [R]) holds for
bilinear spaces over A and every metabolic space over A is even hyperbolic,
i.e. is an orthogonal sum r ×

(
0
1

1
0

)
of copies of the “hyperbolic plane”

(
0
1

1
0

)

over A. Now the anisotropic space M0 in Lemma 1(a) is up to isometry
uniquely determined by M . If 2 6∈ A∗ this is false in general.

If α:A → C is a homomorphism from A to another local ring C, we
can associate to a bilinear space (M,B) = M over A a bilinear space
(C ⊗AM,B′) = C ⊗AM over C as follows: the underlying free C-module is
the tensor product C ⊗AM determined by α, and the C-bilinear form B′ on
this module is obtained from B by means of a basis extension, so

B′(c⊗ x, d⊗ y) = cdα(B(x, y))

(x, y ∈M ; c, d ∈ C). The form B′ is again nondegenerate. If (aij) is the value
matrix of B with respect to a basis e1, . . . , en of M , then (α(aij)) is the value
matrix of B′ with respect to the basis 1 ⊗ e1, . . . , 1 ⊗ en of C ⊗AM .

If A doesn’t contain any zero divisors and if K is the quotient field of A,
we can in particular use the inclusion A →֒ K to associate a bilinear space
K ⊗A M to the bilinear space M over A. Now we can interpret M as an
A-submodule of the K-vector space K ⊗A M (x = 1 ⊗ x for x ∈ M) and
reconstruct B from B′ by restriction, B = B′|M ×M : M ×M → A.

Let us return to our place λ:K → L ∪∞ and the valuation ring o.

Lemma 2. Let M be a bilinear space over o.
(a) If K ⊗o M is isotropic, then M is isotropic.
(b) If K ⊗o M is metabolic, then M is metabolic.
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§3 Specialization of Symmetric Bilinear Forms 17

Proof. Let E: = K ⊗o M . We interpret M as an o-submodule of E and have
E = KM .

(a) If E is isotropic, there exists a subspace W 6= {0} in E with W ⊂
W⊥. The o-submodule V : = W ∩M of M satisfies KV = W and so V 6=
{0}. Furthermore V ⊂ V ⊥. The o-module M/V is torsion free and finitely
generated, hence free. This is because every finitely generated ideal in o is
principal, cf. [CE, VII, §4]. Therefore V is a totally isotropic subspace of E.

(b) If W = W⊥, then V = V ⊥. Hence M is metabolic.

Now we are fully equipped to prove the following important theorem [K4,
Prop.2.2].

Theorem 4. Let ϕ and ψ be forms over K. If ϕ and ϕ ⊥ ψ have good
reduction with respect to λ, then ψ also has good reduction with respect to λ.

Proof. Adopting geometric language, the statement says: Let F and G be
bilinear spaces over K and E: = F ⊥ G. If F and E have good reduction, i.e.
F ∼= K ⊗o N , E ∼= K ⊗o M for bilinear spaces N and M over o, then G has
good reduction as well.

By §2, Theorem 1 there is a decomposition G = G0 ⊥ G1 with G0

anisotropic and G1 metabolic. From above (cf. the example following Def-
inition 3), G1 has good reduction. Hence it suffices to show that G0 has good
reduction.

Now E ⊥ (−F ) ∼= F ⊥ (−F ) ⊥ G0 ⊥ G1.
4 Since F ⊥ (−F ) ⊥ G0 is

metabolic, but G1 anisotropic, G1 is the kernel space of E ⊥ (−F ). (“Kernel
space” is the pendant of the word “kernel form” (= anisotropic part) in
the geometric language.) We decompose M ⊥ (−N) following Lemma 1(a),
M ⊥ (−N) ∼= R ⊥ S where R is anisotropic and S metabolic. Tensoring with
K gives E ⊥ (−F ) ∼= K ⊗o R ⊥ K ⊗o S. Now K ⊗o S is metabolic and,
according to Lemma 2, K ⊗o R is anisotropic. Hence K ⊗o R is also a kernel
space of E ⊥ (−F ). Applying §2, Theorem 1 gives K ⊗o R ∼= G0, and we are
finished.

Corollary. Let ϕ and ψ be forms over K with ϕ ∼ ψ. If ϕ has good reduction
with respect to λ, ψ also has good reduction with respect to λ and λ∗(ϕ) ∼
λ∗(ψ). If furthermore ϕ ≈ ψ, then λ∗(ϕ) ≈ λ∗(ψ).

Proof. There are Witt decompositions ϕ ∼= ϕ0 ⊥ µ, ψ ∼= ψ0 ⊥ ν with ϕ0,
ψ0 anisotropic and µ, ν metabolic. As established above, µ and ν have good
reduction with respect to λ and λ∗(µ), λ∗(ν) are metabolic. By assumption
ϕ has good reduction with respect to λ and ϕ0 is isometric to ψ0. Theorem 4
implies that ϕ0 has good reduction with respect to λ. Therefore ψ0, and hence
ψ, has good reduction with respect to λ, and (according to Theorem 3)

λ∗(ϕ) ≈ λ∗(ϕ0) ⊥ λ∗(µ) ∼ λ∗(ϕ0),

λ∗(ψ) ≈ λ∗(ψ0) ⊥ λ∗(ν) ∼ λ∗(ψ0).

4 If E = (E,B) is a bilinear space, then −E denotes the space (E,−B).
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18 Chapter I. Fundamentals of Specialization Theory

Naturally λ∗(ϕ0) ≈ λ∗(ψ0), so λ∗(ϕ) ∼ λ∗(ψ). If ϕ ≈ ψ, then ϕ and ψ have
the same dimension and so λ∗(ϕ) ≈ λ∗(ψ).

Let us give a small illustration of Theorem 4.

Definition 7. Let ϕ and ψ be forms over a field K. If there exists a form
χ over K with ϕ ∼= ψ ⊥ χ, we say that ϕ represents the form ψ and write
ψ < ϕ.

For example, the one-dimensional forms represented by ϕ are exactly the
square classes 〈ϕ(x, x)〉, where x runs through the anisotropic vectors of the
space belonging to ϕ.

Theorem 5 (Substitution Principle). Let k be a field and K = k(t), where
t = (t1, . . . , tr) is a set of indeterminates. Let (fij(t)) be a symmetric (n×n)-
matrix and (gkl(t)) a symmetric (m×m)-matrix, for polynomials fij(t) ∈ k[t],
and gkl(t) ∈ k[t]. Let further be given a field extension k ⊂ L and a point
c ∈ Lr with det(fij(c)) 6= 0 and det(gkl(c)) 6= 0. If char k = 2, also suppose
that the form (fij(c)) is anisotropic over L.

Claim: if (gkl(t)) < (fij(t)) (as forms over K), then (gkl(c)) < (fij(c))
(as forms over L).

Proof. Going from k[t] to L[t], we suppose without loss of generality
that L = k. For every s ∈ {1, . . . , r} there is exactly one correspond-
ing place λs: k(t1, . . . , ts) → k(t1, . . . , ts−1) ∪ ∞ with λs(u) = u for all
u ∈ k(t1, . . . , ts−1) and λs(ts) = cs. {Read k(t1, . . . , ts−1) = k when s = 1.}
The composition λ1 ◦ λ2 ◦ · · · ◦ λs of these places is a place λ:K → k ∪ ∞
with λ(a) = a for all a ∈ k and λ(ti) = ci for i = 1, . . . , r. Let ϕ denote
the form (fij(t)) over K and ψ the form (gkl(t)) over K. {Note that obvi-
ously det(fij(t)) 6= 0, det(gkl(t)) 6= 0.} The forms ϕ and ψ both have good
reduction with respect to λ and λ∗(ϕ) ≈ (fij(c)), λ∗(ψ) ≈ (gkl(c)).

Now let ψ < ϕ. Then there exists a form χ over K with ψ ⊥ χ ∼=
ϕ. According to Theorem 4, χ has good reduction with respect to λ and
according to Theorem 3, λ∗(ψ) ⊥ λ∗(χ) ≈ λ∗(ϕ). Hence λ∗(ψ) ⊥ λ∗(χ) ∼=
λ∗(ϕ) if chark 6= 2. If char k = 2 and λ∗(ϕ) is anisotropic, this remains true,
since λ∗(ϕ) is up to isometry the unique anisotropic form in the Witt class
λW (ϕ), and λ∗ (ψ) ⊥ λ∗ (χ) has the same dimension as λ∗(ϕ).

Let us now return to our arbitrary place λ:K → L ∪ ∞ and to the
conventions made at the beginning of the paragraph. The Lemmas 1 and 2
allow us to give an easier proof of Theorem 2, which is interesting in its own
right.

Second proof of Theorem 2. We adopt the geometric language. Let E be a
bilinear space over K, having good reduction with respect to λ and let M
and N be bilinear spaces over o with E ∼= K ⊗o M ∼= K ⊗o N . We have
to show that L ⊗λ M ≈ L ⊗λ N , where the tensor product is taken over o,
and L is regarded as an o-algebra via the homomorphism λ|o : o → L. The
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§3 Specialization of Symmetric Bilinear Forms 19

space K ⊗o (M ⊥ (−N)) is metabolic. According to Lemma 2, M ⊥ (−N)
is metabolic. Hence L ⊗λ (M ⊥ (−N)) = L ⊗λ M ⊥ (−L ⊗λ N) is also
metabolic. Therefore L⊗λM ≈ L⊗λ N .

We can now describe the property “good reduction” and the specialization
of a form by means of diagonal forms as follows.

Theorem 6. Let ϕ be a form over K, dimϕ = n.
(a) The form ϕ has good reduction with respect to λ if and only if ϕ is Witt

equivalent to a diagonal form 〈a1, . . . , ar〉 with units ai ∈ o∗. In this case
dimλ∗(ϕ) = n and λ∗(ϕ) ∼ 〈λ(a1), . . . , λ(ar)〉. Furthermore one can
choose r = n+ 2.

(b) Let 2 ∈ o∗, i.e. charL 6= 2. The form ϕ has good reduction with respect
to λ if and only if ϕ is isometric to a diagonal form 〈a1, . . . , an〉 with
ai ∈ o∗. In this case λ∗(ϕ) ∼= 〈λ(a1), . . . , λ(an)〉.

Proof of part (a). If ϕ ∼ 〈a1, . . . , ar〉 with units ai ∈ o∗, then by the Corol-
lary ϕ has good reduction with respect to λ and λ∗(ϕ) ∼ 〈λ(a1), . . . , λ(ar)〉.
Suppose now that ϕ has good reduction with respect to λ. The form ϕ corre-
sponds to a bilinear space K⊗oM over K, which comes from a bilinear space
M over o. If M/mM is not hyperbolic, then M has an orthogonal basis by the
Lemma following Theorem 2. Therefore ϕ ∼= 〈a1, . . . , an〉 with units ai ∈ o∗.
In general we consider the space M ′: = M ⊥ 〈1,−1〉 over o. Then M ′/mM ′

is definitely not hyperbolic. Hence ϕ ⊥ 〈1,−1〉 ∼= 〈b1, . . . , bn+2〉 with
units bi.

The proof of part (b) is similar, but simpler since now M/mM always has
an orthogonal basis. We don’t need the Corollary here.

Finally, we consider the specialization of tensor products of forms.

Theorem 7. Let ϕ and ψ be two forms over K, which have good reduction
with respect to λ. Then ϕ⊗ ψ also has good reduction with respect to λ, and
λ∗(ϕ⊗ ψ) ≈ λ∗(ϕ) ⊗ λ∗(ψ).

Proof. According to Theorem 6 we have the following Witt equivalences,
ϕ ∼ 〈a1, . . . , am〉, ψ ∼ 〈b1, . . . , bn〉, with units ai, bj ∈ o∗. Then ϕ ⊗ ψ ∼
〈a1b1, a1b2, . . . , a1bn, . . . , ambn〉. Again according to Theorem 6, ϕ ⊗ ψ has
good reduction and

λ∗(ϕ⊗ ψ) ∼ 〈λ(a1)λ(b1), . . . , λ(am)λ(bn)〉
∼= 〈λ(a1), . . . , λ(am)〉 ⊗ 〈λ(b1), . . . , λ(bn)〉
∼ λ∗(ϕ) ⊗ λ∗(ψ).

Now the forms λ∗(ϕ⊗ ψ) and λ∗(ϕ) ⊗ λ∗(ψ) both have the same dimension
as ϕ⊗ ψ. Therefore λ∗(ϕ ⊗ ψ) ≈ λ∗(ϕ) ⊗ λ∗(ψ).
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20 Chapter I. Fundamentals of Specialization Theory

If we use a bit more multilinear algebra, we can come up with the following
conceptually more pleasing proof of Theorem 7.

Second proof of Theorem 7. Adopting geometric language, ϕ corresponds to
a bilinear space K ⊗o M and ψ corresponds to a space K ⊗o N with bilinear
spaces M and N over o. Hence ϕ⊗ ψ corresponds to the space

(K ⊗o M) ⊗K (K ⊗o N) ∼= K ⊗o (M ⊗o N)

over K. Now the free bilinear module M ⊗o N is again nondegenerate (cf.
e.g. [MH, I §5]). Consequently ϕ ⊗ ψ has good reduction with respect to λ,
and λ∗(ϕ ⊗ ψ) can be represented by the space L ⊗λ (M ⊗o N), obtained
from the space M ⊗o N by base extension to L using the homomorphism
λ|o : o → L. Now L⊗λ (M ⊗oN) ∼= (L⊗λM)⊗L (L⊗λN). In other words,
λ∗(ϕ⊗ ψ) ∼= λ∗(ϕ) ⊗ λ∗(ψ), since λ∗(ϕ) =̂ L⊗λM , λ∗(ψ) =̂ L⊗λ N .
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§4 Generic Splitting in Characteristic 6= 2

In this section we outline an important application area of the specialization
theory developed in §3, namely the theory of generic splitting of bilinear
forms. Many proofs will only be given in §7, after also having developed a
specialization theory of quadratic forms.

Let k be a field and let ϕ be a form over k, which is just as before un-
derstood to be a nondegenerate symmetric bilinear form over k. Our starting
point is the following simple

Observation. Let K and L be fields, containing k, and let λ:K → L ∪∞ be
a place over k, i.e. with λ(c) = c for all c ∈ k.

(a) Then ϕ⊗K has good reduction with respect to λ and λ∗(ϕ⊗K) ≈ ϕ⊗L.5

Indeed, if ϕ ∼= (aij) with aij ∈ k, det(aij) 6= 0, then also ϕ⊗K ∼= (aij),
and this is a unimodular representation of ϕ with respect to λ, since k is
contained in the valuation ring o of λ. So λ∗(ϕ ⊗K) ≈ (λ(aij)) = (aij)
and since this symmetric matrix is now considered over L, we conclude
that λ∗(ϕ⊗K) ≈ ϕ⊗ L.

(b) Suppose that ϕ⊗K has kernel form ϕ1 and Witt index r1, i.e.

ϕ⊗K ≈ ϕ1 ⊥ r1 ×H,

where H denotes from now on the hyperbolic “plane”6
(

0
1

1
0

)
. According

to the corollary of Theorem 4 in §3, the form ϕ1 has good reduction with
respect to λ. Therefore, applying λ∗ yields

ϕ⊗ L ≈ λ∗(ϕ1) ⊥ r1 ×H.

Hence we conclude that ind(ϕ⊗ L) ≥ ind(ϕ⊗K) and that

λ∗(ker(ϕ⊗K)) ∼ ker(ϕ⊗ L).

(Recall the terminology of §2, Definition 1.)

Definition 1. We call two fields K ⊃ k, L ⊃ k over k specialization equiva-
lent, or just equivalent, if there exist places λ:K → L∪∞ and µ:L→ K ∪∞
over k. We then write K ∼k L.

5 ϕ⊗K is the form ϕ, considered over K instead of over k. If E is a bilinear space
over k corresponding to ϕ, then K ⊗k E – as described in §3 – is a bilinear space
corresponding to ϕ⊗K.

6 We do not make a notational distinction between the forms
(

0
1

1
0

)
over the different

fields occurring here.

Page: 21 job: 372 macro: PMONO01 date/time: 15-Dec-2009/22:24



22 Chapter I. Fundamentals of Specialization Theory

The following conclusions can be drawn immediately from our observa-
tion:

Remark 1. If K ∼k L, then every form ϕ over k satisfies:

(1) ind(ϕ⊗K) = ind(ϕ⊗ L).

(2) ker(ϕ⊗K) has good reduction with respect to every place λ from K to L
and λ∗(ker(ϕ⊗K)) ∼= ker(ϕ⊗ L). (Note that “∼=” holds, not just “≈”!)

From a technical point of view, it is a good idea to treat the following
special case of Definition 1 separately:

Definition 2. We call a field extension K ⊃ k inessential if there exists a
place λ:K → k ∪∞ over k.

Obviously this just means that K is equivalent to k over k. In this case,
Remark 1 becomes:

Remark 2. If K is an inessential extension of k, then every form ϕ over k
satisfies:

(1) ind(ϕ⊗K) = ind(ϕ),

(2) ker(ϕ⊗K) = ker(ϕ) ⊗K.

We will see that the forms ϕ and ϕ ⊗ K exhibit the “same” splitting
behaviour with respect to an inessential extension K/k in an even broader
sense (see Scholium 4 below).

Let us return to the general observation above. It gives rise to the following

Problem. Let ϕ be a form over k, dimϕ = n ≥ 2, and let t be an integer
with 1 ≤ t ≤ n

2 . Does there exist a field extension K ⊃ k which is “generic
with respect to splitting off t hyperbolic planes”?, i.e. with the following
properties:

(a) ind(ϕ⊗K) ≥ t.

(b) If L is a field extension of k with ind(ϕ⊗L) ≥ t, then there exists a place
from K to L over k.

We first address this problem for the case t = 1. As before, let ϕ be a
form over a field k.

Definition 3. An extension field K ⊃ k is called a generic zero field of ϕ if
the following conditions hold:

(a) ϕ⊗K is isotropic.
(b) For every field extension k →֒ L with ϕ⊗L isotropic, there exists a place

λ:K → L ∪∞ over k.

Note that if ϕ is isotropic, then the field k is of course itself a generic zero
field of ϕ.
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§4 Generic Splitting in Characteristic 6= 2 23

In the rest of this section, we assume that char k 6= 2. Now ϕ can also
be viewed as a quadratic form,7 ϕ(x): = ϕ(x, x). We define a field extension
k(ϕ) of k, which is a priori suspected to be a generic zero field of ϕ.

Definition 4. Let dimϕ ≥ 3 or let dimϕ = 2 and ϕ 6∼= H . Let k(ϕ) denote
the function field of the affine quadric ϕ(X1, . . . , Xn) = 0 (where n =
dimϕ), i.e. the quotient field of the ring A: = k[X1, . . . , Xn]/(ϕ(X1, . . . , Xn))
with indeterminates X1, . . . , Xn.

Observe that the polynomial ϕ(X1, . . . , Xn) is irreducible. To prove this
we may suppose that ϕ is diagonalised, ϕ = 〈a1, a2, . . . , an〉. The polynomial
a1X

2
1 + a2X

2
2 + . . .+ anX

2
n is clearly not a product of two linear forms (since

char k 6= 2).
If ϕ = H , then ϕ(X1, X2) = X1X2. On formal grounds we then set

k(ϕ) = k(t) for an indeterminate t.
Let x1, . . . , xn be the images of the indeterminates X1, . . . , Xn in A. Then

ϕ(x1, . . . , xn) = 0. Hence ϕ⊗ k(ϕ) is isotropic. (This is also true for ϕ ∼= H .)
On top of that we have the following important

Theorem 1. Let dimϕ ≥ 2. Then k(ϕ) is a generic zero field of ϕ.

Note that the assumption dimϕ ≥ 2 is necessary for the existence of a
generic zero field, since forms of dimension ≤ 1 are never isotropic.

Theorem 1 can already be found in [K5]. We will wait until §9 to prove it
in the framework of a generic splitting theory of quadratic forms.

It is clear from above that every other generic zero field K of ϕ over k is
equivalent to k(ϕ). It is unknown which bilinear forms possess generic zero
fields in characteristic 2.

Given an arbitrary form ϕ over k, we now construct a tower of fields
(Kr | 0 ≤ r ≤ h) together with anisotropic forms ϕr over Kr and numbers
ir ∈ N0 as follows: choose K0 to be any inessential extension of the field k.8

Let ϕ0 be the kernel form of ϕ⊗K0 and i0 the Witt index of ϕ. Then

ϕ⊗K0
∼= ϕ0 ⊥ i0 ×H.

If dimϕ0 ≤ 1, then Stop! Otherwise choose a generic zero field K1 ⊃ K0 of
ϕ0. Let ϕ1 be the kernel form of ϕ0 ⊗K1 and i1 the Witt index of ϕ0 ⊗K1.
Then

ϕ0 ⊗K1
∼= ϕ1 ⊥ i1 ×H.

If dimϕ1 ≤ 1, then Stop! Otherwise choose a generic zero field K2 ⊃ K1 of
ϕ1. Let ϕ2 be the kernel form of ϕ1 ⊗K2 and i2 the Witt index of ϕ1 ⊗K2.
Then

ϕ1 ⊗K2
∼= ϕ2 ⊥ i2 ×H,

etc.

7 In keeping with our earlier conventions, it would perhaps be better to write ϕ(x) =
1
2
ϕ(x, x). However, the factor 1

2
is not important for now.

8 In earlier works (especially [K5]) K0 was always chosen to be k. From a technical
point of view it is favourable to allow K0 to be an inessential extension of k, just
as in [KR].
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24 Chapter I. Fundamentals of Specialization Theory

The construction halts after h ≤
[

dimϕ
2

]
steps with a Witt decomposition

ϕh−1 ⊗Kh
∼= ϕh ⊥ ih ×H,

dimϕh ≤ 1.

Definition 5. (Kr | 0 ≤ r ≤ h) is called a generic splitting tower of ϕ. The
number h is called the height of ϕ, denoted h = h(ϕ). The number ir is called
the r-th higher index of ϕ and the form ϕr the r-th higher kernel form of ϕ.

Remark. Obviously ϕr is the kernel form of ϕ ⊗ Kr and ind(ϕ ⊗ Kr) =
i0 + . . .+ ir. Note that h = 0 iff the form ϕ “splits”, i.e. iff its kernel form is
zero or one-dimensional.

We will see that the number h and the sequence (i0, . . . , ih) are indepen-
dent of the choice of generic splitting tower and also that the forms ϕr are
determined uniquely by ϕ in a precise way. For this the following theorem is
useful.

Theorem 2. Let ψ be a form over a field K. Let λ:K → L ∪∞ be a place,
such that ψ has good reduction with respect to λ. Suppose that L (and therefore
K) has characteristic 6= 2. Then λ∗(ψ) is isotropic if and only if λ can be
extended to a place µ:K(ψ) → L ∪∞.

If λ is a trivial place, i.e. a field extension, then this theorem says once
more that K(ψ) is a generic zero field of ψ (Theorem 1).

One direction of the assertion is trivial, just as for Theorem 1: if λ can
be extended to a place µ:K(ψ) → L∪∞, then ψ⊗K(ψ) has good reduction
with respect to µ and µ∗(ψ ⊗ K(ψ)) ∼= λ∗(ψ). Since ψ ⊗ K(ψ) is isotropic,
λ∗(ψ) is also isotropic.

The other direction will be established in §9. For a shorter and simpler
proof, see [K5] and the books [S], [KS].

Theorem 3 (Corollary of Theorem 2). Let ϕ be a form over a field k. Let
(Kr | 0 ≤ r ≤ h) be a generic splitting tower of ϕ with associated higher kernel
forms ϕr and indices ir. Suppose that ϕ has good reduction with respect to
some place γ: k → L ∪ ∞. Suppose that L (and hence k) has characteristic
6= 2. Finally let λ:Km → L ∪∞ be a place for some m, 0 ≤ m ≤ h which
extends γ and which cannot be extended to Km+1 if m < h. Then ϕm has
good reduction with respect to λ. The form γ∗(ϕ) has kernel form λ∗(ϕm) and
Witt index i0 + . . .+ im.

Proof. There is an isometry

(1) ϕ⊗Km
∼= ϕm ⊥ (i0 + . . .+ im) ×H.

The form ϕ ⊗Km has good reduction with respect to λ and λ∗(ϕ ⊗Km) =
γ∗(ϕ). Using Theorem 4 and Theorem 3 from §3, (1) implies that ϕm has
good reduction with respect to λ and
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§4 Generic Splitting in Characteristic 6= 2 25

(2) γ∗(ϕ) ∼= λ∗(ϕm) ⊥ (i0 + . . .+ im) ×H

(cf. the observation at the beginning of this section). If λ∗(ϕm) were isotropic,
then we would have m < h, since dimϕh ≤ 1. It would then follow from The-
orem 2 that λ can be extended to a place from Km+1 to L, contradicting our
assumption. Therefore λ∗(ϕm) is anisotropic and so (2) is the Witt decom-
position of γ∗(ϕ).

Note that this theorem implies in particular, that any attempt to suc-
cessively extend the given place λ: k → L ∪ ∞ to a “storey” Km of the
generic splitting tower, which is as high as possible, always ends at the same
number m.

Theorem 3 gives rise to a number of interesting statements about the
splitting behaviour of forms and the extensibility of places.

Scholium 1. Let ϕ be a form over k and (Kr | 0 ≤ r ≤ h) a generic splitting
tower of ϕ with kernel forms ϕr and indices ir. Furthermore, let k ⊂ L be a
field extension. If we apply Theorem 3 to the trivial place γ: k →֒ L, we get:

(1) Let λ:Km → L ∪ ∞ be a place over k (0 ≤ m ≤ h), which cannot be
extended to Km+1 in case m < h. Then ϕm has good reduction with
respect to λ and λ∗(ϕm) is the kernel form of ϕ⊗L. The index of ϕ⊗L
is i0 + . . .+ im.

(2) If λ′:Kr → L ∪∞ is a place over k, then r ≤ m and λ′ can be extended
to a place µ:Km → L ∪∞.

(3) Given a number t with 1 ≤ t ≤
[

dimϕ
2

]
= i0 + . . . + ih, let m ∈ N0 be

minimal with t ≤ i0 + . . .+ im. Then Km is a generic field extension of
k with respect to splitting off t hyperbolic planes of ϕ (in the context of
our problem above).

Definition 6. Let ϕ be a form over k. We call the set of indices ind(ϕ⊗L),
where L traverses all field extensions of k, the splitting pattern of ϕ, denoted
by SP(ϕ).

This definition also makes sense in characteristic 2, and it is a priori clear

that SP(ϕ) consists of at most
[

dimϕ
2

]
+ 1 elements. Usually the elements of

SP(ϕ) are listed in ascending order. If char k 6= 2 and (ir | 0 ≤ r ≤ h) is the
sequence of higher indices of a generic splitting tower (Kr | 0 ≤ r ≤ h) of ϕ,
then Scholium 1 shows:

SP(ϕ) = (i0, i0 + i1, i0 + i1 + i2, . . . , i0 + i1 + . . .+ ih).

Since the numbers ir with r > 0 are all positive, it is evident that the height
h and the higher indices ir (0 ≤ r ≤ h) are independent of the choice of

generic splitting tower of ϕ. Obviously is i0 + . . .+ ih =
[

dimϕ
2

]
.

Scholium 2. Let (Kr | 0 ≤ r ≤ h) and (K ′
r | 0 ≤ r ≤ h) be two generic split-

ting towers of the form ϕ over k. Applying Scholium 1 to the field extensions
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26 Chapter I. Fundamentals of Specialization Theory

k ⊂ Ks and k ⊂ K ′
r, yields: if λ:Kr → K ′

s ∪∞ is a place over k, then r ≤ s
and λ can be extended to a place µ:Ks → K ′

s ∪ ∞. The fields Ks and K ′
s

are equivalent over k. For every place µ:Ks → K ′
s∪∞, the kernel form ϕs of

ϕ ⊗Ks has good reduction with respect to µ and µ∗(ϕs) is the kernel form
ϕ′
s of ϕ⊗K ′

s.

Scholium 3. Let ϕ be a form over k and γ: k → L ∪ ∞ a place such that
ϕ has good reduction with respect to γ. Applying Theorem 3 to the places
j ◦ γ: k → L ∪ ∞, being the composites of γ and trivial places j:L →֒ L′,
yields:

(1) SP(γ∗(ϕ)) ⊂ SP(ϕ).

(2) The higher kernel forms of γ∗(ϕ) arise from certain higher kernel forms
of ϕ by means of specialization. More precisely: if (Kr | 0 ≤ r ≤ h) is a
generic splitting tower of ϕ and (K ′

s | 0 ≤ s ≤ h′) is a generic splitting
tower of γ∗(ϕ), then h′ ≤ h and for every s with 0 ≤ s ≤ h′ we have

ind(γ∗(ϕ) ⊗K ′
s) = i0 + . . .+ im

for some m ∈ {0, . . . , h}. The number m is the biggest integer such that
γ can be extended to λ:Km → K ′

s ∪∞. The kernel form ϕm of ϕ⊗Km

has good reduction with respect to every extension λ of this kind, and
λ∗(ϕm) is the kernel form of γ∗(ϕ) ⊗K ′

s.

(3) If ρ:Kr → K ′
s ∪∞ is a place, which extends γ: k → L ∪∞, then r ≤ m

and ρ can be further extended to a place from Km to K ′
s.

Scholium 4. Let L/k be an inessential field extension (see Definition 2 above)
and ϕ again a form over k. Let (Li | 0 ≤ i ≤ h) be a generic splitting tower
of ϕ ⊗ L. It is then immediately clear from Definition 5 that this is also a
generic splitting tower of ϕ. Hence SP(ϕ⊗L) = SP(ϕ), and the higher kernel
forms of ϕ⊗ L can also be interpreted as higher kernel forms of ϕ.

Which strictly increasing sequences (0, j1, j2, . . . , jn) occur as splitting
patterns of anisotropic forms? What do anisotropic forms of given height
h look like? These questions are difficult and at the moment the object of
intense research. The first efforts towards answering them can be found in
[K4], [K5], while more recent ones can be found in [H2], [HR1], [HR2], [Ka]
amongst others.

A complete answer is only known in the case h = 1. A form 〈1, a1〉⊗ . . .⊗
〈1, ad〉 (d ≥ 1, ai ∈ k) is called a d-fold Pfister form over k.9 If τ is a Pfister
form of degree d, then the form τ ′, satisfying 〈1〉 ⊥ τ ′ = τ , is called the pure
part of τ .

Theorem 4. An anisotropic form ϕ over k has height 1 if ϕ ∼= aτ (dimϕ
even) or ϕ ∼= aτ ′ (dimϕ odd), with a ∈ k∗ and τ an anisotropic Pfister form
of degree d ≥ 1 in the first case and d ≥ 2 in the second case.

9 The form 〈1〉 also counts as a Pfister form, more precisely a 0-fold Pfister form.
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§4 Generic Splitting in Characteristic 6= 2 27

Note that therefore SP(ϕ) = (0, 2d−1) when dimϕ is even and SP(ϕ) =
(0, 2d−1 − 1) when dimϕ is odd. Is k = R for example, then all d ≥ 1, resp.
d ≥ 2 occur. One can take for instance ϕ = 2d×〈1〉, resp. ϕ = (2d− 1)×〈1〉.

A proof of Theorem 4 can be found in [K5] and the books [S], [KS]. In §20
and §23 we will prove two theorems for fields of arbitrary characteristic, from
which Theorem 4 can be obtained in characteristic 6= 2 (§20, Theorem 5, §23,
Theorem 1).

Little is still known about forms of height 2, but the known results are
interesting and partly deep, see e.g. [K6], [F], [Ka], [H1], [H3].
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§5 An Elementary Treatise on Quadratic

Modules

We want to construct a specialization theory for quadratic forms, similar to
the theory in §3 for symmetric bilinear forms. In order to do this we need
some definitions and theorems about quadratic modules over rings, and in
particular over valuation rings.

Let A be any ring (always commutative, with 1). We recall some fun-
damental definitions and facts about quadratic forms over A, cf. [MH, Ap-
pendix 1].

Definition 1. Let M be an A-module. A quadratic form on M is a function
q:M → A, satisfying the following conditions:

(1) q(λx) = λ2q(x) for λ ∈ A, x ∈M .

(2) The function Bq:M ×M → A, Bq(x, y): = q(x + y) − q(x) − q(y) is a
bilinear form on M .

The pair (M, q) is then called a quadratic module over A.

Note that the bilinear form Bq is symmetric. Furthermore Bq(x, x) =
2q(x) for all x ∈ M . If 2 is a unit in A, 2 ∈ A∗, we can retrieve q from Bq.
Also, every symmetric bilinear form B on M comes from a quadratic form q
in this case, namely q(x) = 1

2B(x, x). So, if 2 ∈ A∗, bilinear modules (see §3,
Def. 2) and quadratic modules over A are really the same objects.

If 2 6∈ A∗, and 2 is not a zero-divisor in A, we can still identify quadratic
forms on an A-module M with special symmetric bilinear forms, namely the
forms B with B(x, x) ∈ 2A for all x ∈ M (“even” bilinear forms). However,
if 2 is a zero-divisor in A, then quadratic and bilinear modules over A are
very different objects.

In what follows, primarily free quadratic modules will play a rôle, i.e.
quadratic modules (M, q) for which the A-module is free and always of finite
rank. If M is a free A-module with basis e1, . . . , en and (aij) a symmetric
(n × n)-matrix, then there exists exactly one quadratic form q on M with
q(ei) = aii and Bq(ei, ej) = aij for i 6= j (1 ≤ i, j ≤ n), namely

q

(
n∑

i=1

xiei

)
=

n∑

i=1

aiix
2
i +

∑

1≤i<j≤n

aijxixj .

We denote this quadratic module (M, q) by a symmetric matrix in square
brackets, (M, q) = [aij ], and call [aij ] the value matrix of q with respect to
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30 Chapter I. Fundamentals of Specialization Theory

the basis e1, . . . , en. If (aij) is a diagonal matrix with coefficients a1, . . . , an,
then we write (M, q) = [a1, . . . , an].

Definition 2. Let (M1, q1) and (M2, q2) be quadratic A-modules. The or-
thogonal sum (M1, q1) ⊥ (M2, q2) is the quadratic A-module

(M1 ⊕M2, q1 ⊥ q2),

consisting of the direct sum M1 ⊕M2 and the form

(q1 ⊥ q2)(x1 + x2): = q1(x1) + q2(x2)

for x1 ∈M1, x2 ∈M2.

If (M1, q1) = [A1] and (M2, q2) = [A2] are free quadratic modules with
corresponding symmetric matrices A1, A2, then

(M1, q1) ⊥ (M2, q2) =

[
A1

0

0

A2

]
.

Now it is also clear how to construct a multiple orthogonal sum
(M1, q1) ⊥ . . . ⊥ (Mr, qr). In particular we have for elements a1, . . . , ar ∈ A
that

[a1] ⊥ . . . ⊥ [ar] = [a1, . . . , ar].

Let (M, q) be a quadratic o-module and suppose that M1 and M2 are
submodules of the o-module M , then we write M = M1 ⊥ M2, when
Bq(M1,M2) = 0 (“internal” orthogonal sum, in contrast with the “external”
orthogonal sum of Definition 2). Clearly (M, q) ∼= (M1, q|M1) ⊥ (M2, q|M2)
in this case.

If β:M ×M → A is a – not necessarily symmetric – bilinear form, then
q(x): = β(x, x) is a quadratic form on M . If M is free, one can easily verify
that every quadratic form on M is of this form. Furthermore, two bilinear
forms β, β′ give rise to the same quadratic form q exactly when β− β′ = γ is
an alternating bilinear form: γ(x, x) = 0 for all x ∈ M , and hence γ(x, y) =
−γ(y, x) for all x, y ∈M .

Suppose now that (M1, B1) is a free bilinear module (cf. §3) and that
(M2, q2) is a free quadratic module. We equip the free moduleM : = M1⊗AM2

with a quadratic form q as follows: first we choose a bilinear form β2 on M2

with q2(x) = β2(x, x) for all x ∈ M2. Next we form the tensor product
β: = B1 ⊗ β2:M ×M → A of the bilinear forms B1, β2. This bilinear form β
is characterized by

β(x1 ⊗ x2, y1 ⊗ y2) = B1(x1, y1)β2(x2, y2)

for x1, y1 ∈ M1 and x2, y2 ∈ M2 (cf. [Bo1, §1, No.9]). Finally we let q(x): =
β(x, x) for x ∈M1 ⊗M2. This quadratic form q is independent of the choice
of the bilinear form β2, since if γ2 is an alternating bilinear form on M2, then
B1 ⊗ γ2 is an alternating bilinear form on M .
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§5 An Elementary Treatise on Quadratic Modules 31

Definition 3. We call q the tensor product of the symmetric bilinear form
B1 and the quadratic form q2, denoted q = B1 ⊗ q2, and call the quadratic
module (M, q) the tensor product of the bilinear module (M1, B1) and the
quadratic module (M2, q2), (M, q) = (M1, B1) ⊗ (M2, q2).

The quadratic form q = B1 ⊗ q2 is characterized by Bq = B1 ⊗Bq2 and

q(x1 ⊗ x2) = B1(x1, x1) q2(x2)

for x1 ∈ M1, x2 ∈ M2. For a one-dimensional bilinear module 〈c〉 and a
quadratic free module (M, q) there is a natural isometry 〈c〉 ⊗ (M, q) ∼=
(M, cq). In particular is for a symmetric (n× n)-matrix A

〈c〉 ⊗ [A] ∼= [cA].

Later on we will often denote a quadratic module (M, q) by the single
letter M and an (always symmetric) bilinear module (E,B) by the single
letter E. The tensor product E ⊗M is clearly additive in both arguments,

(E1 ⊥ E2) ⊗M ∼= (E1 ⊗M) ⊥ (E2 ⊗M)

E ⊗ (M1 ⊥ M2) ∼= (E ⊗M1) ⊥ (E ⊗M2).

Consequently we have for example (ai, bj ∈ A):

〈a1, . . . , ar〉 ⊗ [b1, . . . , bs] ∼= [a1b1, a1b2, . . . , arbs].

Let M = (M, q) be a free quadratic A-module and α:A → C a ring
homomorphism. We associate to M a quadratic C-module M ′ = (M ′, q′) as
follows: The C-module M ′ is the tensor product C ⊗AM , formed by means
of α. Choose a bilinear module β:M ×M → A with q(x) = β(x, x) for all
x ∈M . Let β′:M ′ ×M ′ → C be the bilinear form over C associated to β, in
other words

(∗) β′(c⊗ x, d⊗ y) = cd α(β(x, y))

for x, y ∈ M , c, d ∈ C. Let q′(u): = β′(u, u) for u ∈ M ′. This quadratic form
q′ is independent of the choice of β′, since if γ is an alternating bilinear form
on M , then the associated C-bilinear form γ′ on M ′ is again alternating. The
form q′ can be characterized as follows:

q′(c⊗ x) = c2α(q(x)), Bq′(c⊗ x, d⊗ y) = cd α(Bq(x, y)),

for x ∈M , y ∈M , c ∈ C, d ∈ C.

Definition 4. We say that the quadratic C-module (M ′, q′) arises from M =
(M, q) by means of a base extension determined by α, and denote M ′ by
C ⊗AM or by C ⊗αM or, even more precisely, by C ⊗A,αM . We also use
the notation q′ = qC .

If M is given by a symmetric matrix, M = [aij ] then C ⊗AM = [α(aij)].
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32 Chapter I. Fundamentals of Specialization Theory

Given a bilinear A-module M = (M,B), we similarly define a bilinear
C-module C ⊗AM = (C ⊗AM,BC), where BC is determined in the obvious
way by B, cf. (∗) above.

If M = (M, q) is a quadratic module over A and N a submodule of
M , we also interpret N as a quadratic module, N = (N, q|N) (quadratic
submodule). Furthermore we denote by N⊥ the submodule of M consisting
of all elements x ∈ M with Bq(x, y) = 0 for all y ∈ N . Of course, we
also interpret N⊥ as a quadratic module. In particular we can look at the
quadratic submodule M⊥ of M . If M⊥ is free of finite rank r, then M⊥ has
the form [a1, . . . , ar] with elements ai ∈ A.

Later on we will frequently use the following elementary lemma.

Lemma 1 [MH, p.5]. Let M = (M,B) be a bilinear A-module and let N
be a submodule of M . Suppose that the bilinear form B is nondegenerate
on N , i.e. the homomorphism x 7→ B(x,−)|N from N to the dual module
∨
N = HomA(N,A) is an isomorphism. Then M = N ⊥ N⊥.

Let M = (M, q) be a quadratic module and let N be a submodule of M
such that the bilinear form Bq is nondegenerate on N , then according to the
lemma we also have that M = N ⊥ N⊥.

To finish this section, we briefly examine free hyperbolic modules, being
quadratic modules of the form r ×

[
0
1

1
0

]
with r ∈ N0, in other words direct

sums of r copies of the quadratic module
[

0
1

1
0

]
. {When r = 0, the zero

module is meant.}

Lemma 2. Let (M, q) be a quadratic A-module whose associated bilinear
form Bq is nondegenerate. Let U be a submodule of M with q|U = 0. Suppose
that U is free of rank r and that it is a direct summand of the A-module
M . Then there exists a submodule N ⊃ U of M with N ∼= r ×

[
0
1

1
0

]
and

M = N ⊥ N⊥.

Proof. (cf. [Ba, p.13 f]). We saw already in §3 (just after Definition 5) that
there exists an exact sequence of A-modules

0 −→ U⊥ −→M
α−→

∨
U −→ 0,

with
∨
U : = HomA(U,A), where α maps an element z ∈M to the linear form

B(z,−)|U on U . Since
∨
U is free, this sequence splits. Choose a submodule

V of M with M = U⊥ ⊕ V . Then α|V :V →
∨
U is an isomorphism. The

modules U and V are therefore in perfect duality with respect to the pairing
U × V → A, (x, y) 7→ Bq(x, y).

Now choose a – not necessarily symmetric – bilinear form β:V × V → A
with β(x, x) = q(x) for x ∈ V . We then have an A-linear map ϕ:V → U such
that β(v, x) = Bq(v, ϕ(x)) for v ∈ V , x ∈ V . Therefore

q(x − ϕ(x)) = q(x) −Bq(x, ϕ(x)) = q(x) − β(x, x) = 0
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§5 An Elementary Treatise on Quadratic Modules 33

for every x ∈ V . Let W : = {x− ϕ(x) | x ∈ V }. Since

Bq(u, x− ϕ(x)) = Bq(u, x)

for all u ∈ U and x ∈ V , the modulesW and U are also in perfect duality with
respect to Bq. Furthermore is q|W = 0. Choose a basis e1, . . . , er for U and
let f1, . . . , fr be the dual basis of W with respect to Bq, i.e. Bq(ei, fj) = δij .
Then N : = U ⊕W can be written as

N =
r⊥
i=1

(Aei +Afi) ∼= r ×
[
0

1

1

0

]
.

An appeal to Lemma 1 yields M = N ⊥ N⊥.

Given a quadratic A-module M = (M, q), we denote (M,−q) by −M , as
is already our practice for bilinear spaces.

Theorem. Let M = (M, q) be a quadratic A-module. Suppose that the bilin-
ear form Bq is nondegenerate and that M is free of rank r. Then

M ⊥ (−M) ∼= r ×
[
0

1

1

0

]
.

Proof. Let (E, q̃): = (M, q) ⊥ (M,−q). We interpret the module E = M⊕M
as the cartesian product M × M . The diagonal D: = {(x, x) | x ∈ M} is
a free E-submodule of rank r and D is a direct summand of E, for E =
D ⊕ (M × {0}). Furthermore q|D = 0. The statement now follows from
Lemma 2.
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§6 Quadratic Modules over Valuation Rings

In this section we let o be a valuation ring with maximal ideal m, quotient
field K and residue class field k = o/m. The case m = 0, i.e. K = k = o is
explicitly allowed. We shall present the theorems about quadratic modules
over o necessary for our specialization theory, and prove most of them.

Lemma 1. Let (M,B) be a free bilinear module over o, and let N be a
submodule of M . The submodule N⊥ of M is free with finite basis and is a
direct summand of M . Every submodule L of M with M = N⊥ ⊕ L is also
free with finite basis.

Proof. M/N⊥ is torsion free and finitely generated, hence free with finite
basis. This follows from the fact that every finitely generated ideal of o is
principal, cf. [CE, VII, §4]. (We used this already in the proof of Lemma 2,
§3.) If x1, . . . , xr is a basis of M/N⊥ and x1, . . . , xr are the pre-images of
the xi in M , then L0: = ox1 + . . . + oxr is free with basis x1, . . . , xr and
M = N⊥ ⊕ L0. If M = N⊥ ⊕ L as well, then L ∼= M/N⊥ ∼= L0, so that L
is also free with finite basis. Finally, N⊥ is torsion free and finitely generated,
hence free with finite basis.

In particular, if (M,B) is a free bilinear module over o, there is an or-
thogonal decomposition M = M0 ⊥ M⊥ with B|M⊥ ×M⊥ = 0.

Definition 1. M⊥ is called the radical of the bilinear module (M,B). If
(M, q) is a free quadratic o-module, then the radicalM⊥ of (M,Bq), equipped
with the quadratic form q|M⊥, is called the quasilinear part of M , and is
denoted by QL(M). If M = M⊥, the quadratic module (M, q) is called
quasilinear.

Definition 2. Let M be a free o-module with basis e1, . . . , en. We call a
vector x ∈M primitive in M , if for the decomposition x = λ1e1 + . . .+λnen

(λi ∈ o) the ideal
m∑
1
λio is equal to o, i.e. at least one λi is a unit.

This property is independent of the choice of basis: x is primitive when
M/ox is torsion free, hence when ox is a direct summand of the module M .

Definition 3. We call a quadratic module (M, q) over o nondegenerate if it
satisfies the following conditions:
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36 Chapter I. Fundamentals of Specialization Theory

(Q0) M is free of finite rank.
(Q1) The bilinear form Bq, induced by Bq on M/M⊥ in the obvious way,

is nondegenerate.
(Q2) q(x) ∈ o∗ for every vector x in M⊥, which is primitive in M⊥ (and

hence in M).

If instead of (Q2), the following condition is satisfied

(Q2′) QL(M) = 0 or QL(M) ∼= [ε] with ε ∈ o∗,

then we call (M, q) regular. In the special case M⊥ = 0, we call (M, q) strictly
regular.

Remark. The strictly regular quadratic modules are identical with the “qua-
dratic spaces” over o in [K4]. In case o = K, the term “nondegenerate” has
the same meaning as in [K4]. “Strictly regular” is a neologism, constructed
with the purpose of avoiding collision with the confusingly many overlapping
terms in the literature.

From a technical point of view, Definition 3 is the core definition of
this book. The idea behind it is, that the term “nondegenerate” captures
a possibly large class of quadratic o-modules, which work well in the spe-
cialization theory (see §7 and following). {We will settle upon the agreement
that a quadratic K-module E has “good reduction with respect to o” if
E ∼= K ⊗o M , where M is a nondegenerate quadratic o-module, see §7,
Def.1.} The requirements (Q0) and (Q1) are obvious, but (Q2) and (Q2′)
deserve some explanation.

If charK 6= 2, i.e. 2 6= 0 in o, then q|M⊥ = 0 and the requirement (Q2)
implies that M⊥ = 0, hence implies – in conjunction with (Q0) and (Q1) –
strict regularity. If 2 ∈ o∗, then the nondegenerate quadratic o-modules are
the same objects as the nondegenerate bilinear o-modules in the sense of our
earlier definition.

Suppose now that charK = 2. The condition M⊥ = 0, in other words
strict regularity, is very natural, but too limited for applications. Indeed, if
M⊥ = 0, then the bilinear module (M,Bq) is nondegenerate and we have
Bq(x, x) = 2q(x) = 0 for every x ∈M . This implies that M has even dimen-
sion, as is well-known. (To prove this, consider the vector space K⊗oM .) So
if we insist on using strict regularity, we can only deal with quadratic forms
of even dimension.

On the other hand, property (Q2) has an annoying defect: it is not always
preserved under a basis extension. If o′ ⊃ o is another valuation ring, whose
maximal ideal m′ lies over m, i.e. m′∩o = m, and if M is nondegenerate, then
o′ ⊗o M can be degenerate.

However, if M satisfies (Q2′), this clearly cannot happen. Therefore we
will limit ourselves later (from §9 onwards) in some important cases to regular
modules.

The arguments will be clearer however, when we allow arbitrary nonde-
generate quadratic modules as long as possible, and a lot of results in this
generality are definitely important.

Our use of the terms “regular” and “nondegenerate” finds its justifica-
tion in the requirements of the specialization theory presented in this book.
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§6 Quadratic Modules over Valuation Rings 37

Regular quadratic modules over valuation rings and fields (in the sense of
Definition 3) are just those quadratic modules, for which the generic split-
ting theory in particular functions in a “regular way”, as we are used to
in the absence of characteristic 2 (cf. §4), see §9 below. The nondegenerate
quadratic modules are those ones, for which the generic splitting theory still
can get somewhere in a sensible way, see §10 and §12 below.

The author is aware of the fact that in other areas (number theory in
particular) a different terminology is used. For example, Martin Kneser calls
our regular modules “half regular” and our strictly regular modules “regular”
in his lecture notes [Kn3], and has a good reason to do so. In the literature,
the word “nondegenerate” is almost exclusively used for the more restrictive
class of quadratic modules, which we call “strictly regular”, see Bourbaki
[Bo1, §3, No. 4] in particular. In our context, however, it would be a little bit
silly to give the label “degenerate” to every quadratic module, which is not
strictly regular.

We need some formulas, related to quadratic modules of rank 2.

Lemma 2. Let α ∈ o, β ∈ o, λ ∈ o∗. Then

(1)

[
α

λ

λ

β

]
∼=
[
α

1

1

λ−2β

]
,

and furthermore

(2) 〈λ〉 ⊗
[
α

1

1

β

]
∼=
[
λα

1

1

λ−1β

]
.

Finally, if α ∈ o∗, β ∈ o then

(3)

[
α

1

1

β

]
∼= 〈α〉 ⊗

[
1

1

1

αβ

]
.

Proof. Let (M, q) be a free quadratic module with basis e, f and associated

value matrix
[
α
λ
λ
β

]
. Then e, λ−1f is also a basis of M , whose associated

value matrix equals
[
α
1

1
λ−2β

]
. This settles (1). Furthermore 〈λ〉 ⊗

[
α
1

1
β

]
is

determined by the quadratic module (M,λq), and so 〈λ〉⊗
[
α
1

1
β

]
∼=
[
λα
λ

λ
λβ

]
.

Applying (1) to this, results in (2). Clearly (3) is a special case of (2).

Theorem 1. Let M = (M, q) be a nondegenerate quadratic module over o.

(a) Then M is an orthogonal sum of modules
[
α
1

1
β

]
with 1 − 4αβ ∈ o∗ and

modules [ε] with ε ∈ o∗.

(b) If M is regular and dimM even (recall that dimM denotes the rank of
the free module M), then M is strictly regular and equal to an orthogonal

sum of modules
[
α
1

1
β

]
with 1 − 4αβ ∈ o∗.
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Proof. First suppose that 2 ∈ o∗. Then (M,Bq) is a bilinear space. Hence
(M,Bq) has an orthogonal basis, as is well-known (cf. [MH, I, Cor.3.4]), and
so

(M,Bq) ∼= 〈ε1, . . . , εn〉.
Therefore (M, q) ∼=

[
ε1
2 , . . . ,

εn

2

]
. For a binary quadratic module N = [a, b]

with units a, b ∈ o∗, we have

[a, b] ∼=
[
a

2a

2a

a+ b

]
,

since, if e, f is a basis of the module N with value matrix
[
a
0

0
b

]
, then e, e+ f

is a basis with value matrix
[
a
2a

2a
a+b

]
. Lemma (2), formula (1) then yields

[a, b] ∼=
[
a

1

1

(2a)−1(a+ b)

]
.

Hence all the assertions of the theorem are clear when 2 ∈ o∗.
Next suppose that 2 ∈ m. The quasilinear part M⊥ is of the form

[ε1, . . . , εr] with εi ∈ o∗. Let N be a module complement of M⊥ in M .
Then (N, q|N) is strictly regular. We will show, by induction on dimN , that

N is the orthogonal sum of binary modules
[
α
1

1
β

]
.

If N = 0, nothing has to be done. So suppose that N 6= 0. We choose a
primitive vector e in N . Since the bilinear form Bq|N ×N is nondegenerate,
there exists a vector f ∈ N with Bq(e, f) = 1. Let α = q(e), β = q(f). The

determinant of the matrix
(

2α
1

1
2β

)
is the unit 1 − 4αβ. Hence the module

oe+ of is free with basis e, f . Using Lemma 1 from §5, we get an orthogonal

decomposition N = (oe + of) ⊥ N1. Now oe + of ∼=
[
α
1

1
β

]
, and by

our induction hypothesis, N1 is also an orthogonal sum of binary quadratic
modules of this form.

This establishes part (a) of the proof. In particular,N has even dimension.
If M is regular, then r ≤ 1. Is in addition dimM even, then r = 0, in other
words, M has to be strictly regular.

If M is a free o-module, we interpret M as a subset of the K-vecor space
K ⊗o M , by identifying x ∈M with 1 ⊗ x. Then K ⊗o M = KM .

Definition 4. A quadratic o-module (M, q) is called isotropic if there exists
a vector x 6= 0 in M with q(x) = 0. Otherwise (M, q) is called anisotropic.

Remark. In this definition of “isotropic”, we proceed in a different way, com-
pared to §3, Definition 6, since the bilinear form Bq can be degenerate. This
would cause trouble over a local ring instead of over o.

Lemma 3. Suppose that (M, q) is a quadratic o-module, and that M is free
of finite rank over o. The following assertions are equivalent:

(a) (M, q) is isotropic.
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(b) (K ⊗o M, qK) is isotropic.

(c) The module M has a direct summand V 6= 0 with q|V = 0.

Proof. The implications (a) ⇒ (b) and (c) ⇒ (a) are trivial. (b) ⇒ (c): Let
E = K ⊗o M = KM . Now q = qK |M . The K-vector space E contains a
subspace W 6= 0 with qK |W = 0. Let V : = W ∩M . The o-module V is a
direct summand of M , since M/V is torsion free and finitely generated, hence
free. We have KV = W . Therefore certainly V 6= 0 and q|V = 0.

Definition 5. Let (M, q) be a quadratic o-module. A pair of vectors e, f in
M is called hyperbolic if q(e) = q(f) = 0 and Bq(e, f) = 1.

Note that according to §5, Lemma 1, we then have that

M = (oe+ of) ⊥ N ∼=
[
0

1

1

0

]
⊥ N

where N is a quadratic submodule of M , namely N = (oe+ of)⊥.

Lemma 4. Let (M, q) be a nondegenerate quadratic o-module, and let e be a
primitive vector in M with q(e) = 0. Then e can be completed to a hyperbolic
vector pair e, f .

Proof. We choose a decomposition M = N ⊥ M⊥ and write e = x+ y with
x ∈ N , y ∈M⊥. Suppose for the sake of contradiction that the vector x is not
primitive inN , hence not primitive inM . Then y is primitive inM . According
to condition (Q2), we then have q(y) ∈ o∗. Hence also q(x) = −q(y) ∈ o∗.
Therefore x has to be primitive, contradiction.

Hence x is primitive in N . Since Bq is nondegenerate on N , there exists
an element z ∈ N with Bq(x, z) = 1. We also have Bq(e, z) = 1. Clearly
f : = z − q(z)e completes the vector e to a hyperbolic pair.

Theorem 2 (Cancellation Theorem). Let M and N be free quadratic o-
modules. Let G be a strictly regular quadratic o-module, and suppose that
G ⊥ M ∼= G ⊥ N . Then M ∼= N .

For the proof we refer to [K3], in which such a cancellation theorem
is proved over local rings. An even more general theorem can be found in
Kneser’s works [Kn2], [Kn3, Ergänzung zu Kap. I]. A very accessible source
for many aspects of the theory of quadratic forms over local rings is the book
[Ba] of R. Baeza. Admittedly, Baeza only treats strictly regular quadratic
modules, which he calls “quadratic spaces”.

In the field case o = K, Theorem 2 was already demonstrated for 2 = 0
by Arf [A] and for 2 6= 0 – as is very well-known – by Witt [W]. A nice
discussion of the cancellation problem over fields, with a view towards the
theory over local rings, can again be found in Kneser’s work [Kn1].

Theorem 3. Let M be a nondegenerate quadratic module over o. There exists
a decomposition
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(∗) M ∼= M0 ⊥ r ×
[
0

1

1

0

]

with M0 nondegenerate and anisotropic, r ≥ 0. The number r ∈ N0 and the
isometry class of M0 are uniquely determined by M .

Proof. Lemma 3 and Lemma 4 immediately imply the existence of a decom-
position (∗). Suppose now that

M ∼= M ′
0 ⊥ r′ ×

[
0

1

1

0

]

is another decomposition. Suppose without loss of generality that r ≤ r′.
Then Theorem 2 implies that

M0
∼= M ′

0 ⊥ (r′ − r) ×
[
0

1

1

0

]
.

Since M0 is anisotropic, we must have r = r′.

In the field case o = K, this theorem can again be found back in Arf [A]
for 2 = 0 and in Witt [W] for 2 6= 0.

Definition 6. We call a decomposition (∗), as in Theorem 3, a Witt decom-
position of M . We call M0 the kernel module of the nondegenerate quadratic
module M and r the Witt index of M and write M0 = ker(M), r = ind(M).

Furthermore, we call two nondegenerate quadratic modules M and N
over o Witt equivalent, denoted by M ∼ N , when ker(M) ∼= ker(N). We
denote the Witt class of M , i.e. the equivalence class of M with respect to
∼, by {M}.

It is now tempting to define an addition of Witt classes {M}, {N} of two
nondegenerate quadratic modules M,N over o in the same way as we did this
for nondegenerate bilinear modules over fields in §2, namely {M} + {N}: =
{M ⊥ N}.

Although the orthogonal sum of two nondegenerate quadratic modules
could be degenerate, the addition makes sense if one of the modules M , N is
strictly regular, as we will show now.

Proposition. Let M,M ′ be strictly regular quadratic o-modules with
M ∼M ′, and let N,N ′ be nondegenerate quadratic o-modules with N ∼ N ′.
Then the modules M ⊥ N and M ′ ⊥ N ′ are nondegenerate and M ⊥ N ∼
M ′ ⊥ N ′.

Proof. It follows immediately from Definition 3 that M ⊥ N and M ′ ⊥ N ′

are nondegenerate. Suppose without loss of generality that dimM ′ ≥ dimM .
Then M ′ ∼= M ⊥ s ×

[
0
1

1
0

]
for an s ≥ 0. Therefore M ′ ⊥ N ∼= (M ⊥

N) ⊥ s ×
[

0
1

1
0

]
, and so M ′ ⊥ N ∼ M ⊥ N . A similar argument shows

that M ′ ⊥ N ∼M ′ ⊥ N ′.
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Definition 7a. We denote the set of Witt classes of nondegenerate quadratic
o-modules by W̃q(o). We denote the subset of Witt classes of regular, resp.
strictly regular quadratic o-modules by Wqr(o), resp. Wq(o).

Because of the proposition above, we now have a well-defined “addition”
of classes {M} ∈Wq(o) with classes {N} ∈ W̃q(o),

{M} + {N}: = {M ⊥ N}.

The zero module M = 0 gives rise to a neutral element for this addition,
{0} + {N} = {N}, {M} + {0} = {M}. If M and N are strictly regular,
then {M} + {N} = {N} + {M} = {M ⊥ N} ∈ Wq(o). Therefore Wq(o) is
an abelian semigroup with respect to this sum. The theorem at the end of
§5 shows that Wq(o) is in fact an abelian group, since if (M, q) is a strictly
regular quadratic o-module, then {(M, q)} + {(M,−q)} = 0.

Definition 7b. We call the abelian group Wq(o) the quadratic Witt group

of o, the set W̃q(o) the quadratic Witt set of o andWqr(o) the regular quadratic
Witt set of o.

The group Wq(o) acts on the set W̃q(o) by means of the addition, intro-
duced above. One can show easily that the isomorphism classes of nonde-
generate quasilinear quadratic o-modules (see Definition 1) form a system of
representatives of the orbits of this action. Wqr(o) is a union of orbits.

If m = 0, hence o = K, then Witt classes of degenerate quadratic modules
can be defined without difficulties. We will explain this next.

Definition 8. Let M = (M, q) be a finite dimensional quadratic module over
K. The defect δ(M) of M is the set of all x ∈M⊥ with q(x) = 0.

The defect δ(M) is clearly a subspace of M , and M is nondegenerate if
and only if δ(M) = 0. The form q induces a quadratic form q:M/δ(M) → K
on the vector space M/δ(M) in the obvious way: q(x): = q(x) for x ∈ M ,
where x is the image of x in M/δ(M). The quadratic K-module (M/δ(M), q)
is clearly nondegenerate.

Definition 9. If δ(M) = 0, i.e. if M is nondegenerate, then we call M =
(M, q) a quadratic space over K. In general we denote the quadratic space

(M/δ(M), q) over K by
∧
M , and call

∧
M the quadratic space associated to M .

We have

M ∼=
∧
M ⊥ δ(M) ∼=

∧
M ⊥ s× [0]

with s: = dim δ(M). Furthermore, given a quadratic space E over K, we
obviously have

δ(E ⊥ M) = δ(M) and (E ⊥ M)∧ ∼= E ⊥
∧
M .
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Now it is clear, that in the field case Theorem 3 can be expanded as
follows:

Theorem 3′. Let M be a finite dimensional quadratic K-module. There
exists a decomposition

M ∼= M0 ⊥ r ×
[
0

1

1

0

]

with
∧
M 0 anisotropic and r ≥ 0. The number r ∈ N0 and the isometry class

of M0 are uniquely determined by M .

Definition 10. We call M0 the kernel module of M and r the Witt index
of M , and write M0 = kerM , r = ind(M). Just as before, we call two
finite dimensional quadratic K-modules M and N Witt equivalent, and write
M ∼ N , when ker(M) ∼= ker(N). We denote the Witt equivalence class of
M by {M}.

Remark. It may seem more natural to call M and N equivalent when their
“kernel spaces” (kerM)∧, (kerN)∧ are isometric. Our results in §7 and §11
are a bit stronger if we use the finer equivalence defined above.

We denote the set of Witt classes {M} of finite dimensional quadratic

K-modules M by Ŵq(K) and call this the defective quadratic Witt set of K.

The abelian group Wq(K) acts on Ŵq(K) in the usual way: {E} + {M}: =
{E ⊥ M} for {E} ∈ Wq(K), {M} ∈ Ŵq(K). It even makes sense to add
two arbitrary Witt classes together:

{M} + {N}: = {M ⊥ N}.

The result is independent of the choice of representatives M , N , as can be
shown by an argument, analogous to the proof of the proposition, preceding
Definition 7a. Therefore Ŵq(K) is an abelian semigroup, having Wq(K) as a
subgroup.

Caution! If charK = 2, the semigroup Ŵq(K) does not satisfy a cancellation
rule. Is for example a ∈ K∗, then [a] ⊥ [a] ∼= [0] ⊥ [a], but it is not so that
[a] ∼ [0].

To a field homomorphism α:K → K ′ (i.e. a field extension), we can

associate a well-defined map α∗: Ŵq(K) → Ŵq(K ′), which sends the Witt
class {M} to the class {K ′⊗αM}. This map is a semigroup homomorphism.
By restricting α∗, we can find maps fromWq(K) toWq(K ′) and fromWqr(K)

to Wqr(K ′), but (if charK = 2) in general no map from W̃q(K) to W̃q(K ′).

This is the reason why we sometimes will extend the Witt set W̃q(K) to the

semigroup Ŵq(K).
Let us now return to quadratic modules over arbitrary valuation rings.
At the end of §5 we introduced free hyperbolic modules. From now on, we

call those modules simply “hyperbolic”. { In this way, we stay in harmony
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with the terminology, used in the literature, for valuation rings (or local rings
in general), cf. [B1, V §2], [B2].} Hence

Definition 11. A quadratic o-module M is called hyperbolic if

M ∼= r ×
[
0

1

1

0

]

for some r ∈ N0.

So, if M is not the zero module, this means that M contains a basis
e1, f1, e2, f2, . . . , er, fr, where ei, fi are hyperbolic vector pairs, such that oei+
ofi is orthogonal with oej + ofj for i 6= j. Clearly a hyperbolic module is
strictly regular.

Lemma 5. Let M = (M, q) be a strictly regular quadratic o-module. M
is hyperbolic if and only if M contains a submodule V with q|V = 0 and
V = V ⊥.

Proof. IfM is hyperbolic and e1, f1, . . . , er, fr is a basis, consisting of pairwise
orthogonal hyperbolic vector pairs, then the module V : = oe1+oe2+ . . .+oer
clearly has the properties q|V = 0 and V = V ⊥. Suppose now that M is
strictly regular and that V is a submodule satisfying these properties. Since
M/V ⊥ = M/V is torsion free and finitely generated, it is free. Therefore V is
a direct summand of the o-module M . V is torsion free and finitely generated
as well, and so also free. The form Bq gives rise to an exact sequence

0 −→ V ⊥ −→M −→
∨
V −→ 0

(cf. the proof of §5, Lemma 2), from which we deduce that dimM = dimV +
dimV ⊥ = 2 dimV .

According to §5, Lemma 2 there is an orthogonal decomposition M =
N ⊥ N⊥ with V ⊂ N and N hyperbolic. The module V ⊥ built in N instead
of M also coincides with V . We conclude that dimN = 2 dimV as well, so
that N = M .

Theorem 4. Let M be a strictly regular quadratic o-module with K ⊗o M
hyperbolic. Then M itself is hyperbolic.

Proof. We apply the criterion, given by Lemma 5, two times. As before we
interpret M as an o-submodule of E: = K ⊗o M , i.e. M ⊂ E, E = KM .
Now E contains a subspace W with q|W = 0, W⊥ = W . The intersection
V : = W ∩M is an o-submodule of M with q|V = 0 and V ⊥ = V . (Here V ⊥

is considered in M .)

Definition 12. The valuation ring o is called quadratically henselian if for
every γ ∈ m, there exists a λ ∈ o such that λ2 − λ = γ.
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Remark. One can convince oneself that this means that “Hensel’s Lemma” is
satisfied by monic polynomials of degree 2. Every henselian valuation ring is
of course quadratically henselian (cf. [Ri, Chap. F], [E, §16]). In Definition 12
we isolated that part of the property “henselian”, which is important for the
theory of quadratic forms. Note that, if o is quadratically henselian, then
every ε ∈ 1 +4m is a square in o, since ε = 1 +4γ and γ = λ2 −λ imply that
ε = (1 − 2γ)2.

Lemma 6. Let o be quadratically henselian. Let α, β ∈ K and αβ ∈ m. Then
we have that over K: [

α

1

1

β

]
∼=
[
0

1

1

0

]
.

Proof. According to Lemma 2, formula (3), we have
[
α

1

1

β

]
∼= 〈α〉 ⊗

[
1

1

1

αβ

]
.

There exists a λ ∈ o with λ2 + λ + αβ = 0. If e, f is a basis of the module[
1
1

1
αβ

]
, having the indicated value matrix, then q(λe+f) = λ2 +λ+αβ = 0.

Therefore
[
α
1

1
β

]
is isotropic. Applying Lemma 4, with o = K, gives

[
α
1

1
β

]
∼=

[
0
1

1
0

]
.

Theorem 5. Let o be quadratically henselian. Let (M, q) be a nondegenerate
anisotropic quadratic module over o. Then q(e) is a unit for every vector
e ∈M which is primitive in M .

Proof. We choose a decomposition M = N ⊥ M⊥. Let e ∈M be primitive.
Suppose for the sake of contradiction that q(e) ∈ m. We write e = x+ y with
x ∈ N , y ∈M⊥, and have q(e) = q(x) + q(y).

Case 1: x is primitive in M , hence also in N . Then there exists an f ∈ N
with Bq(x, f) = 1, since Bq is nondegenerate on N . We have Bq(e, f) = 1.
Therefore

oe+ of ∼=
[
α

1

1

β

]

with α = q(e) ∈ m, β = q(f) ∈ o. According to Lemma 6, oe+of is isotropic.
This is a contradiction, since M is anisotropic.

Case 2: x is not primitive in M . Now x = λx0 with x0 primitive in M , λ ∈ m.
The vector y has to be primitive in M . Since q is nondegenerate, it follows
that q(y) ∈ o∗. We have

q(e) = λ2q(x0) + q(y) ∈ o
∗,

contradicting the assumption that q(e) ∈ m.

We conclude that q(e) ∈ o∗.
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Later on, we will use Lemma 6 and Theorem 5 for a nondegenerate
quadratic module M over an arbitrary valuation ring o, by going from M
to the quadratic module Mh: = oh ⊗o M over the henselisation oh of o (see
[Ri, Chap.F], [E, §17]). {Remark: One can also form a “quadratic henselisa-
tion” oqh in the obvious way. It would suffice to take oqh instead of oh.} In
order to do so, the following lemma is important.

Lemma 7. Let M be a nondegenerate quadratic module over o. Then the
quadratic module Mh over oh is also nondegenerate.

Proof. The properties (Q0) and (Q1) from Definition 3 stay valid for every
basis extension. Hence we suppose that M satisfies (Q0) and (Q1), so that
we only have to consider (Q2). We have (Mh)⊥ = (oh⊗oM)⊥ = oh⊗oM

⊥ =
(M⊥)h.

The property (Q2) for M says that the quasilinear space k ⊗o M
⊥ =

k ⊗o QL(M) is anisotropic over k. To start with, we can identify k ⊗o M
with the quadratic module M/mM over k = o/m, whose quadratic form
q:M/mM → k is induced by the quadratic form q:M → o in the obvious
way. In the same way we then have k⊗oM

⊥ = M⊥/mM⊥. A vector x ∈M⊥

is primitive if and only if its image x ∈ M⊥/mM⊥ is nonzero. (Q2) implies
then that q(x) 6= 0.

Let mh denote the maximal ideal of oh. It is well-known that mh ∩ o = m

and that the residue class field oh/mh is canonically isomorphic to o/m = k.
We identify oh/mh with k. Then k⊗

o
hMh = k⊗oM and also k⊗

o
hQL(Mh) =

k⊗oQL(M). Therefore (Q2) is satisfied for M if and only if (Q2) is satisfied
for Mh.
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§7 Weak Specialization

In this section λ:K → L∪∞ is a place, o = oλ is the valuation ring associated
to λ, with maximal ideal m and residue class field k = o/m. Given a quadratic
module E = (E, q) over K, we want to associate a quadratic module λ∗(E)
over L to it, insofar this is possible in a meaningful way.

In order to do this, we limit ourselves to the case where E is nondegenerate
(see §6, Definition 3, but with K instead of o). This is not a real limitation,
however. Since K is a field, every quadratic module E = (E, q) of finite
dimension over K has the form E ∼= F ⊥ [0, . . . , 0] = F ⊥ s× [0] with F
nondegenerate (see §6). So, when we have associated a specialization λ∗(F )
to F in a satisfactory way, it is natural to put λ∗(E) = λ∗(F ) ⊥ s× [0]. We
stay with nondegenerate quadratic K-modules, however, and now call them
quadratic spaces over K, as agreed in §6, Definition 9.

Definition 1. Let E be a quadratic space over K. We say that E has good
reduction with respect to λ when E ∼= K⊗oM , where M is a nondegenerate
quadratic o-module.

This is the “good case”. We would like to put λ∗(E): = L ⊗λ M , where
the tensor product is formed by means of the homomorphism λ|o: o → M , see
§5, Definition 4. This tensor product can more easily be described as follows:
First we go from the quadratic o-module M = (M, q) to the quadratic space
M/mM = (M/mM, q) over k = o/m, where q is obtained from q:M → o

in the obvious way. Next we extend scalars by means of the field extension
λ: k →֒ L, determined by λ, thus obtaining λ∗(E) = L⊗k (M/mM).

Is this meaningful? With a similar argument as towards the end of §3
(second proof of Theorem 2), we now show that the answer is affirmative
when E is strictly regular (which means that E⊥ = 0, cf. §6, Definition 3).

Theorem 1. Let E be strictly regular and let M , M ′ be nondegenerate
quadratic o-modules with E ∼= K ⊗o M ∼= K ⊗o M

′. Then M ∼= M ′, and
hence M/mM ∼= M ′/mM ′.

Proof. Clearly M⊥ = 0 and (M ′)⊥ = 0. Hence M and M ′ are also strictly
regular. By the theorem at the end of §5, the space K ⊗o [M ′ ⊥ (−M)] ∼=
E ⊥ (−E) is hyperbolic. So M ′ ⊥ (−M) is itself hyperbolic, by §6, The-
orem 4. M ⊥ (−M) is also hyperbolic, again by the theorem at the end of
§5. The modules M ′ ⊥ (−M) and M ⊥ (−M) have the same rank. Hence
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M ′ ⊥ (−M) ∼= M ⊥ (−M), and so M ′ ∼= M by the Cancellation
Theorem (§6, Theorem 2).

The problem remains to see that λ∗(E) does not depend on the choice of
the module M , when E has good reduction with respect to λ, but only is non-
degenerate. Furthermore, in case of bad reduction (i.e. not good reduction),
we would nevertheless like to associate a Witt class λW ({E}) over L to E
in a meaningful way, just as for bilinear forms in §3 (“weak specialization”).
Neither problem can be dealt with as in §3, in the first place because the
Witt classes do not constitute an additive group this time. Thus we have to
seek out a new path.

Lemma 1. Let o be quadratically henselian (see §6, Definition 12) and let
V = (V, q) be an anisotropic quadratic module over K.

(a) The sets

µ(V ): = {x ∈ V | q(x) ∈ o} and µ+(V ): = {x ∈ V | q(x) ∈ m}

are o-submodules of V .

(b) For any x ∈ µ(V ) and y ∈ µ+(V ), we have q(x + y) − q(x) ∈ m and
Bq(x, y) ∈ m.

Proof. (a) Let x ∈ µ(V ) (resp. x ∈ µ+(V )) and λ ∈ o, then clearly λx ∈ µ(V )
(resp. µ+(V )). So we only have to show that for any x, y ∈ µ(V ) (resp.
µ+(V )), we have x+ y ∈ µ(V ) (resp. µ+(V )). Let B: = Bq.

Let x ∈ µ(V ), y ∈ µ(V ). Suppose for the sake of contradiction that
x + y 6∈ µ(V ), i.e. q(x + y) = q(x) + q(y) + B(x, y) 6∈ o. Since q(x) ∈ o,
q(y) ∈ o, we must have that B(x, y) 6∈ o. Hence λ: = B(x, y)−1 ∈ m. The

vectors x, λy give rise to the value matrix
[
q(x)

1
1

λ2q(y)

]
. According to §6,

Lemma 6, the space Kx+Ky = Kx+Kλy is isotropic. Contradiction, since
V is anisotropic. Therefore x+ y ∈ µ(V ).

Next, let x ∈ µ+(V ), y ∈ µ+(V ). Suppose again for the sake of con-
tradiction that x + y 6∈ µ+(V ). We just showed that q(x + y) ∈ o. By our
assumption q(x + y) 6∈ m, so that q(x + y) ∈ o∗. Since q(x) ∈ m, q(y) ∈ m,
we have B(x, y) ∈ o∗. Write B(x, y) = λ−1 with λ ∈ o∗. Again, the vectors

x, λy give rise to the value matrix
[
q(x)
1

1
λ2q(y)

]
. Just as before, the space

Kx+Ky is isotropic, according to §6, Lemma 6. Contradiction! We conclude
that x+ y ∈ µ+(V ).

(b) Suppose for the sake of contradiction that there exist vectors x ∈ µ(V ),
y ∈ µ+(V ) with q(x+y)−q(x) 6∈ m. We showed above that q(x+y) ∈ o. Hence
q(x + y) − q(x) = q(y) + B(x, y) ∈ o. By assumption, this element doesn’t
live in m and is thus a unit. Since q(y) ∈ m, we also have B(x, y) ∈ o∗. As
before, we write λ = B(x, y)−1 and observe that Kx+Ky is isotropic, giving
a contradiction. Therefore q(x+y)−q(x) ∈ m and B(x, y) = q(x+y)−q(x)−
q(y) ∈ m as well.
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We remain in the situation of Lemma 1. For x ∈ µ(V ), λ ∈ m, we have
λx ∈ µ+(V ). Therefore

ρ(V ): = µ(V )/µ+(V )

is a k-vector space in a natural sense (k = o/m). We define a function
q: ρ(V ) → k as follows:

q(x): = q(x) (x ∈ µ(V )),

where x denotes the image of x ∈ µ(V ) in ρ(V ) and a denotes the image of
a ∈ o in k. Lemma 1 tells us that the map q is well-defined.

For x ∈ µ(V ), a ∈ o, we have q(a x) = q(ax) = q(ax) = a2q(x) =
a2q(x). According to Lemma 1, the bilinear form B: = Bq has values in o on
µ(V )×µ(V ) and values in m on µ(V )×µ+(V ). Therefore, it induces on ρ(V )
a symmetric bilinear form B over k with B(x, y) = B(x, y) for x, y ∈ µ(V ).
A very simple calculation now shows that

q(x + y) − q(x) − q(y) = B(x, y)

for x, y ∈ µ(V ). This furnishes the proof that q is a quadratic form on the k-
vector space ρ(V ) with Bq = B. The quadratic k-module (ρ(V ), q) is clearly
anisotropic.

Definition 2. (o quadratically henselian.) We call the quadratic k-module
ρ(V ) = (ρ(V ), q) the reduction of the anisotropic quadratic K-module V with
respect to the valuation ring o.

In order to associate to a quadratic space E over K, by means of the
place λ:K → L∪∞, a Witt class λW {E} over L, the following path presents
itself now: Let oh be the henselization of the valuation ring o = oλ, mh the
maximal ideal of oh and Kh the quotient field of oh. The residue class field
oh/mh is canonically isomorphic to k = o/m and will be identified with k.
Let

λW {E} = {L⊗λ ρ(Ker (Kh ⊗ E))},
where, as before, λ: k →֒ L is the field embedding, determined by λ. The
space over L on the righthand side can then be considered to be a “weak
specialization” of E with respect to λ.

All good and well, if only we knew whether the vector space

ρ(Ker (Kh ⊗ E))

has finite dimension! To guarantee this, we have to confine the class of allowed
quadratic modules E.

In the following, v:K → Γ ∪ ∞ is a surjective valuation, associated to
the valuation ring o, thus with Γ the value group of v, Γ ∼= K∗/o∗. We use
additive notation for Γ (so v(xy) = v(x) + v(y) for x, y ∈ K).
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Already in §3, we agreed to view the square class groupQ(o) as a subgroup
of Q(K), and also to regard the elements of Q(K) as one-dimensional bilinear
spaces10 over K.

Now we choose a complement Σ of Q(o) in Q(K), in other words, a
subgroup Σ of Q(K) with Q(K) = Q(o) × Σ. This is possible, since Q(K)
is elementary abelian of exponent 2, i.e. a vector space over the field with 2
elements. Further, we choose, for every square class σ ∈ Σ, an element s ∈ o

with σ = 〈s〉. For σ = 1 we choose the representative s = 1. Let S be the
set of all elements s. For every a ∈ K∗ there exists exactly one s ∈ S and
elements ε ∈ o∗, b ∈ K∗ with a = sεb2. Since K∗/o∗ ∼= Γ , it is clear that S
(resp. Σ) is a system of representatives of Γ/2Γ in K∗ (resp. Q(K)) for the
homomorphism from K∗ to Γ/2Γ (resp. from Q(K) to Γ/2Γ ), determined
by v:K∗ → Γ .

Definition 3. A quadratic space E over K is called obedient with respect to
λ (or obedient with respect to o) if there exists a decomposition

(∗) E ∼= ⊥
s∈S

〈s〉 ⊗ (K ⊗o Ms),

where Ms is a nondegenerate quadratic o-module. (Of course Ms 6= 0 for
finitely many s only.)

Clearly this property does not depend on the choice of system of repre-
sentatives S.

Remarks.

(1) Obedience is much weaker than the property “good reduction” (Defini-
tion 1).

(2) Let E and F be quadratic spaces over K, obedient with respect to o. If
at least one of them is strictly regular, then E ⊥ F is obedient.

(3) If charK 6= 2, then every quadratic space over K is strictly regular.
Hence the orthogonal sum of two obedient quadratic spaces over K is
again obedient.

(4) If 2 ∈ o∗, i.e. charL 6= 2, then every quadratic space E over K is obedient
with respect to λ, since K also has characteristic 6= 2 in this case. E has
a decomposition in one-dimensional spaces, which are clearly obedient.

(5) If charK = 0, but charL = 2, then every quadratic space of odd dimen-
sion over K is disobedient (= not obedient) with respect to λ. To see
this, let E be an obedient quadratic space with orthogonal decomposi-
tion (∗), as in Definition 3. Then the space K ⊗oMi has quasilinear part
(K ⊗o Mi)

⊥ = 0 for every i ∈ {1, . . . , r}. Therefore Mi also has quasilin-
ear part M⊥

i = 0, and is thus strictly regular. Hence the space Mi/mMi

over k = o/m is strictly regular, and so must have even dimension. We
conclude that E must have even dimension.

10Strictly speaking, square classes are isomorphism classes of one-dimensional
spaces.
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Let us now give an example of a two-dimensional disobedient space over
a field K of characteristic 2.

First, recall the definition of the Arf-invariant Arf(ϕ) of a strictly regular
form ϕ over a field k of characteristic 2. For x ∈ k, let ℘(x) := x2+x. Further,
let ℘(k) denote the set of all ℘(x), x ∈ k. This is a subgroup of k+, i.e. k
regarded as an additive group. We choose a decomposition

(∗) ϕ ∼=
[
a1

1

1

b1

]
⊥ . . . ⊥

[
am
1

1

bm

]

and set
Arf(ϕ) := a1b1 + · · · + ambm + ℘(k) ∈ k+/℘(k).

It is well-known that Arf(ϕ) is independent of the choice of the decomposi-
tion (∗) ([A], [S, Chap.IX. §4]).

Example. Let k be a field of characteristic 2 and K = k(t) the rational
function field in one variable t over k. Further, let o be the discrete valuation
ring of K with respect to the prime polynomial t in k[t], i.e. o = k[t](t).

Claim. The quadratic space
[

1
1

1
t−1

]
over K is disobedient with respect to o.

Proof. Suppose for the sake of contradiction that this space is obedient. Then
there exist a strictly regular space M over o and an element u ∈ K∗ with[

1
1

1
t−1

] ∼= 〈u〉 ⊗ (K ⊗o M). By §6, Theorem 1, we have M ∼=
[
α
1

1
β

]
with

α, β ∈ o. Hence, by §6, Lemma 2, (3), the following holds over K:

(1)

[
1

1

1

t−1

]
∼= 〈αu〉

[
1

1

1

αβ

]
.

Comparing Arf-invariants of both sides, shows that there exists an element
a ∈ K with

(2) t−1 = αβ + a2 + a.

Hence there exists an element a ∈ K with t−1 + a2 + a ∈ o.
If we now move to the formal power series field k((t)) ⊃ K, we easily see

that such an element a does not exist: For if a =
∑
r≥d

crt
r with d ∈ Z and

coefficients cr ∈ k, cd 6= 0, then

∑
r≥d

c2rt
2r +

∑
r≥d

crt
r + t−1 ∈ k[[t]],

and so d < 0. The term of lowest degree, in the first sum on the left, is
c2dt

2d. It cannot be compensated by other summands on the left. Therefore
t−1 + a2 + a 6∈ o, and the space

[
1
1

1
t−1

]
is disobedient.

In this proof we used the Arf-invariant. We remark that we can use easier
aids: Anisotropic quadratic forms like

[
1
1

1
c

]
are norm forms of separable

quadratic field extensions, and are as such “multiplicative”. Therefore, we
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can deduce immediately from (1) that
[

1
1

1
t−1

] ∼=
[

1
1

1
αβ

]
and then, that

there exists a relation (2).

Remark. Hitherto the quasilinear parts of free quadratic modules played a
predominantly negative role. This will continue to be the case. Rather often
they cause a lot of complications, compared to the theory of nondegenerate
bilinear modules. But sometimes quasilinear quadratic modules can do good
things. Suppose again that K = k(t), o = k[t](t) as in the example above. The

space
[
1
1

1
t−1

]
is disobedient with respect to o. However,

[
1
1

1
t−1

]
⊥
[
t−1
]

is

obedient, since this space over K is isometric to
[
1
1

1
0

]
⊥
[
t−1
]
, and hence

to
[

0
1

1
0

]
⊥ [t].

In connection with the definition of obedience (Definition 3), we agree
upon some more terminology. If E = (E, q) is a quadratic space, obedient
with respect to o, then we have an (internal) orthogonal decomposition

E = ⊥
s∈S

Es

of the following kind: Every vector space Es contains a free o-submodule Ms

with Es = KMs, such that q|Es = sqs for a quadratic form qs:Es → K,
which takes values in o on Ms and for which (Ms, qs|Ms) is a nondegenerate
quadratic module. (Of course Es 6= 0 for finitely many s ∈ S only.)

Definition 4. We call such a decomposition E = ⊥
s∈S

Es, together with a

choice of modulesMs ⊂ Es, a λ-modular, or also, an o-modular representation
of the obedient quadratic space E.

Lemma 2. Suppose again that o is quadratically henselian and E = (E, q)

is a quadratic space over K, obedient with respect to o. Let E = ⊥
s∈S

Es,

Es = KMs be an o-modular representation of E. Suppose furthermore that
E is anisotropic. Then we have, with the notation of Lemma 1,11

µ(E) = M1 ⊥ ⊥
s6=1

µ+(Es),

µ+(E) = mM1 ⊥ ⊥
s6=1

µ+(Es).

Proof. As above, we set q|Es = sqs. Let x be a vector of E with x 6= 0. Then
there exist finitely many pairwise distinct elements s1, . . . , sr in S, as well as
primitive vectors xi ∈ Mi: = Msi

and scalars ai ∈ K∗ (1 ≤ i ≤ r), such

that x =
r∑
i=1

aixi. We have

11In accordance with our earlier agreement, every Es is considered as a quadratic
subspace of E, Es = (Es, q|Es).
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q(x) =

r∑

i=1

a2
i siqi(xi),

where we used the abbreviation qi: = qsi
. According to §6, Theorem 5,

we have qi(xi) ∈ o∗ for every i ∈ {1, . . . , r}. Hence, for i 6= j, the
values v(a2

i siqi(xi)) = v(a2
i si) and v(a2

jsjqj(xj)) = v(a2
jsj) are different.

Let v(a2
ksk) be the smallest value among the v(a2

i si), 1 ≤ i ≤ r. Then
v(q(x)) = v(a2

ksk) = v(q(akxk)). This shows that

µ(E) = ⊥
s∈S

µ(Es), µ+(E) = ⊥
s∈S

µ+(Es).

For s 6= 1, a ∈ K∗ and primitive y ∈ Es, we have q(ay) = sa2qs(y) 6∈ o∗.
Therefore, µ(Es) = µ+(Es) for every s ∈ S \ {1}. We still have to determine
the modules µ(E1) and µ+(E1). So, let x ∈ E1, x 6= 0. We write x = ay with
a ∈ K∗ and primitive y ∈ M1. Then q(x) = a2q(y) and q(y) ∈ o∗. Hence
q(x) ∈ o exactly when a ∈ o, and q(x) ∈ m exactly when a ∈ m. Therefore
we conclude that µ(E1) = M1 and µ+(E1) = mM1.

An immediate consequence of the lemma is

Theorem 2. Let o be quadratically henselian, and let E = (E, q) be an
anisotropic quadratic space over K, obedient with respect to o. Let E =

⊥
s∈S

Es, Es = KMs be an o-modular representation of E. Then we have

for the reduction ρ(E) = (ρ(E), q) of E with respect to o:

(ρ(E), q) ∼= (M1/mM1, q1),

where q1:M1/mM1 → k is the quadratic form over k, determined by
q|M1:M1 → o in the obvious way.

Furthermore, the lemma tells us that M1 = µ(E1) and mM1 = µ+(E1).
In particular we have

Theorem 3. Let o be quadratically henselian and let E = (E, q) be an
anisotropic quadratic space over K, having good reduction with respect to
o. Then µ(E) = (µ(E), q|µ(E)) is a nondegenerate quadratic o-module with
E = K⊗o µ(E), and µ+(E) = mµ(E). Note that µ(E) is the only nondegen-
erate quadratic o-module M in E, with E = KM .

We tone down Definition 4 as follows:

Definition 5. Let E = (E, q) be a quadratic space over K, obedient with
respect to λ. A λ-modular (or o-modular) decomposition of E is an orthogonal

decomposition E = ⊥
s∈S

Es, in which every space 〈s〉 ⊗ Es = (Es, s · (q|Es))
has good reduction with respect to λ.
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54 Chapter I. Fundamentals of Specialization Theory

If o is quadratically henselian and E is anisotropic then, according to
Theorem 3, every λ-modular decomposition corresponds to exactly one λ-
modular representation of E.

Lemma 3. Let o be quadratically henselian. Let s1, . . . , sr be different el-
ements of S and M1, . . . ,Mr anisotropic nondegenerate quadratic modules
over o. Then

E: =
r⊥
i=1

〈si〉 ⊗ (K ⊗o Mi)

is an anisotropic quadratic space over K.

Proof. Let a primitive vector xi ∈Mi be given for every i ∈ {1, . . . , r}. Also,
let a1, . . . , ar ∈ K be scalars with

(†)
r∑

i=1

sia
2
i qi(xi) = 0,

where qi denotes the quadratic form on Mi. We must show that all ai = 0.
Suppose for the sake of contradiction that this is not so. After renumbering

the Mi, we can assume without loss of generality that for a certain t ∈
{1, . . . , r}, ai 6= 0 for 1 ≤ i ≤ t and ai = 0 for t < i ≤ r. By §6, Theorem 5,
q(xi) ∈ o∗ for every i ∈ {1, . . . , t}. The values v(sia

2
i qi(x)) = v(sia

2
i ) with

1 ≤ i ≤ t are pairwise different. Since this contradicts equation (†), all ai = 0.

We arrive at the main theorem of this chapter.

Theorem 4. Let E be a quadratic space over K, obedient with respect to o.
Let

E = ⊥
s∈S

Es = ⊥
s∈S

Fs

be two o-modular decompositions of E, and also let M1, N1 be nondegenerate
quadratic modules with E1

∼= K ⊗o M1, F1
∼= K ⊗o N1. Then the quadratic

spaces M1/mM1 and N1/mN1 over k = o/m are Witt equivalent.

Proof. (a) For every s ∈ S\{1} we choose nondegenerate quadratic o-modules
Ms, Ns with Es ∼= 〈s〉 ⊗ (K ⊗o Ms), Fs ∼= 〈s〉 ⊗ (K ⊗o Ns). Suppose first
that o is quadratically henselian. In accordance with §6, Theorem 3, we choose
Witt decompositions

Ms = M◦
s ⊥ is ×

[
0
1

1
0

]
, Ns = N◦

s ⊥ js ×
[
0
1

1
0

]
,

with M◦
s , N◦

s anisotropic nondegenerate quadratic o-modules. By Lemma 3
above, the nondegenerate quadratic K-modules

U : = ⊥
s∈S

〈s〉 ⊗ (K ⊗o M
◦
s ), V : = ⊥

s∈S
〈s〉 ⊗ (K ⊗o N

◦
s )

are anisotropic. Now,
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E ∼= U ⊥
(∑
s∈S

is

)
×
[
0
1

1
0

] ∼= V ⊥
(∑
s∈S

js

)
×
[

0
1

1
0

]
.

Hence U ∼= V . According to Theorem 2, we have ρ(U) ∼= M◦
1 /mM

◦
1 ,

ρ(V ) ∼= N◦
1 /mN

◦
1 . Therefore, M◦

1 /mM
◦
1

∼= N◦
1 /mN

◦
1 . Furthermore,

M1/mM1
∼= M◦

1 /mM
◦
1 ⊥ i1 ×

[
0
1

1
0

]
, N1/mN1

∼= N◦
1 /mN

◦
1 ⊥ j1 ×

[
0
1

1
0

]
.

We conclude that M1/mM1 ∼ N1/mN1.
(b) Suppose next that o is arbitrary. We go from (K, o) to the henselization

(Kh, oh). (By definition, Kh is the quotient field of the henselian valuation
ring oh.) As is well-known, the valuation v:K → Γ ∪∞ extends uniquely to
a valuation vh:Kh → Γ ∪ ∞, which therefore again has Γ as value group.
Also, oh is the valuation ring of vh. Consequently, S is also a system of
representatives of Q(Kh)/Q(oh) ∼= Γ/2Γ .

Given a free quadratic module M over o, we set – as before – Mh: =
oh ⊗o M and for a free quadratic module U over K, we set Uh: = Kh ⊗K U .
By §6, Lemma 7, the quadratic oh-modules Mh

s , Nh
s are nondegenerate. Fur-

thermore, Eh = ⊥
s∈S

Ehs = ⊥
s∈S

Fhs and Ehs
∼= Kh⊗

o
hMh

s , F
h
s

∼= Kh⊗
o

hNh
s

for every s ∈ S.
By above, the quadratic spaces Mh

1 /m
hMh

1 and Nh
1 /m

hNh
1 over k are

equivalent. However, these spaces can be canonically identified with M1/mM1

and N1/mN1 (cf. the end of the proof of §6, Lemma 7). We conclude that
M1/mM1 ∼ N1/mN1.

Definition 6. Let E be a quadratic space over K, obedient with respect
to λ. If E = ⊥

s∈S
Es is a λ-modular decomposition of E and M1 a nondegen-

erate quadratic o-module with E1
∼= K ⊗o M1, then we call the quadratic

space L ⊗λM1 a weak specialization of E with respect to λ. (As before, ⊗λ
denotes a base extension with respect to the homomorphism λ|o: o → L.) By
Theorem 4, the space L ⊗λ M1 is uniquely determined by E and λ, up to
Witt equivalence. We denote its Witt class by λW (E), i.e.

λW (E): = {L⊗λM1}.

(“W” as in “Witt” or “weak”.)

If charK = 2, then M1/mM1 is a quadratic space over k, to be sure.
Nevertheless L⊗λM1 = L⊗λ (M1/mM1) can be degenerate. In this case, we

only have λW (E) ∈ Ŵq(L) (see §6, from Definition 10 onwards). If charK 6=
2, this cannot happen since M1/mM1 is strictly regular in this case. So now,
λW (E) ∈Wq(L).

Theorem 5. If E and E′ are quadratic spaces over K, obedient with respect
to λ, and if E ∼ E′, then λW (E) = λW (E′).

Proof. Suppose without loss of generality that dimE ≤ dimE′. Then E′ ∼=
E ⊥ r ×

[
0
1

1
0

]
for a certain r ∈ N0. If we choose a nondegenerate o-module
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M1 for E, as in Definition 6, then M ′
1: = M1 ⊥ r ×

[
0
1

1
0

]
is a possibe

choice for E′. (Here we consider
[

0
1

1
0

]
over o instead of over K.) Therefore,

L⊗λM ′
1 ∼ L⊗λM1.

Example. Let K = k(t1, . . . , tn) be the rational function field in n variables
t1, . . . , tn over an arbitrary field k. For every multi-index α = (α1, . . . , αn) ∈
Nn0 , let tα denote the monomial tα1

1 . . . tαn
n . We order the abelian group Zn

lexicographically and then have exactly one valuation v:K → Zn ∪∞ with
v(tα) = α for every α ∈ Nn0 . Its valuation ring contains the field k, and the
residue class field o/m coincides with k. Let λ:K → k ∪∞ be the canonical
place corresponding to o. Furthermore, let A be the set of all multi-indices
(α1, . . . , αn) with αi ∈ {0, 1} for every i, in other words A = {0, 1}n ⊂ Nn0 .
As system of representatives S, in the above sense, we take the set of tα with
α ∈ A.

Suppose now that we are given a family (Fα | α ∈ A) = F of 2n quadratic
spaces over k. We construct the space

E: = ⊥
α∈A

〈tα〉 ⊗ (K ⊗k Fα)

over K. For every α ∈ A, 〈tα〉 ⊗ E is obedient with respect to λ and

λW (〈tα〉 ⊗ E) = {Fα}.

Hence the family F can be recovered from the space E, up to Witt equiv-
alence. If all Fα are anisotropic, we even get the Fα back from E as kernel
spaces of the Witt classes λW (〈tα〉⊗E). In this case, E is anisotropic as well.
This can easily be seen, using an argument similar to the one used in the
proof of Lemma 3. One could say that the family F is “stored” in the space
E over k((t1, . . . , tn)).

This simple example reminisces of Springer’s Theorem in §1. Without our
theory of weak specialization, we can use Springer’s Theorem and induction
on n to show that the Fα are uniquely determined by E (at least when
char k 6= 2). This is so, because the valuation v is “n-fold discrete”. For more
complicated value groups, we cannot fall back on Springer’s Theorem for
specialization arguments.

We return to the situation of arbitrary places λ:K → k ∪∞.

Definition 7. (a) We denote the sets of Witt classes {E} of obedient
quadratic spaces (with respect to o) and obedient strictly regular quadratic

spaces (with respect to o) by W̃q(K, o) and Wq(K, o) respectively. These are

thus subsets of the sets W̃q(K) and Wq(K), introduced in §6, Definition 7b.

(b) We define a map λW : W̃q(K, o) → Ŵq(L) by setting λW ({E}): =
λW (E). This map is well-defined by Theorem 5.

Clearly Wq(K, o) is a subgroup of the abelian group Wq(K). The group

Wq(K, o) acts on the set W̃q(K, o) by restriction of the action of Wq(K) on

W̃q(K), explained in §6. If charK 6= 2, then, of course, W̃q(K, o) = Wq(K, o),
and λW maps Wq(K, o) to Wq(L).
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Remark. Let E and F be quadratic spaces over K, obedient with respect to
λ and suppose that E is strictly regular. Obviously we then have

λW (E ⊥ F ) = λW (E) + λW (F ).

Therefore, restricting the map λW : W̃q(K, o) → Ŵq(L) gives rise to a ho-
momorphism from Wq(K, o) to Wq(L), which we also denote by λW . The

map λW : W̃q(K, o) → Ŵq(L) is equivariant with respect to the homomor-
phism λW :Wq(K, o) →Wq(L).

In §3, we got a homomorphism λW :W (K) → W (L), using a different
method. Given a bilinear space E = (E,B) over K, does there exist a de-
scription of the Witt class λW ({E}), analogous to our current Definition 5?

First of all, when 2 ∈ o∗, i.e. charL 6= 2, we find complete harmony
between §3 and §6. In this case, bilinear spaces over K and L are the same
objects as quadratic spaces, and every such space over K is obedient with
respect to λ.

Theorem 6. If charL 6= 2, the homomorphism λW :W (K) →W (L) from §3
coincides with the homomorphism λW :Wq(K) →Wq(L), defined just now.

Proof. It suffices to show that for a one-dimensional space [a] = 〈2a〉, the
element λW ({〈2a〉}) from §3 coincides with the currently defined Witt class
λW ([a]). If a ∈ o∗, then λW ({〈2a〉}) = {〈2λ(a)〉} = {[λ(a)]}, according to §3.
However, if 〈a〉 6∈ Q(o), then 〈2a〉 6∈ Q(o) and λW ({〈2a〉}) = 0. We obtain
the same values for λW ([a]), using Definition 6 above.

And so, when charL 6= 2, the work performed hitherto gives us a new –
more conceptual – proof of §3, Theorem 1.

What is the situation when charL = 2? First, we encounter in all gener-
ality definitions for bilinear spaces, analogous to Definitions 1 and 5.

Definition 8. Let E = (E,B) be a bilinear space over K.

(a) E has good reduction with respect to λ (or with respect to o) when E ∼=
K ⊗o M for a bilinear space M over o. {Note: this is just a translation
of the original definition of “good reduction” of §1 (= §3, Definition 1)
in geometric language.}

(b) A λ-modular (or o-modular) decomposition of E is an orthogonal decom-

position E = ⊥
s∈S

Es, in which every space 〈s〉 ⊗ Es has good reduction

with respect to λ.

In contrast to the quadratic case, every bilinear space E over K has λ-
modular decompositions. This is obvious, since E is the orthogonal sum of
one-dimensional bilinear spaces and copies of the space

(
0
1

1
0

)
, see §2.

Let λW :W (K) → W (L) be the map, introduced in §3. When E is a
bilinear space over K, we set λW (E): = λW ({E}) ∈W (L).
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Theorem 7. Let E be a bilinear space over K and let E = ⊥
s∈S

Es be a

λ-modular decomposition of E. Also, let M1 be a bilinear space over o with
E1

∼= K ⊗o M1. Then

λW (E) = {L⊗λM1}.

Proof. We have λW (E) =
∑
s∈S

λW (Es). By §3, Theorem 2, we know that

λW (E1) = {L⊗λM1}. It remains to show that λW (Es) = 0 for every s ∈ S
with s 6= 1. Hence we have to show that if 〈s〉 ∈ Q(K) is a square class, not
in Q(o), and if N is a bilinear space over o, then λW (〈s〉 ⊗ (K ⊗o N)) = 0.

By a lemma from §3, N has an orthogonal basis when the bilinear space
N/mN over k is not hyperbolic. In this case we have

〈s〉 ⊗ (K ⊗o N) ∼= 〈sε1, . . . , sεr〉

with units εi ∈ o∗. By definition of λW , we have λW (〈sεi〉) = 0 for all
i ∈ {1, . . . , r}, hence λW (〈s〉 ⊗ (K ⊗o N)) = 0. If N/mN is hyperbolic, we
construct the space N ′: = N ⊥ 〈1〉 over o. Since N ′ has an orthogonal basis,
we get λW (〈s〉⊗(K⊗oN

′)) = 0. Since λW (〈s〉⊗〈1〉) = 0 as well, we conclude
that λW (〈s〉 ⊗ (K ⊗N)) = 0.

Theorem 7 allows us to speak of “weak specialization” of bilinear spaces,
in analogy with Definition 6 for quadratic spaces.

Definition 9. Let E be a bilinear space over K. Also, let E = ⊥
s∈S

Es

be a λ-modular decomposition of E and M1 a bilinear space over o with
E1

∼= K ⊗o M1. Then we call the space L ⊗λ M1 a weak specialization of
the space E with respect to λ.

According to Theorem 7, a weak specialization of E with respect to λ is
completely determined by E and λ up to Witt equivalence. One could ask
if this can be shown in a direct – geometric – way, comparable to how we
have done this for obedient quadratic spaces above. Reversing direction, this
would give a new proof of §3, Theorem 1, also when charL = 2.

We leave this question open. After all, we have a proof of §3, Theorem 1,
and with it a weak specialization theory for bilinear spaces. This theory is
more satisfying than the corresponding theory for quadratic spaces, in that
we do not have to demand obedience of the spaces.

We can now also make a statement about Problem 3b of §1. Let charL = 2
and let charK = 0. Let (E, q) be a quadratic space, obedient with respect to
λ. Associated to it, we have the bilinear space (E,Bq). It may be that (E, q)
and (E,Bq) are in principle the same object, but it does make a difference
wether we weakly specialize E as a quadratic or a bilinear space. What is
better?

Let (M, q) be a regular (= strictly regular) quadratic o-module. According
to §6, Theorem 1, we have a decomposition
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(M, q) ∼=
[
a1

1
1
b1

]
⊥ . . . ⊥

[
ar

1
1
br

]
.

(Note: (M/mM, q) is strictly regular, and thus has even dimension.) Then

(M,Bq) ∼=
(

2a1

1
1

2b1

)
⊥ . . . ⊥

(
2ar

1
1

2br

)
.

Hence,

L⊗λ (M, q) ∼=
[
λ(a1)

1
1

λ(b1)

]
⊥ . . . ⊥

[
λ(ar)

1
1

λ(br)

]
.

However, L⊗λ (M,Bq) ∼= r ×
(

0
1

1
0

)
.

Therefore, a weak specialization of the space (E,Bq) is always hyperbolic
and so gives hardly any information about (E, q). However, a weak special-
ization of (E, q) with respect to λ can give an interesting result.

Final Consideration. A last word about the central Definition 3 of an obedi-
ent quadratic space. It seems obvious to formally weaken it, by considering
quadratic modules E instead of spaces E over K, subject only to the re-
quirements that, as a K-vector space, E should have finite dimension and a
decomposition (∗) as presented there. But then E is already nondegenerate.
We namely have

QL(E) ∼= ⊥
s∈S

〈s〉 ⊗ (K ⊗o QL(Ms)),

and as in the proof of Lemma 3, we see that QL(E) is anisotropic (with-
out the requirement that o is quadratically henselian). Thus these “obedient
quadratic modules” are the same objects as those given by Definition 3.
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As before, we let λ:K → L ∪∞ be a place, o = oλ the valuation ring of K,
m its maximal ideal, k = o/m its residue class field and v a valuation on K,
associated to o, with value group Γ . Also, let Σ ⊂ Q(K) be a complement
of Q(o) in Q(K) and S a system of representatives of Σ in K∗ (with 1 ∈ S),
as introduced in §7.

From now on, we call a nondegenerate quadratic o-module a quadratic
space over o. In case o = K, we already used this terminology in §7. Recall
further the concept of a bilinear space over o (§3, Definition 4).

If E is a quadratic (resp. bilinear) space over K then, according to Def-
initions 1 and 8 in §7, E has good reduction with respect to λ (or: with
respect to o) if there exists a quadratic (resp. bilinear) space M over o with
E ∼= L⊗o M .

Theorem 1. Let E be a quadratic or bilinear space over K, which has good
reduction with respect to λ, and let M , M ′ be quadratic (resp. bilinear) spaces
over o with E ∼= K ⊗o M ∼= K ⊗o M

′. Then the k-spaces M/mM and
M ′/mM ′ are isometric in the quadratic case and stably isometric12 in the
bilinear case. Therefore we also have, L⊗λM ∼= L⊗λM ′ resp. L⊗λM ≈
L⊗λM ′.

Proof. By the theory of §7 (Theorems 4 and 7), M/mM and M ′/mM ′ are
Witt equivalent. Since these spaces have the same dimension, namely dimE,
they are isometric resp. stably isometric.

In the following, the words “good reduction” are used so often, that it is
appropriate to introduce an abbreviation. From now on, we mostly write GR
instead of “good reduction”.

Definition 1. Let E be a quadratic or bilinear space over K, which has GR
with respect to λ, and let M be a quadratic, resp. bilinear, space over o with
E ∼= K⊗oM . Then we denote the quadratic, resp. bilinear, module L⊗λM
by λ∗(E) and call it “the” specialization of E with respect to λ.

In the bilinear case, λ∗(E) is nondegenerate, and thus a space. This is
true in the quadratic case as well, as long as charK 6= 2. If charK = 2

12See §2 for the term “stably isometric”.
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however, λ∗(E) can be degenerate (cf. our discussion about λW (E) in §7
after Definition 6).

This terminology is convenient, but sloppy. According to Theorem 1,
λ∗(E) is only determined by E up to isometry in the quadratic case, and
in the bilinear case even only up to stable isometry. Anyway, in what follows,
we are interested in quadratic spaces (or modules) only up to isometry, and
in bilinear spaces almost always only up to stable isometry.

Note that in the bilinear case, Definition 1 is only a translation of §3,
Definition 3 in geometric language.

Remark. Let F and G be bilinear spaces over K, which have GR with respect
to λ. Then F ⊥ G clearly also has GR with respect to λ, and

λ∗(F ⊥ G) ≈ λ∗(F ) ⊥ λ∗(G).

For quadratic spaces, we have to realize that (when charK = 2) the orthog-
onal sum of two spaces over o can possibly be degenerate and thus need not
again be a space. However, if F and G are quadratic spaces, which have GR
with respect to λ, and if F is strictly regular, then F ⊥ G has GR with
respect to λ and

λ∗(F ⊥ G) ∼= λ∗(F ) ⊥ λ∗(G).

For further applications, the following theorem is of the utmost impor-
tance.

Theorem 2. (a) Let F and G be bilinear spaces over K. If the spaces F and
F ⊥ G have GR with respect to λ, then G also has GR with respect to λ.

(b) Let F and G be quadratic spaces over K. Suppose that F is strictly
regular. If F and F ⊥ G have GR with respect to λ, then G also has GR
with respect to λ.

Proof. Part (a) has already been proved in §3, Theorem 4. Upon replacing
every occurrence of “metabolic” by “hyperbolic”, the argument there also
yields a proof of part (b). (Use Theorem 3 and Lemma 3 in §6.)

Corollary. Let E and F be bilinear (resp. quadratic) spaces with E ∼ F . If
E has GR with respect to λ, then so has F , and λ∗(E) ∼ λ∗(F ). Besides, if
E ≈ F (resp. E ∼= F ), then λ∗(E) ≈ λ∗(F ) (resp. λ∗(E) ∼= λ∗(F )).

This was already established in §3 for the bilinear case. The quadratic
case can be proved similarly.

In part (b) of Theorem 2, the assumed strict regularity of F is essential.

Example. Let charK = 2 and let E be a 3-dimensional quadratic space over
K with basis e, f, g and corresponding value matrix

[
1
1

1
a

]
⊥ [ε], where a ∈ o

and ε ∈ o∗. Let F : = E⊥ = Kg and G: = Ke+K(f + cg) ∼=
[

1
1

1
a+c2ε

]
for

some c ∈ K. We have E = F ⊥ G. The quadratic spaces E and F have good
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reduction, but G can have bad reduction because the possibility exists that
the Arf-invariant a+ c2ε+℘K, ℘K: = {x2 + x | x ∈ K} does not contain an
element of o.

For instance, let K = k(t) where k is an imperfect field of characteristic
2 and t is an indeterminate. As in the example of a disobedient space, §7, let
o = k[t](t). We choose ε ∈ k∗ such that ε is not a square in k. Furthermore,
we choose a = 0, c = t−2. We have εt−2 + x2 + x 6∈ o for every x ∈ K. This
is immediately clear when we look at the power series expansions in k((t)):
Let x =

∑
n≥d

cnt
n for some d ∈ Z, all cn ∈ k and cd 6= 0. If it was true that

εt−2 + x2 + x ∈ o, then we would have

εt−2 +
∑

n≥d

c2nt
2n +

∑

n≥d

cnt
n ∈ k[[t]].

But then d < 0, and so d = −1. It would follow that ε = c2d, an impossibility.

Theorem 3. Let E be a quadratic space over K. E has GR with respect to λ if
and only if QL(E) has GR with respect to λ and there exists a decomposition
E = F ⊥ QL(E) such that F has GR with respect to λ. In this case λ∗(E) ∼=
λ∗(F ) ⊥ λ∗(QL(E)).

Proof. Suppose first that we have a decomposition E = F ⊥ QL(E), in
which both F and QL(E) have GR with respect to λ. Then, by the remark
preceding Theorem 2, E has GR with respect to λ and λ∗(E) ∼= λ∗(F ) ⊥
λ∗(QL(E)), because F is strictly regular.

Next, suppose that E has GR. We choose a quadratic space M over
o with E ∼= K ⊗o M and a decomposition M = N ⊥ QL(M). From
the definition of spaces over o, in other words of nondegenerate quadratic o-
modules (§6, Definition 3), follows immediately thatQL(M) is nondegenerate
and even that N is strictly regular. Now E ∼= K ⊗o N ⊥ K ⊗o QL(M),
so that QL(E) ∼= K ⊗o QL(M). Therefore QL(E) has GR. Furthermore
F : = K ⊗o N has GR and is strictly regular.

If F and G are bilinear spaces over K, which have GR with respect to λ,
then we know from §3 that F ⊗G also has GR with respect to λ and that

λ∗(F ⊗G) ≈ λ∗(F ) ⊗ λ∗(G),

see §3, Theorem 6. As explained in §5, given a bilinear space F and a quadratic
space G over K (or o), we can also construct a quadratic module F ⊗G over
K (resp. o), which can however be degenerate when charK = 2. For F ⊗G
to be again a space, we must require that G is strictly regular. Analogous to
the above statement, we have

Theorem 4. Let F be a bilinear space over K, which has GR with respect
to λ and let G be a quadratic space, having GR with respect to λ. In case
charK = 2, suppose furthermore that G is strictly regular. Then F ⊗ G als
has GR with respect to λ and
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λ∗(F ⊗G) ∼= λ∗(F ) ⊗ λ∗(G).

Proof. We choose spaces M and N over o with F ∼= K⊗oM , G ∼= K⊗oN .
Then N is strictly regular. Therefore M ⊗o N is a strictly regular quadratic
space over o. Furthermore, F ⊗G ∼= K ⊗o (M ⊗oN). Hence, F ⊗G has GR
and

λ∗(F ⊗G) ∼= L⊗λ (M ⊗oN) ∼= (L⊗λM)⊗L (L⊗λN) ∼= λ∗(F )⊗λ∗(G).

Remark. λ∗(F ) is only determined up to stable isometry and λ∗(F ⊗G) only
up to isometry. The theorem is valid – as the proof shows – for every choice
of λ∗(F ). More generally we have: if E and E′ are bilinear space over K
with E ≈ E′, and if F is a strictly regular quadratic space over K, then
E⊗F ∼= E′⊗F . This follows from the fact that there exists a bilinear space
U over K with E ⊥ U ∼= E′ ⊥ U , implying that (E ⊗ F ) ⊥ (U ⊗ F ) ∼=
(E′ ⊗F ) ⊥ (U ⊗F ), and so E⊗F ∼= E′⊗F by the Cancellation Theorem.

The currently developed notion of the specialization λ∗(E) of a space E
which has GR, allows us to complete our understanding of the results from
§7 about obedience and weak specialization.

Theorem 5. Let E be a quadratic module over K. E is nondegenerate and
obedient with respect to λ if and only if

(∗) E ∼= ⊥
s∈S

〈s〉 ⊗ Fs,

where the Fs are spaces over K, which have GR with respect to λ, only finitely
many of them being nonzero. For every decomposition of the form (∗), we have
λW (E) = {λ∗(F1)}.

Proof. If E is a space and is obedient with respect to λ, we clearly have a
decomposition as above. The equality λW (E) = {λ∗(F1)} follows from the
definition of λW (E) in §7 and the definition of λ∗(F1).

Now let (Fs | s ∈ S) be a family of spaces, having GR with respect to λ

and Fs = 0 for almost all s ∈ S. Let E: = ⊥
s∈S

〈s〉 ⊗ Fs. Then, the quadratic

module E over K has finite dimension and E⊥ = ⊥
s∈S

〈s〉⊗F⊥
s . According to

the Final Consideration of §7, E⊥ is anisotropic and therefore nondegenerate.
It follows immediately from §7, Definition 3 that E is obedient with respect
to λ.

We call every decomposition of the form (∗), having the properties of
Theorem 5, a λ-modular decomposition of E. This terminology is a bit sloppier
than in §7, in the sense that we no longer discriminate between internal
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and external orthogonal sums. We talk about λ-modular decompositions of
bilinear spaces in a similar fashion.

Theorem 6. Let F be a bilinear space over K, which has GR with respect
to λ.

(i) If G is a bilinear space over K, then

(†) λW (F ⊗G) = λW (F )λW (G) = {λ∗(F )}λW (G).

(ii) If G is a strictly regular quadratic space over K, obedient with respect to
λ, then F ⊗G is also obedient with respect to λ, and (†) holds again.

Proof. (ii) Let G ∼= ⊥
s∈S

〈s〉⊗Gs be a λ-modular decomposition of G. Every

Gs has GR with respect to λ and is strictly regular. By Theorem 4, F ⊗Gs
has GR with respect to λ and λ∗(F ⊗Gs) ∼= λ∗(F ) ⊗ λ∗(Gs). Hence,

F ⊗G ∼= ⊥
s∈S

〈s〉 ⊗ (F ⊗Gs)

is a λ-modular decomposition of F ⊗G and λW (F ⊗G) = {λ∗(F ⊗G1)} =
{λ∗(F ) ⊗ λ∗(G1)} = {λ∗(F )}{λ∗(G1)} = λW (F )λW (G).

The proof of (i) is analogous. Less care is needed here than for (ii).

Similarly we can show,

Theorem 7. Let F be a bilinear space and G a strictly regular quadratic
space over K. Suppose that the space G has GR with respect to λ. Then
F ⊗G is obedient with respect to λ, and

λW (F ⊗G) = λW (F )λW (G) = λW (F ){λ∗(G)}.

To conclude this section, we have a look at the reduction behaviour of
quadratic spaces under base field extensions. The following – almost banal –
theorem, together with Theorem 2(b) above, lays the foundations upon which
we will build the generic splitting theory of regular quadratic spaces in the
next section.

Theorem 8. Let K ′ ⊃ K be a field extension and µ:K ′ → L∪∞ an extension
of the place λ:K → L∪∞. Let E be a regular quadratic space over K, which
has GR with respect to λ. The space K ′ ⊗K E has GR with respect to µ and
µ∗(K

′ ⊗K E) ∼= λ∗(E).

Proof. Let o′ be the valuation ring associated to µ. Furthermore, let M be a
regular quadratic space over o with E ∼= K⊗oM . Then o′⊗oM is a regular
quadratic space over o′ (sic!), and K ′⊗K E ∼= K ′⊗oM = K ′⊗o

′ (o′⊗oM).
Therefore, K ′ ⊗K E has GR with respect to µ and
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µ∗(K
′ ⊗K E) ∼= L⊗µ (o′ ⊗o M) = L⊗λM ∼= λ∗(E).

If we only require that E is nondegenerate instead of regular, the state-
ment of Theorem 8 becomes false. Looking for a counterexample, we can
restrict ourselves to quasilinear spaces, by Theorems 3 and 8.

Example. Let k be an imperfect field of characteristic 2 and let a be an
element of k which is not a square. Consider the power series field K = k((t))
in one indeterminate t. Let λ0:K → k ∪∞ be the place with valuation ring
o = k[[t]], which maps every power series f(t) ∈ o to its constant term f(0).
The quasilinear quadratic o-module M = [1, a + t] is nondegenerate. For, if
f(t) =

∑
i≥0

bit
i and g(t) =

∑
i≥0

cit
i are elements of o, whose constant terms

b0, c0 are not both zero, then f(t)2 + (a+ t)g(t)2 has nonzero constant term
b20 + ac20, and is thus a unit in o. Therefore, axiom (QM2) of §6, Definition 3
is satisfied.

Hence, the spaceE: = K⊗oM has GR with respect to λ0, and (λ0)∗(E) ∼=
[1, a]. Consider now L: = k(

√
a) and the place λ: = j ◦ λ0:K → L ∪ ∞,

obtained by composing λ0 with the inclusion j: k →֒ L. Then E also has GR
with respect to λ, and over L we have,

λ∗(E) = L⊗k (λ0)∗(E) ∼= [1, a] ∼= [1, 1] ∼= [1, 0].

Finally, let K ′: = K(
√
a) = L((t)) and let µ:K ′ → L ∪ ∞ be the place

with valuation ring o′: = L[[t]], which again maps every power series f(t) ∈ o′

to its constant term f(0). µ extends the place λ. Over K ′, we have

K ′ ⊗K E = [1, (
√
a)2 + t] ∼= [1, t].

Therefore, K ′⊗K E is obedient with respect to µ and µW (K ′⊗K E) = {[1]}.
It is now clear that K ′ ⊗K E has bad reduction with respect to µ, since the
Witt class µW (K ′⊗KE) would contain a two-dimensional module otherwise.

Remark. This argumentation shows nicely that it is profitable to give such
an elaborate definition of Witt equivalence of degenerate quadratic modules
over fields, as done in §6, Definition 10.
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§9 Generic Splitting of Regular Quadratic

Forms

From now on we leave the geometric arena behind, and mostly talk of
quadratic and bilinear forms, instead of spaces, over fields. The importance of
the geometric point of view was to bring quadratic and bilinear modules over
valuation rings into the game. For our specialization theory, these modules
were merely an aid however, and their rôle has now more or less ended.

We should indicate one problem though, which occurs when we make
the transition from quadratic spaces to quadratic forms: If ϕ(x1, . . . , xn) and
ψ(x1, . . . , xn) are two quadratic forms over a field K, they are isometric,
ψ ∼= ϕ, if the polynomial ψ emerges from ϕ through a linear coordinate
transformation. Now, if ϕ – i.e. the space (E, q) associated to ϕ – is degener-
ate, then it is possible that not all of the coordinates x1, . . . , xn (n: = dimE)
occur in the polynomial ψ (and possibly neither in ϕ). The dimension of ψ in
the naive sense, i.e. the number of occurring variables, can be smaller than
the dimension of E. In order to recover the space (E, q) from ψ, one would
have to attach a “virtual dimension” n to ψ, pretty horrible!

As soon as one allows degenerate forms, the geometric language is more
precise – and thus more preferred – than the “algebraic” language. But now
we only consider regular quadratic forms (=̂ regular quadratic spaces) over
fields, so that the forms are guaranteed to remain nondegenerate under base
field extensions.

Many concept which we introduced for quadratic spaces over fields (§5 –
§8), will now be used for quadratic forms, usually without any further com-
ments. In what follows, a “form” is always a regular quadratic form over a
field. We recall once more the concepts GR (= good reduction) and special-
ization of forms and try to be as down to earth as possible.

So, let ϕ be a form over a field K. If dimϕ is even (resp. odd), then
ϕ = [aij ] (resp. ϕ ∼= [aij ] ⊥ [c]), where (aij) is a symmetric (2m) × (2m)-
matrix, such that (r: = 2m)

det




2a11 a12 . . . a1r

a21 2a22 . . . a2r
...

...
...

ar1 ar2 . . . 2arr


 6= 0

and c 6= 0. (See the beginning of §5 for the notation used here.)
Let λ:K → L∪∞ be a place and o = oλ its valuation ring. The form ϕ has

GR with respect to λ when ϕ ∼= [aij ], resp. ϕ ∼= [aij ] ⊥ [c], such that all aij
are in o and c, as well as the determinant above, are units in o. We then have
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λ∗(ϕ) ∼= [λ(aij)] resp. λ∗(ϕ) ∼= [λ(aij)] ⊥ [λ(c)]. By §6, Theorem 1(b),

[aij ] is the orthogonal sum of m binary forms
[
ai

1
1
bi

]
(1 ≤ i ≤ m) with

ai ∈ o, bi ∈ o, 1 − 4aibi ∈ o∗. Thus, after a coordinate transformation, we
have

(∗) ϕ(x1, . . . , xn) =
m∑

i=1

(aix
2
2i + x2ix2i+1 + bix

2
2i+1) ( +cx2

2m+1).

We obtain (λ∗ϕ)(x1, . . . , xn) from this form, upon replacing the coefficients
ai, bi, c by λ(ai), λ(bi), λ(c).

Let K ′ ⊃ K be a field extension. If ϕ = ϕ(x1, . . . , xn) is a form over K,
we write ϕ ⊗ K ′ or ϕ ⊗K K ′ for this form considered over K ′. If (E, q) is
the quadratic space associated to ϕ, i.e. ϕ =̂ (E, q), then the basis extension
(K ′ ⊗K E, qK′) of (E, q) is the quadratic space associated to ϕ⊗K ′.13

Let µ:K ′ → L ∪ ∞ be an extension of the place λ:K → L ∪ ∞. If
ϕ has GR with respect to λ, then ϕ ⊗ K ′ has GR with respect to µ and
µ∗(ϕ ⊗ K ′) ∼= λ∗(ϕ). This is clear now and was already established in §8,
Theorem 8 anyway.

We can extend the observation we made, at the start of our treatment of
generic splitting in §4, to regular quadratic forms. Thus let k be a field and
ϕ a form over k. Furthermore, let K and L be fields, containing k, and let
λ:K → L∪∞ be a place over k. Then ϕ⊗K has GR with respect to λ and
λ∗(ϕ⊗K) ∼= ϕ⊗ L.

We use H to denote the quadratic form
[

0
1

1
0

]
, regardless of the field we

are working in. The bilinear form Bϕ, associated to ϕ =
[
0
1

1
0

]
, is

(
0
1

1
0

)
. We

denote this bilinear form henceforth by H̃ . (This notation differs from §4!) If

ϕ⊗K ∼= ϕ1 ⊥ r1 ×H

is the Witt decomposition of ϕ⊗K, then the form ϕ1 has GR with respect
to λ by §8, Theorem 2(b) and we have

ϕ⊗ L ∼= λ∗(ϕ1) ⊥ r1 ×H.

Therefore, ind(ϕ⊗L) ≥ ind(ϕ⊗K). If K and L are specialization equivalent
over k (see §4, Definition 1), then

ind(ϕ⊗ L) = ind(ϕ⊗K) and ker(ϕ⊗ L) ∼= λ∗(ϕ1).

We transfer the definition of generic zero field (§4, Definition 2) literally
to the current situation. Just as in §4 we define, for n: = dimϕ ≥ 2, a field
extension k(ϕ) of k as follows: If n > 2 or n = 2 and ϕ 6∼= H , let k(ϕ) be
the quotient field of the integral domain k[X1, . . . , Xn]/(ϕ(X1, . . . , Xn)). {It
is easy to see that the polynomial ϕ(X1, . . . , Xn) is irreducible.} If ϕ ∼= H
however, i.e. ϕ(X1, X2) ∼= X1X2, let k(ϕ) = k(t) for an indeterminate t.

13We write ϕ⊗K′ instead of K′ ⊗ ϕ in order to be in harmony with the notation
in §3 and in the literature. {Many authors more briefly write ϕK′ . Starting with
§16 we occasionally will do this too.}
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We want to show that k(ϕ) is a generic zero field of ϕ. This is very simple
when ϕ is isotropic: Obviously k itself is a generic zero field of ϕ in this case.
We thus have to show that k(ϕ) is specialization equivalent to k over k, which
now means that there exists a place from k(ϕ) to k over k.

Lemma 1. If ϕ is an isotropic form over k, then k(ϕ) is a purely transcen-
dental field extension of k.

Proof. This is by definition clear when dimϕ = 2, i.e. when ϕ ∼= H . Now let
n: = dimϕ > 2. We have a decomposition ϕ ∼= H ⊥ ψ and may suppose with-
out loss of generality that ϕ = H ⊥ ψ. So, if X1, . . . , Xn are indeterminates,
we have

ϕ(X1, . . . , Xn) = X1X2 + ψ(X3, . . . , Xn).

Therefore,14

k(ϕ) = Quot(k[X1, . . . , Xn]/(X1X2 + ψ(X3, . . . , Xn)) = k(x1, . . . , xn),

where xi of course denotes the image ofXi in k(ϕ). The elements x2, x3, . . . , xn
are algebraically independent over k and x1 = −x−1

2 ψ(x3, . . . , xn). Therefore,
k(ϕ) = k(x2, . . . , xn) is purely transcendental over k.

Since k(ϕ)/k is purely transcendental, there are many places from k(ϕ)
to k over k, cf. [Bo2, §10, Prop. 1].

We will move on to prove that also for anisotropic ϕ with dimϕ ≥ 2,
k(ϕ) is a generic zero field of ϕ. De facto we will obtain a stronger result
(Theorem 4 below), and we will need its full strength later on as well. We
require a lemma about the extension of places to quadratic field extensions.

Lemma 2. Let E be a field, K a quadratic extension of E and α a generator
of K over E. Let p(T ) = T 2 − aT + b ∈ E[T ] be the minimal polynomial
of α over E. Furthermore, let ρ:E → L ∪∞ be a place with ρ(b) 6= ∞ and
ρ(a) 6= ∞, ρ(a) 6= 0. Finally, let β be an element of L such that

β2 − ρ(a)β + ρ(b) = 0.

Then there exists a unique place λ:K → L ∪ ∞ with λ(α) = β, which ex-
tends ρ.

Proof. Let o denote the valuation ring of ρ, m its maximal ideal and k the
residue class field o/m. Let γ:E → k ∪∞ be the canonical place associated
to o. Then ρ = ρ ◦ γ, where ρ: k →֒ L is a field embedding. We may assume
without loss of generality that k is a subfield of L and that ρ is the inclusion
map k →֒ L. Every place λ:K → L ∪ ∞ which extends ρ, has as image a
field which is algebraic over k. Therefore we may replace L by the algebraic
closure of k in L and thus assume without loss of generality that L is algebraic
over k. If c is an element of o, then c will denote the image of c in o/m = k,
i.e. c = γ(c). We have β2 − aβ + b = 0.

14If A is an integral domain, QuotA denotes the quotient field of A.

Page: 71 job: 372 macro: PMONO01 date/time: 15-Dec-2009/22:24



72 Chapter II. Generic Splitting Theory

By the general extension theorem for places [Bo2, §2, Prop. 3], there exists
a place from K to the algebraic closure k̃ of k, which extends γ. We choose
such a place δ:K → k̃ ∪ ∞. Let O be the valuation ring of K, associated
to δ, M its maximal ideal and F : = O/M its residue class field. Finally,
let σ:K → F ∪ ∞ be the canonical place of O. Then σ extends the place
γ:E → k∪∞. By general valuation theory [Bo2, §8, Th. 1], we have [F : k] ≤ 2.
We may envisage F and L as subfields of k̃, which both contain k. One of
the things we will show, is that F is equal to the subfield L′: = k(β) of L.

The field extension K/L is separable since the coefficient a in the minimal
polynomial p(T ) is different from zero. Let j be the involution of K over E,
i.e. the automorphism of K with fixed field E.

Case 1: L′ 6= k. So β 6∈ k and T 2 − aT + b is the minimal polynomial of β
over k. Now α2 − αa+ b = 0 implies σ(α)2 − σ(α)a + b = 0. Thus σ(α) = β
or σ(α) = a − β. In particular, L′ = k(σ(α)) ⊂ F . Since [L′: k] = 2 and
[F : k] ≤ 2, we have L′ = F and F ⊂ L.

We have j(α) = a−α, and thus σj(α) = a−σ(α). Since a 6= 0 this implies
σj(α) 6= σ(α). Therefore the places σ and σ ◦ j from K to L are different.
They both extend the place ρ. By general valuation theory [Bo2, §8, Th. 1],
there can be no other places from K to k̃ which extend ρ. Now take λ = σ
in case σ(α) = β, and λ = σ ◦ j in case σ(α) = a− β. Then λ:K → L∪∞ is
the only place which extends ρ and maps α to β.

Case 2: L′ = k. This time β ∈ k. Since β is a root of T 2−aT + b, we have
T 2 − aT + b = (T − β)(T − a + β) and α2 − αa + b = 0 implies again that
σ(α)2 − σ(α)a + b = 0. Therefore,

(σ(α) − β)(σ(α) − a+ β) = 0.

Hence σ(α) = β or σ(α) = a− β. In particular we have σ(α) ∈ k.
Again the places σ and σ ◦ j are different. By general valuation theory,

they are exactly all the places from K to k̃ which extend ρ and [F : k] = 1,
i.e. F = k. As in Case 1, we take λ = σ in case σ(α) = β, and λ = σ ◦ j
in case σ(α) = a− β. Again λ is the only place from K to L (even the only
place from K to k̃) which extends ρ and maps α to β.

Theorem 3. Let λ:K → L ∪∞ be a place and ϕ a form over K with GR
with respect to λ and dimϕ ≥ 2. Let ϕ: = λ∗(ϕ). Then λ can be extended to
a place µ:K(ϕ) → L(ϕ) ∪∞.

Proof. If ϕ is isotropic, then K(ϕ)/K is purely transcendental by Theorem 1.
In this case λ can be extended in many ways to a place from K(ϕ) to L. So
suppose that ϕ is anisotropic.

Let n: = dimϕ and let o be the valuation ring of λ. If n = 2 we assume
in addition that ϕ 6∼= H , deferring the case ϕ ∼= H to the end of the proof.
After a linear transformation of Kn we may assume without loss of generality
that ϕ is of the form (∗) as in the beginning of this section (thus with ai,
bi ∈ o, c ∈ o∗ etc.). We denote by ϕ the form over L, obtained from ϕ by
replacing the coefficients ai, bi and – if n is odd – c by ai: = λ(ai), bi: = λ(bi),
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c: = λ(c). Let X1, . . . , Xn, resp. U1, . . . , Un be indeterminates, then we also
write

ϕ(X1, . . . , Xn) = a1X
2
1 +X1X2 + b1X

2
2 + ψ(X3, . . . , Xn),

and accordingly

ϕ(U1, . . . , Un) = a1U
2
1 + U1U2 + b1U

2
2 + ψ(U3, . . . , Un).

Furthermore we write

K(ϕ) = Quot
K[X1, . . . , Xn]

(ϕ(X1, . . . , Xn))
= K(x1, . . . , xn),

L(ϕ) = Quot
L(U1, . . . , Un)

(ϕ(U1, . . . , Un))
= L(u1, . . . , un),

where xi denotes of course the image of Xi in K(ϕ) and ui the image of Ui
in L(ϕ). We then have the relations

a1x
2
1 + x1x2 + b1x

2
2 + ψ(x3, . . . , xn) = 0,

a1u
2
1 + u1u2 + b1u

2
2 + ψ(u3, . . . , un) = 0.

{If n = 2, the last summands on the left should be read as zero.} It is easy

to see that the space N : =
[
a1

1
1
b1

]
over o is isometric to a space

[
a′1
1

1
b′1

]

with a′1 ∈ o∗. {Lift a suitable basis of N/mN to a basis of N.} Therefore we
additionally assume, without loss of generality, that a1 ∈ o∗, i.e. a1 6= 0.

The elements x2, . . . , xn are algebraically independent overK and likewise
the elements u2, . . . , un are algebraically independent over L. Let

E: = K(x2, . . . , xn) ⊂ K(ϕ)

and
F : = L(u2, . . . , un) ⊂ L(ϕ).

Our place λ has exactly one extension λ̃:E → F ∪ ∞ with λ̃(xi) = ui
(2 ≤ i ≤ n) (cf. [Bo2, §10, Prop. 2]).

Let õ be the valuation ring of λ̃. We have K(ϕ) = E(x1), L(ϕ) = F (u1)
with relations

x2
1 + ax1 + b = 0, u2

1 + au1 + b = 0,

where a: = a−1
1 x2, b: = a−1

1 (b1x
2
2 + ψ(x3, . . . , xn)) are in õ and a = λ̃(a),

b = λ̃(b).
Surely K(ϕ) 6= E, because ϕ⊗K(ϕ) is isotropic, but ϕ⊗E is anisotropic

since the extension E/K is purely transcendental. Therefore K(ϕ) is a
quadratic field extension of E. Furthermore a = a−1

1 u2 6= 0. Hence we
can apply Lemma 2 to the place λ̃:E → F ∪ ∞ and the field extensions
K(ϕ)/E, L(ϕ)/F . According to this lemma, there exists a (unique) place
µ:K(ϕ) → L(ϕ) which extends λ̃ and maps x1 to u1. This proves the theo-
rem in case ϕ 6∼= H .
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Finally, let n = 2, ϕ anisotropic, but ϕ isotropic. We can still use the

description of K(ϕ) given above (this time with ψ = 0), i.e. ϕ =
[
a1

1
1
b1

]

with a1 ∈ o∗, b1 ∈ o, K(ϕ) = K(x1, x2) with x2 transcendental over K and

(1) a1x
2
1 + x1x2 + b1x

2
2 = 0.

We want to extend λ to a place µ:K(ϕ) → L ∪ ∞. In order to do this,
we choose a nontrivial zero (c1, c2) ∈ L2 of ϕ. Then we choose an extension
λ̃:K(x2) → L ∪ ∞ of λ with λ̃(x2) = c2, cf. [Bo2, §10, Prop. 1]. {Take the
“variable” x2 − c2 there.} We have

(2) a1c
2
1 + c1c2 + b1c

2
2 = 0.

If c2 = 0, then c1 = 0 by (2). Our zero is nontrivial however, so c2 6= 0.
Equation (1) shows that x2

1+ax1+b = 0 with a: = a−1
1 x2, b: = a−1

1 b1x
2
2. We

have λ̃(a) = a−1
1 c2 6= 0, λ̃(b) = a−1

1 b1c
2
2. Equation (2) shows that c21+λ̃(a)c1+

λ̃(b) = 0. Since ϕ is anisotropic, K(ϕ) 6= K(x1), thus [K(ϕ):K(x1)] = 2.
Lemma 2 tells us that there exists a (unique) place µ:K(ϕ) → L ∪∞ which
extends λ̃.

Remark. In the proof we did not need the uniqueness statement of Lemma 2.
Nonetheless, it deserves some attention. For example, one can use it to de-
duce from our proof that, given an anisotropic ϕ, there is exactly one place
µ:K(ϕ) → L(ϕ) ∪∞ which extends λ and maps xi to ui (1 ≤ i ≤ n). Now,
this holds for the generators x1, . . . , xn of K(ϕ) and u1, . . . , un of L(ϕ), as-
sociated to the special representation (∗) of ϕ above (still with a1 ∈ o∗) and
can, by means of a coordinate transformation (with coefficients in o, etc.),
be transferred to the case where ϕ = [aij ] for an arbitrary symmetric matrix
(aij) over o with

det




2a11 . . . a1n
...

...
an1 . . . 2ann


 ∈ o

∗.

Theorem 4. Let λ:K → L ∪ ∞ be a place. Let ϕ be a form over k with
dimϕ ≥ 2, which has GR with respect to λ. Then λ∗(ϕ) is isotropic if and
only if λ can be extended to a place µ:K(ϕ) → L ∪∞.

Proof. If λ can be extended to a place µ from K(ϕ) to L, then λ∗(ϕ) has
to be isotropic by the standard argument, which we already used in §4, just
after Theorem 2.

Conversely, suppose that ϕ: = λ∗(ϕ) is isotropic. By Theorem 3, there
exists a place

µ:K(ϕ) → L(ϕ) ∪∞
which extends λ. By Lemma 1, L(ϕ)/L is a purely transcendental extension.
Therefore there exists a place

ρ:L(ϕ) → L ∪∞
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over L. Now ρ ◦ µ:K(ϕ) → L ∪∞ is a place which extends λ.

Remark. We could have adapted the proof of Theorem 3 in such a way, that
we would have obtained Theorem 4 immediately (see in particular our argu-
ment there in the case ϕ ∼= H). On the other hand, we can obtain Theorem 3
from Theorem 4 by applying the latter to the place

j ◦ λ:K(ϕ) → L(ϕ) ∪∞,

where j is the inclusion L →֒ L(ϕ). For our further investigations (§10, §12,
§13) it is better however, to isolate Theorem 3 and its proof as a stopover to
Theorem 4.

Corollary. Let ϕ be a form over a field k with dimϕ ≥ 2. Then k(ϕ) is a
generic zero field of ϕ.

Proof. Clearly ϕ⊗ k(ϕ) is isotropic. Now let L ⊃ k be a field extension with
ϕ⊗L isotropic. Applying Theorem 4 to the trivial place k →֒ L, we see that
there exists a place µ: k(ϕ) → L ∪∞ over k.

Since Theorems 1 and 2 of §4 are subcases of our current Theorem 4,
they are now proved. The definitions and theorems following these two the-
orems remain valid. Later on they will be used without further comments in
renewed generality, namely for arbitrary characteristic instead of character-
istic 6= 2, regular quadratic forms instead of the nondegenerate symmetric
bilinear forms which occur there. In particular, for every regular quadratic
form ϕ over k, we have a generic splitting tower (Ki | 0 ≤ i ≤ h) with higher
indices ir and higher kernel forms ϕr.

Comments. It should be noted that I. Kersten and U. Rehmann have used a
different route in [Ke R, §6] to construct, for every form ϕ over k and every

r ≤
[

dimϕ
2

]
, a field extension of k which is generic for the splitting off of r

hyperbolic planes. In particular one can already find a generic splitting tower
of ϕ in their work. In [KR] the generic splitting of regular quadratic forms in
arbitrary characteristic is based on these foundations.

The results about forms of height 1 and 2, cited at the end of our §4, have
so far only been established for characteristic 6= 2 in the literature.

Page: 75 job: 372 macro: PMONO01 date/time: 15-Dec-2009/22:24



76 Chapter II. Generic Splitting Theory

Page: 76 job: 372 macro: PMONO01 date/time: 15-Dec-2009/22:24



§10 Separable Splitting

All fields occurring in this section are supposed to have characteristic 2. If
ϕ is a nondegenerate quadratic form over such a field k, then its quasilinear
part (cf. §6, Definition 1), which we denote by QL(ϕ), is anisotropic. Now, if
K ⊃ k is a field extension, then it can happen that QL(ϕ⊗K) = QL(ϕ)⊗K
is isotropic, and thus that ϕ⊗K is degenerate. This possibility prompted us,
when dealing with the theory of generic splitting in the previous sections, to
only allow regular forms, i.e. quadratic forms ϕ with dimQL(ϕ) ≤ 1.

We will now make a course change and allow arbitrary nondegenerate
quadratic forms. We will however only tolerate a restricted class of field ex-
tensions, the so-called separable field extensions. We will see that a reasonably
satisfying theory of generic splitting is still possible in this case.

A field extension K ⊃ k is called separable if every finitely generated
subextension E ⊃ k has a separating transcendence basis, i.e. a transcendence
basis t1, . . . , tn, such that E is separably algebraic over k(t1, . . . , tn), cf. [Bo3],
[Lg1, X, §6], [J, IV, §5]. IfK is already finitely generated over k, then it suffices
to check if K itself contains a separating transcendence basis over k (loc. cit.).

In what follows, a “form” will always be understood to be a quadratic
form. The foundation for the rest of this section is

Theorem 1. Let ϕ be a nondegenerate form over k, and let K ⊃ k be a
separable field extension. Then ϕ⊗K is also nondegenerate.

Proof. We work in the algebraic closure K̃ ofK. We haveQL(ϕ) = [a1, . . . , ar]
with ai ∈ K. This form is anisotropic. We have to show that QL(ϕ) ⊗K is

also anisotropic. Each ai has exactly one square root
√
ai ∈ K̃, which is al-

ready in the radical closure k1/2∞ ⊂ K1/2∞ ⊂ K̃ of k. Now, since QL(ϕ)
is anisotropic, the elements a1, . . . , an are linearly independent over the sub-
field k2 = {x2 | x ∈ k} of k, or equivalently, the elements

√
a1, . . . ,

√
an

are linearly independent over k. By an important theorem about separable
field extensions (“MacLane’s Criterion”, loc. cit.), the fields K and k1/2∞

are linearly disjoint over k. Therefore, the elements
√
a1, . . . ,

√
ar are linearly

independent over K. This shows that QL(ϕ) ⊗K is anisotropic.

If o is a valuation ring with maximal ideal m, we denote the residue class
field o/m from now on by κ(o).
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Theorem 2. Let λ:K → L ∪ ∞ be a place and ϕ a form which has GR
with respect to λ.15 Suppose that the form λ∗(ϕ) is nondegenerate. Suppose
further that K ′ ⊃ K is a field extension and that µ:K ′ → L ∪ ∞ is an
extension of the place λ. Then the form ϕ⊗K ′ has GR with respect to µ and
µ∗(ϕ⊗K ′) ∼= λ∗(ϕ).

Proof. Let o: = oλ, o′: = oµ. The field extension λ:κ(o) →֒ L is a combination
of the extensions κ(o) →֒ κ(o′) and µ:κ(o′) →֒ L, where the first extension is
induced by the inclusion o →֒ o′.

Let E be a quadratic space for ϕ and M a nondegenerate quadratic o-
module with E ∼= K ⊗o M . Then K ′ ⊗ E = K ′ ⊗o

′ M ′ with M ′: = o′ ⊗o M .
The quasilinear quadratic κ(o)-module G: = κ(o) ⊗o QL(M) is anisotropic.
By assumption, L⊗λ G = QL(L⊗λM) is also anisotropic. Therefore

κ(o′) ⊗κ(o) G = κ(o′) ⊗o
′ QL(M ′)

is anisotropic. This proves that M ′ is a nondegenerate quadratic o′-module.
Hence ϕ⊗K ′ is nondegenerate and has GR with respect to µ. Furthermore,
µ∗(ϕ⊗K ′) corresponds to the quadratic space

L⊗µM ′ = L⊗µ (o′ ⊗o M) = L⊗λM.

Hence µ∗(ϕ⊗K ′) ∼= λ∗(ϕ).

Now we can faithfully repeat the observation, made at start of our treat-
ment of the theory of generic splitting in §4.

So, let ϕ be a nondegenerate form over a field k (of characteristic 2), and
let K ⊃ k and L ⊃ k be field extensions of k with L ⊃ k separable. Let
λ:K → L ∪∞ be a place over k. On the basis of Theorem 1, we can apply
Theorem 2 to the trivial place k →֒ L and its extension λ. We see that ϕ⊗K
is nondegenerate and has GR with respect to λ, and that λ∗(ϕ⊗K) ∼= ϕ⊗L.

Let ϕ ⊗ K ∼= ϕ1 ⊥ r1 × H be the Witt decomposition of ϕ. By an
established argument (§8, Theorem 2(b)), ϕ1 has GR with respect to λ, and
ϕ ⊗ L ∼= λ∗(ϕ1) ⊥ r1 ×H . Hence, ind(ϕ ⊗ L) ≥ ind(ϕ ⊗K). If K is also
separable over k and if K and L are specialization equivalent over k, it follows
again that ind(ϕ⊗ L) = ind(ϕ⊗K) and ker(ϕ⊗ L) ∼= λ∗(ϕ1).

Definition. A generic separable zero field of ϕ is a separable field extension
K ⊃ k which has the following properties:

(a) ϕ⊗K is isotropic.

(b) If L ⊃ k is a separable field extension with ϕ ⊗ L isotropic, then there
exists a place λ:K → L ∪∞ over k.

According to Theorem 1, ϕ can become isotropic over a separable field
extension L of k only if ϕ 6= QL(ϕ), i.e. if dimϕ − dimQL(ϕ) ≥ 2. If ϕ

15This assumption presupposes that ϕ is nondegenerate (cf. §7, Definition 1).
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is such a form with dimϕ 6= 2, then the polynomial ϕ(X1, . . . , Xn) is irre-

ducible over the algebraic closure k̃ of k. This can easily be seen by writing
ϕ(X1, . . . , Xn) = X1X2 + ψ(X3, . . . , Xn) over k̃, after a coordinate transfor-
mation. Here ψ is a quadratic polynomial which is not the zero polynomial.
Therefore, we can again construct the field

k(ϕ) = Quot
k[X1, . . . , Xn]

(ϕ(X1, . . . , Xn))
.

This extends our definition of k(ϕ) in §9 from regular forms ϕ to nondegener-
ate forms ϕ. {Obviously k(ϕ) will have its original meaning when dimϕ = 2,
QL(ϕ) = 0.}

It is now easy to see that k(ϕ) is separable over k: Let x1, . . . , xn be the
images of X1, . . . , Xn in k(ϕ), i.e. k(ϕ) = k(x1, . . . , xn). After a coordinate
transformation we may suppose, without loss of generality, that

ϕ(X1, . . . , Xn) = a1X
2
1 +X1X2 + b1X

2
2 + ψ(X3, . . . , Xn).

The elements x2, . . . , xn form a transcendence basis of k(ϕ) over k. If x1 6∈
k(x2, . . . , xn), then k(ϕ) is a separable quadratic extension of k(x2, . . . , xn).
If the form ϕ is isotropic, we can make it so that a1 = 0. Then k(ϕ) =
k(x2, . . . , xn) is purely transcendental over k.

Theorem 3. Let ϕ be a nondegenerate form over a field K with ϕ 6= QL(ϕ)
and let λ:K → L ∪ ∞ be a place such that ϕ has GR with respect to λ.
Suppose that also the form λ∗(ϕ) is nondegenerate. Then λ∗(ϕ) is isotropic
if and only if λ can be extended to a place µ:K(ϕ) → L ∪∞.

Proof. If there exists such a place µ, then λ∗(ϕ) is isotropic by an established
argument, using Theorem 2 above.

Suppose now that ϕ: = λ∗(ϕ) is isotropic. By the theory in §9, we may
suppose that dimQL(ϕ) ≥ 2, thus dimϕ ≥ 4. Just as in the proof of Theo-
rem 3 in §9, we see that λ can be extended to a place µ:K(ϕ) → L(ϕ) ∪∞.
{Note that this is also true in case ϕ is anisotropic.} Since ϕ is isotropic,
L(ϕ) is a purely transcendental extension of L, as established above. Hence
there exists a place ρ from L(ϕ) to L over L. The place ρ ◦µ:K(ϕ) → L∪∞
extends λ.

Corollary. Let ϕ be a nondegenerate form over a field k with ϕ 6= QL(ϕ).
Then k(ϕ) is a generic separable zero field of ϕ.

Since we have secured the existence of a generic separable zero field, we
obtain for every form ϕ over k a generic separable splitting tower

(Kr | 0 ≤ r ≤ h)

with higher indices ir and higher kernel forms ϕr (0 ≤ r ≤ h), in com-
plete analogy with the construction of generic splitting towers in §4 (just
before §4, Definition 5). Thus K0/k is a separable inessential field extension,
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ϕr = ker(ϕ⊗Kr), and Kr+1 is a generic separable zero field of ϕr for r < h.
The height h satisfies h ≤ 1

2 (dimϕ− dimQL(ϕ)).
In analogy with §4, Theorem 3, we have the following theorem, with mu-

tatis mutandis the same proof.

Theorem 4. Let ϕ be a nondegenerate form over k. Let (Kr | 0 ≤ r ≤ h) be
a generic separable splitting tower of ϕ with associated higher kernel forms
ϕr and indices ir. Let γ: k → L ∪ ∞ be a place such that ϕ has GR with
respect to γ. Suppose that the form γ∗(ϕ) is nondegenerate. Finally, for an
m with 0 ≤ m ≤ h, let a place λ:Km → L ∪ ∞ be given, which extends γ
and which cannot be extended to Km+1 in case m < h. Then ϕm has GR
with respect to λ. The form γ∗(ϕ) has kernel form λ∗(ϕm) and Witt index
i0 + . . .+ im.

Now we can faithfully repeat Scholium 1 to 4 from §4, but this time with
generic separable splitting towers and separable field extensions. We leave this
to the reader. {In Scholium 3, on should of course assume – as in Theorem 4
above – that γ∗(ϕ) is nondegenerate.}

In particular, the generic separable splitting tower (Kr | 0 ≤ r ≤ h)
regulates the splitting behaviour of ϕ with respect to separable field extensions
L ⊃ k, as described in §4, Scholium 1.
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Our specialization theory of quadratic forms, developed in §6 – §8, gave a
satisfying basis for understanding the splitting behaviour of quadratic forms
under field extensions (if the forms were not regular, we had to limit ourselves
to separable field extensions). There is one important point however, where
the specialization theory is disappointing.

For instance, let λ:K → L∪∞ be a place from a field K of characteristic 0
to a field L of characteristic 2. If ϕ is a quadratic form overK which has good
reduction with respect to λ, then λ∗(ϕ) is automatically a strictly regular
form. Conversely, given a strictly regular form ψ over L, one can easily find a
strictly regular (= nondegenerate) form ϕ over K which has good reduction
with respect to λ and such that λ∗(ϕ) ∼= ψ. One could then try to deduce
properties of ψ from properties of the “lifting” ϕ of ψ, in the hope that ϕ
is easier to deal with than ψ because charK = 0. Good examples can be
obtained from the generalization of §4, Scholium 3, at the end of §9, but we
will not carry this out.

It is furthermore desirable to lift a nondegenerate form ψ over L, with
quasilinear part QL(ψ) 6= 0, to a form ϕ over K. This is not possible with
our specialization theory as it stands.

Let us review the foundations of the current theory! We return to the use
of geometric language. Let λ:K → L∪∞ be a place with associated valuation
ring o. Let m be the maximal ideal of o and k = o/m its residue class field.
Finally, let λ: k →֒ L be the field extension determined by λ.

Given a suitable quadratic space E over K, the idea was to attach a
space F over k to E and then to define the specialization λ∗(E) of E with
respect to λ as the space L ⊗λ F . We required E to have good reduction,
i.e. E ∼= K ⊗o M for a nondegenerate quadratic module M over o. Then we
could choose our space F over k to be F = M/mM .

The preceding is analogous to the specialization theory for varieties in
algebraic and arithmetic geometry (and related areas, such as rigid analysis):
One defines a class of “nondegenerate” objects X over the valuation ring o

and associates to it, by means of a base extension, the objects K ⊗o X and
k ⊗o X over K and k. Finally one decrees that L ⊗λ (k ⊗o X ) = L ⊗λ X is
the specialization of K ⊗o X with respect to λ.

Without any doubt, we have found in the nondegenerate quadratic spaces,
as defined in §6, Definition 3, a respectable class X of such objects which
easily comes to mind. Nevertheless we are a bit unfair to all the quadratic
spaces over K, waiting to be specialized. It would be fairer to only require
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that E ∼= K ⊗o M with M a free quadratic o-module such that M/mM is
nondegenerate, and then to define λ∗(E): = L ⊗λM = L ⊗λ (M/mM). But
then one should show, that up to isometry, λ∗(E) only depends on λ and E
and not on the choice of M .

This is possible, as we shall show now. In the following a quadratic module
over a valuation ring (in particular a field) will always be understood to be
a free quadratic module of finite rank.

Let o be a valuation ring with maximal ideal m, quotient field K and
residue class field k = o/m. If 2 6∈ m, then we already know all what follows.
On formal grounds, we allow nevertheless the uninteresting case that chark 6=
2.

Definition 1.

(a) A quadratic module M over o is called reduced nondegenerate if the
quadratic module M/mM over k is nondegenerate. (Note: If chark 6= 2,
this implies that M itself is nondegenerate.)

(b) A quadratic module E over K has fair reduction (or: FR for short) with
respect to λ (or: with respect to o), if there exists a reduced nondegenerate
quadratic module M over o such that E ∼= K ⊗o M .16

It is our task to prove that in the situation of Definition 1(b), the space
M/mM is independent of the choice of reduced nondegenerate module M
up to isometry. We will however proceed in a more general direction than
necessary, in order to develop at the same time the equipment necessary to
obtain a generalization of the important Theorem 2(b) (§8) for fair reduction
instead of good reduction. First a very general definition.

Definition 2. Let M = (M, q) and M ′ = (M ′, q′) be quadratic modules
over a ring A. We say that M represents the quadratic module M ′, and write
M ′ < M , if the A-module M has a direct sum decomposition M = M1 ⊕M2

with (M1, q|M1) ∼= (M ′, q′).

Now, ifM is a quadratic o-module, we always regardM as an o-submodule
of the K-vector space K⊗oM . So we have K⊗oM = KM . In the following,
we will almost always denote the quadratic form onM by q, and its associated
bilinear form Bq by B. We will also use q to denote the quadratic form on
K ⊗oM with values in K, obtained from q. We will often denote the module
M/mM over k by M , and the image of a vector x ∈M in M with x. Likewise
we denote the image of a scalar a ∈ o in k by a. Finally, we denote by q the
quadratic form on M with values in k, induced by q, i.e. q(x) = q(x) for
x ∈ M . Furthermore, B will stand for the associated bilinear form Bq, i.e.

B(x, y) = B(x, y) for x, y ∈M .

16In [K4] the words “nearly good reduction” are used instead of “fair reduction”.
We avoid this terminology here, because we will talk about a different concept,
“almost good reduction” later (Chapter IV).
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As before, we call a nondegenerate quadratic module over a field or valu-
ation ring a quadratic space, or just a space. If M is a reduced nondegenerate
quadratic o-module, then M = M/mM is a space over k. It is easy to show
that K⊗M is a space over K too (see the Remark below, after Definition 3),
but that is not so important at the moment.

Lemma 1. Let M be a reduced nondegenerate quadratic module over o.
There exists a decomposition M = M1 ⊥ M2 with M1 strictly regular and
B(M2×M2) ⊂ m. If such a decomposition is given and x is a primitive vector
of M2, then q(x) ∈ o∗.

Proof. We have a decomposition M = U ⊥ QL(M) with U strictly regular.17

Let x1, . . . , xr be vectors of M , such that the images x1, . . . , x1 in M form
a basis of the k-vector space U . Then the determinant of the value matrix

(B(xi, xj)) with 1 ≤ i, j ≤ r is a unit of o. Therefore, M1: =
r∑
i=1

oxi is a

strictly regular space. LetM2 be the orthogonal complementM⊥
1 ofM1 inM .

Then M = M1 ⊥M2 and M2/mM2 = QL(M). Since QL(M) is quasilinear,
we have B(M2×M2) ⊂ m. Conversely, if such a decompositionM = M1 ⊥M2

is given, with M1 strictly regular and B(M2×M2) ⊂ m, then M2 = QL(M).
Since QL(M) is anisotropic, every primitive vector x in M2 has a value
q(x) ∈ o∗.

Lemma 2. Suppose again that M is a reduced nondegenerate quadratic o-
module. Then M is maximal among all finitely generated (thus free) o-modules
N ⊂ K ⊗o M with q(N) ⊂ o.

Proof. We work in the quadratic K-module E: = K ⊗o M . According to
Lemma 1, there is a decomposition M = M1 ⊥ M2 with M1 strictly regular
and B(M2 ×M2) ⊂ m. Let x ∈ E and q(M + ox) ⊂ o. We have to show that
x ∈M .

We write x = x1 +x2 with x1 ∈ K⊗M1, x2 ∈ K⊗M2. For every y ∈M1,
we have B(x1, y) = B(x, y) = q(x + y) − q(x) − q(y) ∈ o. Since the bilinear
form B = Bq is nondegenerate on M1, it follows that x1 ∈ M1. Therefore,
M + ox = M + ox2 and so q(x2) ∈ o. Now, x2 = az for a primitive vector
z ∈ M2 and a ∈ K. Since q(z) ∈ o∗, we get a ∈ o, and so x2 ∈ M . We
conclude that x ∈M .

Lemma 3. (Extension of §6, Lemma 4.) Let M be a reduced nondegenerate
quadratic o-module and let e be a primitive isotropic vector in M . Then e can
be completed to a hyperbolic vector pair e, f in M .

Proof. We work again in E = K ⊗ M . The ideal B(e,M) of o is finitely
generated. Therefore we have B(e,M) = ao for an element a of o. If a were
equal to zero, then the vector e ∈M would lie in the quasilinear part QL(M)
of M . However, e 6= 0 and q(e) = 0, so that e 6∈ QL(M) due to the anisotropy

17Recall that QL(M) denotes the quasilinear part of M , see the beginning of §6.
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of QL(M). Therefore, a 6= 0. Since B(e,M) = ao and q(M) ⊂ o, we have
q(M + o(a−1e)) ⊂ o. Thus, by Lemma 2, a−1e ∈M . Since e is primitive, we
conclude that a−1 ∈ o, i.e. a ∈ o∗. Hence, B(e,M) = o. As in the proof of §6,
Lemma 4, we choose z ∈M with B(e, z) = 1 and complete e to a hyperbolic
pair with the vector f : = z − q(z)e.

Theorem 1. Let M be strictly regular, N a reduced nondegenerate quadratic
o-module and K ⊗M < K ⊗ N . Then M < N . Furthermore, N ∼= M ⊥ P
where P is a reduced nondegenerate quadratic o-module.

Proof. If Q is a strictly regular quadratic submodule of N , then N = Q ⊥ P
with P : = Q⊥ = {x ∈ N | B(x,Q) = 0}, since Q is nondegenerate with
respect to the bilinear form B = Bq (§5, Lemma 1). We have N = Q ⊥ P
and conclude that P is nondegenerate, i.e. P is reduced nondegenerate.

Because of this preliminary remark, it suffices to show that M < N .
Suppose first of all that M is hyperbolic, i.e. M ∼= r × H for some r > 0,
whereH denotes the quadratic module

[
0
1

1
0

]
over o. We proceed by induction

on r.
Since K ⊗M < K ⊗ N , K ⊗N contains isotropic vectors. We can then

choose a primitive isotropic vector e in N . This vector can be completed to
a hyperbolic vector pair in N , by Lemma 3. Hence, H < N and so N ∼=
H ⊥ N ′ where N ′ is a reduced nondegenerate quadratic o-module. From
r × (K ⊗H) < K ⊗N , we get K ⊗N ∼= r× (K ⊗H) ⊥ G for some space G
overK. On the other hand,K⊗N ∼= (K⊗H) ⊥ (K⊗N ′). By the Cancellation
Theorem over K (§6, Theorem 2), we get (r − 1)× (K ⊗H) ⊥ G ∼= K ⊗N ′.
Therefore, (r − 1) × (K ⊗H) < K ⊗N ′. The induction hypothesis gives us
(r − 1) ×H < N ′ and so r ×H < N .

In the general case, K ⊗M < K ⊗ N implies that K ⊗ (M ⊥ (−M)) <
K ⊗ (N ⊥ (−M)). Since M ⊥ (−M) is hyperbolic, it follows from above
that M ⊥ (−M) < N ⊥ (−M), and so, N ⊥ (−M) ∼= M ⊥ (−M) ⊥ P
by the remark at the beginning of the proof, where P is another reduced
nondegenerate quadratic o-module. By the Cancellation Theorem over o (§6,
Theorem 2), we may conclude that N ∼= M ⊥ P , and so M < N .

Theorem 2 [K4, Lemma 2.8]. Suppose that M and N are reduced nondegen-
erate quadratic o-modules with K ⊗M < K ⊗ N . The spaces M = M/mM
and N = N/mN over k have the following properties:

(a) M < N .

(b) More precisely: there exist quadratic subspaces S and T of N with M < S,
N = S ⊥ T , T strictly regular, dimS ≤ dimQL(M) + dimQL(N) +
dimM .

(c) If N is anisotropic, then M < N .

Remark. We will not need properties (b) and (c) later on. They can however
be obtained in the following proof at no extra cost.
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Proof of Theorem 2. (i) By Lemma 1, we can choose an orthogonal decom-
position M = M1 ⊥M2 with M1 strictly regular and B(M2 ×M2) ⊂ m. We
have K ⊗M1 < K ⊗N . By Theorem 1, we have N ∼= M1 ⊥ N2, where N2

is a reduced nondegenerate quadratic o-module. Then K ⊗M1 ⊥ K ⊗M2 <
K ⊗M1 ⊥ K ⊗N2 implies K ⊗M2 < K ⊗N2 by the Cancellation Theorem
over K (§6, Theorem 2) as usual. If we could prove the claims of the theorem
for M2 and N2 instead of M and N , then they would follow immediately
for M and N as well. Hence we assume now, without loss of generality, that
B(M ×M) ⊂ m.

(ii) If M = {0}, nothing has to be done. So suppose that M 6= {0}.
Surely k has characteristic 2. We suppose, without loss of generality that
F : = K⊗M is a subspace of E: = K⊗N (instead of only: F is isomorphic to
a subspace of E). Since M is anisotropic, we haveM = {x ∈ F | q(x) ∈ o} (as
already ascertained before). Therefore, N1: = N ∩ F ⊂ M . Moreover, N1 is
a direct summand of the o-module N , since N/N1 is torsion free and finitely
generated, and thus free. Hence N1 itself is also free.

Let m: = dimM . By the Elementary Divisor Theorem for valuation rings,
there exist bases x1, . . . , xm and y1, . . . , ym of the free o-modules M and N1

with yi = cixi, ci ∈ o (1 ≤ i ≤ m). We suppose without loss of generality
that ci = 1 for 1 ≤ i ≤ s and ci ∈ m for s < i ≤ m. {It is allowed that s = 0
or s = m.}

If N is anisotropic, then q(x) ∈ o∗ for every primitive vector x of N ,
and thus for every vector in N1 which is primitive in N1. Hence s = m, i.e.
N1 = M and M < N . This establishes property (c).

(iii) Let V be the image of N1 in N = N/mN . Since N1 is a direct
summand of N , we may make the identification V = N1. Since B(M ×M) ⊂
m, we have B(N1 × N1) ⊂ m, thus B(V × V ) = 0. Hence V is quasilinear.
We have

M = kx1 ⊕ · · · ⊕ kxm ∼= [a1, . . . , am], with ai: = q(xi) ∈ k∗.(1)

V = ky1 ⊕ · · · ⊕ kym
∼= [a1, . . . , as] ⊥ (m− s) × [0].(2)

Let R: = QL(N) be the quasilinear part of N and V0: = V ∩ R. Since R is
anisotropic, V0 is also anisotropic. From (2) it follows that V0 < [a1, . . . , as],
and so

(3) [a1, . . . , as] ∼= V0 ⊥ [b1, . . . , bs−t]

for elements bi ∈ k∗ and t: = dimV0. {If t = s, the righthand side of (3) should
be read as V0.} From (2) and (3) we get a decomposition V = V0 ⊥ U , with

(4) U ∼= [b1, . . . , bs−t] ⊥ (m− s) × [0].

Since V ∩ R = V0, we have U ∩ R = {0}. We choose a submodule W of N
such that N = (R + U) ⊕W = R ⊕ U ⊕W . Since R is the quasilinear part
of N , P : = U ⊕W is strictly regular and N = R ⊥ P . Let u1, . . . , um−t be
a basis of U , associated with the representation (4). P is a symplectic vector
space with respect to the bilinear form B = Bq. Hence we can complete
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u1, . . . , um−t to a basis u1, . . . , um−t, z1, . . . , zm−t of a subspace P1 of P with
B(ui, zj) = δij (1 ≤ i, j ≤ m− t). As a quadratic space, P1 is of the form

P1 = (ku1 + kz1) ⊥ . . . ⊥ (kum−t + kzm−t)

and P = P1 ⊥ T for a strictly regular space T .
For s − t < i ≤ m − t, we have kui + kzi ∼=

[
0
1

1
0

]
. Therefore, [at+i] <

kui + kzi for this i. Furthermore we have V0 < R and [bi] < kui + kzi for
1 ≤ i ≤ s− t, since bi = q(ui). Putting everything together, (1) and (3) yield

M ∼= V0 ⊥ [b1, . . . , bs−t] ⊥ [as+1, . . . , am] < R ⊥ P1,

and R ⊥ P = R ⊥ P1 ⊥ T = N . Let S: = R ⊥ P1, then M < S and
N = S ⊥ T . Since M = QL(M) and R = QL(N), we have furthermore

dimS = dimQL(N) + 2(m− t)

= dimQL(N) + dimQL(M) + dimM − 2t

≤ dimQL(N) + dimQL(M) + dimM.

As a special case of Theorem 2, we obtain

Corollary 1. Let M and M ′ be two reduced nondegenerate quadratic o-
modules with K ⊗M ∼= K ⊗M ′. Then M/mM ∼= M ′/mM ′.

Now let λ:K → L ∪ ∞ again be a place and o its associated valuation
ring. As before, we denote by λ the field embedding k →֒ L determined by
λ. By Corollary 1 it makes sense to make the following definition:

Definition 3. Let E be a space over K which has FR with respect to λ. Let
M be a reduced nondegenerate quadratic o-module with E ∼= K ⊗M . We
call the quadratic L-module L ⊗λ M = L ⊗λ (M/mM) (which is uniquely
determined by E up to isometry) the specialization of E with respect to λ,
and denote it by λ∗(E).

Note. If E has good reduction with respect to λ, then λ∗(E) has the old
meaning.

Caution! If charL = 2, then λ∗(E) can be a degenerate quadratic L-module,
even if E is strictly regular. However, this does not happen when the field
embedding λ is separable, see §10.

Remark. If M is a reduced nondegenerate quadratic o-module, then the
quadratic K-module K ⊗M is definitely nondegenerate, for we know that
QL(K⊗M) = K⊗QL(M), and if QL(K⊗M) were isotropic, then QL(M),
and thus QL(M/mM), would also be isotropic. Therefore our assumption in
Definition 3, that the quadratic K-module E is nondegenerate, is a natural
one and does not cause a loss of generality.
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We illustrate the concept of fair reduction with a few examples.

Example 1. Let o be a valuation ring with charK = 0, chark = 2, and let
λ:K → k ∪∞ be the canonical place of o. We want to lift an arbitrary space
S over k to a space over K by means of λ. We choose a decomposition

S ∼=
[
α1

1

1

β1

]
⊥ . . . ⊥

[
αm
1

1

βm

]
⊥ [γ1, . . . , γr]

with αi, βi, γj ∈ k. {Since the quasilinear part of S is anisotropic, the ele-
ments γ1, . . . , γr are linearly independent over k2.} Next we choose pre-images
ai, bi, cj of the elements αi, βi, γj in o. Suppose that r = 2s is even. We
choose elements t1, . . . , ts ∈ m. Then the K-space

E: =

[
a1

1

1

b1

]
⊥ . . . ⊥

[
am
1

1

bm

]
⊥
[
c1
t1

t1
c2

]
⊥ . . . ⊥

[
c2s−1

ts

ts
c2s

]

clearly has FR with respect to λ and λ∗(E) ∼= S. If r = 2s + 1 is odd, we
again choose elements t1, . . . , ts ∈ m. This time the K-space

E: =

[
a1

1

1

b1

]
⊥ . . . ⊥

[
am
1

1

bm

]
⊥
[
c1
t1

t1
c2

]
⊥ . . . ⊥

[
c2s−1

ts

ts
c2s

]
⊥ [c2s+1]

has FR with respect to λ and λ∗(E) ∼= S. In the special case that all ti = 0,
we obtain a K-space

F : =

[
a1

1

1

b1

]
⊥ . . . ⊥

[
am
1

1

bm

]
⊥ [c1, . . . , cr]

for every r. Since charK = 0, we can interpret F (and more generally E) as
a bilinear space,

F ∼=
(

2a1

1

1

2b1

)
⊥ . . . ⊥

(
2am
1

1

2bm

)
⊥ 〈2c1, . . . , 2cr〉.

The elements a1, . . . , am can always be chosen to be 6= 0 and we obtain the
diagonalization

F ∼= 〈2a1, d1, . . . , 2am, dm, 2c1, . . . , 2cr〉

with

di: =
4aibi − 1

2ai
(1 ≤ i ≤ r).

Example 2. Let k be an imperfect field of characteristic 2, o the power series
ring k[[t]] in one variable t, and so K = k((t)). Choose c ∈ k \ k2 and let E
be the space

[
1
1

1
ct−2

]
over K.

Claim. E has FR, but does not have GR with respect to o.
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Proof. We have E ∼= K ⊗M , where M is the quadratic o-module
[

1
t
t
c

]
. Its

reductionM = M/mM is the space
[

1
0

0
c

]
= [1, c] over k, which is anisotropic.

Therefore M is reduced nondegenerate and E has FR.
Suppose for the sake of contradiction that E ∼= K ⊗ N where N is a

quadratic space over o. Since E does not have a quasilinear part, the same is

true for N . Hence, N ∼=
[
α
1

1
β

]
with α, β ∈ o. We then have

[
1
1

1
ct−2

] ∼=
[
α
1

1
β

]

over K. An inspection of the Arf-invariants shows that ct−2 = αβ + x2 + x
for some x ∈ k((t)). We must have x 6= 0. We write x =

∑
i≥d

ait
i for some

d ∈ Z and ad 6= 0. Since αβ ∈ o, we have d = −1 and c = a2
−1. This is a

contradiction since c is not a square in k. We conclude that E does not have
GR.

Example 3. Again let o = k[[t]] and k a field of characteristic 2. In §7 we
determined that the space E: =

[
1
1

1
t−1

]
does not have GR with respect to o.

Could it be that E has at least FR with respect to o?
Let us assume that this is so. Then there exists a reduced nondegenerate

quadratic o-module M with E ∼= K ⊗M . We choose a decomposition M =
M1 ⊥M2 with M1 strictly regular and B(M2 ×M2) ⊂ m. We already know
that M is degenerate, so dimM2 > 0. Since dimM = 2 and dimM1 is even,
we must have M1 = 0. Hence M is quasilinear. But M is not quasilinear,
since E is not quasilinear. Therefore we have a representation

M ∼=
[
a

tnc

tnc

b

]

with n ∈ N and units a, b, c ∈ o∗. The space M ∼= [a, b] is anisotropic and so
the element ab is not a square in k. Over K we have
[
1

1

1

t−1

]
∼= K ⊗M ∼= 〈a〉 ⊗

[
1

tnca−1

tnca−1

ba−1

]
∼= 〈a〉 ⊗

[
1

1

1

abc−2t−2n

]
.

Comparing Arf-invariants shows

(∗) abc−2t−2n = t−1 + x2 + x

with x ∈ K. Let v: = K → Z ∪∞ be the valuation associated to o. From (∗)
we get v(x) < 0 and thus v(x) = −n. Therefore x = t−n

∞∑
i=0

xit
i with xi ∈ k,

x0 6= 0. Comparing the coefficients of t−2n on the left and righthand side of
(∗) gives

abc−2 = x2
0.

So ab is a square in k after all, a contradiction. Therefore E does not have FR.

We continue with the general theory. So λ:K → L ∪ ∞ is again an ar-
bitrary place. We immediately obtain a consequence of Theorem 2 which is
not contained in the results of §8 in the case of good reduction.
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Corollary 2. Let E and F be spaces over K which have FR with respect to
λ and with F < E. Then λ∗F < λ∗E.

This corollary engenders a substitution principle for quadratic forms,
modeled on §3, Theorem 5.

Theorem 3. Let (gkl(t))1≤k,l≤m and (fij(t))1≤i,j≤n be symmetric matrices
whose coefficients are polynomials in variables t = (t1, . . . , tr) over a field
k. Let L ⊃ k be a field extension of k and c = (c1, . . . , cr) an r-tuple with
coefficients in L. Suppose that the quadratic forms [gkl(t)] and [fij(t)] over
k(t) satisfy [gkl(t)] < [fij(t)]. Suppose also that the quadratic forms [gkl(c)]
and [fij(c)] over L are nondegenerate. Then [gkl(c)] < [fij(c)] (over L).

We return to an arbitrary place λ:K → L ∪∞.

Theorem 4. (Extension of §8, Lemma 2(b).) Let G be a space and F a
strictly regular space over K. Suppose that F has GR with respect to λ. Fi-
nally, let E: = F ⊥ G.

Claim: E has FR with respect to λ if and only if G has FR with respect
to λ. In this case we have λ∗E ∼= λ∗F ⊥ λ∗G.

Proof. We have F = K⊗M whereM is a strictly regular quadratic o-module.
If G has FR with respect to λ, then G = K ⊗ P where P is a reduced
nondegenerate quadratic o-module. The quadratic o-module N : = M ⊥ P is
then also reduced nondegenerate and

L⊗λ N = (L⊗λM) ⊥ (L⊗λ P ) = F ⊥ G = E.

Hence E has FR with respect to λ and λ∗E ∼= λ∗F ⊥ λ∗G.
Suppose now that E has FR with respect to λ. We have E ∼= K ⊗ N

where N is a reduced nondegenerate quadratic o-module. By Theorem 1,
K⊗M < K⊗N implies thatN ∼= M ⊥ P where P is a reduced nondegenerate
quadratic o-module. Hence

F ⊥ (K ⊗ P ) ∼= E ∼= F ⊥ G.

Now G ∼= K ⊗ P by the Cancellation Theorem over K (§6, Theorem 2).
Therefore G has FR with respect to λ.

To the currently developed theory of fair reduction, we can associate a
variation of the weak specialization theory of §7, which we will briefly present
in the following.

Theorem 5. (Extension of §6, Theorem 5.) Let o be quadratically henselian.
Let (M, q) be a reduced nondegenerate and anisotropic quadratic o-module.
Furthermore, let e be a primitive vector in M . Then q(e) ∈ o∗.

Proof. We choose a decomposition M = N ⊥M ′ with N strictly regular and
B(M ′ ×M ′) ⊂ m. Traversing the proof of §6, Theorem 5 and replacing M⊥
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90 Chapter II. Generic Splitting Theory

by M ′ everywhere will give proof since all arguments will faithfully remain
valid.

As before, oh denotes the henselization of the valuation ring o.

Lemma 4. Let M be a quadratic o-module. Then Mh: = oh⊗o M is reduced
nondegenerate if and only if M is reduced nondegenerate.

Proof. This is evident since oh/mh = k, so that Mh/mhMh is canonically
isomorphic to the quadratic k-module M/mM .

Now the road is clear to extend, in an appropriate way, the main result
of §7 (Theorem 4), using fair reduction. As before, let
λ:K → L∪∞ be a place with associated valuation ring o. Let S be a system
of representatives of Q(K)/Q(o) in o, as introduced in §7.

Definition 4. Let E = (E, q) be a quadratic K-module (always free of finite
rank). We say that E is weakly obedient with respect to λ (or: with respect to
o) when E has a decomposition

(∗) E = ⊥
s∈S

Es

such that the quadratic K-module (Es, s
−1(q|Es)) has FR with respect to

λ for every s ∈ S. Every decomposition of the form (∗) is called a weakly
λ-modular (or: weakly o-modular) decomposition of E.

Remark. Let E be weakly obedient with respect to λ. Then

E ∼= ⊥
s∈S

〈s〉 ⊗ (K ⊗Ms)

with reduced nondegenerate quadratic o-modules Ms. For every s ∈ S we
may choose a decomposition Ms = Ns ⊥ M ′

s with strictly regular Ns and
Bs(M

′
s ×M ′

s) ⊂ m, where Bs is the bilinear form associated to Ms. Just as
indicated in §7, we see that

G: = ⊥
s∈S

〈s〉 ⊗ (K ⊗M ′
s)

is anisotropic. Furthermore,

F : = ⊥
s∈S

〈s〉 ⊗ (K ⊗Ns)

is strictly regular. We have E ∼= F ⊥ G. Therefore E is definitely not degen-
erate and is thus a space over K.

Theorem 6. (Extension of §7, Theorem 4.) Let E be a space over K which
is weakly obedient with respect to λ and let

E = ⊥
s∈S

Es = ⊥
s∈S

Fs
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§11 Fair Reduction and Weak Obedience 91

be two weakly λ-modular decompositions of E. Then18 λ∗(E1) ∼ λ∗(F1).

Proof. The arguments in the proof of §7, Theorem 4, remain valid in the
current more general situation. One should use Theorem 5 and Lemma 4
above.

Now the following definition makes sense:

Definition 5. Let E be a quadratic space, weakly obedient with respect to
λ and let E = ⊥

s∈S
Es be a weakly λ-modular decomposition of E. Then we

call λ∗(E1) a weak specialization of E with respect to λ. We denote the Witt

class of λ∗(E1) by λW (E). In other words, λW (E): = {λ∗(E1)} ∈ Ŵq(L). By
Theorem 6, λW (E) is uniquely determined by E and λ.

Remark. Our proof of Theorem 6 is independent of the main result Theorem 2
of the specialization theory developed above. We could also have deduced the
important Corollary 1 of Theorem 2 (specialization by FR is well-defined)
from Theorem 6, analogous to the proof of §8, Theorem 1 in the quadratic
case. In other words, we could have established the weak specialization the-
ory first and then develop from this the basic idea of specialization by FR
(Definition 3 above), just as before in §7 and §8.

In the theorems of §8 about the weak specialization of tensor products
(Theorem 6(ii), Theorem 7) we may not simply replace the word GR by FR
and the word “obedient” by “weakly obedient”. This already shows us that
in our theory, good reduction does not become superfluous in any way after
the introduction of fair reduction.

More important even is the observation that in the theory of generic
splitting in §9 and §10 good reduction appears center stage, and not fair
reduction: For example, let ϕ be a regular quadratic form over a field k and
let L ⊃ k be a field extension. Let (Kr | 0 ≤ r ≤ h) be a generic splitting
tower of ϕ. If λ:Kr → L ∪∞ is a place over k for some r ∈ {1, . . . , h}, then
the kernel form ϕr of ϕ⊗Kr automatically has good reduction with respect
to λ.

18See §6, Definition 10, for the definition of Witt equivalence ∼.
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§12 Unified Theory of Generic Splitting

Just as in §9 and §10 we will not use geometric language and talk of quadratic
forms instead of quadratic spaces in this section. The definitions concerning
quadratic spaces over fields, encountered in §11, will be faithfully adopted in
the language of forms. In what follows, a “form” will always be understood
to be a quadratic form.

If γ: k → L∪∞ is a place and ϕ a regular form over k which has GR with
respect to γ, then the splitting behaviour of γ∗(ϕ) under extensions of the
field L is controlled by a given generic splitting tower (Kr | 0 ≤ r ≤ h) of ϕ,
as seen in §4 and §9 (§9, Theorem 4 and generalization of §4, Scholium 3).
According to §10, something similar happens for a place γ and a form ϕ over
k having GR with respect to γ for which γ∗(ϕ) is nondegenerate, provided
some care is exercised. Now we want to extend these results to the case where
ϕ has just FR with respect to γ.

At the same time we want to unite the results of §9 and §10 under one
roof, starting with the following definition.

Definition 1. Let ϕ be a nondegenerate form over a field K. We call a
field extension K →֒ L ϕ-conservative (or: conservative for ϕ) if the form
ϕ⊗L is again nondegenerate, i.e. if the quasilinear part QL(ϕ) of ϕ remains
anisotropic under a field extension from K to L.

If ϕ is regular, then dimQL(ϕ) ≤ 1 and so every field extension of K is ϕ-
conservative. This is true in particular when charK 6= 2. If charK = 2, then
every separable field extension K →֒ L is ϕ-conservative by §10, Theorem 1.

Theorem 1. Let λ:K → L ∪ ∞ be a place, K ′ ⊃ K a field extension and
µ:K ′ → L ∪∞ an extension of λ. Let ϕ be a (nondegenerate) form over K,
having FR (resp. GR) with respect to λ, and let λ∗(ϕ) be nondegenerate.

Claim: the extension K →֒ K ′ is ϕ-conservative. The form ϕ ⊗ K ′ has
FR (resp. GR) with respect to µ and µ∗(ϕ⊗K ′) ∼= λ∗(ϕ).

Proof. In the case of good reduction, this is Theorem 2 from §10. The proof
in the case of fair reduction is similar and goes as follows.

Let o: = oλ and o′: = oµ. Let E = (E, q) be a space corresponding to ϕ
and M a reduced nondegenerate quadratic o-module with E ∼= K⊗oM . Then
λ∗(ϕ) corresponds to the space λ∗(E) ∼= L ⊗λM , where λ:κ(o) →֒ L is the

field extension associated to λ. We have the factorization λ = µ ◦ j, featur-
ing the inclusion j:κ(o) →֒ κ(o′) and the field homomorphism µ:κ(o′) →֒ L,
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94 Chapter II. Generic Splitting Theory

determined by µ. Let ϕ be the form over κ(o), associated to M , i.e. λ∗(ϕ) =
ϕ⊗λ L. Since λ∗(ϕ) is nondegenerate by assumption, λ:κ(o) →֒ L is conser-
vative for ϕ. Therefore j:κ(o) →֒ κ(o′) is conservative for ϕ and µ:κ(o′) →֒ L
is conservative for ϕ ⊗ κ(o′). Now ϕ ⊗ κ(o′) belongs to the quadratic κ(o′)-
module M ′ with M ′: = o′ ⊗o M . Therefore M ′ is nondegenerate, in other
words M ′ is reduced nondegenerate. We have M ′ = κ(o′) ⊗κ(o) M . Further-
more, K ′ ⊗ E ∼= K ′ ⊗o

′ M ′. Thus ϕ⊗K ′ has FR with respect to µ and

µ∗(ϕ⊗K ′) ∼= (ϕ⊗ κ(o′)) ⊗µ L = ϕ⊗λ L ∼= λ∗(ϕ).

In particular, ϕ⊗K ′ is nondegenerate (cf. §11, the Remark following Defini-
tion 3). We conclude that K →֒ K ′ is ϕ-conservative.

In the following let ϕ be a nondegenerate form over a field k. Over every
field K we denote the form

[
0
1

1
0

]
by H .

Theorem 2. Let K and L be extensions of the field k and let λ:K → L∪∞
be a place over k. Suppose further that L is ϕ-conservative and let ϕ⊗K ∼=
r ×H ⊥ ψ be the Witt decomposition of ϕ.

Claim: K is also a ϕ-conservative extension of k. The form ψ has GR
with respect to λ, and ϕ⊗L ∼= r×H ⊥ λ∗(ψ). Thus ind(ϕ⊗L) ≥ ind(ϕ⊗K).

Proof. We apply Theorem 1 to the trivial place γ: k →֒ L and its extension
λ. Now ϕ has GR with respect to γ and γ∗(ϕ) = ϕ ⊗ L. By Theorem 1, K
is conservative for ϕ, in other words ϕ ⊗K is nondegenerate. Again by this
theorem, ϕ ⊗ K has GR with respect to λ and λ∗(ϕ ⊗ K) ∼= ϕ ⊗ L. Since
r ×H also has GR with respect to λ, it follows that ψ has GR with respect
to λ (§8, Theorem 2), and we have ϕ⊗ L ∼= r ×H ⊥ λ∗(ψ).

Corollary. Let K and L be specialization equivalent extensions of the field k.
Then K is ϕ-conservative if and only if L is ϕ-conservative. In this case we
have ind(ϕ⊗K) = ind(ϕ⊗L). Furthermore, if λ:K → L∪∞ is a place over
k, then ker(ϕ⊗K) has GR with respect to λ and λ∗(ker(ϕ⊗K)) ∼= ker(ϕ⊗L).

Next we define a generic splitting tower (Kr | 0 ≤ r ≤ h) associated to
ϕ just as in §4 for chark 6= 2 and in §9 for regular forms, with higher kernel
forms ϕr and higher indices ir (0 ≤ r ≤ h): K0 is an inessential extension
of k, ϕr: = ker(ϕ ⊗ Kr), Kr+1 ∼k Kr(ϕr), ir+1: = ind(ϕr ⊗ Kr+1), in case
r < h. The construction stops with step h if dimϕh − dimQL(ϕh) ≤ 1.

All this makes sense, since an inductive argument shows that QL(ϕr) =
QL(ϕ)⊗Kr is anisotropic for every r ∈ {0, . . . h}. Indeed, the field extension
Kr(ϕr)/Kr is separable for r < h. Hence we can conclude by Theorem 2 that
Kr+1/Kr is ϕr-conservative once we already know thatQL(ϕr) is anisotropic,
i.e. that ϕr is nondegenerate. The extension Kh/k is therefore ϕ-conservative.

Note. If chark 6= 2, then dimϕh ≤ 1. If chark = 2, then ϕh = QL(ϕh).
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§12 Unified Theory of Generic Splitting 95

We now have to convince ourselves that the field tower (Kr | 0 ≤ r ≤ h)
really accomplishes what we expect from a generic splitting tower. As before
in more special situations, it suffices for this purpose, to prove a theorem of
the following sort.

Theorem 3 (Extension of §9, Theorem 4 and §10, Theorem 3). Let γ: k →
L ∪ ∞ be a place. Suppose that the form ϕ has FR with respect to γ and
that γ∗(ϕ) is nondegenerate. Then γ∗(ϕ) is isotropic if and only if γ can be
extended to a place λ: k(ϕ) → L ∪∞.

Proof. We have ϕ ⊗ k(ϕ) ∼= H ⊥ ψ for a form ψ over k(ϕ). If there exists a
place λ: k(ϕ) → L ∪∞ then, by Theorem 1, ϕ ⊗ k(ϕ) has FR with respect
to λ and λ∗(ϕ ⊗ k(ϕ)) ∼= γ∗(ϕ). Then it follows from §11, Theorem 4, that
ψ has FR with respect to λ and that γ∗(ϕ) ∼= H ⊥ λ∗(ψ). Hence γ∗(ϕ) is
isotropic.

Conversely, suppose that the nondegenerate form ϕ: = γ∗(ϕ) is isotropic.
Since H < ϕ we have dimϕ − dimQL(ϕ) ≥ 2. Now, by earlier work, we see
that γ can be extended to a place γ̃: k(ϕ) → L(ϕ) ∪ ∞ (look again at the
proof of §9, Theorem 3). {Note: here we do not need the assumption that ϕ
is isotropic, but only that dimϕ−dimQL(ϕ) ≥ 2.} Since ϕ is isotropic, L(ϕ)
is a purely transcendental extension of L (§9, Lemma 1). Thus there exists
a place ρ:L(ϕ) → L ∪∞ over L. The place λ: = ρ ◦ γ̃: k(ϕ) → L ∪∞ is an
extension of γ.

In what follows, let (Kr | 0 ≤ r ≤ h) be a generic splitting tower associ-
ated to ϕ with higher kernel forms ϕr and indices ir.

Theorem 4 (Extension of §4, Theorem 3 and §10, Theorem 4). Let γ: k →
L∪∞ be a place with respect to which ϕ has FR (resp. GR). Suppose that the
form γ∗(ϕ) is nondegenerate. Finally, suppose that λ:Km → L∪∞ is a place
for some m ∈ {0, . . . , h}, which extends γ and which cannot be extended to
Km+1 in case m < h. Then ϕm has FR (resp. GR) with respect to λ. The
form γ∗(ϕ) has kernel form λ∗(ϕm) and Witt index i0 + . . .+ im.

Proof. We give the proof for FR. The case of GR can be treated in an anal-
ogous way. We have an isometry

(1) ϕ⊗Km
∼= ϕm ⊥ (i0 + . . .+ im) ×H.

By Theorem 1, ϕ⊗Km has FR with respect to λ and λ∗(ϕ⊗Km) ∼= γ∗(ϕ).
From (1) we get, according to §11, Theorem 4, that ϕm has FR with respect
to λ and that

(2) γ∗(ϕ) ∼= λ∗(ϕm) ⊥ (i0 + . . .+ im) ×H.

In particular, λ∗(ϕm) is nondegenerate. If λ∗(ϕm) were isotropic, then we
would surely have that dimϕm ≥ dimQL(ϕm) + 2, i.e. m < h. But then
it follows from Theorem 3 that λ can be extended to a place µ:Km+1 →
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L ∪ ∞, contradiction! Therefore λ∗(ϕm) is anisotropic and (2) is the Witt
decomposition of γ∗(ϕm).

By applying this theorem to the trivial place γ, we obtain

Scholium 1 (Extension of §4, Scholium 1). Let L ⊃ k be a ϕ-conservative
field extension.

(1) Let λ:Km → L ∪ ∞ be a place over k for some m ∈ {0, . . . , h}, which
cannot be extended to a place from Km+1 to L in case m < h. Then ϕm
has good reduction with respect to λ and λ∗(ϕm) is the kernel form of
ϕ⊗ L.

(2) If λ′:Kr → L ∪∞ is a place over k, then r ≤ m and λ′ can be extended
to a place µ:Km → L ∪∞.

(3) For a given number t with

0 ≤ t ≤
[
dimϕ− dimQL(ϕ)

2

]
= i0 + . . .+ ih

and m ∈ N0 minimal such that t ≤ i0 + . . . + im, Km is a generic
ϕ-conservative field extension of k for the splitting off of t hyperbolic
planes of ϕ (cf. the problem posed at the beginning of §4).

Thus, the field tower (Kr | 0 ≤ r ≤ h) rightfully merits the name “generic
splitting tower for ϕ” also in the current general situation.

Definition 2. As before we call h the height of the form ϕ and write h =
h(ϕ). Further, we define the splitting pattern SP(ϕ) as the set of all indices
ind(ϕ⊗L), where L runs through all ϕ-conservative field extensions of k. By
the scholium we have

SP(ϕ) = {i0 + . . .+ ir | 0 ≤ r ≤ h}.

Definition 3. We call any field extension E ⊃ k which is specialization
equivalent to k(ϕ) over k a generic zero field of ϕ. Further, for r ∈ {0, . . . , h},
we call any field extension F ⊃ k which is specialization equivalent toKr over
k a partial generic splitting field of ϕ or, more precisely, a generic splitting
field of level r. This signifies that F is generic for the splitting off of as many
hyperbolic planes as the (r + 1)-th number i0 + . . . + ir in SP(ϕ) indicates.
In case r = h, we speak of a total generic splitting field.

This terminology generalizes notions from §4 and §9, but one has to ex-
ercise some caution; the extensions E ⊃ k and F ⊃ k have the mentioned
generic properties – as far as we know – only within the class of ϕ-conservative
field extensions of k.

Comment on the Theory so far. If the form ϕ over k is degenerate, but
dimϕ− dimQL(ϕ) ≥ 2, then the function field k(ϕ) can be constructed just
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as in the nondegenerate case. Thus we can formally define a “generic splitting
tower” (Kr | 0 ≤ r ≤ h) as above. We may also inquire about the splitting
behaviour of ϕ under extensions L ⊃ k of the field k, in other words about
the possibilities for the index ind(ϕ ⊗ L) and the kernel form ker(ϕ ⊗ L)
(see Definition 10 in §6). However, can we also extend the theory so far to
degenerate forms?

We have a decomposition ϕ ∼= ϕ̂ ⊥ δ(ϕ) with δ(ϕ) ∼= t × [0] and ϕ̂ non-
degenerate, cf. §6, Definition 9 ff. Clearly k(ϕ) is a purely transcendental
extension of k(ϕ̂) of transcendence degree t. Therefore k(ϕ) ∼k k(ϕ̂). Conse-
quently, the above tower (Kr | 0 ≤ r ≤ h) is a generic splitting tower of ϕ̂.
It is now clear that our theorems so far all remain valid for degenerate ϕ, as
long as we complete Definition 1 above as follows: for degenerate ϕ, a field
extension K →֒ L is called conservative for ϕ if it is conservative for ϕ̂.

This, however, furnishes us with a fairly bland extension of the theory so
far to degenerate forms. The obvious, difficult question seems to be: Let ϕ be
a nondegenerate form over a field k and L ⊃ k a field extension with ϕ ⊗ L
degenerate. Is it so that the splitting behaviour of ϕ⊗L under field extensions
of L is controlled by a given generic splitting tower (Kr | 0 ≤ r ≤ h) of
ϕ in a similar way as indicated in Scholium 1(1) above? For example, is
SP(ϕ⊗ L) ⊂ SP(ϕ)?

Our theory does not give any information here. The main problem seems
to occur in Theorem 1 above. If we do not know there that λ∗(ϕ) is nonde-
generate, we can not conclude – as far as I can see – that (ϕ⊗K ′)∧ has fair
reduction with respect to µ.

After this digression, we suppose again that ϕ is a nondegenerate form
over k and that (Kr | 0 ≤ r ≤ h) is a generic splitting tower of ϕ with higher
kernel forms ϕr and indices ir. From Theorem 4 above we immediately obtain
a literal repetition of §4, Scholium 2 in the current, more general situation, if
we bear in mind that for every generic splitting tower (K ′

s | 0 ≤ s ≤ h) of ϕ,
all extensions K ′

s of k are conservative for ϕ. Furthermore, we obtain from
Theorem 4 an extension of §4, Scholium 3 in the same way as we obtained
§4, Scholium 3 from §4, Theorem 3:

Scholium 2. Let γ: k → L ∪ ∞ be a place with respect to which ϕ has FR
(resp. GR). Suppose that γ∗(ϕ) is nondegenerate. Then:

(1) SP(γ∗(ϕ)) ⊂ SP(ϕ).

(2) The higher kernel forms of γ∗(ϕ) arise from certain higher kernel forms
of ϕ by means of specialization. More precisely: if (Ls | 0 ≤ s ≤ e)
is a generic splitting tower of γ∗(ϕ), then e ≤ h and, for every s with
0 ≤ s ≤ e, we have

ind(γ∗(ϕ) ⊗ Ls) = i0 + . . .+ im

with m ∈ {0, . . . , h}. The number m is the biggest integer such that γ
can be extended to λ:Km → Ls ∪ ∞. The kernel form ϕm of ϕ ⊗ Km

has FR (resp. GR) with respect to every extension λ of this kind, and
λ∗(ϕm) is the kernel form of γ∗(ϕ) ⊗ Ls.
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(3) If ρ:Kr → Ls ∪∞ is a place, which extends γ: k → L ∪∞, then r ≤ m
and ρ can be further extended to a place from Km to Ls.
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Base Extension

Before turning towards generic splitting towers, we will give two general def-
initions which will also serve us well in later sections.

As before, the word form over a field k will always be understood to mean
a nondegenerate quadratic form over k. In the following let ϕ be a form over k.

Definition 1. Let dimϕ be even, ϕ 6= 0 and QL(ϕ) = 0.

(a) The discriminant algebra ∆(ϕ) is defined as follows: If char k 6= 2, we
let ∆(ϕ): = k[X ]/(X2 − a), where a is a representative of the signed
determinant d(ϕ̃) = ak∗2 of the bilinear form ϕ̃ = Bϕ associated to ϕ
(cf. §2). If chark = 2, we let ∆(ϕ): = k[X ]/(X2 +X + c), where c is a
representative of the Arf-invariant Arf(ϕ) ∈ k+/℘k.

(b) We define the discriminant of ϕ to be the isomorphism class of ∆(ϕ) as
k-algebra. We will denote it sloppily by ∆(ϕ) as well. The discriminant
is independent of the choice of a resp. c above.

(c) We say that ∆(ϕ) splits when ∆(ϕ) is not a field, i.e. when ∆(ϕ) ∼= k×k.
We will symbolically write ∆(ϕ) = 1 when ϕ splits and ∆(ϕ) 6= 1 when
ϕ doesn’t split.

Remark 1. This notation is not completely groundless, for the isomorphism
classes of quadratic separable k-algebras form a group in a natural way with
unit element k × k. In this group the equality ∆(ϕ⊥ψ) = ∆(ϕ)∆(ψ) holds.
We will not discuss the group of quadratic separable k-algebras any deeper
since we will not make any serious use of it.

Remark 2. If K/k is a field extension,19 then ∆(ϕ⊗K) = ∆(ϕ) ⊗k K.

Remark 3. If τ is the norm form of the k-algebra ∆(ϕ), then ∆(ϕ) = ∆(τ).
Is further dimϕ = 2, then ϕ ∼= cτ for some c ∈ k∗. If we write τ =

[
1
1

1
δ

]
,

then ∆(ϕ) = k[X ]/(X2 +X + δ), also when char k 6= 2.

Definition 2 (cf. [KR, Def.1.1]). Let dimϕ > 1. We say that “ϕ is of outer
type” when dimϕ is even, QL(ϕ) = 0 and ∆(ϕ) 6= 1. In all other cases (thus
in particular when QL(ϕ) 6= 0) we say that “ϕ is of inner type”.

19From now on we will often denote a field extension F →֒ E by E/F , as has been
customary in algebra for a long time.
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Remark 4. For those readers who are at home in the theory of reductive
algebraic groups, we want to remark that Definition 2 leans on the concepts of
inner/outer type in use there: is ϕ regular (i.e. dimQL(ϕ) ≤ 1) and dimϕ ≥
3, then the group SO(ϕ) is almost simple. This group is of inner/outer type
if and only if this is the case for ϕ in the sense of Definition 2.

We want to construct “regular” generic splitting towers of ϕ, having par-
ticularly convenient properties with respect to extensions of the ground field
k, which are nonetheless sufficiently general. Starting with such a regular
generic splitting tower of ϕ we will then construct a regular generic splitting
tower of ϕ⊗ L for every ϕ-conservative field extension L/k.

For every form ψ with dimψ ≥ 2+dimQL(ψ) over a fieldK we introduced
the field extension K(ψ) of K earlier (§4; §9; §10, following Def.2). K(ψ) was
defined to be the function field of the affine quadric ψ(X) = 0 over K,
except when ψ ∼=

[
0
1

1
0

]
, in which case this quadric degenerates in two lines.

In this situation we defined K(ψ) = K(t) for some indeterminate t over K.
Sometimes it is more natural to use the projective quadric ψ(X) = 0 over K
instead of the affine quadric ψ(X) = 0. Thus we arrive at the following

Definition 3. Let ψ be a (nondegenerate quadratic) form over K with
dimψ ≥ 2 + dimQL(ψ). We define a field extension K{ψ} of K as fol-
lows: If ψ ∼=

[
0
1

1
0

]
, we let K{ψ} = K. Otherwise we let K{ψ} be the

subfield K(x1

xi
, . . . , xn

xi
) of K(ψ) = QuotK[X1, . . . , Xn]/ψ(X1, . . . , Xn) =

K(x1, . . . , xn) for some i ∈ [1, n].20

In the main case ψ 6∼=
[

0
1

1
0

]
this field is obviously independent of the

choice of i ∈ [1, n]. We have K(ψ) = K{ψ}(xi) and xi is transcendental over
K{ψ}. Also in the case ψ ∼=

[
0
1

1
0

]
we have K(ψ) = K{ψ}(t) where t is an

indeterminate.
K(ψ) is an inessential extension of K{ψ}. Thus, all this time we could

have used K{ψ} instead of K(ψ).
Back to our form ϕ over k! Let h = h(ϕ) be the height of ϕ.

Definition 4. The projective standard tower of ϕ is the field tower (Kr | 0 ≤
r ≤ h) with K0 = k, Kr+1 = Kr{ϕr} (0 ≤ r ≤ h − 1), where ϕr denotes
the kernel form of ϕ ⊗ Kr. Similarly one obtains the affine standard tower
(K ′

r | 0 ≤ r ≤ h) of ϕ by replacing the Kr{ψr} with the function fields
Kr(ϕr) of the affine quadrics ϕr = 0.

Remark 5. From the definition of generic splitting tower (§12, just after The-
orem 2) it follows immediately that (Kr | 0 ≤ r ≤ h) and (K ′

r | 0 ≤ r ≤ h)
are both generic splitting towers of ϕ. For every r ∈ {0, . . . , h} we have that
K ′
r is a purely transcendental field extension of Kr of transcendence degree

r.

20In [K5] this field is denoted by K(ψ)0. [1, n] denotes the set {1, 2, . . . , n}.
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§13 Regular Generic Splitting Towers and Base Extension 101

Let us recall that a field extension L/K is called regular when it is sep-
arable and K is algebraically closed in L. This is synonymous with saying
that L and the algebraic closure K̃ of K in L are linearly disjoint, i.e. that
L ⊗K K̃ is a field, cf. [Lg2, Chap. 3]. If L/K is regular, then the K-algebra
L⊗K E does not contain zero divisors for any field extension E/K.

Theorem 1. Let (Kr|0 ≤ r ≤ h) be the projective standard tower of ϕ. Then
the field extensions Kr/Kr−1 with 0 < r < h are all regular. The same is
true for Kh/Kh−1 in case h > 0 and ϕ is of inner type. Furthermore, the
kernel form ϕh−1 of ϕ⊗Kh−1 has dimension ≥ 3 in this situation. If ϕ is of
outer type, then h ≥ 1 and Kh = Kh−1 ⊗k ∆(ϕ). Furthermore, we then have
ϕh−1

∼= c(τ ⊗Kh−1), where τ is the norm form of the field extension ∆(ϕ)
of k and c ∈ K∗

h−1 is a constant. In particular we have dimϕh−1 = 2.

Proof. If ψ is a nondegenerate quadratic form over a field K and if dimψ >
2, then the extension K{ψ}/K is clearly regular. This established the first
statement of the theorem. If h > 0 and ϕ is of inner type, then ϕ ⊗Kh−1 is
also of inner type and thus the kernel form ϕh−1 of ϕ⊗Kh−1 is of inner type.
This shows that dimϕh−1 ≥ 3 and so Kh = Kh−1{ϕh−1} over Kh−1 is again
regular. Suppose now that ϕ is of outer type. ϕ does not split, so that h > 0.
The extension Kh−1/K0 is regular and K0/k is inessential. Therefore k is
algebraically closed in Kh−1 and ∆(ϕh−1) = ∆(ϕ⊗Kh−1) = ∆(ϕ) ⊗k Kh−1

is a field. If it would be true that dimϕh−1 > 2, then Kh = Kh−1{ϕh−1}
over Kh−1 would be regular. However, ∆(ϕh−1) ⊗Kh−1

Kh = ∆(ϕ ⊗ Kh)
is not a field since ϕ ⊗ Kh ∼ 0. Therefore the dimension of ϕh−1 is 2. By
Remarks 2 and 3 above, we have∆(ϕh−1) = ∆(ϕ⊗Kh−1) = ∆(ϕ)⊗kKh−1 =
∆(τ)⊗kKh−1 = ∆(τ ⊗Kh−1) (and τ⊗Kh−1 is the norm form of Kh/Kh−1).
We conclude that ϕh−1

∼= c(τ ⊗Kh−1) for some element c of Kh−1.

Theorem 2. Let r ∈ [0, h] and let E/k be a partially generic splitting field
of level r of ϕ.

(a) If r < h, then k is algebraically closed in E.

(b) If r = h and ϕ is of inner type, then k is likewise algebraically closed in
E.

(c) If r = h and ϕ is of outer type, then k has algebraic closure ∆(ϕ) in E.

Proof. By Theorem 1 these statements hold when E is the r-field Kr in the
projective standard tower (Ki | 0 ≤ i ≤ h) of ϕ. The theorem now follows in
all generality from the following simple lemma.

Lemma 1. Let K and L be extensions of the field k which are specialization
equivalent, K ∼k L. Then every place λ:K → L∪∞ over k maps the algebraic
closure of k in K isomorphically to the algebraic closure of k in L.

Proof of the lemma. Let K◦ be the algebraic closure of k in K and L◦ the
algebraic closure of k in L. Let λ:K → L ∪∞ and µ:L → K ∪∞ be places
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102 Chapter II. Generic Splitting Theory

over k. Since K◦ and L◦ are algebraic over k, the places λ and µ are finite on
K◦ resp. L◦. Their restrictions to K◦ and L◦ are thus field homomorphisms
λ′:K◦ → L◦, µ′:L◦ → K◦, which are both the identity on k. Now µ′ ◦λ′ is an
endomorphism of K◦/k and thus automatically an automorphism of K◦/k.
Likewise, λ′ ◦µ′ is an automorphism of L◦/k. The statement of the lemma is
now clear.

Now we can precisely formulate a desirable property of generic splitting
towers.

Definition 5. We call a generic splitting tower (Kr | 0 ≤ r ≤ h) of ϕ regular
when the following holds:

(1) For every r with 0 ≤ r < h− 1 the extension Kr+1/Kr is regular.

(2) If ϕ is of inner type and h > 0, then Kh/Kh−1 is also regular. On the
other hand, if ϕ is of outer type, then Kh is regular over the composite
Kh−1 ·∆(ϕ) = Kh−1 ⊗k ∆(ϕ).

Examples. The projective standard tower of ϕ is regular by Theorem 1. The
affine standard tower of ϕ is likewise regular.

Now let (Kr | 0 ≤ r ≤ h) be a regular generic splitting tower of ϕ and let
L/k be a ϕ-conservative field extension of k. Using (Kr | 0 ≤ r ≤ h) and L
we want to construct a generic splitting tower of ϕ⊗ L.

Definition 6. For every r ∈ {0, 1, . . . , h} we construct a field composite
Kr · L of Kr and L over k as follows: if r < h, or if r = h and ϕ is of inner
type, then Kr ⊗k L is free of zero divisors and we let Kr · L be the quotient
field of this ring, i.e. the uniquely determined free composite of K and L over
k. If r = h and ϕ is of outer type, we distinguish the cases where ϕ⊗ L is of
outer/inner type.

First, let ϕ⊗L be of outer type. Then ∆(ϕ)⊗k L is a field. Let Kh ·L be
the free composite of Kh with ∆(ϕ) ⊗k L over ∆(ϕ), i.e. again the quotient
field of Kh⊗∆(ϕ) (∆(ϕ)⊗k L) = Kh⊗k L. Finally, let ϕ⊗L be of inner type.
Now ∆(ϕ) can be embedded over k in L in two ways. We choose one such
embedding and set Kh · L = Quot(Kh ⊗∆(ϕ) L).

If necessary, we write more precisely Kr ·k L (0 ≤ r ≤ h) for the field
composite Kr · L. Later on we will call Kr · L sloppily “the” free composite
of Kr and L over k, also in the case r = h, ϕ of outer type, ϕ ⊗ L of inner
type. It will never matter which of the two embeddings ∆(ϕ) →֒ L we have
chosen.

We use ϕr to denote – as before – the kernel form of ϕ⊗Kr (r-th higher
kernel form) and ir to denote the Witt index of ϕ ⊗Kr (r-th higher index,
0 ≤ r ≤ h).

Theorem 3. Let J be the set of all r ∈ [0, h] such that ϕr ⊗ Kr · L is
anisotropic, i.e. such that ind(ϕ⊗Kr) = ind(ϕ⊗Kr·L). Let r0 < r1 < · · · < re
be the elements of J .
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§13 Regular Generic Splitting Towers and Base Extension 103

Claim:
(a) (Kri

· L | 0 ≤ i ≤ e) is a regular generic splitting tower of ϕ⊗ L.

(b) Kr+1 ·L/Kr ·L is a regular inessential extension for every r ∈ [0, h] \ J .

For the proof of this technically very important theorem, we need a general
lemma about places.

Lemma 2. Let K ⊃ k and L ⊃ k be arbitrary extensions of a field k and let
λ:K → L∪∞ be a place over k. Furthermore, let E ⊃ k be a field extension
which is linearly disjoint from K and L over k. Consider the free composites
K ·E and L · E of K resp. L with E over k.

Claim: λ has a unique extension λ̃: K ·E → L ·E ∪∞ to a place over E.

Proof. K ·E is the quotient field of K ⊗k E and L ·E is the quotient field of
L ⊗k E. Let o: = oλ and let α: o ⊗k E → L ⊗k E be the homomorphism of
E-algebras induced by λ|o: o → L. Following the general extension theorem

for places [Bo2, §2, Prop.3], we choose a place µ: K ·E → (L̃ ·E)∪∞ in the
algebraic closure of L · E which extends the homomorphism α. We will now
show that µ is the only such extension of α and that µ(K ·E) ⊂ (L ·E)∪∞.

For this purpose we choose a basis (ωi | i ∈ I) of E over k (as k-vector
space). Let z 6= 0 be an element in K ·E. We write z = x

y , where x, y ∈ o⊗E
are both non-zero. We then have equations

x = u ·
∑

i∈I

ai ⊗ ωi , y = v ·
∑

i∈I

bi ⊗ ωi

with u, v ∈ K and families (ai | i ∈ I) and (bi | i ∈ I) in o, both of them not
fully contained in the maximal ideal m of o. Then

µ

(∑

i∈I

ai ⊗ ωi

)
=
∑

i∈I

λ(ai)ωi 6= 0, µ

(∑

i∈I

bi ⊗ ωi

)
=
∑

i∈I

λ(bi)ωi 6= 0,

since (ωi | i ∈ I) is also a family of elements of L · E, linearly independent
over L. We thus obtain

µ(z) = λ
(u
v

)
·
(∑

i∈I

λ(ai)ωi

)
·
(∑

i∈I

λ(bi)ωi

)−1

∈ (L ·E) ∪∞.

Proof of Theorem 3. We assume without loss of generality that ϕ is anisotropic
and use induction on the height h. Remark that K0 ∼k k implies that
K0 · L ∼L L by the lemma. Therefore the extension K0 · L/L is inessen-
tial.

For h = 0 nothing more has to be done, so suppose that h > 0. First we
assume that dimϕ > 2. We will deal with the (easier) case dimϕ = 2 at the
end.

Page: 103 job: 372 macro: PMONO01 date/time: 15-Dec-2009/22:24



104 Chapter II. Generic Splitting Theory

The form ϕ1 = ker(ϕ⊗K1) has height h− 1 and regular generic splitting
tower (Kr|1 ≤ r ≤ h). We want to apply the induction hypothesis to ϕ1, this
tower and the field extension K1 · L/K1.

Clearly the extension K1·L/K0·L is regular (cf. e.g. [Lg2, p.58]). Further-
more, K0 ·L/L is inessential and L/k ϕ-conservative. It follows that K1 ·L/k
is ϕ-conservative and then that K1 · L/K1 is ϕ1-conservative. For every r
with 1 ≤ r ≤ h− 1 we have

Kr ·k L = Quot(Kr ⊗k L) = Quot(Kr ⊗K1 (K1 ⊗k L)) = Kr ·K1 (K1 ·k L).

Also, Kh ·k L = Kh ·K1 (K1 ·kL). This can be seen using the same calculation
in case ϕ is of inner type, and also when ϕ is of outer type and ∆(ϕ) cannot
be embedded in L. If ϕ is of outer type and ∆(ϕ) ⊂ L, we perform the
following calculation (bearing Definition 6 in mind).

Kh ·k L: = Kh ·∆(ϕ) L = Quot(Kh ⊗∆(ϕ) L)

= Quot(Kh ⊗K1·∆(ϕ) (K1 ·∆(ϕ) ⊗∆(ϕ) L)).

We have K1 ·∆(ϕ) = K1 ⊗k ∆(ϕ) = ∆(ϕ1) and do indeed obtain again

Kh ·k L = Quot(Kh ⊗∆(ϕ1) (K1 ⊗k L)) = Kh ·K1 (K1 ·k L).

Thus we can apply the induction hypothesis, which tells us among other
things that Kr+1 ·L/Kr · L is regular and inessential for every r ∈ [1, h] \ J .
We now distinguish the cases r0 ≥ 1 and r0 = 0.

Suppose that r0 ≥ 1. By the induction hypothesis, (Kri
· L|0 ≤ i ≤ e)

is a regular generic splitting tower of ϕ ⊗ K1 · L. Let F0: = K0 · L. The
form ϕ0 ⊗ F0 = ϕ ⊗ F0 is isotropic. Therefore the extension F0(ϕ0 ⊗ F0) =
K0(ϕ0) ·K0 F0 of F0 is purely transcendental, and thus inessential. By the
lemma, K1 ·K0 F0 ∼F0 K0(ϕ0) ·K0 F0. Hence K1 ·K0 F0/F0 is also inessential.
In analogy with the first calculation above, we find that

K1 ·K0 F0 = K1 ·K0 (K0 ·k L) = K1 ·k L,

so that K1 ·kL/K0 ·kL is inessential. This proves statement (b) for the current
case.

We saw that K0 · L/L is inessential. Thus K1 · L/L is inessential. The
generic splitting tower (Kri

·L|0 ≤ i ≤ e) of ϕ ⊗K1 ·L is thus also a generic
splitting tower of ϕ⊗ L.

We come to the case dimϕ > 2, r0 = 0. Statement (b) is covered by
the induction hypothesis. ϕ⊗ L is anisotropic. By the induction hypothesis,
ϕ⊗K1 ·L has regular generic splitting tower (Kri

·L|1 ≤ i ≤ e). The extension
Kr1 · L/K0 · L is regular. For the proof of statement (a), it remains to be
shown that Kr1 · L is the generic zero field of ϕ ⊗K0 · L. We already know
that Kr1 ·L/K1 ·L is inessential. Thus it suffices to show that K1 · L is the
generic zero field of ϕ⊗ (K0 · L).

Let F0: = K0 · L. We have ϕ0 ⊗ F0 = ϕ ⊗ F0, and thus F0(ϕ ⊗ F0) =
K0(ϕ0) ·K0 F0. Also K1 ∼K0 K0(ϕ0). By the lemma, this shows that

K1 ·K0 F0 ∼F0 K0(ϕ0) ·K0 F0.
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§13 Regular Generic Splitting Towers and Base Extension 105

Furthermore, K1 ·K0 F0 = K1 ·k L. Thus, K1 ·k L ∼F0 F0(ϕ0 ⊗ F0), what we
wanted to show.

Finally, assume that dimϕ = 2. Now we have h = 1. The field ∆(ϕ0) =
∆(ϕ) ⊗k K0 is a quadratic extension of K0 and K1 is a regular extension of
∆(ϕ0). We have a place λ:K1 → ∆(ϕ0) ∪ ∞ over K0. After composing λ
with the non-trivial automorphism of ∆(ϕ0)/K0 (if necessary), we obtain a
place µ:K1 → ∆(ϕ0) ∪∞ over ∆(ϕ0). Therefore K1/∆(ϕ0) is an inessential
extension and regular.

Let F0: = K0 · L, F1: = K1 · L. We again make a distinction between the
cases ϕ⊗ L isotropic, resp. anisotropic.

Suppose first that ϕ⊗L is isotropic. Now J = {1}, and ∆(ϕ)⊗k L splits.
We choose an embedding ∆(ϕ) →֒ L and obtain from this an embedding
K0 ·∆(ϕ) = ∆(ϕ0) →֒ K0 · L = F0. By Definition 6, we now have

K1 ·L: = K1 ·∆(ϕ)L = Quot(K1⊗∆(ϕ)L) = Quot(K1⊗∆(ϕ0) (∆(ϕ0)⊗∆(ϕ)L)),

and furthermore ∆(ϕ0) ⊗∆(ϕ) L = K0 ⊗k L. It follows that

F1 = K1 · L = K1 ·∆(ϕ0) (K0 · L) = K1 ·∆(ϕ0) F0.

It is now clear that the extension F1/F0 is regular. Since K1/∆(ϕ0) is
inessential, it follows furthermore from the lemma that F1/F0 is inessential.
F0/L is also inessential. Thus F1/L is inessential. This establishes state-
ments (a) and (b) in this case.

Finally, let dimϕ = 2 and assume that ϕ ⊗ L is anisotropic. Now J =
{0, 1}. Statement (b) is vacuous. We already know that F0/L is inessential.
Furthermore, K1/∆(ϕ0) is regular and inessential. Therefore

F1 = K1 ·∆(ϕ0) (∆(ϕ0) ·K0 F0)

is regular and inessential over ∆(ϕ0) ·K0 F0 = ∆(ϕ0 ⊗ F0). Furthermore,
∆(ϕ0 ⊗ F0) = F0{ϕ0 ⊗ F0}. Hence F1 is the generic zero field of the form
ϕ0 ⊗ F0. Therefore (F0, F1) is a regular generic splitting tower of ϕ⊗ L.

Corollary. In the situation of Theorem 3, ϕ ⊗ L has height e and generic
splitting pattern

SP(ϕ⊗ L) = {i0 + . . .+ irj
| 0 ≤ j ≤ e}.

For every j ∈ [0, e] is ϕrj
⊗ (Krj

·L) furthermore the j-th higher kernel form
of ϕ⊗ L with respect to the generic splitting tower constructed here.
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§14 Generic Splitting Towers of a Specialized

Form

In the following, let γ: k → L ∪ ∞ be a place and ϕ a quadratic form over
k having FR with respect to γ. Assume that the form ϕ: = γ∗(ϕ) over L is
nondegenerate. Finally, let (Kr | 0 ≤ r ≤ h) be a generic splitting tower of
ϕ.

We have seen in §12 that the splitting behaviour of ϕ with respect to
ϕ-conservative extensions of the field L is controlled by the tower (Kr | 0 ≤
r ≤ h), cf. §12, Theorem 4 and Scholium 2. Hence we may hope that it is
actually possible to construct a generic splitting tower of ϕ in a natural way
from (Kr | 0 ≤ r ≤ h). We will devote ourselves to the task of constructing
such a tower.

In the special case where the place γ is trivial and the tower (Kr | 0 ≤
r ≤ h) is regular, we already dealt with this task in the previous section (§13,
Theorem 3). In general we cannot expect to find a solution as nice as the
solution in §13.

Let us continue by fixing some notation. Let ir be the higher indices and
ϕr the higher kernel forms of ϕ with respect to the given splitting tower
(Kr | 0 ≤ r ≤ h) of ϕ. Thus we have SP(ϕ) = {i0 + . . . + ir | 0 ≤ r ≤ h}.
Further, let J be the subset of {0, 1, . . . , h} with SP(ϕ) = {i0+. . .+ir | r ∈ J}.
The set J contains e: = h(ϕ) elements. Let us list them as

0 ≤ t(0) < t(1) < . . . < t(e) = h.

We formally set t(−1) = −1.
Let (Ls | 0 ≤ s ≤ e) be a generic splitting tower of ϕ. Following §12,

Scholium 2 we choose places µs:Kt(s) → Ls ∪ ∞ (0 ≤ s ≤ e) such that
µ0 extends the place γ and such that every µs with 1 ≤ s ≤ e extends
the place µs−1. For every r ∈ {0, . . . , h} we have an s ∈ {0, . . . , e} with
t(s− 1) < r ≤ t(s). Let λr:Kr → Ls ∪∞ be the restriction of the place µs to
Kr. {In particular, µs = λt(s).} Let ψs = ker(ϕ⊗Ls) be the s-th higher kernel
form of ϕ. By §12 ϕt(s) has FR with respect to µs and (µs)∗(ϕt(s)) ∼= ψs.
Furthermore, for t(s− 1) < r < t(s), ϕr also has FR with respect to λr and

(λr)∗(ϕr) ∼= ψs ⊥ (ir+1 + . . .+ it(s)) ×H.

Given a place α:E → F ∪∞ and a subfield K of E, we denote the image
of K under α in general sloppily with α(K), in other words,

α(K): = α(oα ∩K).
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In the important case that the place γ is surjective, i.e. γ(k) = L, we
would like to choose the places µs in such a way that (µs(Kt(s)) | 0 ≤ s ≤ e)
is a generic splitting tower of ϕ. For not necessarily surjective γ, one could
try to achieve that (L ·µs(Kt(s)) | 0 ≤ s ≤ e) is a generic splitting tower of ϕ,
where L · µs(Kt(s)) denotes the subfield of Ls generated by L and µs(Kt(s))
in Ls.

21 In any case, for arbitrary choice of µs – as above – the following
theorem holds.

Theorem 1. For t(s− 1) < r ≤ t(s) the subfield µs(Kr) ·L of Ls, generated
by µs(Kr) and L, is a generic splitting field of ϕ of level s.

Proof. Let Fr: = λr(Kr) · L. By restricting the range, we obtain from λr a
place from Kr to Fr which extends γ. Hence

ind(ϕ⊗ Fr) ≥ ind(ϕ⊗Kr) = i0 + . . .+ ir.

Since ind(ϕ⊗ Fr) is a number of SP(ϕ), we get

ind(ϕ⊗ Fr) ≥ i0 + . . .+ it(s).

Thus there is a place from Ls to Fr over L. Since Fr ⊂ Ls, we get Fr ∼L Ls.
Thus Fr is a generic splitting field of ϕ of level s.

This theorem does not imply that (Kt(s) · L | 0 ≤ s ≤ e) is a generic
splitting tower of ϕ. However, in the following we will produce more special
situations for which this is the case.

Theorem 2. There exists a regular22 generic splitting tower (Ls | 0 ≤ s ≤ e)
of ϕ and a place λ:Kh → Le ∪∞ having the following properties:

(i) λ extends γ.

(ii) For every s ∈ {0, 1, . . . , e} and every r with t(s− 1) < r ≤ t(s) we have
Ls = λ(Kr) · L.

(iii) L0 = L.

Proof. We inductively construct fields Ls ⊃ L and places µs:Kt(s) → Ls∪∞
as follows.

s = 0: We let L0 := L. We choose for µ0 any place from Kt(0) to L which
extends γ. This is possible by §12, Scholium 2. Obviously we have µ0(Kr)·L =
L for every r with 0 ≤ r ≤ t(0).

s → s+ 1: By the induction hypothesis, (Lj | 0 ≤ j ≤ s) is the beginning of
a generic splitting tower of ϕ. In particular, Ls is a generic splitting field of
ϕ of level s. Furthermore there is a place µs:Kt(s) → Ls ∪∞. According to
§12 the form ϕt(s) has FR with respect to µs and (µs)∗(ϕt(s)) ∼= ψs.

21Now we are not using the notation established in §13, Definition 6.
22cf. §13, Definition 5.
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Now we extend µs to a place µ̃s from Kt(s)(ϕt(s)) to Ls(ψs) (cf. §9, the
proof of Theorem 3). Let u: = t(s) + 1 and let α:Ku → Kt(s)(ϕt(s)) ∪∞ be
a place over Kt(s), which does indeed exist since Ku is a generic zero field of
ϕt(s). Then we have a place µ̃s ◦ α from Ku to Ls(ψs) and define Ls+1 to be
the composite of the fields Ls and (µ̃s ◦ α)(Ku) in Ls(ψs),

Ls+1: = L · (µ̃sα)(Ku).

Let νs:Ku → Ls+1 ∪∞ be the place obtained from µ̃s ◦ α by restricting
the range. We have

ind(ϕ⊗ Ls+1) ≥ ind(ϕ⊗Ku) = i0 + . . .+ iu > i0 + . . .+ it(s),

and thus ind(ϕ⊗ Ls+1) ≥ i0 + . . .+ it(s+1). This implies

ind(ψs ⊗ Ls+1) ≥ iu + . . .+ it(s+1) > 0.

Thus ψs ⊗ Ls+1 is isotropic. Since Ls+1 ⊂ Ls(ψs), we conclude that Ls+1 is
a generic zero field of ψs. By §12, Scholium 2(3) we now have that νs can be
extended to a place from Kt(s+1) to Ls+1. We choose µs+1:Kt(s+1) → Ls+1∪
∞ to be such a place. Since Ls+1 = νs(Ku) ·L, we have Ls+1 = µs+1(Kr) ·L
for every r with u ≤ r ≤ t(s).

Eventually our construction yields a generic splitting tower

(Ls | 0 ≤ s ≤ e)

of ϕ and a place λ: = µe from Kh to Le which satisfy properties (i) and (ii)
of the theorem.

Let us check that the tower (Ls | 0 ≤ s ≤ e) is regular! For 0 ≤ s ≤ e− 1
our construction gives Ls ⊂ Ls+1 ⊂ Ls(ψs). If dimψs > 2, then Ls(ψs) is
regular over Ls, and thus Ls+1 is regular over Ls. If dimψs = 2, then we
must have s = e− 1 and t(s) = h − 1. Next, we modify the last step of the
construction above in the sense that we replace Kh−1(ϕh−1) by the algebraic
closure E of Kh−1 in this field and also Ke−1(ψe−1) by the algebraic closure
F of Ke−1 in Ke−1(ψe−1).

Let µ: = µh−1. We have ϕh−1
∼= 〈a〉 ⊗

[
1
1

1
b

]
with a ∈ o∗µ, b ∈ o∗µ, and

ψe−1
∼= 〈a〉 ⊗

[
1
1

1
b

]
with a: = µ(a), b: = µ(b). We obtain E = Kh−1(ξ)

and F = Le−1(η) with generators ξ, η which satisfy the minimal equations
ξ2 + ξ + b = 0, η2 + η + b = 0. The extension Kh/E is inessential. This can
be verified as in the proof of §13, Theorem 3 towards the end. (There for the
case dimϕ = 2.)

The place µ = µe−1 from Kh−1 to Le−1 has exactly one extension
µ̃e−1:E → F ∪ ∞ with µ̃e−1(ξ) = η (cf. §9, Lemma 2). If we prepend a
place from Kh to E over E to µ̃e−1, we obtain a place µe:Kh → F ∪∞ which
extends µe−1. The field Le: = µe(Kh) · L differs from Le−1 since it splits the
form ϕ totally. Hence we must have Le = F . Our generic splitting tower
(Ls | 0 ≤ s ≤ e) is regular.

What we have obtained by now can perhaps best be understood in the
important special case where the place γ: k → L∪∞ is surjective (i.e. γ(k) =

Page: 109 job: 372 macro: PMONO01 date/time: 15-Dec-2009/22:24



110 Chapter II. Generic Splitting Theory

L). For the given generic splitting tower (Kr | 0 ≤ r ≤ h) of ϕ we have
constructed a place λ:Kh → Le ∪ ∞ which extends γ and for which the
tower (λ(Kr) | 0 ≤ r ≤ h) is an almost regular generic splitting tower of
ϕ “with repetitions”, i.e. a generic splitting tower in which the storeys are
listed possibly more than once: λ(Kr) = λ(Kt(s)) for t(s−1) < r ≤ t(s). The
place λ furnishes a connection between the tower (Kr| 0 ≤ r ≤ h) and the
generic splitting tower (Ls|0 ≤ s ≤ e) of ϕ, Ls = λ(Kt(s)) which reflects in
an obvious way how the splitting behaviour of ϕ over L is a coarsening of the
splitting behaviour of ϕ over K.

In many situations it is more natural or, for some given problem, more
useful (see e.g. [KR]) to associate to the tower (Kr | 0 ≤ r ≤ h) a different
generic splitting tower of ϕ. Such a situation (with γ trivial) was depicted in
§13. Next we give a further construction which applies to an arbitrary place
γ with respect to which ϕ has FR and with ϕ = γ∗(ϕ) nondegenerate, as
above.

Specifically, let (Kr | 0 ≤ r ≤ h) be the projective standard tower of ϕ
(see §13, Definition 4). We define a field tower (Lr | 0 ≤ r ≤ h) and a sequence
of places (λr :Kr → Lr ∪∞ | 0 ≤ r ≤ h) with Lr ⊃ L and Lr = λr(Kr) · L
for all r, 0 ≤ r ≤ h, as follows.23

We start with L0: = L, λ0: = γ. If λr :Kr → Lr ∪ ∞ is already defined
and r < h, then ϕr has FR with respect to λr by §12. Let ϕr: = (λr)∗(ϕr).
We set Lr+1: = Lr{ϕr}. Let λ̃r:Kr(ϕr) → Lr(ϕr)∪∞ be an extension of the
place λr, obtained using the procedure in the proof of §9, Theorem 3.

Next, let ϕr 6∼= H . The place λ̃r maps Kr+1 = Kr{ϕr} into Lr+1 ∪
∞. From the construction in §9 it is clear that Lr+1 = λ̃r(Kr+1) · L. We
define λr+1:Kr+1 → Lr+1 ∪∞ by restricting the place λ̃r . We have Lr+1 =
λr+1(Kr+1) · L.

Finally, let ϕr
∼= H (and so r = h − 1). Now we have Lr+1 = Lr. From

the construction in §9, we have λ̃r(Kr(ϕr)) · L = Lr. Again we define λr+1,
i.e. λh, to be the restriction of λ̃r to a place from Kr+1 to Lr+1 = Lr. Then,
clearly, λr+1(Kr+1) · L = Lr+1.

Definition. We call the tower (Lr | 0 ≤ r ≤ h) the transfer of the projective
standard tower by the place γ and we call λ: = λh:Kh → Lh∪∞ a transferring
place.

Remark. By the remark in §9, following the proof of Theorem 3, the places
λr:Kr → Lr ∪∞ for 0 ≤ r ≤ h − 1 in the construction above are uniquely
determined by γ. If ϕh−1 6∼= H this is also the case for λh = λ. If ϕh−1

∼=
H , then there are at most two possibilities for λh, since Kh is a quadratic
extension of Kh−1 in this situation. The fields Lr = λr(Kr)·L are all uniquely
determined by ϕ and γ.

Theorem 3. Let (Lr | 0 ≤ r ≤ h) be the transfer of the projective standard
tower (Kr | 0 ≤ r ≤ h) of ϕ by the place γ: k → L∪∞ and let λ:Kh → Lh∪∞
23The equation Lr = λr(Kr) · L only signifies that Lr is generated as a field by

both subfields λr(Kr) and L.
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§14 Generic Splitting Towers of a Specialized Form 111

be a transferring place. Let ϕr: = (λr)∗(ϕr) be the specialization of ϕr with
respect to the restriction λr:Kr → Lr ∪∞ of λ (0 ≤ r ≤ h).

Claim: (Lr | r ∈ J) is a generic splitting tower of ϕ and for every r ∈ J
we have ϕr = ker(ϕ ⊗ Lr). For r 6∈ J , Lr+1/Lr is purely transcendental. In
particular, the extension Lt(0)/L is purely transcendental.

Proof. Let r ∈ {0, . . . , h} be given. From the Witt decomposition

ϕ⊗Kr
∼= (i0 + . . .+ ir) ×H ⊥ ϕr

we obtain
ϕ⊗ Lr ∼= (i0 + . . .+ ir) ×H ⊥ ϕr,

since (λr)∗(ϕ⊗Kr) ∼= ϕ⊗ Lr.
If r 6∈ J , then ind(ϕ⊗ Lr) > i0 + . . .+ ir. Now ϕr is isotropic and hence

Lr+1 = Lr{ϕr} is purely transcendental over Lr.
Let a number s be given with 0 ≤ s ≤ e. Then Lt(s)+1 = Lt(s){(ϕt(s))}

and Lt(s+1)/Lt(s)+1 is purely transcendental. Hence Lt(s+1)/Lt(s) is a generic
zero field of ϕt(s). Furthermore, Lt(0)/L is purely transcendental. Thus

ind(ϕ ⊗ Lt(0)) = ind(ϕ) = i0 + . . .+ it(0).

This shows that ϕt(0) is the kernel form of ϕ ⊗ Lt(0). Suppose now that for
some s ∈ {1, . . . , e} we already showed that ϕt(k) is the kernel form of ϕ⊗Lt(k)
for 0 ≤ k < s. Then (Lt(k) | 0 ≤ k ≤ s) is the beginning of a generic splitting
tower of ϕ. Hence ϕ⊗Lt(s) has index i0 + . . .+ it(s), and it follows that ϕt(s)
is the kernel form of ϕ⊗Lt(s). Thus, this holds for all s ∈ {0, . . . , e}. Now it
is clear that (Lt(s) | 0 ≤ s ≤ e) is a generic splitting tower of ϕ.
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§15 Subforms which have Bad Reduction

The theory of weak specialization, developed in §3, §7 and the end of §11,
played until now only an auxiliary role, which we could have done without
when dealing with quadratic forms (due to §11, Theorem 2). For the first
time we now come to independent applications of weak specialization.

Let λ:K → L ∪ ∞ be a place and ϕ a bilinear or quadratic form over
K having good reduction with respect to λ. If ϕ contains subforms which
have bad reduction, there are consequences for the form λ∗(ϕ) which we will
discuss now. We will look at bilinear forms first.

Theorem 1. Let ϕ be a nondegenerate bilinear form over K, having good
reduction with respect to λ. Suppose that there exists a nondegenerate subform
〈b1, . . . , bm〉 of ϕ with λ(bic

2) = 0 or ∞ for every i ∈ {1, . . . ,m} and every
c ∈ K∗. Then λ∗(ϕ) has Witt index ≥

{
m
2

}
. (As usual,

{
m
2

}
denotes the

smallest integer ≥ m
2 .)

Proof. Let ψ: = 〈b1, . . . , bm〉. We have a decomposition ϕ ∼= ψ⊥ η, to which
we apply the additive map λW :W (K) →W (L). We get λW (ψ) = 0.24 Hence
{λ∗(ϕ)} = λW (ϕ) = λW (η). Let ρ be the anisotropic form in the Witt
class λW (η). Then λ∗(ϕ) ∼ ρ and dim ρ ≤ dim η = dimϕ − m. Therefore,
indλ∗(ϕ) ≥

{
m
2

}
.

Corollary. Let ϕ be a nondegenerate bilinear form over K, having good re-
duction with respect to λ. Suppose that λ∗(ϕ) is anisotropic. Then every sub-
form of ϕ is nondegenerate and has good reduction with respect to λ.

Proof. Clearly ϕ is now also anisotropic. Therefore every subform of ϕ is
anisotropic and so definitely nondegenerate. By Theorem 1, ϕ does not con-
tain any one-dimensional subforms 〈b〉 with λ(bc2) = 0 or ∞ for every c ∈ K∗.
Hence every subform of ϕ has good reduction.

Remark. If charL = 2, then λ∗(ϕ) is in general only determined by λ and
ϕ up to stable isometry. However, if a representative of λ∗(ϕ) is anisotropic,
then λ∗(ϕ) is uniquely determined up to genuine isometry, since λ∗(ϕ) is up
to isometry the only anisotropic form in the Witt class λW (ϕ) in this case.

Next we can derive the following statement, which is similar to the Sub-
stitution Principle in §3, Theorem 5.

24We use the shorter notation λW (ψ) instead of λW ({ψ}), cf. §7.
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116 Chapter III. Some Applications

Theorem 2. [K4, Prop. 3.3]. Let (fij(t)) be an n× n-matrix of polynomials
fij(t) ∈ k[t] over an arbitrary field k, where t = (t1, . . . , tr) is a set of inde-
terminates over k. Let g1(t), . . . , gm(t) be further polynomials in k[t]. Finally,
let c = (c1, . . . , cr) be an r-tuple of coordinates in a field extension L of k,
such that det(fij(c)) 6= 0, and such that c is a non-singular zero of every

polynomial gp(t) (1 ≤ p ≤ m), i.e. gp(c) = 0,
∂gp

∂tq
(c) 6= 0 for an element

q ∈ {1, . . . , n}, which depends on p. If 〈g1(t), . . . , gm(t)〉 is a subform of the
bilinear form (fij(t)) over k(t), then the bilinear form (fij(c)) over L has
Witt index ≥

{
m
2

}
.

Proof [K4, p.291]. Going from k[t] to L[t], we may suppose without loss of
generality that L = k.

For r = 1, Theorem 2 follows immediately from Theorem 1, applied to
the place λ: k(t1) → k ∪∞ over k with λ(t1) = c1.

Now let r > 1. We first assume that k is an infinite field. Then there exists
an r-tuple (a1, . . . , ar) ∈ kr with

r∑

q=1

aq
∂gp
∂tq

(c) 6= 0

for 1 ≤ p ≤ m. By applying an obvious coordinate transformation, we obtain
that

∂gp

∂t1
(c) 6= 0 for every p ∈ {1, . . . ,m}.

Let c′ be the (r−1)-tuple (c2, . . . , cr). We choose a place α: k(t) → k(t1)∪
∞ over k(t1) with α(ti) = ci for 2 ≤ i ≤ r. Applying the additive map
αW :W (k(t)) → W (k), just as in the proof of Theorem 1, shows that the
space (fij(t, c

′)) over k(t1) is Witt equivalent to a space

〈g1(t1, c′), . . . , gm(t1, c
′), h1(t1), . . . , hs(t1)〉

with polynomials hp(t1), 1 ≤ p ≤ s, and m + s ≤ n. {Possibly s = 0.}
Let λ: k(t1) → k ∪ ∞ be the place over k with λ(t1) = c1. We have
λW (〈gp(t1, c′)〉) = 0 for 1 ≤ p ≤ m. Then, after applying λW , we see that
the form (fij(c)) over k is Witt equivalent to a form of dimension ≤ s. Since
s ≤ n−m, (fij(c)) certainly has Witt index ≥

{
m
2

}
.

Finally, let us consider the case where the field k is finite. Let u be an
indeterminate over k. By what we proved above, the form (fij(c)) over k(u)
has Witt index ≥

{
m
2

}
. Upon specializing with an arbitrary place β: k(u) →

k ∪∞ over k, we see that (fij(c)) over k has Witt index ≥
{
m
2

}
.

Remark. If chark 6= 2, then the part of the proof dealing with r > 1, k
infinite, can be shortened by first applying the Substitution Principle §3,
Theorem 5, followed by Theorem 1. If chark = 2 however, when applying
§3, Theorem 5, we need that the form (fij(t1, c

′)) over k(t1) is anisotropic,
which is not necessarily the case.

If we now want to obtain theorems for quadratic forms, similar to The-
orems 1 and 2, at best with fair instead of good reduction, then we cannot
use weak specialization as easily as above. For instance, let ϕ, ψ be strictly
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§15 Subforms which have Bad Reduction 117

regular forms over a field K with ψ < ϕ, and let λ:K → L ∪∞ be a place.
We then have an orthogonal decomposition ϕ ∼= ψ⊥ η. Suppose now that
ϕ has FR (= fair reduction) with respect to λ and that ψ is weakly obedi-
ent (see §11, Definition 4), but far from having FR. We would like to apply
the “operator” λW to the relation ϕ ∼= ψ⊥ η in order to learn something
about λ∗(ϕ) = λW (ϕ). However, this is only possible when η is also weakly
obedient with respect to λ, something we cannot assume just like that. To
circumnavigate this cliff, we will not simply apply the theory about λW of §7
and §11, but rather orientate ourselves towards the argumentation which led
to this theory. For quadratic forms we will obtain theorems similar, but not
exactly analogous, to Theorem 1 and 2. Broadly speaking we will make more
assumptions, but will also be able to draw stronger conclusions from these.

Thus, let λ:K → L ∪ ∞ be a place, o = oλ the associated valuation
ring and m = mλ its maximal ideal. As before (§7) we choose a system of
representatives S of Q(K)/Q(o) in K∗ with 1 ∈ S.

In two of the following three theorems, we will make statements for
quadratic and bilinear forms in parallel. Throughout we will give the proofs
for the more complicated quadratic case. In the bilinear case, the proofs go
in the same manner.

Theorem 3. Let E = (E, q) be a quadratic (resp. bilinear) space over K
which has FR (resp. GR) with respect to λ. Further, let F be a linear subspace
of E with λ(q(x)) = 0 or ∞ (resp. λ(B(x, x)) = 0 or ∞) for every x ∈ F .
Then λ∗(E) has Witt index ≥ dimF .

Proof in the quadratic case. We may assume that L coincides with the residue
class field k = o/m of o and that λ is the canonical place from K to k
associated to o. Let m: = dimF . In E we choose a reduced nondegenerate
quadratic o-module M with E = KM . Let N be the o-module M ∩F . Then
M = N ⊕N ′ where N ′ is a further o-module.

The image N of N in M/mM is a k-vector space of dimension m. By our
assumption about F , we have q(x) ∈ m for every x ∈ N , and so q(N) = 0
where q is the quadratic form on M : = M/mM induced by q. The quadratic
space M = (M, q) = λ∗(E) is nondegenerate by assumption. Since QL(M)
is anisotropic, we have N ∩ QL(M) = {0}. We choose a decomposition
M = QL(M) ⊕ G = QL(M)⊥G with N ⊂ G. The quadratic space G is
strictly regular and contains the totally isotropic subspace N of dimension
m. Therefore indG ≥ m (cf. §5, Lemma 2), and so indM ≥ m.

Theorem 4. Let ϕ be a quadratic form over K, having FR with respect to
λ:K → L ∪∞ and containing a subform ψ of dimension m, which is weakly
obedient with respect to λ and such that λW (ψ) ∼ 0. Then λ∗(ϕ) has Witt
index ≥

{
m
2

}
.

Proof. By going from K to the henselisation Kh with respect to o and ac-
cordingly from λ to the place λh:Kh → L ∪ ∞, we may assume without
loss of generality that o itself is henselian. We choose a weakly λ-modular
decomposition of ψ,
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(∗) ψ ∼= ⊥
s∈S

sψs

where the ψs are forms which all have FR with respect to λ.
For every s ∈ S with s 6= 1 we have a Witt decomposition ψs ∼= ψ◦

s ⊥ rs×H
with rs ≥ 0, ψ◦

s anisotropic. Thus

ψ ∼= (ψ1 ⊥ (
∑

s6=1

rs) ×H)⊥⊥
s6=1

sψ◦
s .

Upon replacing (∗) by this weakly λ-modular decomposition of ψ, we may
assume at the outset that the forms ψs with s 6= 1 in (∗) are all anisotropic.
{Of course ψs = 0 for almost all s.}

The assumption λW (ψ) = 0 signifies that λ∗(ψ1) ∼ 0. In particular,
λ∗(ψ1) does not have a quasi-linear part 6= 0. Therefore ψ1 is strictly reg-
ular and actually has GR with respect to λ. We have a decomposition
ϕ ∼= ψ1 ⊥ η. By §11, Theorem 4, η also has FR with respect to λ and
λ∗(ϕ) ∼= λ∗(ψ1)⊥λ∗(η). Since λ∗(ψ1) is hyperbolic, we have

indλ∗(ϕ) =
1

2
dimψ1 + indλ∗(η).

Furthermore, ρ: = ⊥
s6=1

sψs is a subform of η. If we can verify the statement

of the theorem for η and ρ instead of for ϕ and ψ, then the statement will
follow for ϕ and ψ as well. Hence we assume from now on without loss of
generality that ψ1 = 0.

Let E = (E, q) be a space, isometric to ϕ and F = (F, q|F ) a subspace of
E, isometric to ψ. By an old argument from §7, we have that for no vector
x ∈ F the value q(x) can lie in o∗ because, o being henselian, the form ψs
can only represent elements c2ε with c ∈ K, ε ∈ o∗ for every s 6= 1, cf.
§6, Theorem 5. By Theorem 3, we then have indϕ ≥ dimψ. So, obviously
indϕ ≥

{
1
2 dimψ

}
.

Theorem 5. Let ϕ be a quadratic form over K which has FR with respect to
λ. Suppose that the specialization λ∗(ϕ) is anisotropic. Then every subform
ψ of ϕ, which is weakly obedient with respect to λ, also has FR. {Note that
therefore λ∗(ψ) is a subform of λ∗(ϕ) by §11, Theorem 2.}

Proof. Again we may assume that λ is the canonical place associated to o

and that o is henselian. Just as in the previous proof, we see that ψ has a
weakly λ-modular decomposition

ψ ∼= ⊥
s∈S

sψs,

where the forms λ∗(ψs) for s 6= 1 are all anisotropic. Now⊥
s6=1

sψs is a subform

of ψ to which we can apply Theorem 3. Since λ∗(ϕ) is anisotropic, this form
has to be the zero form. Thus ψ ∼= ψ1. Hence ψ has FR with respect to λ.
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Theorem 6 (cf. [K4, Prop.3.5]). Let (fij(t)) be a symmetric n × n-matrix
of polynomials fij(t) ∈ k[t] over an arbitrary field k, where t = (t1, . . . , tr)
is a set of indeterminates. Let g1(t), . . . , gm(t) be further polynomials in k[t].
Finally, let c = (c1, . . . , cr) be an r-tuple of coordinates in a field extension
L of k such that all gp(c) = 0 (1 ≤ p ≤ m) and such that the m × r-matrix(
∂gp

∂tq
(c)
)

has rank m.

(i) If the quadratic form [fij(c)] over L is nondegenerate, and if the quasi-
linear form [g1(t), . . . , gm(t)] over k(t) is a subform of the quadratic form
[fij(t)], then the form [fij(c)] over L has Witt index ≥ m.

(ii) If the bilinear form (fij(c)) over L is nondegenerate and if the bilinear
form 〈g1(t), . . . , gm(t)〉 over k(t) is a subform of (fij(t)), then the form
(fij(c)) over L has Witt index ≥ m.

Proof of (i) [K4, p.292 ff.]. By going from k[t] to L[t], we may assume without
loss of generality that k = L. Next we replace the indeterminates ti by ti−ci,
thus assuming without loss of generality that c = 0. Finally we subject the
variables ti to a linear transformation with coefficients in k and obtain

(∗) ∂gp
∂tq

(0) = δpq (1 ≤ p ≤ m, 1 ≤ q ≤ r).

Now we introduce the field K = k(t, s) with indeterminate s over k(t) as
well as the elements ui = ti

s (1 ≤ i ≤ r) and the field k(u) = k(u1, . . . , ur).
We have K = k(u, s). Let λ:K → k(u) ∪ ∞ be the place over k(u) with
λ(s) = 0. Its valuation is discrete of rank 1. It associates to every polynomial
f(u, s) ∈ k[u, s] the order ordsf(u, s) ∈ N0. This is the biggest number k ∈ N0

such that sk divides the polynomial f(u, s) in k[u, s] or in k(u)[s]. Let (F, q)
be a quadratic space, isometric to [g1(t), . . . , gm(t)]. We will show:

(∗∗) λ(q(x)) = 0 or ∞ for every x ∈ F .

By Theorem 3, this will then imply that the form [fij(0)] over k(u) has Witt
index ≥ m. By the Substitution Principle §11, Theorem 3, the form [fij(0)]
will also have Witt index ≥ m over k. {Note that [fij(0)] obviously has the
same Witt index over k and k(u).}

We come to the proof of statement (∗∗). Let x ∈ F and x 6= 0. Then
q(x) = ZN−1, where Z,N are polynomials in k[u, s] of the following form:

N = h(u, s)2, Z =
m∑

i=1

ai(u, s)
2gi(u1

s, . . . , urs).

Here h(u, s) and the ai(u, s) are polynomials in k[u, s] with h(u, s) 6= 0 and
not all ai(u, s) = 0.

Now we interpret all these polynomials as polynomials in s with coeffi-
cients in k[u] and consider the lowest terms of N and S. We have an l ∈ N0

with
ai(u, s) = bi(u)s

l + higher terms
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and at least one coefficient bi(u) 6= 0 (1 ≤ i ≤ m). By (∗), gi(u1s, . . . , urs)
has uis as lowest term. Hence Z has c(u)s2l+1 as lowest term, with

c(u): =

m∑

i=1

bi(u)
2ui,

provided that c(u) 6= 0. This is the case however, for one can easily see that
the quadratic form [u1, . . . , um] over k(u) is anisotropic. (Note that m ≤ r.)
The anisotropy is also clear by the example just after §7, Theorem 5.

Therefore ordsZ = 2l + 1. On the other hand, ordsN = 2 ordsh is even.
We conclude that (∗∗) holds.
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In this section k can be any field. However, we are mostly interested in fields of
characteristic two. For any nondegenerate quadratic form ϕ of height h ≥ 1
(i.e. ϕ not split) over k, the last but one kernel form ϕh−1 has height 1.
Thus, in order to gain an understanding of quadratic forms, it is of prime
importance to have an overview of all anisotropic forms of height 1.

If char k 6= 2, it is well-known (cf. the end of §4) and it will be shown in
§20 and §23 that an anisotropic form ϕ over k has height 1 iff there exists
an element a ∈ k∗ and a Pfister form τ over k with ϕ ∼= aτ , dim τ ≥ 2, in
case dimϕ is even, ϕ ∼= aτ ′, dim τ ≥ 4, in case dimϕ is odd. Here τ ′ denotes
the pure part of τ , cf. the end of §4. Moreover, in both cases τ is uniquely
determined by ϕ up to isomorphism.

Pfister forms can also be defined in case k has characteristic 2 (see below).
We will see that diverse forms of height 1 can be obtained from quadratic
Pfister forms in this case as well. Nonetheless, the question remains open
what other anisotropic quadratic forms of height 1 there are. This is cur-
rently perhaps the most important unsolved problem about quadratic forms
in characteristic 2.

Definition 1.

(a) Let d ∈ N0. A bilinear d-fold Pfister form over k is a form

τ = 〈1, a1〉 ⊗ · · · ⊗ 〈1, ad〉

with coefficients ai ∈ k∗. {We let τ = 〈1〉, in case d = 0.}
(b) Let d ∈ N. A quadratic d-fold Pfister form over k is a form

ρ⊗
[
1

1

1

b

]
,

where ρ is a bilinear Pfister form of degree d− 1 and b ∈ k, 1− 4b 6= 0.25

If τ is a bilinear d-fold Pfister form with d ≥ 1, then we have an orthog-
onal decomposition τ ∼= 〈1〉⊥ τ ′. It is well-known [Ba2, p.257] that also in
characteristic 2, the form τ ′ is uniquely determined by τ up to isomorphism.26

25The form [1] is thus not considered to be a quadratic Pfister form, not even if
char k 6= 2.

26If τ is anisotropic, this follows easily from §20, Theorem 8 below.
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We call τ ′ the pure part of the Pfister form τ . It seems that for a quadratic
Pfister form ρ in characteristic 2, it does not make any sense to speak of a
pure part of ρ (however, see §26, Definition 2).

Next we will discuss some elementary properties of Pfister forms.

Definition 2. If ϕ is a quadratic or bilinear form over k, then D(ϕ) denotes
the set of all elements a ∈ k∗ which are values of the form ϕ, a = ϕ(c1, . . . , cn)
for an n-tuple (c1, . . . , cn) ∈ kn.27 We denote by N(ϕ) the set of all a ∈ k∗

with aϕ ∼= ϕ. We call the a ∈ D(ϕ) the elements represented by ϕ and the
a ∈ N(ϕ) the similarity norms of ϕ.

Note. D(ϕ) is the set of all a ∈ k∗ with 〈a〉 < ϕ in the bilinear case and
[a] < ϕ in the quadratic case. Obviously, N(ϕ) is a subgroup of k∗ which
contains all squares of elements of k∗. Furthermore, D(ϕ) is a union of cosets
of N(ϕ) in k∗.

We call N(ϕ) the norm group of ϕ. Analogously, we define for a quadratic
or bilinear module E over k the norm group N(E) and the set D(E). For
instance, if E = (E, q) is a quadratic module, then D(E) is the set of all
a ∈ k∗ for which there exists an x ∈ E with q(x) = a, and N(E) is the set of
all a ∈ k∗ such that there exists a similarity σ:E

∼−→ E with norm a, i.e. a
linear automorphisms σ of E with q(σ(x)) = aq(x).

Theorem 1. If τ is a bilinear or quadratic Pfister form over k, then D(τ) =
N(τ).

For this – in characteristic 6= 2 – well-known theorem, due to Pfister, Witt
has given a particularly short proof which belongs to the standard repertoire
of all modern books on the algebraic theory of quadratic forms (e.g. [S, p. 69
ff.], [P, p. 27]). The proof can be extended to characteristic 2 without effort.
We recall it here for the convenience of the reader.

Proof of Theorem 1. We use induction on the degree d of τ . In the bilinear
case the start of the induction, d = 0, is trivial. If d = 1 in the quadratic
case, then τ is the hyperbolic plane

[
0
1

1
0

]
or the norm form of a quadratic

separable field extension of k. In both cases the statement is clear.
Next we deduce d from d− 1. We write τ = ρ⊥ aρ, where ρ is a (bilinear

or quadratic) Pfister form of degree d − 1. Since 1 ∈ D(τ), we clearly have
N(τ) ⊂ D(τ). It is also clear that N(ρ) ⊂ N(τ). Now, let c ∈ D(τ) be
given. We write c = ρ(x) + aρ(y) with vectors x, y ∈ km, m = 2d−1. If
ρ(x) = 0 or ρ(y) = 0, then c is a similarity norm of τ since a is one and since
D(ρ) = N(ρ) ⊂ N(τ) by our induction hypothesis. Suppose now that ρ(x)
and ρ(y) are both nonzero. Then we have:

27If ϕ is bilinear, and c ∈ kn, we define ϕ(c) := ϕ(c, c).
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τ = ρ⊥ aρ ∼= ρ(x)ρ⊥ aρ(y)ρ ∼= 〈ρ(x), aρ(y)〉 ⊗ ρ
∼= 〈ρ(x) + aρ(y), aρ(x)ρ(y)(ρ(x) + aρ(y))〉 ⊗ ρ

= (ρ(x) + aρ(y))〈1, aρ(x)ρ(y)〉 ⊗ ρ
∼= (ρ(x) + aρ(y))〈1, a〉 ⊗ ρ = (ρ(x) + aρ(y))τ.

Here we several times used the fact that ρ(x) and ρ(y) are similarity norms
of ρ.

Theorem 2.

(i) Let τ be an isotropic bilinear Pfister form over k. Then there exists a
bilinear Pfister form σ over k with τ ∼= 〈1,−1〉 ⊗ σ. In particular, τ is
metabolic.

(ii) Every isotropic quadratic Pfister form over k is hyperbolic.

Proof. (i) : We use induction on the degree d of τ . For d = 1 the statement
is clear. So suppose d > 1. We choose a factorization τ ∼= 〈1, a〉 ⊗ ρ where
ρ is a Pfister form of degree d − 1. If ρ is isotropic then, by our induction
hypothesis, ρ ∼= 〈1,−1〉⊗γ for some Pfister form γ. Then τ ∼= 〈1,−1〉⊗σ with
σ: = 〈1, a〉⊗γ. Now suppose that ρ is anisotropic. We have vectors x, y ∈ km,
m = 2d−1, with ρ(x) + aρ(y) = 0, but x and y not both zero. Since ρ is
anisotropic, we must have ρ(x) 6= 0 and ρ(y) 6= 0. Theorem 1 then implies
−a = ρ(x)ρ(y)−1 ∈ N(ρ). Therefore, τ ∼= 〈1, a〉 ⊗ ρ ∼= 〈1,−1〉 ⊗ ρ.

(ii) : The argumentation is completely analogous.

Corollary. If τ is an anisotropic quadratic Pfister form over k, then τ has
height 1.

Proof. τ ⊗ k(τ) is an isotropic Pfister form over k(τ). Thus, τ ⊗ k(τ) ∼ 0 by
Theorem 2.

If chark 6= 2, τ is a quadratic Pfister form over k and ϕ is a subform of τ
with dimϕ = dim τ − 1, then we have: If ϕ is isotropic, then ϕ splits. Indeed,
we have τ ∼= ϕ⊥ [a] for some a ∈ k∗. If ϕ is isotropic, then τ is isotropic,
thus τ ∼ 0 by Theorem 2 and hence ϕ ∼ [−a]. As above, this implies: if ϕ is
anisotropic, then ϕ has height 1. In characteristic 2, we cannot come to the
same conclusion since ϕ is not an orthogonal summand of τ . As a replacement
we have the following theorem:

Theorem 3. Let chark = 2. Let ρ be a bilinear Pfister form of degree d ≥ 1,
let β =

[
1
1

1
b

]
be a binary quadratic form and let c ∈ D(β). Define ϕ: =

ρ′ ⊗ β⊥ [c], then:

(i) If ϕ is isotropic, then ϕ ∼= (2d − 1) ×H ⊥ [c].

(ii) If ϕ is anisotropic, then ϕ has height 1.

(iii) k(ϕ) is specialization equivalent with k(ρ⊗ β) over k.
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Proof. Let ϕ be isotropic. Since ϕ is a subform of ρ ⊗ β, the form ρ ⊗ β is
isotropic. Hence, by Theorem 2,

ρ⊗ β = (〈1〉⊥ ρ′) ⊗ β ∼ 0.

It follows that ρ′ ⊗ β ∼ β. {Note that β = −β.} Thus ϕ ∼ β⊥ [c] ∼ [c], since
β⊥ [c] is isotropic and dimβ = 2. This proves (i).

Next, suppose that ϕ is anisotropic. Then ϕ ⊗ k(ϕ) is isotropic and so
ϕ⊗ k(ϕ) splits by what we already proved. Therefore h(ϕ) = 1.

Finally, let K ⊃ k be a field extension with (ρ ⊗ β)K isotropic.28 Then
(ρ ⊗ β)K ∼ 0. Hence, (ρ′ ⊗ β)K ∼ βK and ϕK ∼ (β⊥ [c])K ∼ [c]. It is now
clear that ρ⊗ β and ϕ become isotropic over the same field extensions of k.
Thus k(ρ⊗ β) is a generic zero field of ϕ.

The class of examples of forms of height 1, given by this theorem, can be
expanded considerably, as we will show now. But first some generalities. We
need the following theorem from the elementary theory of quadratic forms.

Theorem 4. Let E = (E, q) be a strictly regular space over k and let
F1 = (F1, q|F1), F2 = (F2, q|F2) be quadratic submodules of E. Further,
let α:F1

∼−→ F2 be an isometry. Then there exists an automorphism σ of E,
i.e. an isometry σ:E

∼−→ E, which extends α.

For a proof, we refer to [Bo1, §4, Th.1]. If F1 (thus also F2) is strictly
regular, then Theorem 4 can also be formulated as a cancellation theorem
and is then a special case of §6, Theorem 2. In characteristic 6= 2, this is
just the Witt Cancellation Theorem [W, Satz 4]. We dub Theorem 4 the
“Witt Extension Theorem” (although Theorem 4 was not formulated in this
generality by Witt).

Let E = (E, q) again be a strictly regular space. Let F be a quadratic
submodule of E. Then

F⊥: = {x ∈ E | Bq(x,E) = 0}

is also a subspace of E. Since Bq is nondegenerate, we have (F⊥)⊥ = F . We
call F⊥ the polar of F in E and write F⊥ = PolE(F ). If F1 is a submodule
of E (w.r.t. q), isometric to F , then PolE(F1) is also isometric to PolE(F )
by Theorem 4. This fact supplies us with very convenient terminology in the
language of forms (instead of spaces) as follows.

Definition 3. Let ϕ be a quadratic form over k and τ a strictly regular form
over k. Suppose that ϕ < τ . We define a (possibly degenerate) form ψ over
k as follows: Let (E, q) = E be a space, isometric to τ and (F, q|F ) = F
a submodule of E, isometric to ϕ. Then we define ψ to be given by the
submodule PolE(F ) of E. ψ is up to isometry uniquely determined by ϕ and
τ . We write ψ = Polτ (ϕ) and call ψ “the” polar of ϕ in τ .

28From now on, we sometimes write ψK instead of ψ ⊗K for a form ψ over K, as
announced in §9.
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We return to the geometric language. We suppose now that k has charac-
teristic 2. On a strictly regular space (E, q) over k we can then use symplectic
geometry, since Bq(x, x) = 0 for every x ∈ E.

Lemma 1. Let F be a quadratic submodule of a strictly regular space E
and let P = QL(F ) be the quasi-linear part of F . Then we also have
QL(PolE(F )) = P . More precisely: let G be a complement of P in F ,
i.e. F = P ⊕ G = P ⊥G. Then there exists an orthogonal decomposition
E = M ⊥G⊥R with P ⊂M , dimM = 2 dimP , F = P ⊥G. For every such
decomposition, we have PolE(F ) = P ⊥R.

Proof. The space G is strictly regular. Let T = PolE(G), i.e. E = T ⊥G.
T is also strictly regular and P ⊂ T . Let x1, . . . , xr be a basis of the
vector space P . Since P is quasi-linear, we have B(xi, xj) = 0 for all
i, j ∈ {1, . . . , r}. By elementary symplectic geometry, T contains vectors
y1, . . . , yr with B(xi, yj) = δij for all i, j ∈ {1, . . . , r}. Let M be the vector
space spanned by x1, . . . , xr, y1, . . . , yr. The bilinear form B|M×M is clearly
nondegenerate. Hence the quadratic submodule M of T is nondegenerate, i.e.
is a quadratic space, and we have T = M ⊥R with a further quadratic space
R. We have E = M ⊥R⊥G.

Now let E = M ⊥R⊥G be a given decomposition, with P ⊂M , dimM =
2 dimP , F = P ⊥G. Then

PolE(F ) = PolE(P ) ∩ PolE(G) = PolE(P ) ∩ (M ⊥R) = PolM (P )⊥R.

By elementary symplectic geometry, we get PolM (P ) = P , and so PolE(F ) =
P ⊥R.

In the language of forms, the lemma allows us to say the following.

Scholium. Let τ be a strictly regular quadratic form and ϕ an arbitrary
quadratic form with ϕ < τ . Then there is an orthogonal decomposition
τ = µ⊥ γ⊥ ρ with

QL(ϕ) < µ, dimµ = 2 dimQL(ϕ), ϕ ∼= QL(ϕ)⊥ γ, Polτ (ϕ) ∼= QL(ϕ)⊥ ρ.

If QL(ϕ) ∼= [a1, . . . , ar], then µ ∼=
[
a1

1
1
b1

]
⊥ . . . ⊥

[
ar

1
1
br

]
with further el-

ements b1, . . . , br ∈ k. We have Polτ (Polτ (ϕ)) = ϕ. If ϕ is nondegenerate,
then Polτ (ϕ) is nondegenerate, since ϕ and Polτ (ϕ) have the same quasi-
linear part.

Later on, we will be particularly interested in the case where ϕ itself is
quasi-linear. Then γ = 0. We thus have a decomposition τ = µ⊥ ρ with
ϕ < µ, dimµ = 2 dimϕ, and so Polτ (ϕ) = ϕ⊥ ρ.

Remark. The scholium remains valid in characteristic 6= 2. Then QL(ϕ) is
simply the radical of ϕ, hence a1 = . . . = ar = 0. Then we can also establish
that b1 = . . . = br = 0. If ϕ is nondegenerate (i.e. QL(ϕ) = 0), then Polτ (ϕ)
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is nondegenerate and τ = ϕ⊥Polτ (ϕ). In characteristic 6= 2 the notion of
polar is not as interesting as in characteristic 2.

Theorem 5. Again let chark = 2. Let τ be a quadratic Pfister form over
k of degree d ≥ 2 and let χ be an anisotropic quasi-linear form over k with
dimχ < 2d−1. Suppose that χ < aτ for some a ∈ k∗. Then, for the polar
ϕ = Polaτ (χ), we have the following:

(i) ϕ is nondegenerate, QL(ϕ) = χ.

(ii) If τ is isotropic, then ϕ splits.

(iii) If ϕ is anisotropic, then ϕ has height 1.

(iv) The fields k(ϕ) and k(τ) are specialization equivalent over k.

(v) If dimχ < 1
4 dim τ , then for every form γ with ϕ ∼= χ⊥ γ, k(γ) is also

specialization equivalent to k(ϕ) over k.

Proof. 1) We assume without loss of generality that a = 1, thus χ < τ . We
already know that (i) holds. We choose a decomposition ϕ = χ⊥ γ. Then
Polτ (ϕ) = χ and so, in particular, QL(ϕ) = χ. Upon applying the scholium
to ϕ, we see that ρ = 0 there. We thus have a decomposition τ = µ⊥ γ with
χ < µ and 2 dimχ = dimµ. Since 2 dimχ < dim τ , we certainly have γ 6= 0.

2) Now let τ be isotropic. By Theorem 2, we have τ ∼ 0. It follows that
γ ∼ µ (note that µ = −µ) and then ϕ ∼ χ⊥µ. We have

χ ∼= [a1, . . . , ar], µ ∼=
[
a1

1

1

b1

]
⊥ . . . ⊥

[
ar
1

1

br

]

with elements ai, bi ∈ k. Now,

[ai] ⊥
[
ai
1

1

bi

]
∼= [ai] ⊥

[
0

1

1

bi

]
∼= [ai] ⊥ H.

It follows that χ⊥µ ∼= χ⊥ r ×H , also ϕ ∼ χ. This proves (ii).
3) If ϕ is anisotropic, then ϕ ⊗ k(ϕ) is isotropic. Nevertheless, χ ⊗ k(ϕ)

remains anisotropic, since k(ϕ) is separable over k (§10, Theorem 1). If we
apply what we already proved to χ⊗k(ϕ) and τ ⊗k(ϕ), we see that ϕ⊗k(ϕ)
splits. Hence h(ϕ) = 1.

4) If ϕ is isotropic, then the field extensions k(ϕ) and k(τ) of k are both
purely transcendental. Now suppose that ϕ is anisotropic. ϕ⊗k(τ) is isotropic
(even split). Of course, τ ⊗ k(ϕ) is also isotropic. Hence k(ϕ) ∼k k(τ) in this
case also.

5) Finally, suppose that dimχ < 1
4 dim τ = 2d−2. Now dimµ < 2d−1,

thus dim γ > 2d−1. We have τ ⊗ k(τ) ∼ 0, hence γ ⊗ k(τ) ∼ µ⊗ k(τ). Since
dimµ < dim γ, it follows that γ ⊗ k(τ) is isotropic. Clearly τ ⊗ k(γ) is also
isotropic. We conclude that k(γ) ∼k k(τ).

We want to understand the connection between the forms ϕ and aτ in
Theorem 5 better. For this purpose we give another general definition for
quadratic forms over a field k of characteristic 2.
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Definition 4. Let ϕ be an arbitrary form and τ a strictly regular form over
k. We say that τ is a strictly regular hull of ϕ, and write ϕ <s τ , when the
following conditions hold:

(a) ϕ < τ .

(b) Let (E, q) = E be a space, isometric to τ and let (F, q|F ) = F be a
quadratic submodule of E, isometric to ϕ. Then there does not exist a
strictly regular subspace (E′, q|E′) = E′ of E with F ⊂

6=
E′ ⊂

6=
E.

By the Witt Extension Theorem (Theorem 4), the relation ϕ <s τ only
depends on the isometry classes of ϕ and τ , and is independent of the choice
of the spaces E and F .

Lemma 2. Let ϕ be an arbitrary quadratic form and τ a strictly regular
quadratic form with ϕ < τ . Then τ is a strictly regular hull of ϕ if and only
if Polτ (ϕ) is quasi-linear.

Proof. Let F ⊂ E be quadratic modules associated to ϕ and τ , as indicated in
Definition 4. If τ is not a strictly regular hull of ϕ, then E contains a strictly
regular subspace E′ with F ⊂ E′ and E′ 6= E. We have an orthogonal
decomposition E = E′ ⊥ E′′. Clearly, E′′ ⊂ PolE(F ). The space E′′ is 6= 0
and strictly regular. Hence PolE(F ) is not quasi-linear.

Now suppose that ϕ <s τ . We choose decompositions F = P ⊥G,
E = M ⊥G⊥R which have the properties exhibited in Lemma 1. We have
PolE(F ) = P ⊥R. Since M ⊥G is strictly regular and contains the space
F , we must have M ⊥G = E, i.e. R = 0. It follows that PolE(F ) = P is
quasi-linear.

Remark. The definition of strictly regular hull is also meaningful in char-
acteristic 6= 2 and Lemma 2 still holds (a quasi-linear form then looks like
[0, . . . , 0]), but again this term is far less interesting now. If ϕ and τ are both
nondegenerate, then ϕ <s τ holds only if ϕ ∼= τ .

Definition 5. Let ϕ be a quadratic form over k. We call ϕ a close Pfister
neighbour29 if ϕ is nondegenerate and not quasi-linear and if there exist a
Pfister form τ and an a ∈ k∗ with ϕ <s aτ . More precisely, we then call ϕ a
close neighbour of τ .

If ϕ is a close neighbour of τ and if ϕ is anisotropic, then Theorem 5 tells
us that ϕ has height 1 and that k(τ) is a generic zero field of ϕ.

The relation “strictly regular hull” is compatible with taking tensor prod-
ucts, as we will show now.

Lemma 3. Let ϕ be an arbitrary quadratic form and τ a strictly regular
quadratic form over k with ϕ < τ . Let σ be a bilinear nondegenerate form
over k. Then σ⊗ϕ < σ⊗ τ (this is clear) and Polσ⊗τ (σ⊗ϕ) ∼= σ⊗Polτ (ϕ).

29In §22 we will introduce the more general notion of Pfister neighbour.
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Proof. Let (E, q) = E be a quadratic space, isometric to τ and (F, q|F ) = F a
submodule, isometric to ϕ. Furthermore, let S be a bilinear space, isometric
to σ. By Lemma 1, we have orthogonal decompositions F = P ⊥G, E =
Q⊥G⊥R with P = QL(F ) ⊂ Q and dimQ = 2 dimP . From those we
obtain analogous decompositions

S ⊗ F = (S ⊗ P )⊥ (S ⊗G), S ⊗ E = (S ⊗Q)⊥ (S ⊗G)⊥ (S ⊗R).

Clearly, S⊗P is the quasi-linear part of S⊗F and dim(S⊗Q) = 2 dim(S⊗P ).
By Lemma 1, we get

PolE(F ) = P ⊥R and PolS⊗E(S ⊗ F ) = (S ⊗ P )⊥ (S ⊗R).

Therefore, S ⊗ PolE(F ) = PolS⊗E(S ⊗ F ).

Theorem 6. If ϕ <s τ and if σ is a nondegenerate bilinear form, then
σ ⊗ ϕ <s σ ⊗ τ .

Proof. By Lemma 2, Polτ (ϕ) is quasi-linear. Using Lemma 3, it follows that
Polσ⊗τ (σ ⊗ ϕ) = σ ⊗ Polτ (ϕ) is quasi-linear. Again by Lemma 2, we have
σ ⊗ ϕ <s σ ⊗ τ .

Corollary. If ϕ is a close neighbour of a quadratic Pfister form τ , and if σ
is a bilinear Pfister form, then σ⊗ϕ is a close neighbour of the Pfister form
σ ⊗ τ .

Thus it is shown that for a large class of forms of height 1, if ϕ is any
such form and σ is any bilinear Pfister form, then the tensor product σ ⊗ ϕ
again has height 1, insofar it is anisotropic. Such a phenomenon does not
happen in characteristic 6= 2. If ϕ is an anisotropic form of height 1 and not
of the form aτ for some Pfister form τ , then (as mentioned above) we know
in characteristic 6= 2 that ϕ has the form aτ ′, where τ ′ is the pure part of
some Pfister form. If σ is a further Pfister form 6= 〈1〉, then σ ⊗ ϕ does not
have height 1, since neither dim(σ ⊗ ϕ) nor 1 + dim(σ ⊗ ϕ) is a 2-power in
this case.

The following question suggests itself: Let ϕ be a close neighbour of some
Pfister form τ . Is τ uniquely determined by ϕ (up to isometry)?

We will show that this is indeed so. We will also derive other theorems
about Pfister forms. However, for this purpose, we need more tools from the
general theory of quadratic forms, namely the so-called Subform Theorem
and a “Norm Theorem”. Both theorems are well-known in characteristic 6= 2
and still do hold in characteristic 2. We will derive them next, see §17 and
§19.
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The so-called Subform Theorem of Cassels and Pfister (e.g. [S, Th.3.7]) is
one of the most important tools in the algebraic theory of quadratic forms
over fields of characteristic not two. In 1969/70, Pfister’s Egyptian student
Mahmud Amer proved the Subform Theorem in characteristic two in his
dissertation in a manner which does not leave anything to be desired. Unaware
of this fact, R. Baeza proved a slightly more special version of the Subform
Theorem in characteristic two in 1974 [Ba3]. Unfortunately Amer’s proof
was never published. In Pfister’s book [P] one can find a sketch of Amer’s
proof which leaves a gap however. Since the Subform Theorem will play an
important role in what follows, and will furnish us with a description of all
strictly regular forms of height one in particular, we will now present Amer’s
proof in its completeness. Apart from this, the paper [Ba3] on this topic is
also worth reading in our opinion.

Theorem 1 (“Cassels’s Lemma”). Let k be a field of arbitrary characteristic,
x an indeterminate over k and p ∈ k[x] a polynomial. Let ϕ be a quadratic
form in n variables over k which represents the polynomial p over the field
k(x). Then ϕ already represents the polynomial p over the ring k[x], i.e. there
exist polynomials f1, . . . , fn ∈ k[x] with ϕ(f1, . . . , fn) = p.

Proof. 1) We may assume that p 6= 0. We may further assume that ϕ is
nondegenerate upon replacing ϕ by ϕ̂ (cf. §6, Definition 9). If ϕ is isotropic,
then

[
0
1

1
0

]
is a subform of ϕ (cf. §6, Lemma 4). Clearly

[
0
1

1
0

]
already rep-

resents every polynomial over k[x]. Thus we assume from now on that ϕ is
anisotropic.

2) We choose a representation

(1) p = ϕ

(
f1
f0
,
f2
f0
, . . . ,

fn
f0

)

with fi ∈ k[x] (0 ≤ i ≤ n), f0 6= 0 and deg f0 minimal. (“deg” denotes the
degree of a polynomial.) We assume that deg f0 > 0. This should lead to a
contradiction.

Consider the form ψ: = 〈−p〉⊥ϕ in n + 1 variables over k(x). For every
polynomial fi with 1 ≤ i ≤ n, let

fi = f0gi + ri,

the division with remainder of fi by f0, thus with gi, ri ∈ k[x], deg ri < deg f0.
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It can happen that ri = 0, i.e. that deg ri = −∞. However, for at least one
i ∈ {1, . . . , n} we have ri 6= 0. We introduce the vectors f : = (f0, f1, . . . , fn)
and g: = (g0, g1, . . . , gn) with g0: = 1. By (1) we have ψ(f) = 0. By the
minimality of deg f0 we certainly have ψ(g) 6= 0 however. In particular, the
vectors f and g are linearly independent over k(x).

In what follows we will denote the “inner product” Bψ(f, g) simply by fg
and we will use such a notation (as in Amer) also for forms different from ψ.
Let

u: = ψ(g)f − (fg)g.

We have
ψ(u) = ψ(g)2ψ(f) + (fg)2ψ(g) − (fg)2ψ(g) = 0,

since ψ(f) = 0. From the linear independence of f and g it follows that u 6= 0.
The form ψ is also isotropic over k(x). Hence the first coordinate u0 of u

is likewise different from zero. We have

u0 = ψ(g)f0 − fg =
1

f0
[ψ(g)f2

0 − (fg)f0] =
1

f0
ψ(f − f0g).

Every coordinate of f−f0g = (0, r1, . . . , rn) is of lower degree than f0. Hence
degψ(f − f0g) ≤ 2 deg f0 − 2 and so deg u0 ≤ deg f0 − 2. Since ψ(u) = 0 we
thus obtained a representation of p of the form (1) in which the denominator
polynomial u0 is of lower degree than f0, contradiction!

Addendum (Amer). In the situation of Theorem 1, let ϕ be anisotropic and
p 6= 0. Furthermore, let M be a subset of {1, . . . , n} and p = ϕ(h1, . . . , hn) a
representation with hi ∈ k(x) for 1 ≤ i ≤ n and even hi ∈ k[x] for i ∈ M .
Then there exist polynomials g1, . . . , gn ∈ k[x] with p = ϕ(g1, . . . , gn) and
gi = hi for i ∈M .

Proof. We choose a representation

(2) p = ϕ

(
f1
f0
, . . . ,

fn
f0

)

with fi ∈ k[x] (0 ≤ i ≤ n), f0 6= 0, fi

f0
= hi for i ∈M and deg f0 minimal. By

way of contradiction, suppose again that deg f0 > 0. Using these polynomials
fi, we go through the proof above again, starting from step 2. This time we
have ri = 0 and gi = hi for every i ∈ M . For i ∈ M , the vector u above has
i-th coordinate

ui = ψ(g)fi − (fg)gi = ψ(g)f0hi − (fg)hi

= [ψ(g)f0 − (fg)]hi = u0hi.

Thus ui

u0
= hi for every i ∈M . By the above considerations we get deg u0 <

deg f0, contradiction!

Remark. If char k 6= 2, then the Addendum is dispensable since it can easily
be obtained from Theorem 1 as follows: as usual we interpret ϕ as a quadratic
form over the k-vector space V := kn with standard basis e1, . . . , en. Suppose
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without loss of generality that M = {1, . . . ,m} for an m ≤ n and W : =
m∑
i=1

kei. The form ϕ1: = ϕ|W is anisotropic and thus strictly regular. We

have an orthogonal decomposition ϕ ∼= ϕ1 ⊥ϕ2. Now ϕ2 represents f1: =
p − ϕ1(h1, . . . , hm) over k(x) and thus over k[x] by Theorem 1. This yields
the representation of p by ϕ, as given in the Addendum.

Theorem 2 (Subform Theorem). Let ψ be an anisotropic quadratic form
over k and let ϕ be a nondegenerate quadratic form over k in m variables.
Let x1, . . . , xm be indeterminates over k. Suppose that the form ψ represents
the element ϕ(x1, . . . , xm) over the field k(x1, . . . , xm). Then ϕ is a subform
of ψ.

The proof involves several lemmata. We assume all the time that ψ is an
n-dimensional anisotropic quadratic form over k and that k has characteristic
two. For char k 6= 2 one can find the proof of the Subform Theorem in many
books, in particular in [P], [S].

Lemma 1. Let a, b, c ∈ k, b 6= 0 and let x be an indeterminate over k.

Suppose that ψ represents the element ax2+bx+c over k(x). Then
[
a
b
b
c

]
< ψ.

Proof. By Theorem 1, there exists a vector f ∈ k[x]n with ψ(f) = ax2+bx+c.
Since ψ is anisotropic, every coordinate of f has to be a polynomial of degree
≤ 1. Hence f = xu+v, for certain vectors u, v ∈ kn. Again using the notation
uv: = Bψ(u, v), we then have the equation

ψ(u)x2 + (uv)x+ ψ(v) = ax2 + bx+ c.

Therefore, ψ(u) = a, ψ(v) = c and uv = b. Hence the value matrix of

ψ|ku+ kv is
[
a
b
b
c

]
.

Lemma 2. Let E = (E, q) be an anisotropic quadratic module over k and
let u, v be vectors in E with q(u) = q(v) 6= 0. Then there exists an isometry
σ:E

∼−→ E with σ(u) = v and σ(v) = u.

Proof. Suppose without loss of generality that u 6= v. Then u+v 6= 0, so that
q(u+v) = 2q(u)+uv = uv 6= 0. {As before, we write uv instead of Bq(u, v).}
The quadratic submodule ku + kv of E is therefore strictly regular and it
follows that

E = (ku + kv)⊥F

with F : = (ku + kv)⊥ (cf. §5, Lemma 1). The linear map σ:E → E with
σ(u) = v, σ(v) = u, σ(w) = w for all w ∈ F is the one we are looking for.

Remark. The map σ is nothing else than the reflection in the hyperplane
(u+ v)⊥, perpendicular to the vector u+ v 6= 0 (cf. [Bo1, §6, No. 4]),

σ(z) = z − (u+ v)z

q(u+ v)
(u+ v), for all z ∈ E.

Page: 131 job: 372 macro: PMONO01 date/time: 15-Dec-2009/22:24



132 Chapter III. Some Applications

Lemma 3. Let ψ = ϕ⊥χ be an orthogonal decomposition with ϕ strictly
regular. Let γ be a further quadratic form over k with ϕ⊥ γ < ψ. Then
γ < χ.

This lemma is a special case of a much more general theorem, which
deserves attention in its own right. We will prove this theorem at the end of
this section.

Lemma 4. Let ψ = ϕ⊥χ with dimϕ = 2 and ϕ strictly regular. Let x1, x2 be
indeterminates over k and d an element 6= 0 of k. Suppose that ψ represents
the polynomial ϕ(x1, x2) + d over k(x1, x2). Then d ∈ D(χ).30

Proof. Let ϕ =
[
a
b
b
c

]
and dimψ = n. We have b 6= 0. Therefore, evaluating

ψ at the first two standard vectors e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0) of
the vector space kn yields the values ψ(e1) = a, ψ(e2) = c, e1e2 = b. Let us
now work in the vector space V = Kn over the field K: = k(x2) which we
also equip with the form ψ. (More precisely, we are dealing with the form
ψ ⊗ K here, but we simply write ψ.) By our assumption, ψ represents the
element

ϕ(x1, x2) + d = ax2
1 + (bx2)x1 + (cx2

2 + d)

over K(x1). Lemma 1 tells us now that there exist vectors e′1, h
′ in V with

ψ(e′1) = a, ψ(h′) = cx2
2 + d, e′1h

′ = bx2. By Lemma 2 there is an isometry
σ:V

∼−→ V with respect to ψ with σ(e′1) = e1. Letting h: = σ(h′) ∈ V , we
then have

ψ(e1) = a, ψ(h) = cx2
2 + d, e1h = bx2.

If h1, . . . , hn are the coordinates of h, i.e. h =
n∑
i=1

hiei, then the last equation

gives e1h = h2b = x2b, and so h2 = x2. {Bear in mind that eiej = 0 for i ≤ 2,
j > 2, and uu = 0 for every u ∈ V .} By the Addendum there exists a vector
g = (g1, . . . , gn) ∈ k[x2]

n with g2 = h2 = x2 and ψ(g) = cx2
2 + d. Since ψ

is anisotropic, all polynomials gi have degree ≤ 1. Thus, g = x2u + v with
vectors u = (u1, . . . , un), v = (v1, . . . , vn) in kn and u2 = 1, v2 = 0. We have

cx2
2 + d = ψ(u)x2

2 + (uv)x2 + ψ(v),

so that ψ(u) = c, uv = 0 and ψ(v) = d. Furthermore, e1u = u2b = b,

e1v = v2b = 0. Therefore ψ|ke1 + ku ∼=
[
a
b
b
c

]
and v ∈ (ke1 + ku)⊥. This

shows that [
a

b

b

c

]
⊥ [d] < ψ =

[
a

b

b

c

]
⊥χ.

By Lemma 3 we get [d] < χ.

Lemma 5. Let ψ = ϕ⊥χ with ϕ strictly regular, dimϕ = 2r and let
x1, . . . , x2r be indeterminates over k. Further, let d be an element 6= 0 of

30One recalls the notation in §16, Definition 2.
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k such that ψ represents the element ϕ(x1, . . . , x2r) + d over k(x1, . . . , x2r).
Then d ∈ D(χ).

Proof. After a linear coordinate transformation of the variables x1, . . . , x2r

we may assume that

ϕ =

[
a1

b1

b1
c1

]
⊥ . . .⊥

[
ar
br

br
cr

]

with elements ai, bi, ci ∈ k, bi 6= 0. The form ψ represents the element
r∑
i=1

(aix
2
2i−1 + bix2i−1x2i + cix

2
2i) + d over k(x1, . . . , x2r). The statement now

follows from Lemma 4 by induction on r.

Lemma 6. Let ϕ = [d1, . . . , dm] be an anisotropic quasi-linear form over k.
Assume that there is a form ψ which represents the element ϕ(x1, . . . , xm) =
d1x

2
1+. . .+dmx

2
m over the field k(x1, . . . , xm) with indeterminates x1, . . . , xm

over k. Then ϕ < ψ.

Proof. By induction on m. Let m = 1. Then ψ represents the element d1

over k(x1). Using the Substitution Principle §11, Theorem 3, it follows that
ψ represents the element d1 over k as well.

Suppose now that m > 1. By the Substitution Principle we immediately
get that dm ∈ D(ψ). We choose a vector u ∈ kn with ψ(u) = dm. Let
d: = d1x

2
1+. . .+dm−1x

2
m−1. By Theorem 1, ψ represents the element d+dmx

2
m

overK[xm] withK: = k(x1, . . . , xm−1). Since ψ is anisotropic, we have vectors
w′, u′ ∈ Kn with ψ(xmu

′ + w′) = dmx
2
m + d. This implies

ψ(u′) = dm, ψ(w′) = d, u′w′ = 0.

By Lemma 2, the vector space Kn has an isometry σ:Kn ∼−→ Kn with
respect to ψ with σ(u′) = u. Letting w: = σ(w′) ∈ Kn, we then have

ψ(u) = dm, ψ(w) = d, uw = 0.

Thus, the form ψ1: = ψ|(ku)⊥ represents the element d over K, and so
[d1, . . . , dm−1] < ψ1, by our induction hypothesis. Hence there is a sys-
tem of linearly independent vectors v1, . . . , vm−1 in (ku)⊥ with ψ(vi) =
di (1 ≤ i ≤ m − 1) and vivj = 0 for i 6= j. The vector u can-
not be a linear combination of v1, . . . , vm−1, for if there was a relation
u = a1v1+. . .+am−1vm−1 with coefficients ai ∈ k, applying ψ to this relation
would give dm = a2

1d1 + . . .+ a2
m−1dm−1, contradicting the anisotropy of ϕ.

Thus W : = kv1 + . . .+ kvm−1 + ku is an m-dimensional subspace of kn and
ψ|W ∼= [d1, . . . , dm].

Theorem 2 now follows in a straightforward way from Lemmas 5 and 6.
We conclude this section with the generalization of Lemma 3, announced
above.
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Theorem 3. Let E and F be free quadratic modules over a valuation ring
o and let G be a strictly regular quadratic space over o. If G⊥F < G⊥E,
then F < E.

Proof. We work in the quadratic module U : = G⊥E with associated quadratic
form q. By our assumption, U contains a submodule V , which is a direct
summand of U (as an o-module), so that V = (V, q|V ) has an orthogonal
decomposition V = G′ ⊥F ′ with G ∼= G′, F ∼= F ′. Since G′ is strictly regular,
we have a further orthogonal decomposition U = G′ ⊥E′. This gives E ∼= E′

by the Cancellation Theorem §6, Theorem 2. Hence, there is an isometry
σ:U

∼−→ U with σ(G′) = G and σ(E′) = E. Since F ′ is orthogonal to G′,
F ′′: = σ(F ′) has to be orthogonal to G. Therefore, F ′′ ⊂ E. The o-module
σ(V ) = G⊥F ′′ is a direct summand of U = G⊥E, and so the o-module
E/F ′′ ∼= U/σ(V ) is free. Thus F ′′ is a direct summand of E, and so F < E.

Remark. The statement of Theorem 3 remains valid for a local ring o because
the Cancellation Theorem §6, Theorem 2 holds more generally over local
rings.
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Let k be an arbitrary field. We want to derive an exact sequence, going back
to J. Milnor [M2], which establishes a close relationship between the Witt
ring W (k(t)) of the rational function field k(t) in one variable t and the
Witt rings of field extensions of k, generated by one element. We need this
sequence in order to prove the announced Norm Theorem in §19. It should
be emphasized that we will deal with nondegenerate bilinear forms now,
although we are mostly interested in quadratic forms where applications are
concerned. Milnor assumes in [M2, §5] that char k 6= 2, but this restriction is
not necessary here.

Let P be the set of monic irreducible polynomials p(t) ∈ k[t]. For every
p ∈ P , let kp denote the residue class field k[t]/(p) and λp: k(t) → kp ∪∞ the
canonical place with valuation ring op: = k[t](p(t)). {Note: except for the ring
o∞: = k[t−1](t−1), these rings are exactly all nontrivial valuation rings of k(t)
which contain the field k. They are all discrete.}

For every polynomial p ∈ P and every nondegenerate (symmetric) bilinear
form ϕ over k(t), let ∂p(ϕ) denote the weak specialization of the form 〈p〉ϕ =
〈p〉 ⊗ ϕ,

∂p(ϕ): = (λp)W(〈p〉ϕ) ∈ W (kp),

(cf. §3). The Witt class ∂p(ϕ) can be described in an elementary way for one-
dimensional forms as follows: Let f(t) ∈ k[t] be a polynomial 6= 0. Consider
the decomposition f(t) = p(t)mg(t), with m ∈ N0 and g(t) not divisible by
p(t). If m is even, then ∂p(〈f〉) = 0. If m is odd, then ∂p(〈f〉) = 〈g〉, where g
denotes the residue class of g in kp. {Actually, we should write [〈g〉] instead of
〈g〉, but we avoid such intricacies, now and in the future. From now on we will
usually not make a notational distinction between a form and its associated
Witt class.}

Thus we obtain an additive map

∂p: W (k(t)) −→W (kp).

Furthermore we have a natural ring homomorphism

i: W (k) −→W (k(t)), ϕ 7−→ ϕ⊗ k(t).

W (k(t)) is a W (k)-algebra by means of this ring homomorphism. Analo-
gously, we interpret every ring W (kp), p ∈ P , as a W (k)-algebra. In what
follows, only the structure of W (k(t)) and the W (kp) as modules over W (k)
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will be important however. The maps ∂p are W (k)-linear. We combine them
in a W (k)-linear map

∂ = (∂p|p ∈ P): W (k(t)) −→
⊕

p∈P

W (kp).

Theorem (Milnor [M2]). The sequence of W (k)-modules

0 −→W (k)
i−→W (k(t))

∂−→
⊕

p∈P

W (kp) −→ 0

is split exact. If λ: k(t) −→ k ∪∞ is an arbitrarily chosen place over k, then

λW :W (k(t)) −→ W (k)

is a retraction for i, in other words λW ◦ i = idW (k).

We will carry out the proof in several steps, broadly following the style
of Milnor’s procedure [M2, p.335ff]. In what follows, a “form” is always a
nondegenerate symmetric bilinear form, which will be identified with its Witt
class.

1) If ϕ is a form over k, then ϕ ⊗ k(t) has good reduction with respect to
every place λ: k(t) → k ∪∞ over k and

λW (ϕ⊗ k(t)) = λ∗(ϕ ⊗ k(t)) = ϕ.

This proves the last statement of the theorem. In particular, i is injective. In
the following, we think of W (k) as a subring of W (k(t)) via the map i.

2) We consider an ascending filtration (Ld | d ∈ N0) of the W (k)-algebra
W (k(t)). For every d ∈ N0, let Ld be the subring of W (k(t)), generated by
one-dimensional forms 〈f〉 for polynomials f ∈ k[t] with f 6= 0, deg f ≤ d.
Clearly we then have

W (k) = L0 ⊂ L1 ⊂ L2 ⊂ . . . ,

and W (k(t)) is the union of all Ld. The forms 〈f1 . . . fs〉 for products of
finitely many polynomials f1, . . . , fs with deg fi ≤ d (1 ≤ i ≤ s) generate
Ld additively. Further, let (Ud | d ∈ N0) be the filtration of

⊕
p∈P

W (kp) with

U0 : = 0, Ud : =
⊕

p∈P
deg p≤d

W (kp) (d > 0).

Clearly ∂(Ld) ⊂ Ud for every d ∈ N0 and in particular, ∂(L0) = 0. Therefore
∂ induces for every d ≥ 1 a W (k)-linear homomorphism

∂d: Ld/Ld−1 −→ Ud/Ud−1.

For every d ∈ N we will verify that ∂d is bijective. As an immediate conse-
quence we then obtain that for every d ∈ N, ∂ induces an isomorphism from
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Ld/L0 to Ud and thus an isomorphism from W (k(t))/W (k) to
⊕
p
W (kp),

which concludes the proof.

We let Pd denote the set of all p ∈ P of degree d and we identify Ud/Ud−1

with the direct sum of the W (k)-modules W (kp), p ∈ Pd. The component of
index p ∈ Pd of the map

∂d:Ld/Ld−1 −→
⊕

p∈Pd

W (kp)

is the W (k)-linear map

∂p:Ld/Ld−1 −→W (kp),

induced by ∂p: W (k(t)) →W (kp).

3) Proof of the surjectivity of ∂d (d ≥ 1). It suffices to prove that, for
given p ∈ Pd and η ∈W (kp), there exists a ξ ∈ Ld with ∂p(ξ) = η, ∂p(ξ) = 0
for q ∈ Pd, q 6= p. Furthermore, we may assume that η is the Witt class of
a one-dimensional form, i.e. η = 〈f〉 for an f ∈ k[t] with deg f < d, f 6= 0,
where f obviously denotes the image of f in kp = k[t]/p(t). Letting ξ: = 〈pf〉
clearly accomplishes our goal.

4) For the proof of the injectivity of ∂d we employ the following lemma
(statement and proof are exactly as in Milnor [M2, Lemma 5.5]).

Lemma. Let d ≥ 1. The additive group Ld is modulo Ld−1 generated by
elements 〈pg1 . . . gs〉 with s ∈ N0, p ∈ Pd and every gi a polynomial of degree
< d. Moreover, if f is the polynomial of degree < d with f ≡ g1 . . . gs mod p,
then

〈pf〉 ≡ 〈pg1 . . . gs〉 mod Ld−1.

Proof of the Lemma. We recall that the identity

〈a+ b〉 = 〈a〉 + 〈b〉 − 〈ab(a+ b)〉

holds in the Witt ring of any field, cf. §3. Let 〈f1 . . . fr g1 . . . gs〉 be a generator
of Ld with pairwise different fi ∈ Pd and polynomials gj 6= 0 of degree < d.
If r ≥ 2, then f1 = f2 + h with h 6= 0, deg h < d, and we obtain the identity

〈f1〉 = 〈f2〉 + 〈h〉 − 〈f1f2h〉.

Multiplying with 〈f2 . . . fr g1 . . . gs〉 and omitting quadratic factors gives

〈f1 . . . fr g1 . . . gs〉 = 〈f3 . . . gs〉 + 〈hf2 . . . gs〉 − 〈f1hf3 . . . gs〉.

Every term on the right-hand side contains at most r− 1 factors of degree d.
By induction on r we now obtain that Ld modulo Ld−1 is additively generated
by forms 〈fg1 . . . gs〉, where f is monic of degree d, and every gj is a nonzero
polynomial of degree < d. Furthermore, we may assume that f is irreducible.
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Consider such a generator 〈pg1 . . . gs〉 with p ∈ Pd, deg gi < d. Assume
that s ≥ 2. Then g1g2 = pk + h with polynomials k, h of degree < d and
h 6= 0. Hence,

〈g1g2〉 = 〈h〉 + 〈pk〉 − 〈pkhg1g2〉.
Multiplying with 〈pg3 . . . gs〉 gives

〈pg1g2 . . . gs〉 = 〈phg3 . . . gs〉 + 〈kg3 . . . gs〉 − 〈khg1 . . . gs〉,

and so
〈pg1 . . . gs〉 ≡ 〈phg3 . . . gs〉 mod Ld−1.

Furthermore,
g1 . . . gs ≡ hg3 . . . gs mod p.

The proof of the Lemma can now be concluded by means of a simple induction
on s.

5) Proof of the injectivity of ∂d (d ≥ 1). Assume for the sake of con-
tradiction that ∂d is not injective. Then there exists a ξ ∈ Ld \ Ld−1 with
∂p(ξ) = 0 for every p ∈ Pd. By the Lemma, we have a congruence

ξ ≡
s∑

i=1

〈pi〉ϕi mod Ld−1

with finitely many pi ∈ Pd and forms ϕi = 〈fi1, . . . , fi,ri
〉 for nonzero poly-

nomials fij of degree < d. So, for every i ∈ {1, . . . , s},

∂pi
(〈pi〉ϕi) = ∂pi

(ξ) = 0.

Furthermore, ∂q(〈pi〉ϕi) = 0 for q ∈ Pd, q 6= pi. Hence every summand 〈pi〉ϕi
of ξ modulo Ld−1 is already in the kernel of ∂d. Thus we certainly have a
p ∈ Pd and polynomials f1, . . . , fr ∈ k[t] \ {0} of degree < d such that

ξ: = 〈pf1, . . . , pfr〉 6∈ Ld−1,

but ∂p(ξ) = 0, and so ∂q(ξ) = 0 for every q ∈ Pd. This should now lead to a
contradiction.

We assume that the sequence f1, . . . , fr is chosen to be of minimal
length r. We have ∂p(ξ) = 〈f1, . . . , f r〉. Thus, the form 〈f1, . . . , fr〉 over
kp is metabolic and so in particular isotropic. Hence, after permuting the f i
if necessary, there certainly exists an index s ∈ {2, . . . , r} and polynomials
u1, . . . , us ∈ k[t] \ {0} of degree < d, such that

u2
1f1 + . . .+ u2

sfs = 0

in kp. By the Lemma we have

〈pu2
i fi〉 ≡ 〈phi〉 mod Ld−1,

where hi ∈ k[t] is the polynomial of degree < d with u2
i fi ≡ hi mod p.

{Note: every hi 6= 0.} Certainly h1 + h2 6= 0, for otherwise we could write ξ
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modulo Ld−1 in a shorter way, contradicting the minimality of r. Applying
the relation

〈h1, h2〉 = 〈h1 + h2, h1h2(h1 + h2)〉,
while keeping in mind that by the Lemma

〈ph1h2(h1 + h2)〉 ≡ 〈pg1〉 mod Ld−1

for a polynomial g1 6= 0 of degree < d, we obtain

ξ ≡ 〈p(h1 + h2), pg1, ph3, . . . phs, pfs+1, . . . pfr〉 mod Ld−1.

Continuing in this way, we finally obtain a congruence

ξ ≡ 〈p(h1 + . . .+ hs−1), phs, pg1, . . . , pgs−2, pfs+1, . . . , pfr〉 mod Ld−1.

The polynomial h1 + . . . + hs is of degree < d and is divisible by p. Hence,
h1 + . . .+ hs = 0. It follows that

ξ ≡ 〈pg1, . . . , pgs−2, pfs+1, . . . , pfr〉 mod Ld−1,

which contradicts the minimality of r. This establishes the injectivity of ∂d
and concludes the proof of the Theorem.
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§19 A Norm Theorem

Let ϕ be a (symmetric) bilinear or quadratic form over a field k. We are
interested in the norm group N(ϕ) of ϕ, which is the group of similarity
norms of ϕ. It consists of all a ∈ k∗ with ϕ ∼= aϕ and was already introduced
in §16.

If ϕ is a quadratic form, then we have a decomposition

ϕ = ϕ̂ ⊥ r × [0]

with ϕ̂ nondegenerate and r ∈ N0 (cf. §6). Clearly, N(ϕ) = N(ϕ̂). Therefore
we may assume without loss of generality that ϕ is nondegenerate. By an
analogous argument we may also assume this in the bilinear case.

Thus we always assume that ϕ is nondegenerate in what follows. In the
quadratic case we have a Witt decomposition

ϕ ∼= ϕ0 ⊥ r ×H

with ϕ0 anisotropic, r ∈ N0. Clearly, N(ϕ) = N(ϕ0). Thus we may always
assume that ϕ is anisotropic in the quadratic case. In the bilinear case and
when chark = 2 we only have a stable isometry

ϕ ≈ ϕ0 ⊥ r × H̃,

with ϕ0 anisotropic, r ∈ N0 and ϕ0 is up to isometry uniquely determined by
ϕ. Now N(ϕ) is a subgroup of N(ϕ0) and is possibly different from N(ϕ0).
In what follows we will almost always assume that ϕ is anisotropic.

Let K: = k(t) be the rational function field over k for a set of indetermi-
nates t = (t1, . . . , tr). We want to compare the norm groups of ϕ and ϕ⊗K.
Clearly, N(ϕ) is a subgroup of N(ϕ ⊗ k(t)). Furthermore, N(ϕ ⊗ k(t)) con-
tains the group K∗2 of all squares f2 with f ∈ K, f 6= 0. Thus N(ϕ ⊗ K)
is obtained from the group N(ϕ)K∗2 by adjoining certain square-free poly-
nomials f(t) ∈ k[t], i.e. polynomials f(t) 6= 0 which are products of pairwise
different irreducible polynomials. Our task will now be to determine these
polynomials f(t).

We endow the monomials tα1

1 . . . tαr
r (αi ∈ N0) with the lexicographic

ordering with respect to the sequence of variables t1 ≥ t2 ≥ . . . ≥ tr. Thus,
if (α1, . . . , αr) ∈ Nr0 and (β1, . . . , βr) ∈ Nr0 are two multi-indices, then the

monomial tα1
1 . . . tαr

r precedes the monomial tβ1

1 . . . tβr
r if there exists a j ∈

{1, . . . , r} with αi = βi for i < j, but αj < βj .
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For every polynomial f ∈ k[t] with f 6= 0, let f∗ ∈ k∗ denote the leading
coefficient of f , i.e. the coefficient of the highest monomial occurring in f .
Clearly we have (fg)∗ = f∗g∗. We call the polynomial f monic if f 6= 0 and
f∗ = 1.

The following theorem tells us, among other things, that we may restrict
ourselves to monic square-free polynomials in the task above.

Theorem 1. Let ϕ be anisotropic. Let f(t) ∈ k[t] be a similarity norm of
ϕ ⊗K and let tm1

1 . . . tmr
r be the highest monomial occurring in f . Then the

exponents mi are all even and f∗ is a similarity norm of ϕ.

Proof. By induction on r. Let r = 1. Write t1 = t. Let m: = deg f . We use the
place λ: k(t) → k ∪∞ over k with λ(t) = ∞. {Note: the associated valuation
ring is k[t−1](t−1).}

We choose an element a ∈ D(ϕ). Then af ∈ D(ϕ⊗k(t)). The form ϕ⊗k(t)
has good reduction with respect to λ and λ∗(ϕ⊗ k(t)) = ϕ is anisotropic. By
§15, Theorem 3, there exists a ξ ∈ k(t)∗ with λ(afξ2) finite and 6= 0. This
shows that the degree m of f is even. It follows that

(†) ϕ⊗ k(t) ∼= 〈t−mf〉 ⊗ (ϕ⊗ k(t)).

Now λ(t−mf) = f∗. In particular, 〈t−mf〉 has good reduction with respect
to λ. Applying λ∗ to (†) gives

ϕ ∼= 〈f∗〉 ⊗ ϕ.

This proves the theorem for r = 1. Assume that r > 1. We write t = (t1, t
′)

with t′ = (t2, . . . , tr) and then have K = K ′(t1) with K ′: = k(t2, . . . , tr).
Applying the result for r = 1 to the anisotropic form ϕ⊗K ′, we get that m1

is even and that the highest coefficient h ∈ k[t′] of f , as a polynomial in t1,
is a similarity norm of ϕ ⊗K ′. By the induction hypothesis, m2, . . . ,mr are
also even and h∗ = f∗ is a similarity norm of ϕ.

If p(t) ∈ k[t] is an irreducible polynomial, then k(p) denotes the quotient
field of k[t]/(p), i.e. the function field of the affine hyperplane p(t) = 0.

Theorem 2 (Norm Theorem, [K4] for bilinear ϕ, [Ba4] for quadratic ϕ). As-
sume that the form ϕ is anisotropic. In the quadratic case, assume moreover
that ϕ is strictly regular. Further, let p(t) ∈ k[t] = k[t1, . . . , tr] be a monic
irreducible polynomial. Then the following are equivalent.

(i) p(t) ∈ N(ϕ⊗ k(t)).

(ii) p(t) divides a square-free polynomial f(t) ∈ k[t] with f(t) ∈ N(ϕ⊗k(t)).
(iii) ϕ⊗ k(p) ∼ 0.

Under the same assumptions as in the theorem, we immediately obtain
the following
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Corollary. A polynomial f(t) ∈ k[t], f(t) 6= 0 is a similarity norm of ϕ⊗k(t)
if and only if f∗ ∈ N(ϕ) and ϕ ⊗ k(p) ∼ 0 for every monic irreducible
polynomial p ∈ k[t] such that the exponent of p in f is odd.

The rest of this section will be devoted to the proof of Theorem 2. In the
main part of the proof (showing that (iii) ⇒ (i)) we will use induction on r.
A priori we note that if the theorem holds for a given fixed r ∈ N, then the
corollary also holds for this r.

The implication (i) ⇒ (ii) is trivial. In order to prove (ii) ⇒ (iii), we use
the place λp: k(t) → k(p) ∪∞ over k with λp(p) = 0 (cf. § 18; there we write
kp instead of k(p)). By assumption we have

ϕ⊗ k(t) ∼= 〈f〉 ⊗ (ϕ⊗ k(t)).

To this isometry we apply the map (λp)
W

, i.e. weak specialization with re-
spect to λp, as introduced in §3 in the bilinear case and in §7 in the quadratic
case. We obtain ϕ⊗ k(p) ∼ 0, as desired.

Now we come to the prove of the implication (iii) ⇒ (i), which will keep
us busy for a longer time. Suppose that r = 1 and let ϕ be an anisotropic
bilinear form. As before we write t: = t1. We use the exact sequence from §18,

0 −→W (k)
i−→W (k(t))

∂−→
⊕

q∈P

W (k(q)) −→ 0,

with retraction
(λ∞)∗: W (k(t)) −→W (k)

with respect to the place λ∞: k(t) → k∪∞ over k, which maps t to ∞. Let31

z: = 〈1,−p〉 ⊗ ϕk(t) ∈ W (k(t)).

Clearly, ∂q(z) = 0 for every monic irreducible polynomial q 6= p. Furthermore,
∂p(z) is the Witt class of −ϕ⊗ k(p) which is also zero by assumption.

Assume that the polynomial p has degree m. By a well-known theorem of
Springer (e.g. [S, Th.5.3]) which also holds for bilinear forms in characteristic
two by §10, Theorem 132, ϕ⊗E is anisotropic for every finite extension E/k
of odd degree. Since ϕ ⊗ k(p) ∼ 0 by assumption, m has to be even. Hence
(λ∞)

W
(z) = 0 and it follows from §18 that z = 0. Since ϕ is anisotropic, this

gives
ϕk(t) ∼= 〈p〉 ⊗ ϕk(t) ,

as required.
Since we never proved Springer’s Theorem for char k 6= 2, we will show

again that m has to be even, using a different argument.
We have seen that ∂(z) = 0. Hence, by §18, there exists an anisotropic

form ψ over k with z ∼ ψk(t). Assume that m is odd. Then (λ∞)
W

(z) =

(λ∞)∗(ϕk(t)) = ϕ. On the other hand, (λ∞)
W

(z) = (λ∞)∗(ψk(t)) = ψ. There-
fore, ψ = ϕ. We obtain

31Now we will often write ϕk(t) instead of ϕ⊗ k(t) etc.
32For ϕ one considers the quadratic form ϕ⊗ [1].
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〈1,−p〉 ⊗ ϕk(t) ∼ ϕk(t),

and so 〈−p〉⊗ϕk(t) ∼ 0. This is absurd since ϕk(t) is anisotropic. Thus m has
to be even. This proves the theorem for r = 1 in the bilinear case.

Let us now consider the case where r = 1 and ϕ is an anisotropic strictly
regular quadratic form over k. By assumption we have ϕ ⊗ k(p) ∼ 0. From
this we can deduce that p is a similarity norm of ϕ ⊗ k(t). In case k has
characteristic 6= 2, we already know this since ϕ can then be interpreted as
a bilinear form.

So, suppose that char k = 2. We want to “lift” ϕ to a form over a field of
characteristic zero in the easiest way possible, cf. [Ba4]. For this purpose we
choose a henselian discrete valuation ring A with maximal ideal m = 2A 6= 0,
generated by 2, and residue class field A/m = k. That this is possible is
well-known, cf. [E], [EP]. The quotient field K: = QuotA has characteristic
zero.

We choose elements a1, . . . , an in A such that

p(t): = tn + a1t
n−1 + . . .+ an,

where ai of course denotes the image of ai in A/m = k. The polynomial

p̃(t): = tn + a1t
n−1 + . . .+ an

is irreducible in A[t] and thus also irreducible in K[t]. Let

A(p̃): = A[t]/(p̃(t)).

This is a henselian discrete valuation ring with maximal ideal 2A(p̃) and
residue class field

A(p̃)/2A(p̃) = k[t]/(p(t)) = k(p).

The valuation ring A(p̃) has K(p̃) as its quotient field.
Let us use the geometric language now. Suppose that the form ϕ corre-

sponds to the quadratic space (E, q) over k. Here we may choose E = M/mM
for some free A-module M of rank m. We equip M with a strictly regular
quadratic form q̃:M → A in such a way that (E, q) is the reduction of (M, q̃)
modulo m, which is possible. Let Ẽ: = K ⊗A M . Our form q̃ extends to a
strictly regular quadratic form q̃K : Ẽ → K. This gives us a strictly regular
quadratic space Ẽ: = (Ẽ, q̃K) over K which has good reduction with respect
to the canonical place λ:K → k ∪∞ associated to A, and whose specializa-
tion λ∗(Ẽ) is equal to the given space E = (E, q) over k. By assumption we
have k(p) ⊗ E ∼ 0.

We may interpret the canonical place µ: K̃(p) → k(p) ∪∞ associated to
the valuation ring A(p̃) as an extension of the place λ. By §8, Theorem 8, the
space K̃(p) ⊗K̃ Ẽ again has good reduction with respect to µ and

µ∗(K(p) ⊗ Ẽ) = λ∗(k(p) ⊗ Ẽ) = k(p) ⊗ E ∼ 0.

From the quadratic space M = (M, q̃) over A we obtain a quadratic space
A(p̃) ⊗A M over A(p̃). The statement µ∗(k(p) ⊗ Ẽ) ∼ 0 tells us that the
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reduction of A(p̃) ⊗A M to the maximal ideal of A(p̃) is hyperbolic. Since
A(p̃) is henselian, A(p̃) ⊗AM itself is hyperbolic and then

K(p̃) ⊗K Ẽ = K(p̃) ⊗A(p̃) (A(p̃) ⊗AM) ∼ 0.

Since charK 6= 2, it follows from what we proved above (the bilinear case,
r = 1) that p̃(t) is a similarity norm of K(t) ⊗K Ẽ, i.e.

(∗) K(t) ⊗K Ẽ ∼= 〈p̃〉 ⊗ (K(t) ⊗K Ẽ).

We want to specialize this isometry with respect to a suitable place from
K(t) to k(t). Let S ⊂ A[t] be the multiplicatively closed set of all polynomials
f ∈ A[t] for which at least one coefficient is not in the maximal ideal m = 2A
(“unimodular” polynomials). We construct the localization A(t): = S−1A[t]
of A[t] at this set. One can easily verify that A(t) is a discrete valuation
ring with maximal ideal 2A(t), residue class field A(t)/2A(t) = k(t) and
quotient field QuotA(t) = K(t). Let ρ:K(t) → k(t) ∪ ∞ be the canonical
place associated to the valuation ring A(t). It extends the canonical place
λ:K → k∪∞ associated to the valuation ring A. Clearly the quadratic space
K(t) ⊗K Ẽ has good reduction with respect to ρ and

ρ∗(K(t) ⊗K Ẽ) = k(t) ⊗k λ∗(Ẽ) = k(t) ⊗k E.

Applying ρW to the isometry (∗) above gives

k(t) ⊗k E ∼= 〈p〉 ⊗ (k(t) ⊗k E).

This shows that p is a similarity norm of ϕ ⊗ k(t) and we have completely
proved the theorem for r = 1.

To conclude, we prove the implication (iii) ⇒ (i) for r > 1, simultaneously
for ϕ bilinear or quadratic. We may suppose that the theorem, and thus also
the corollary, is valid for r−1 variables. Also, we already established that the
implications (i) ⇒ (ii) ⇒ (iii) hold for r variables. Next we will prove the
implication (ii) ⇒ (i) for r variables and only then the implication (iii) ⇒ (i).

Thus, let t = (t1, t2, . . . , tr) = (t1, t
′) with t′ = (t2, . . . , tr). Let p ∈ k[t] be

monic and irreducible and let f ∈ k[t] \ {0}. Assume that the exponent of p
in f is odd. We have to show that p is a similarity norm of ϕk(t).

Suppose first that the field k contains infinitely many elements. Let n: =
degt1 p be the degree of p, as a polynomial over k[t′]. We distinguish the cases
n = 0, n > 0.

Let n = 0. We have a decomposition

f(t) = p(t′)h(t)

in k[t]. We choose an element c in k such that p(t′) in k[t′] does not divide
the polynomial h(c, t′). This is possible since |k| = ∞. {One considers the
image of h(t) in (k[t′]/(p))[t1].} By the Substitution Principle (§3, Theorem 5
in the bilinear case, §11, Theorem 3 in the quadratic case) we have f(c, t′) ∈
N(ϕk(t′)). By the implication (ii) ⇒ (i) for r − 1 variables, it follows that
p = p(t′) ∈ N(ϕk(t′)) and thus also p ∈ N(ϕk(t)).
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Now let n > 0. Let a(t′) be the highest coefficient of p(t), as a polynomial
in t1. The polynomial a(t′) ∈ k[t′] is monic and p̃: = a−1p ∈ k(t′)[t1] is a
monic polynomial in the variable t1. In the ring k(t′)[t1], the exponent of p̃
in f is odd. Thus, by the established case r = 1, p̃ is a similarity norm of
ϕk(t′), and hence also of ϕk(t). Therefore,

(‡) 〈p〉 ⊗ ϕk(t) ∼= 〈a〉 ⊗ ϕk(t).

Thus, it suffices to show that a is a similarity norm of ϕk(t′). Let π(t′) ∈ k[t′]
be a monic irreducible polynomial whose exponent in a in the ring k[t′] is
odd (if such a polynomial π exists at all). We will show that π is a similarity
norm of ϕk(t′) and know then that π is indeed a similarity norm of ϕk(t).

π(t′) does not divide any of the coefficients of p(t) as a polynomial in t1.
Since |k| = ∞, there exists an element c in k with π(t′) ∤ p(c, t′) in the ring
k[t′]. By the Substitution Principle, we obtain from (‡) that

〈p(c, t′)〉 ⊗ ϕk(t′) ∼= 〈a(t′)〉 ⊗ ϕk(t′),

and so
a(t′)p(c, t′) ∈ N(ϕk(t′)).

The exponent of π(t′) in a(t′)p(c, t′) is odd. From the implication (ii) ⇒ (i)
for r − 1 variables it follows that π ∈ N(ϕk(t′)) and we are finished.

Now suppose that k is a finite field. We consider the field k(u) with u
an indeterminate. Upon applying what we proved before to ϕk(u) and p, f ,
considered as polynomials over k(u), we see that p is a similarity norm of
ϕk(u). By the Substitution Principle we see that p is a similarity norm of ϕ,
upon specializing u to 0. This completely proves the implication (ii) ⇒ (i)
for r variables.

Finally, we come to the proof of the implication (iii) ⇒ (i) for r variables.
As before, let a(t′) be the highest coefficient of p(t) as a polynomial in t1
and let p̃: = a−1p. Then k(p) = k(t′)(p̃) and by our assumption we have
ϕ ⊗ k(p) ∼ 0. The implication (iii) ⇒ (i) in the case r = 1 tells us that p̃
is a similarity norm of ϕk(t). Hence, a(t′)p(t) ∈ N(ϕk(t)). By the implication
(ii) ⇒ (i) for r variables, proved above, p(t) is a similarity norm of ϕk(t).
The proof of Theorem 2 is now complete.
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Let ϕ be a (symmetric) bilinear or quadratic form over a field k in n variables
and let t = (t1, . . . , tn) be a tuple of n unknowns over k.

Definition 1. The form ϕ is called strongly multiplicative when ϕ(t) is a
similarity norm of the form ϕk(t) = ϕ⊗ k(t),33 in other words when

〈ϕ(t)〉 ⊗ ϕk(t) ∼= ϕk(t).

Examples. (1) Clearly every hyperbolic quadratic form r × H is strongly
multiplicative.

(2) If τ is a bilinear or quadratic Pfister form over k, then τk(t) is likewise
such a form over k(t). Thus §16, Theorem 1 tells us that N(τk(t)) = D(τk(t)).
In particular we have τ(t) ∈ N(τk(t)). Thus every Pfister form is strongly
multiplicative.

(3) If ϕ is a strongly multiplicative bilinear form, then ϕ ⊗ [1] is clearly
a strongly multiplicative quasi-linear quadratic form. In particular, for every
bilinear Pfister form τ , the quadratic form τ ⊗ [1] is strongly multiplicative.

The main aim of this section is to determine all strongly multiplicative
bilinear and quadratic forms over k. We start with two very simple theorems
whose proofs only require the Substitution Principle.

As before we use D(ϕ) to denote the set of elements of k∗ which are
represented by ϕ, i.e. the set of all a ∈ k∗ with 〈a〉 < ϕ in the bilinear case
and [a] < ϕ in the quadratic case. This set consists of cosets of the norm
group N(ϕ) in the group k∗.

Theorem 1. For a bilinear or quadratic form ϕ over k the following state-
ments are equivalent:

(a) ϕ is strongly multiplicative.

(b) For every field extension L of k we have D(ϕL) ⊂ N(ϕL), and so
D(ϕL) = N(ϕL).

Proof. (a) ⇒ (b): We have ϕk(t) ∼= 〈ϕ(t)〉⊗ϕk(t). This implies ϕL(t)
∼= 〈ϕ(t)〉⊗

ϕL(t) and so, by the Substitution Principle, ϕL ∼= 〈ϕ(c)〉⊗ϕL for every c ∈ Ln

with ϕ(c) 6= 0.

33In the bilinear case we defined ϕ(t) := ϕ(t, t). Thus ϕ(t) = (ϕ⊗ [1])(t).
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(b) ⇒ (a): Trivial.

Theorem 2. If ϕ is a quadratic form with associated nondegenerate quadratic
form ϕ̂, i.e. (cf. §6, Definition 9)

ϕ = ϕ̂ ⊥ δ(ϕ) = ϕ̂ ⊥ s× [0]

for some s ∈ N0, then ϕ is strongly multiplicative if and only if ϕ̂ is strongly
multiplicative.

Proof. ϕ(t1, . . . , tn) = ϕ̂(t1, . . . , tn−s) is a similarity norm of ϕk(t) if and only
if this polynomial is a similarity norm of ϕ̂k(t). This will be the case exactly
when ϕ̂(t1, . . . , tn−s) is a similarity norm of ϕ̂k(t1,...,tn−s), as can be seen by
the Substitution Principle for instance.

In the study of strongly multiplicative quadratic forms we may thus re-
strict ourselves to nondegenerate forms ϕ. By an analogous argument we may
also do this in the bilinear case. Thus we always assume that ϕ is nondegener-
ate in what follows. Let us commence our study with strongly multiplicative
quadratic forms.

Theorem 3. Let ϕ be a nondegenerate strongly multiplicative quadratic form
over k. Then ϕ is either quasi-linear or strictly regular.

Proof. We recall that the quasi-linear partQL(ϕ) of ϕ is uniquely determined
by ϕ up to isometry. Thus

〈ϕ(t)〉 ⊗ ϕk(t) ∼= ϕk(t)

implies that
〈ϕ(t)〉 ⊗QL(ϕ)k(t) ∼= QL(ϕ)k(t).

Assume that QL(ϕ) 6= 0. We choose an element b ∈ D(QL(ϕ)). Then bϕ(t) ∈
D(QL(ϕ)k(t)). The form QL(ϕ) is anisotropic. Thus bϕ is a subform of QL(ϕ)
by the Subform Theorem of §17. Since dimϕ ≥ dimQL(ϕ) it follows that
ϕ = QL(ϕ).

Theorem 4. Let ϕ be a strictly regular strongly multiplicative quadratic form
over k which is not hyperbolic. Assume that dimϕ > 1.

(i) ϕ is an anisotropic Pfister form.

(ii) If τ is another quadratic Pfister form over k with τ < ϕ, then there exists
a bilinear Pfister form σ over k with ϕ ∼= σ ⊗ τ .

Proof. (i) Let ϕ0 be the kernel form of ϕ, i.e. ϕ ∼= ϕ0 ⊥ r × H for some
r ≥ 0. We have ϕ0 6= 0. Now 〈ϕ(t)〉 ⊗ ϕk(t) ∼= ϕk(t) implies that

〈ϕ(t)〉 ⊗ (ϕ0)k(t) ∼= (ϕ0)k(t)
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and then bϕ(t) ∈ D(ϕ0 ⊗ k(t)) for an arbitrarily chosen b ∈ D(ϕ0). By the
Subform Theorem of §17, bϕ is a subform of ϕ0. Therefore dimϕ ≤ dimϕ0

and so r = 0. Thus ϕ is anisotropic.
(ii) By Theorem 1 we have N(ϕ) = D(ϕ). In particular 1 ∈ D(ϕ). Since

ϕ is strictly regular, there exists a 2-dimensional form
[
1
1

1
a

]
< ϕ. This form

is a Pfister form.
Now let some Pfister form τ < ϕ be given. We choose a bilinear Pfister

form σ of maximal dimension such that σ ⊗ τ < ϕ. {Note that possibly
σ = 〈1〉.} The theorem will be proved if we can show that ϕ ∼= σ ⊗ τ .

By way of contradiction, assume that ϕ 6∼= σ⊗ τ . Then we have a decom-
position

ϕ ∼= σ ⊗ τ ⊥ ψ

with ψ 6= 0. Assume that the Pfister form ρ: = σ ⊗ τ has dimension m (a
power of 2). Let t = (t1, . . . , tm) be a tuple of m unknowns over k. Since ϕ is
strongly multiplicative, we have by Theorem 1 that

ρ(t)ρk(t) ⊥ ρ(t)ψk(t) ∼= ρk(t) ⊥ ψk(t).

Now ρ(t)ρk(t) ∼= ρk(t). By the Cancellation Theorem (§6, Theorem 2) it follows
that

ρ(t)ψk(t) ∼= ψk(t).

We choose a b ∈ D(ψ) and then have bρ(t) ∈ D(ψk(t)). By the Subform
Theorem we get bρ < ψ and so

(〈1, b〉 ⊗ σ) ⊗ τ = 〈1, b〉 ⊗ ρ < ϕ.

This contradicts the maximality of dim σ. Thus σ ⊗ τ ∼= ϕ.

In §16 we determined that every anisotropic quadratic Pfister form τ has
height 1. The same is therefore true for aτ where a ∈ k∗ is an arbitrary scalar.
We are now in the position to prove a converse of this fact.

Theorem 5. Let ϕ be an anisotropic strictly regular quadratic form over k
of height 1. Choose a ∈ D(ϕ). Then ϕ ∼= aτ for some Pfister form τ .

Proof. Upon replacing ϕ by aϕ we may assume without loss of generality
that a = 1. As before let n: = dimϕ and let t = (t1, . . . , tn) be a tuple of n
unknowns over k. We have n ≥ 2.

The polynomial ϕ(t) over k is irreducible. Moreover, after an appropriate
linear transformation of the variables t1, . . . , tn over k, we have that ϕ(t) is
monic.

Since the height of ϕ is 1, ϕ⊗k(ϕ) ∼ 0. From the Norm Theorem of §19 it
follows that ϕ(t) is a similarity norm of ϕ, thus ϕ is strongly multiplicative.
And so, by Theorem 4, ϕ is a Pfister form.34

34More precisely we should say “ϕ is isometric to a Pfister form”. In the following
we frequently allow inaccuracies like this one, in order to simplify the language.
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We now move on to quasi-linear strongly multiplicative (quadratic) forms.
Let char k = 2 and let us contemplate arbitrary anisotropic quasi-linear forms
over k. We will utilize the geometric language to this end.

Thus, let E = (E, q) be an anisotropic quasi-linear quadratic space over k.

As usual, we denote by k
1
2 the subfield of the algebraic closure k̃, consisting

of all λ ∈ k̃ with λ2 ∈ k. Recall that for every a ∈ k there is a unique
element

√
a ∈ k

1
2 such that (

√
a)2 = a and also that the map a 7→ √

a is an

isomorphism from the field k to k
1
2 .

Clearly f :E → k
1
2 , f(x): =

√
q(x) is a k-linear map from E to k

1
2 . This

map is injective since (E, q) is anisotropic. We equip the k-vector space k
1
2

with the quadratic form sq: k
1
2 → k, sq(x) = x2. {sq as in “square”.} Then

k
1
2 becomes an – in general infinite-dimensional – quasi-linear quadratic k-

module and f an isometry from (E, q) to a submodule U of (k
1
2 , sq). The

following stronger statement is now obvious.

Theorem 6. For every anisotropic quasi-linear quadratic space (E, q) over k
there exists exactly one isometry f :E

∼−→ U , where U is a finite-dimensional
quadratic submodule of (k

1
2 , sq).

Now it is easy to classify the strongly multiplicative anisotropic quasi-
linear forms over k.

Theorem 7. Let ϕ be an anisotropic quasi-linear quadratic form over k. The
following statements are equivalent:

(1) ϕ is strongly multiplicative.

(2) D(ϕ) = N(ϕ).

(3) There exists exactly one subfield K of k
1
2 with k ⊂ K, [K: k] finite, such

that the quadratic form (K, sq|K) is isometric to ϕ.

(4) ϕ ∼= τ ⊗ [1] where τ is an anisotropic bilinear Pfister form.

Proof. The implication (1) ⇒ (2) is clear by Theorem 2.
(2) ⇒ (3): By Theorem 6 there exists exactly one finite-dimensional k-

subspace U of k
1
2 such that the form sq|U is isometric to ϕ. By assumption

(2) we certainly have 1 ∈ D(ϕ). Hence U contains an element z with z2 = 1.
We must have z = 1 and thus k ⊂ U . Furthermore, for every two elements
x, y in U there exists an element z in U such that z2 = x2 ·y2, and so z = xy.
Finally, if x 6= 0 is any element in U , then x−1 = (x−1)2 · x is also in U . We

conclude that U is a subfield of k
1
2 .

(3) ⇒ (4): We have K = k(
√
a1, . . . ,

√
ad) with finitely many elements

a1, . . . , ad in k which are linearly independent over the field k(2) = {x2|x ∈ k}.
The associated quadratic form ϕ is the orthogonal sum of the one-dimensional
forms [ai1ai2 . . . air ] with 1 ≤ i1 < i2 < · · · < ir ≤ d, i.e.

ϕ = 〈1, a1〉 ⊗ · · · ⊗ 〈1, ad〉 ⊗ [1].

(4) ⇒ (1): We already established above (Example 3) that for every bi-
linear Pfister form τ , the form τ ⊗ [1] is strongly multiplicative.
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Definition 2. Following established terminology (e.g. [Lo]) we call a qua-
dratic or bilinear form ϕ over a field k round whenever N(ϕ) = D(ϕ). Anal-
ogously we call a quadratic or bilinear module E over k round whenever
N(E) = D(E), thus, in finite dimensions, when the (up to isometry unique)
associated form ϕ is round.

By Theorem 2 it is clear that a form ϕ over k is strongly multiplicative
if and only if for every field extension L of k the form ϕL is round. For
this to hold, it is sufficient to know that ϕk(t) is round where, as before,
t = (t1, . . . , tn) is a tuple of n = dimϕ unknowns over k.

Theorem 7 tells us, among other things, that a round quasi-linear qua-
dratic form ϕ over a field of characteristic 2 is already strongly multiplicative.
In Theorem 7 we supposed that ϕ is anisotropic, to be sure, but this assump-
tion can subsequently be dropped.

We remark that in general there are many more round forms than strongly
multiplicative forms among the non quasi-linear quadratic forms. For example
if k = R, then for every n ∈ N the form n × [1] is round. This form is
nonetheless strongly multiplicative only when n is a power of 2.

Now let us assume again that chark = 2. Among other things, Theorem 7
tells us that every anisotropic quasi-linear round quadratic space over k can
be considered as a finite field extension K of k with K ⊂ k

1
2 in a unique way.

We want to give a second, more structural, proof of this fact. This will guide
us in the right direction for a classification of the anisotropic round bilinear
forms over k.

Thus, let (E, q) be an anisotropic round quasi-linear quadratic module
over k. Every vector x ∈ E is uniquely determined by the value q(x) ∈ k. For
if q(x) = q(y), then q(x− y) = 0 and so x− y = 0. {Note: this holds for every
anisotropic quasi-linear space.} Since D(E) is a group, there exists a vector
e0 with q(e0) = 1. Furthermore there exists for every x ∈ E, x 6= 0 exactly
one similarity transformation σx:E → E with norm q(x). Hence we have for
every vector y ∈ E,

q(σxy) = q(x)q(y).

We define a multiplication (x, y) 7→ x · y on E by x · y: = σxy for x 6= 0,
0 · y: = 0. As usual we write xy instead of x · y most of the time. Clearly we
then have for arbitrary x, y ∈ E that

q(xy) = q(x)q(y).

Since q(yx) = q(y)q(x) = q(xy) it follows that yx = xy. If z is a further
element in E we have

q((xy)z) = q(x)q(y)q(z) = q(x(yz)),

so that (xy)z = x(yz). Finally,

q(e0z) = q(e0)q(z) = q(z),

and so e0z = z. Our multiplication is thus commutative and associative and
has e0 as identity element. By definition it is k-linear in the second argument
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and thus also in the first argument. Hence E is a commutative k-algebra. If
x ∈ E, x 6= 0, then q(x) 6= 0 and furthermore q(x · x) = q(x)2, so that

q(q(x)−1x · x) = 1.

It follows that q(x)−1x · x = e0. Thus x has an inverse x−1 = q(x)−1x. The
ring E is therefore a field. As usual we denote its identity element e0 from
now on by 1 and identify k with the subfield k ·1 of E. In this way E becomes
a field extension of k and for every x ∈ E we have

x2 = q(x).

If k
1
2 is the set of all square roots

√
a of elements a ∈ k in a given fixed

algebraic closure k̃ of k, then we have exactly one field embedding E →֒ k
1
2

of E in the field k
1
2 over k. Thus we have derived the implication (2) ⇒ (3)

in Theorem 7 for the second time. In fact we obtained an analogous result
for E of infinite dimension over k, which we actually will not need in what
follows.

Now let (E,B) be a round anisotropic bilinear module over the field k of
characteristic 2. The quadratic form n(x): = B(x, x) on E, associated to B,
is round, quasi-linear and anisotropic. Thus E carries the structure of a field
extension of k with x2 = n(x) for all x ∈ E.

Definition 3. We call the extension field U of k in k
1
2 which is isomorphic

to E over k, the inseparable field extension of k associated to (E,B).

The field U ⊂ k
1
2 should be considered as a first invariant of the space

(E,B). What else do we need in order to describe (E,B) completely up to
isometry?

We endow the k-vector space E with the linear form

t: E → k, t(x): = B(1, x).

Clearly, t(1) = n(1) = 1. Now B is completely determined by t since for every
x ∈ E, x 6= 0 there is exactly one similarity transformation σx:E

∼−→ E of
norm n(x) and for y ∈ E we have σx(y) = xy, all of this being justified by
our analysis of the round quasi-linear space (E, n) above. Hence we have for
arbitrary y, z ∈ E

(∗) B(xy, xz) = n(x)B(y, z).

This equality remains valid when x = 0. Let y 6= 0, x = y−1, then (∗) implies
that n(y)−1B(y, z) = B(1, y−1z) = t(y−1z), and so B(y, z) = n(y)t(y−1z) =
t(n(y) · y−1z) = t(y2y−1z) = t(yz). The equality

B(y, z) = t(yz)

remains valid when y = 0.
Conversely, let U be an extension field of k with k ⊂ U ⊂ k

1
2 and let

t:U → k be a linear form on the k-vector space U with t(1) = 1. On U we
define a symmetric bilinear form
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βt: U × U → k, βt(x, y): = t(xy).

We have βt(x, x) = t(x2) = x2t(1) = x2. The quadratic standard form x 7→ x2

on U is thus associated to βt. In particular, the bilinear k-module (U, βt) is
anisotropic. For every x ∈ U , x 6= 0 we define the k-linear transformation

σx:U −→ U, y 7−→ xy.

We have

βt(σxy, σxz) = βt(xy, xz) = t(x2yz) = x2t(yz) = x2βt(y, z).

Thus σx is a similarity transformation on U of norm x2. This shows that
(U, βt) is round.

We summarize these considerations in the following theorem.

Theorem 8. The round anisotropic bilinear modules over k are up to isome-
try the pairs (U, βt) with U an extension field of k in k

1
2 and t a k-linear form

on U with t(1) = 1. For any round anisotropic bilinear module (E,B) over k
there is exactly one such pair (U, βt) with (E,B) ∼= (U, βt) and furthermore
exactly one isometry from (E,B) to (U, βt).

Theorem 9. Let ϕ be an anisotropic round bilinear form over a field k of
characteristic 2.

(i) ϕ is a Pfister form.

(ii) If τ is a bilinear Pfister form with τ < ϕ, then there exists a further
bilinear Pfister form σ with ϕ ∼= σ ⊗ τ .

Proof. We have 〈1〉 < ϕ. Let τ < ϕ be an arbitrary Pfister form. We choose
a Pfister form σ over k of maximal dimension with σ ⊗ τ < ϕ. {Note: it is
possible that σ = 〈1〉.} We will show that σ ⊗ τ = ϕ, which will prove the
theorem.

We will use the geometric language. Let E = (E,B) be a bilinear space
which arises from ϕ and let F be a subspace of E arising from σ ⊗ τ . E
carries the structure of a field extension of k with x2 = B(x, x) for all x ∈ E.
Furthermore there is a linear form t:E → k with B(x, y) = t(xy) for all
x, y ∈ E. Finally, F is a subfield of E with k ⊂ E. {If σ ⊗ τ ∼= 〈1 ⊗ a1〉 ⊗
· · · ⊗ 〈1, am〉, then F = k(

√
a1, . . . ,

√
am) and t(

√
ai1 . . . air ) = 0 for r > 0,

1 ≤ i1 < · · · < ir ≤ m.}
Assume for the sake of contradiction that F 6= E. We choose z ∈ E with

z 6= 0, B(z, F ) = 0. For x, y ∈ F we then have

B(x, zy) = t(xyz) = B(xy, z) = 0.

Thus zF is a subspace of E, perpendicular to F . Finally we have for x, y ∈ F
with b: = B(z, z) the equality

B(zx, zy) = bB(x, y).
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All this shows that F ⊥ zF is a subspace of E, with associated bilinear form
the Pfister form 〈1, b〉⊗σ⊗τ . This contradicts the maximality of dimσ. Thus
F = E.

By Theorems 4 and 9 it is now clear that over every field the anisotropic
strongly multiplicative bilinear forms are exactly the anisotropic Pfister
forms.
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In this section we will deal with the divisibility of a quadratic form by a
given quadratic or bilinear Pfister form in the sense of the following general
definition.

Definition 1. Let ϕ and τ be quadratic forms and σ a bilinear form over k.
We say that ϕ is divisible by τ if there exists a bilinear form ψ over k with
ϕ ∼= ψ⊗ τ . Similarly we say that ϕ is divisible by σ if there exists a quadratic
form χ over k with ϕ ∼= σ ⊗ χ. We then write τ |ϕ resp. σ|ϕ.

First we will study the divisibility by a given (anisotropic) quadratic Pfis-
ter form.

Theorem 1. Let τ be a quadratic Pfister form over a field k and ϕ an
anisotropic strictly regular quadratic form over k. The following statements
are equivalent.

(i) τ |ϕ.

(ii) There exists a nondegenerate bilinear form ψ over k with ϕ ∼ ψ ⊗ τ .

(iii) ϕ⊗ k(τ) ∼ 0.

Proof. The implications (i) ⇒ (ii) ⇒ (iii) are trivial.
(iii) ⇒ (i): Let dim τ = n (a 2-power) and let t = (t1, . . . , tn) be a tuple

of n unknowns over k. We can think of τ(t) ∈ k[t] as a monic polynomial.
By the Norm Theorem (cf. §19) our assumption ϕ ⊗ k(τ) ∼ 0 implies that
τ(t) is a similarity norm of ϕk(t). We choose an element a ∈ D(ϕ). Then
aτ(t) ∈ D(ϕk(t)) and thus, by the Subform Theorem (cf. §17),

ϕ ∼= aτ ⊥ ϕ1

where ϕ1 is a further quadratic form over k. It now follows that ϕ1 ⊗ k(τ) ∼
0. By induction on dimϕ we obtain ϕ ∼= χ ⊗ τ for a bilinear form χ =
〈a, a2, . . . , ar〉.

The following theorem is a variation of Theorem 1 in the case where ϕ is
also a Pfister form.

Theorem 2. Let τ and ρ be quadratic Pfister forms over a field k. Assume
that the form ρ is anisotropic. The following statements are equivalent.
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(i) There exists a bilinear Pfister form σ over k with ρ ∼= σ ⊗ τ .

(ii) τ |ρ.
(iii) There exists an element a ∈ k∗ with aτ < ρ.

(iv) ρ⊗ k(τ) ∼ 0.

(v) There exists a place λ: k(ρ) → k(τ) ∪∞ over k.

Proof. The implications (i) ⇒ (ii) and (ii) ⇒ (iii) are trivial. The impli-
cations (iii) ⇒ (v) and (iv) ⇔ (v) both follow from the fact that k(ρ) is
a generic zero field of ρ and that every isotropic quadratic Pfister form is
already hyperbolic. The implication (iv) ⇒ (ii) is clear by Theorem 1. To
finish the proof we verify the implication (iii) ⇒ (i). Thus let aτ < ρ for some
a ∈ k∗. Then a ∈ D(ρ) = N(ρ). Hence τ < aρ ∼= ρ. Now §20, Theorem 4 tells
us that there exists a bilinear Pfister form σ over k with ρ ∼= σ ⊗ τ .

Corollary. Let τ1 and τ2 be quadratic Pfister forms over k such that
k(τ1) ∼k k(τ2). Then τ1 ∼= τ2.

Note that in the proof of Theorem 1 we showed that for a given a ∈ D(ϕ)
we could choose the factor ψ in such a way that a ∈ D(ψ). Similarly one
could ask whether in Theorem 2 the Pfister form σ can be chosen so as to be
divisible by 〈1, a〉, for an appropriately given binary form 〈1, a〉. This leads
us to the next lemma which is very useful for what follows.

Lemma 1. Let σ be a bilinear and τ a quadratic Pfister form over k. Let
dimσ > 1 and a ∈ D(σ′ ⊗ τ), where – as before (§4, §16) – σ′ denotes the
pure part of σ. Then there exists a bilinear Pfister form γ over k with

σ ⊗ τ ∼= γ ⊗ 〈1, a〉 ⊗ τ.

Proof. (a) If σ ⊗ τ is isotropic, then σ ⊗ τ is hyperbolic and the statement
can easily be verified. Namely, if dimσ > 2, then we can choose γ to be the
hyperbolic Pfister form of the correct dimension. If σ = 〈1, c〉 however, then
a = cu for some u ∈ D(τ), so that 〈1, c〉 ⊗ τ ∼= 〈1, a〉 ⊗ τ , and γ = 〈1〉 will
do.

(b) Suppose next that σ ⊗ τ is anisotropic. Let µ: = 〈1, a〉 ⊗ τ and K: =
k(µ). By Theorem 2 it is sufficient to show that (σ ⊗ τ)K ∼ 0.

Since µK ∼ 0 we have that τK ∼= −aτK and

(σ ⊗ τ)K = τK ⊥ (σ′ ⊗ τ)K ∼= (−aτ ⊥ σ′ ⊗ τ)K .

By assumption the element a is represented by σ′ ⊗ τ . Thus the form
−aτ ⊥ σ′ ⊗ τ is isotropic. Hence (σ ⊗ τ)K is isotropic. Since σ ⊗ τ is a
Pfister form we have (σ ⊗ τ)K ∼ 0, as required.

Now suppose that ρ1, ρ2 are two quadratic Pfister forms over k, possibly
of different dimension. We are looking for a quadratic Pfister form τ , perhaps
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of higher dimension, which divides both ρ1 and ρ2. In this situation a concept
emerges which was coined by Elman and Lam [EL, §4] in characteristic 6= 2:

Definition 2. (a) Let r be a natural number. We call ρ1 and ρ2 r-linked,
more precisely, quadratically r-linked, if over k there exist an r-fold quadratic
Pfister form τ and bilinear Pfister forms σ1, σ2 such that

ρ1
∼= σ1 ⊗ τ, ρ2

∼= σ2 ⊗ τ.

(b) We define the quadratic linkage number j(ρ1, ρ2) as follows: if ρ1 and
ρ2 are 1-linked, then j(ρ1, ρ2) is the largest number r such that ρ1 and ρ2 are
r-linked. Otherwise we set j(ρ1, ρ2) = 0.

Remark. Elman and Lam only use the term “r-linked”. In our context the
adjective “quadratic” is necessary since in chark = 2 we also can, and should,
inquire about bilinear Pfister forms which divide both ρ1 and ρ2, see below.

Theorem 3. (cf. [EL, Prop.4.4] for char k 6= 2).35 Assume that the quadratic
Pfister forms ρ1, ρ2 are anisotropic and 1-linked. Then the form ρ1 ⊥ −ρ2

has Witt index
ind(ρ1 ⊥ −ρ2) = 2r

with r: = j(ρ1, ρ2) ≥ 1. Furthermore, if τ is a quadratic s-fold Pfister form
with 1 ≤ s < r, dividing both ρ1 and ρ2, then there exists an (r − s)-fold
bilinear Pfister form γ and bilinear Pfister forms σ1, σ2 such that

ρ1
∼= σ1 ⊗ γ ⊗ τ, ρ2

∼= σ2 ⊗ γ ⊗ τ.

Proof. We assume that we have factorizations ρ1
∼= σ1⊗ τ , ρ2

∼= σ2⊗ τ where
τ is a quadratic Pfister form and σ1 and σ2 are bilinear Pfister forms. We
verify the following two statements from which the theorem readily follows:

(i) ind(ρ1 ⊥ ρ2) ≥ dim τ .

(ii) If ind(ρ1 ⊥ −ρ2) > dim τ , then there exists an a ∈ k∗ and bilinear
Pfister forms γ1, γ2 such that

ρ1
∼= γ1 ⊗ 〈1, a〉 ⊗ τ, ρ2

∼= γ2 ⊗ 〈1, a〉 ⊗ τ.

(i): We have ρ1
∼= τ ⊥ σ′

1 ⊗ τ , ρ2
∼= τ ⊥ σ′

2 ⊗ τ , and thus

ρ1 ⊥ −ρ2
∼= τ ⊗ 〈1,−1〉 ⊥ σ′

1 ⊗ τ ⊥ (−σ′
2 ⊗ τ).

(ii): Now let ind(ρ1 ⊥ ρ2) > dim τ . By our calculation this shows that the
form σ′

1 ⊗ τ ⊥ (−σ′
2 ⊗ τ) is isotropic. Hence there exists an a ∈ k∗ which is

represented by both of the forms σ′
1 ⊗ τ and σ′

2 ⊗ τ . By Lemma 1 we have
factorizations

σ1 ⊗ τ ∼= γ1 ⊗ 〈1, a〉 ⊗ τ, σ2 ⊗ τ ∼= γ2 ⊗ 〈1, a〉 ⊗ τ

35Elman and Lam do not require the assumption that j(ρ1, ρ2) ≥ 1, cf. our Theo-
rem 6 below.
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with bilinear Pfister forms γ1, γ2, as required.

Let us now deal with the problems of divisibility by a given bilinear Pfister
form. Unfortunately there apparently does not (yet) exist a good counterpart
to Theorem 1 above. There is one for Theorem 2 however. To derive it we
need a further lemma.

Lemma 2. Let ρ be a quadratic and σ a bilinear Pfister form over k. Assume
that the form ρ is anisotropic. Let τ =

[
1
1

1
b

]
be a binary Pfister form over k

with
τ ⊥ σ′ ⊗ [1] < ρ.

Then there exists a bilinear Pfister form α over k such that

ρ ∼= α⊗ σ ⊗ τ.

Proof. Assume that the dimension of σ is 2d. Then the Pfister form µ: = σ⊗τ
is of dimension 2d+1. Let E = (E, q) be a quadratic space corresponding to
µ and let K: = k(µ). The space K ⊗ E is hyperbolic. Hence it contains a
2d-dimensional vector subspace U with q(U) = 0. Let V be a subspace of
K ⊗E corresponding to the subform (τ ⊥ σ′ ⊗ [1])K of µK . It has dimension
2d + 1. From the obvious inequality

dim(V ∩ U) + dimE ≥ dimV + dimU

we see that dim(V ∩ U) ≥ 1. Hence the quadratic space V is isotropic. Thus
ρ⊗K is isotropic and so ρ⊗K ∼ 0. Now Theorem 2 tells us that ρ ∼= α⊗ µ
for some bilinear Pfister form α.

Theorem 4. Let σ be a bilinear Pfister form and ρ an anisotropic quadratic
Pfister form over k with σ ⊗ [1] < ρ. Then there exists a quadratic Pfister
form τ over k such that ρ ∼= σ ⊗ τ .

Proof. Let E = (E, q) be a quadratic space over k which corresponds to the
form ρ, and let V be a subspace of E which corresponds to the subform σ⊗[1]
of ρ. We have an orthogonal decomposition V = ke0 ⊥ V ′ with q(e0) = 1 and
V ′ a quasi-linear space corresponding to the form σ′ ⊗ [1]. The bilinear form
B = Bq vanishes on V × V . There is a linear form s on V with s(e0) = 1,
s(V ′) = 0. Furthermore there is a vector f0 ∈ E with s(v) = B(v, f0) for
all v ∈ V . The subspace V + kf0 of E corresponds to the quadratic form[

1
1

1
b

]
⊥ σ′ ⊗ [1]. This form is thus a subform of ρ. The theorem now follows

from Lemma 2.

Definition 3. If ϕ is an anisotropic bilinear form over k and dimϕ > 1, then
we define k(ϕ): = k(ϕ ⊗ [1]). If ϕ = 〈a1, . . . , an〉, then k(ϕ) is the quotient
field of the ring k[t1, . . . , tn]/(a1t

2
1 + · · · + ant

2
n). Note that the polynomial

ϕ(t) = a1t
2
1 + · · · + ant

2
n is irreducible since ϕ is anisotropic.
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Theorem 5. Let σ be an anisotropic bilinear Pfister form and ρ an aniso-
tropic quadratic Pfister form over k. Assume that σ 6= 〈1〉. The following
statements are equivalent.

(i) There exists a quadratic Pfister form τ over k with ρ ∼= σ ⊗ τ .

(ii) σ|ρ.
(iii) There exists an a ∈ k∗ with σ ⊗ [a] < ρ.

(iv) ρ⊗ k(σ) ∼ 0.

(v) There exists a place λ: k(ρ) → k(σ) ∪∞.

Proof. The implications (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) and (iv) ⇔ (v) are obvious.
(iv) ⇒ (iii): Let t = (t1, . . . , tn) be a tuple of n: = dimσ unknowns over k.

We can treat σ(t) ∈ k[t] as a monic polynomial. By the Norm Theorem, (iv)
implies that σ(t) is a similarity norm of ρk(t) and thus that σ(t) is represented
byρk(t). The Subform Theorem then gives us σ ⊗ [1] < ρ.

(iii) ⇒ (i): We have a ∈ D(ρ), hence ρ ∼= aρ, and so σ ⊗ [1] < ρ. By
Theorem 4 we then get ρ ∼= σ ⊗ τ for some quadratic Pfister form τ .

Starting from Theorem 4 we would also like to establish a counterpart
to Theorem 3, dealing with bilinear Pfister forms that simultaneously divide
two given quadratic Pfister forms. We need a further lemma for this purpose.

Lemma 3. Let σ be a bilinear Pfister form and ρ an anisotropic quadratic
Pfister form over k. Furthermore let a 6= 0 be an element of k with

σ ⊗ [1] ⊥ [a] < ρ.

Then there exists a quadratic Pfister form τ over k such that

ρ ∼= σ ⊗ 〈1, a〉 ⊗ τ.

Proof. Let n: = dim σ (a 2-power), and let (t, u) = (t1, . . . , tn, u1, . . . , un) be
a tuple of 2n unknowns over k. The form σk(t,u) is round (§16, Theorem 1).
Hence there exists an n-tuple v ∈ k(t, u)n with

σ(t) + aσ(u) = σ(u)(σ(v) + a).

By our assumption the elements σ(u) and σ(v)+a are represented by ρk(t,u).
Since ρk(t,u) is round as well, σ(t) + aσ(u) is represented by ρk(t,u). By the
Subform Theorem we then get

σ ⊗ 〈1, a〉 ⊗ [1] < ρ ,

and we can conclude the proof by applying Theorem 4.

Definition 4. (a) Let r ∈ N0. We call two quadratic Pfister forms ρ1, ρ2

over k bilinearly r-linked if there exist a bilinear r-fold Pfister form σ and
quadratic Pfister forms τ1, τ2 over k such that
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ρ1
∼= σ ⊗ τ1, ρ2

∼= σ ⊗ τ2.

(b) We define the bilinear linkage number i(ρ1, ρ2) of ρ1 and ρ2 as follows:
If ρ1 is neither divisible by ρ2, nor ρ2 divisible by ρ1, then i(ρ1, ρ2) is the
largest number r such that ρ1 and ρ2 are bilinearly r-linked. In the cases ρ1|ρ2

and ρ2|ρ1 we let i(ρ1, ρ2) be the number d such that 2d = min(dim ρ1, dim ρ2).

Remark. If char k 6= 2, it follows immediately from Definitions 2 and 4 that
i(ρ1, ρ2) coincides with the quadratic linkage number j(ρ1, ρ2), which we then
simply call the linkage number of ρ1 and ρ2.

Theorem 6. ([EL, Prop.4.4] for chark 6= 2). Let ρ1 and ρ2 be two anisotropic
quadratic Pfister forms over k.

(i) The Witt index ind(ρ1 ⊥ −ρ2) is a 2-power 2r with r ≥ j(ρ1, ρ2) and
r ≥ i(ρ1, ρ2). If j(ρ1, ρ2) > 0, then r = j(ρ1, ρ2). Otherwise r = i(ρ1, ρ2).

(ii) Let σ be a bilinear s-fold Pfister form with 0 ≤ s < r that divides ρ1 and
ρ2, i.e.

ρ1
∼= σ ⊗ τ1, ρ2

∼= σ ⊗ τ2

with quadratic Pfister forms τ1, τ2 (cf. Theorem 2). Then there exists
either an (r− s)-fold bilinear Pfister form γ or an (r− s)-fold quadratic
Pfister form γ such that σ ⊗ γ divides both Pfister forms ρ1 and ρ2, i.e.
either

ρ1
∼= σ ⊗ γ ⊗ µ1, ρ2

∼= σ ⊗ γ ⊗ µ2

with quadratic Pfister forms µ1, µ2, or

ρ1
∼= α1 ⊗ σ ⊗ γ, ρ2

∼= α2 ⊗ σ ⊗ γ

with bilinear Pfister forms α1, α2.

Proof. We proceed as in the proof of Theorem 3 and assume that we have
factorizations ρ1

∼= σ ⊗ τ1, ρ2
∼= σ ⊗ τ2 with quadratic Pfister forms τ1, τ2

and a bilinear Pfister form σ. { We allow σ = 〈1〉.} We now want to verify
the following two statements which, together with Theorem 4, will establish
the proof.

(a) ind(ρ1 ⊥ −ρ2) ≥ dimσ.

(b) If ind(ρ1 ⊥ ρ2) > dimσ, then either there exists an a ∈ k∗ and quadratic
Pfister forms µ1, µ2 such that

(1) ρ1
∼= σ ⊗ 〈1, a〉 ⊗ µ1, ρ2

∼= σ ⊗ 〈1, a〉 ⊗ µ2,

or there exist over k a quadratic Pfister form µ of dimension 2 and bilinear
Pfister forms α1, α2 such that

(2) ρ1
∼= α1 ⊗ σ ⊗ µ, ρ2

∼= α2 ⊗ σ ⊗ µ.

Let (E1, q1) and (E2, q2) be quadratic spaces associated to ρ1 and ρ2, and let
(E, q): = (E1, q1) ⊥ (E2,−q2). The corresponding vector space decomposition
E = E1 ⊕ E2 gives rise to projections p1:E −→ E1, p2:E −→ E2.
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§21 Divisibility by Pfister Forms 161

We have [1] < τ1 and [1] < τ2, and thus

σ ⊗ [1,−1] < σ ⊗ τ1 ⊥ σ ⊗ (−τ2) ∼= ρ1 ⊥ −ρ2.

Hence E contains a subspace U with q(U) = 0, dimU = dim σ, such that
the form σ ⊗ [1] corresponds to p1(U) as a subspace of (E1, q1) as well as to
p2(U) as a subspace of (E2, q2). To see this, note that pi (i = 1, 2) maps the
vector space U linearly isomorphic to pi(U) since E1 and E2 are anisotropic
as subspaces of (E, q).

Since E contains the totally isotropic subspace U , it is already clear that
ind(q1 ⊥ −q2) ≥ dim σ.

Assume now that ind(q1 ⊥ −q2) > dimσ. Then (E, q) contains a totally
isotropic subspace V = U + kv of dimension 1 + dimσ. Again we know that
pi maps the vector space V linearly isomorphic to pi(V ) (i = 1, 2), and for
arbitrary x ∈ V we have:

q1(p1(x)) = q2(p2(x)),

and thus also for x, y ∈ V :

B1(p1(x), p1(y)) = B2(p2(x), p2(y)),

where Bi denotes the bilinear form Bqi
corresponding to qi. We distinguish

two cases:
Case 1: B1(p1(v), p1(u)) = 0. Now σ ⊥ [a] corresponds to p1(V ) with

respect to q1 and also to p2(V ) with respect to q2 where a: = q1(p1(v)) =
q2(p2(v)). Thus σ ⊥ [a] is a subform of both ρ1 and ρ2. By Lemma 3 we
obtain (1) with quadratic Pfister forms µ1 and µ2.

Case 2: B1(p1(v), p1(u)) 6= 0. We choose an orthogonal basis e1, . . . , en
of p1(U) with respect to q1 with B1(e1, p1(v)) = 1, B1(ei, p1(v)) = 0 for
2 ≤ i ≤ n, which is certainly possible. Then, corresponding to p1(V ) with
respect to q1 and also to p2(V ) with respect to q2, we have the form

[
a1

1

1

b1

]
⊥ [a2, . . . , an]

with b1: = q1(p1(v)) and ai = q1(ei), and we have

σ ⊗ [1] ∼= [a1, a2, . . . , an].

Now by §6, Lemma 2,
[
a1

1

1

b1

]
∼= 〈a1〉 ⊗

[
1

1

1

b

]

with b: = a1b1. Since the three forms σ, ρ1, ρ2 are round, it follows that
[
1

1

1

b

]
⊥ [a2a

−1
1 , . . . , ana

−1
1 ] < ρ1

for i = 1 and i = 2, and also that
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[1, a2a
−1
1 , . . . , ana

−1
1 ] ∼= σ ⊗ [1].

Hence [
1

1

1

b

]
⊥ σ′ ⊗ [1] < ρi

for i = 1 and i = 2. Now Lemma 2 tells us that the factorizations (2) above
hold with µ =

[
1
1

1
b

]
and bilinear Pfister forms α1 and α2.

Problem. Let char k = 2, a ∈ k∗, and let ρ1, ρ2 be 2-fold anisotropic
quadratic Pfister forms with 〈1, a〉|ρ1 and 〈1, a〉|ρ2. Does there always ex-
ist a quadratic form τ =

[
1
1

1
b

]
over k with τ |ρ1 and τ |ρ2?

The author has not yet been able to give either a positive or a negative
answer to this question. If the answer is “yes”, then by Theorem 6 it is
immediate that for two anisotropic quadratic Pfister forms ρ1, ρ2 over k we
always have that

ind(ρ1 ⊥ −ρ2) = 2j(ρ1,ρ2).

Finally we remark that R. Baeza proved several theorems in this section,
or parts of them, more generally over semi-local rings instead of fields, see
in particular [Ba1, Chap.IV, §4]. As our proofs rely on the Norm Theorem,
the Subform Theorem, and elements of generic splitting, it is till this day not
possible to preserve them over semi-local rings. Thus Baeza’s proofs differ
from the ones we presented here. They are substantially more “constructive”
than ours. Therefore they deserve also over fields an interest for their own
sake, just as the proofs of Elman and Lam in [EL] when the characteristic is
different from two.
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In the following k denotes a field of arbitrary characteristic and a “form” will
always mean a nondegenerate quadratic form.

Definition 1. (cf. [K6, Def.7.4] for char k 6= 2). A form ϕ over k is called
a Pfister neighbour if there exist a quadratic Pfister form τ over k and an
element a ∈ k∗ such that ϕ < aτ and dimϕ > 1

2 dim τ . More precisely we
then call ϕ a neighbour of the Pfister form τ .

In §16 we already introduced the notion of close Pfister neighbour for the
case char k = 2. Close Pfister neighbours are of course Pfister neighbours in
the current sense.

If ϕ is a neighbour of a Pfister form τ , then we must clearly have dimϕ ≥
2, and in case dimϕ = 2 we must moreover have ϕ ∼= aτ .

Theorem 1. If ϕ is a neighbour of a Pfister form τ and a is an element of k∗

with ϕ < aτ , then the form τ and also the form aτ are up to isometry uniquely
determined by ϕ. The fields k(ϕ) and k(τ) are specialization equivalent over k.

Proof. The form aτK is hyperbolic over the field K: = k(τ). Let E = (E, q)
be a quadratic space corresponding to aτK and F = (F, q|F ) a quadratic
subspace of E corresponding to the subform ϕK of aτK . Let dimE = 2d.
There exists a vector subspace U of E of dimension 2d−1 with q(U) = 0.
From the obvious inequality

dim(F ∩ U) + dimE ≥ dimF + dimU

and the assumption that dimF > 2d−1 one sees that dim(F ∩ U) > 0, and
thus that F ∩U 6= {0}. Hence F is isotropic and thus the form ϕK = ϕ⊗k(τ)
is isotropic. Therefore there exists a place from k(ϕ) to k(τ) over k. Since ϕ
is a subform of aτ , the form τ ⊗ k(ϕ) is also isotropic. Thus there also exists
a place from k(τ) to k(ϕ). (A conclusion we already reached many times!)
Hence k(τ) ∼k k(ϕ).

By the corollary of §21, Theorem 2 it now follows that τ is uniquely
determined by ϕ up to isometry. If ϕ < aτ and c ∈ D(ϕ) is arbitrarily
chosen, then ac ∈ D(τ), thus τ ∼= acτ , and so aτ ∼= cτ . This shows that also
the form aτ is uniquely determined by ϕ up to isometry.

Definition 2. Let ϕ be a Pfister neighbour, thus ϕ < aτ where τ is a Pfister
form and dimϕ > 1

2 dim τ . Then we call the by ϕ up to isometry uniquely
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determined polar Polaτ (ϕ) of ϕ in aτ (cf. §16) the complementary form of ϕ.
Furthermore we call τ the neighbouring Pfister form of ϕ.

Remarks. (1) Again let 2d = dim τ . Clearly the complementary form η =
Polaτ (ϕ) of ϕ has dimension 2d − dimϕ < 2d−1. Furthermore ϕ and η have
the same quasi-linear part, QL(ϕ) = QL(η), as already observed in §16,
Lemma 1.

(2) In particular η is strictly regular if and only if ϕ is strictly regular. We
then have ϕ ⊥ η ∼= aτ . This is always the case when k has characteristic 6= 2.
In characteristic 2 we also have that η is regular if and only if ϕ is regular.

(3) By §16, ϕ is a close Pfister neighbour if and only if η is quasi-linear.
We then have η = QL(ϕ). Moreover, if ϕ is anisotropic, then ϕ has height 1
by §16. If ϕ is isotropic, then ϕ splits.

Theorem 2. Let ϕ be an anisotropic Pfister neighbour over k with comple-
mentary form η. Then ϕ⊗ k(ϕ) ∼ (−η) ⊗ k(ϕ).

Proof. Let τ be the neighbouring Pfister form of ϕ and ϕ < aτ . If ϕ is
strictly regular, then aτ ∼= ϕ ⊥ η and τ ⊗ k(ϕ) ∼ 0, and thus certainly
ϕ⊗ k(ϕ) ∼ (−η)⊗ k(ϕ). This holds in particular if k is of characteristic 6= 2.

Assume now that chark = 2 and that ϕ is not strictly regular.36 Let χ
be the quasi-linear part of ϕ, χ = QL(ϕ). By the scholium in §16 we have an
orthogonal decomposition τ = µ ⊥ γ ⊥ ρ with

χ < µ, dimµ = 2 dimχ, ϕ ∼= χ ⊥ γ, η = χ ⊥ ρ.

With K: = k(ϕ) we obtain

µK ⊥ γK ⊥ ρK ∼ 0,

thus γK ∼ µK ⊥ ρK (note that char k = 2!), and so

ϕK ∼ χK ⊥ µK ⊥ ρK .

Let χ ∼= [a1, . . . , ar]. Then

µK ∼=
[
a1

1

1

b1

]
⊥ · · · ⊥

[
ar
1

1

br

]

with elements bi of k. Hence

χ ⊥ µ ∼= χ ⊥
[
0

1

1

b1

]
⊥ · · · ⊥

[
0

1

1

br

]
∼= χ ⊥ r ×H,

and we obtain
ϕK ∼ χK ⊥ ρK = ηK .

We return to the theory of generic splitting established in §12.

36The following calculation generalizes the proof of Theorem 5, (i) – (iii) in §16.
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For a given form ϕ, even of small dimension, it is in general very compli-
cated to explicitly determine the splitting pattern SP(ϕ) or even the higher
kernel forms. However, we will now specify a larger class of forms for which
it is possible to do this, the “excellent forms”. We define a class of forms by
induction on the dimension (cf. [K6, §7] for chark 6= 2).

Definition 3. A form ϕ is called excellent if dimϕ ≤ 1, or ϕ is quasi-linear,
or ϕ is a Pfister neighbour with excellent complementary form.

{Note that if the ground field k has characteristic 2 and if dimϕ ≤ 1, then
ϕ is of course quasi-linear. In characteristic 6= 2 on the other hand, there are
no quasi-linear forms ϕ 6= 0.}

Thus, by this definition, a form ϕ over k is excellent if and only if there
exists a finite sequence of forms

η0 = ϕ, η1, . . . , ηt

over k such that ηt is quasi-linear or at most one-dimensional, and every form
ηr with 0 ≤ r < t is a Pfister neighbour with complementary form ηr+1. We
call the forms ηr the higher complementary forms of ϕ, more specifically we
call ηr the r-th complementary form of ϕ (0 ≤ r ≤ t).

Theorem 3. Let ϕ be an anisotropic excellent form over k and let (ηi | 0 ≤
i ≤ t) be the sequence of higher complementary forms of ϕ. For every r ∈
{0, 1, . . . , t}, let Kr denote the free composite of the fields k(ηi) with 0 ≤ i < r
over k. {Read K0 = k for r = 0.}

Claim: (Kr | 0 ≤ r ≤ t) is a generic splitting tower of ϕ. For every
r ∈ {0, 1, . . . , t}, ϕ⊗Kr has kernel form (−1)rηr ⊗Kr. In particular, ϕ has
height t.

Proof. By induction on r. For r = 0 we don’t have to show anything, so
suppose that r > 0. Let τ0 and τ1 be the neighbouring Pfister forms of
ϕ = η0 and η1 respectively. Thus there are elements a0, a1 in k∗ with ϕ <
a0τ0, η1 < a1τ1, η1 = Pola0τ0(ϕ). Furthermore, K1 = k(ϕ). By Theorem 2
we have ϕ ⊗ K1 ∼ (−η1) ⊗ K1, and by Theorem 1 we have k(ϕ) ∼k k(τ0),
k(η1) ∼k k(τ1).

If η1 ⊗ K1 were isotropic, then τ1 ⊗ k(τ0) would also be isotropic, and
thus hyperbolic. This implies, by §21, Theorem 1 (or §21, Theorem 2), that
the form τ1 is divisible by τ0. However, this is absurd since τ1 has smaller
dimension than τ0. Hence η1 ⊗ K1 is anisotropic. Thus (−η1) ⊗ K1 is the
kernel form of ϕ⊗K1.

By definition of excellent forms it is clear that η1 ⊗ K1 is excellent and
that for every r ∈ {1, . . . , t} the form ηr⊗K1 is the (r−1)-st complementary
form of η1 ⊗ K1. If we now apply the induction hypothesis to η1 ⊗ K1 we
obtain the complete statement of the theorem. With regards to this, one
should keep in mind that K1(ηi ⊗K1) is the free composite of K1 and k(ηi)
over k (1 ≤ i ≤ t) and consequently that Kr is the free composite of the
fields K1(ηi ⊗Ki) with 1 ≤ i < r over K1 (1 ≤ r ≤ t).
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In which dimensions do there exist, for a given field k, anisotropic excellent
forms over k? We want to discuss this question in the (difficult) case when k
has characteristic 2.

Scholium. Let char k = 2. If ϕ is an anisotropic excellent form of dimension
n over k, then the neighbouring Pfister form τ of ϕ is again anisotropic, and
dim τ is clearly the smallest 2-power 2d ≥ n.

Conversely, let τ be an anisotropic Pfister form. In this case we construct
an excellent form with neighbouring form τ as follows: We choose a sequence
(τr | 1 ≤ r ≤ t) of Pfister subforms of τ with τ1 = τ , τr | τr−1 for 2 ≤ r ≤ t,
and a quasi-linear subform η of τt with dim η < 1

2 dim τt, which is always
possible. {t ≥ 1. It is allowed that η = 0.} Then we define successive forms
ηt, ηt−1, . . . , η0 in such a way that

ηt = η , ηr < τr , ηr−1 < τr , ηr−1 = Polτr
(ηr) for 1 ≤ r ≤ t.

Now ϕ: = η0 is an excellent form with neighbour τ and higher complementary
forms ηr (0 ≤ r ≤ t). The form ϕ is anisotropic and has quasi-linear part η.
Up to a scalar factor one can obtain every anisotropic excellent form over k
in this manner.

Next we show that over suitable fields of characteristic 2 there exist
anisotropic Pfister forms of arbitrarily high dimension.

Theorem 4. Let κ be any field and k = κ(u, u1, . . . , un), where u, u1, . . . , un
is a tuple of unknowns. The Pfister form 〈1, u1〉 ⊗ · · · ⊗ 〈1, un〉 ⊗

[
1
1

1
u

]
over

k is anisotropic.

Proof. We assume that κ has characteristic 2 and leave the proof for the case
charκ 6= 2 to the Reader. We work over the iterated power series field

K: = κ((u))((u1)) . . . ((un)),

which contains k. Let τ be the Pfister form from above, considered as a form
over K. We show by induction on n that τ is anisotropic.

n = 0 : The equation u = x2 − x is with x ∈ κ((u)) unsolvable, so that the
form

[
1
1

1
u

]
is anisotropic over κ((u)).

n− 1 → n : Let F : = κ((u))((u1)) . . . ((un−1)). We have τ = ρK ⊥ unρK with
ρ an anisotropic Pfister form over F by the induction hypothesis. There is
a place λ:K → F ∪∞ over F belonging to the obviously discrete valuation
of K over F with prime element un. The form ρK has good reduction with
respect to λ and λ∗(ρK) = ρ. We further have that λ(unc

2) = 0 or = ∞ for
every c ∈ K∗. If τ were isotropic, and thus hyperbolic, then we would have
ρK ∼= unρK . Applying λW would then give ρ ∼ 0, a contradiction. Therefore
τ is anisotropic.

Example. We choose two natural numbers n > m, and a sequence of natural
numbers
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s1 = n > s2 > · · · > st = m.

Let k = κ(u, u1, . . . , un), as in Theorem 4, and charκ = 2. We form the – by
Theorem 4 anisotropic – Pfister forms

τr: = 〈1, u1〉 ⊗ · · · ⊗ 〈1, usr
〉 ⊗

[
1

1

1

u

]

(1 ≤ r ≤ t), and then the quasi-linear form

η: = [1, u1, u2, . . . , us]

for some s < st = m. We have η < τt and dim η < 1
2 dim τt. Using the

procedure outlined in the scholium above we obtain an anisotropic excellent
form ϕ of height t over k with (s+ 1)-dimensional quasi-linear part η.

We utilize Theorem 4 and this example to illustrate principles about the
specialization of quadratic forms, obtained earlier (§15, Theorem 5, §11, The-
orem 2). We consider the question of when an excellent form has good reduc-
tion with respect to a place, and its specialization is again excellent.

Theorem 4 gives us the “generic” (n + 1)-fold Pfister form of a field κ.
Namely, if ρ is an (n + 1)-fold Pfister form over κ, and if we have chosen a
representation

ρ ∼= 〈1, a1〉 ⊗ · · · ⊗ 〈1, an〉 ⊗
[
1

1

1

a

]

(a ∈ κ, all ai ∈ κ), then there exists a place λ:κ(u, u1, . . . , un) → κ∪∞ over
κ with λ(u) = a, λ(ui) = ai for i = 1, . . . , n. The form

τ : = 〈1, u1〉 ⊗ · · · ⊗ 〈1, un〉 ⊗
[
1

1

1

u

]

has good reduction with respect to every such place λ, and λ∗(τ) ∼= ρ.
Now suppose that ρ is anisotropic. We choose a binary quadratic subform

γ of τ with 1 ∈ D(γ), which has good reduction with respect to λ, e.g.
γ =

[
1
1

1
u

]
. If σ is a Pfister form over k with γ < σ < τ , then σ is clearly

obedient with respect to λ. By §15, Theorem 5, and §11, Theorem 2, it follows
that σ has good reduction with respect to λ and that λ∗(σ) is a subform of
ρ = λ∗(τ). Furthermore, λ∗(γ) is a subform of λ∗(σ).

We want to obtain that λ∗(σ) is again a Pfister form. By §12, λ∗(σ) has
height ≤ 1. Since λ∗(σ) is anisotropic, and thus doesn’t split, we must have
h(λ∗(σ)) = 1. Furthermore, [1] < σ implies, again by §15, Theorem 5, etc.
that [1] = λ∗([1]) is a subform of λ∗(σ), thus 1 ∈ D(λ∗(σ)). Finally §20,
Theorem 5, tells us that λ∗(σ) is a Pfister form. It divides λ∗(τ) = ρ.

We turn our attention to the construction of excellent forms in the
scholium above. There we choose the Pfister form τt so that γ < τt. Now
all forms τr have good reduction with respect to λ, every λ∗(τr) is a Pfister
form, and λ∗(τr) | λ∗(τr−1) for 2 ≤ r ≤ t. The quasi-linear form η is auto-
matically obedient with respect to λ. Thus, by §15, Theorem 5, etc., it has
good reduction with respect to λ and λ∗(η) is a subform of λ∗(τt).
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If the complementary form ηt−1 of η = ηt in τt is obedient with respect
to λ, then we obtain in the same fashion that ηt−1 has good reduction with
respect to λ, and that λ∗(ηt−1) < λ∗(τt). Furthermore, λ∗(ηt−1) is now or-
thogonal to λ∗(ηt), and by dimension considerations it is now clear that
λ∗(ηt−1) is the polar of λ∗(ηt) in λ∗(τt).

We can continue this line of reasoning in so far that it is guaranteed that
all ηr are obedient with respect to λ, and obtain finally that the excellent
form ϕ = η0 has good reduction with respect to λ, and that λ∗(ϕ) is an
excellent subform of λ∗(τ) = ρ with ρ as neighbour.

If one considers γ =
[

1
1

1
u

]
, and starts with η = [1, u1, u2, . . . , us], as in

the example above, one can reason inductively that all ηr are indeed obedient
with respect to λ, and thus actually have good reduction with respect to λ.

Now, if ρ is anisotropic, then it follows from §15, Theorem 5, that every
subform σ of τ has good reduction with respect to λ, and that λ∗(σ) is a
subform of ρ. If σ is a Pfister form, then λ∗(σ) has height ≤ 1 by §12. Since
λ∗(σ) is anisotropic, and so doesn’t split, λ∗(σ) must have height exactly 1.
Moreover, λ∗(σ) is strictly regular, since this is the case for σ.

Furthermore, [1] < σ implies that [1] = λ∗[1] is a subform of λ∗(σ). Now
we conclude with §20, Theorem 5, that λ∗(σ) is a Pfister form (and it divides
the form ρ since it is a subform of ρ).

Every Pfister subform σ of τ thus has good reduction with respect to λ,
and provides a Pfister subform λ∗(σ) of ρ. By the scholium above it is now
clear that the anisotropic excellent form ϕ in our example above has good
reduction with respect to λ, and that λ∗(ϕ) is a neighbour of the Pfister
form ρ.

Nevertheless we cannot consider ϕ to be a “generic” excellent form of
height 1 with particular splitting pattern for κ since there are too many
other possibilities to construct excellent subforms of τ . Our reasoning about
the specialization of excellent forms remains valid in the general situation
however. We record

Theorem 5. Let λ:K → L ∪∞ be a place and τ a Pfister form which has
good reduction with respect to λ. Assume that the form λ∗(τ) is anisotropic.
Then λ∗(τ) is again a Pfister form. Every excellent subform ϕ of τ which is a
neighbour of τ has good reduction with respect to λ, and λ∗(ϕ) is an excellent
form, neighbouring λ∗(τ), of the same height as ϕ.

In the situation of the last theorem, the form λ∗(τ) is furthermore also
a Pfister form when it is isotropic, since it follows already from the generic
splitting theory in §9 that λ∗(τ) ∼= 2d−1 ×H with 2d = dim τ .
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In the following let ϕ be a regular anisotropic quadratic form of height 1 over
a field k. The purpose of this section is the proof of the following theorem.

Theorem 1. ϕ is excellent.

More particularly: if ϕ is of even dimension, then ϕ = aτ with a ∈ k∗

and τ a Pfister form. If ϕ is of odd dimension, then ϕ = aPolτ ([1]) with
a ∈ k∗ and τ a Pfister form of dimension ≥ 4. Is furthermore char k 6= 2, then
Polτ ([1]) is the pure part of τ , cf. §16.

For ϕ of even dimension we already proved the theorem in §20, Theorem 5.
Thus, suppose from now on that the dimension of ϕ is odd.

We start with the proof for char k 6= 2 (cf. [K5, p.81 ff.]). We interpret ϕ
as a symmetric bilinear form. Upon multiplying ϕ by a scalar factor we may
assume without loss of generality that d(ϕ) = 1. {The signed determinant
d(ϕ) was introduced in §2.}

We first show that ϕ does not represent the element 1. By way of con-
tradiction assume that ϕ does represent 1. Then we have an orthogonal de-
composition ϕ = 〈1〉 ⊥ χ. Since h(ϕ) = 1 we have ϕ ⊗ k(ϕ) ∼ 〈1〉, and so
χ⊗ k(ϕ) ∼ 0. As usual the Norm Theorem and the Subform Theorem tell us
that aϕ < χ for a suitable a ∈ k∗. This is absurd however since the dimen-
sion of χ is smaller than the dimension of ϕ. Therefore 1 6∈ D(ϕ). The form
τ : = 〈1〉 ⊥ (−ϕ) is thus anisotropic.

Let L/k be an arbitrary field extension of k. If ϕ⊗L is anisotropic, then
h(ϕ⊗ L) = 1 since h(ϕ⊗ L) ≤ h(ϕ) and h(ϕ⊗ L) 6= 0. If we apply what we
just proved to ϕ ⊗ L instead of ϕ, we see that τ ⊗ L is anisotropic. On the
other hand, if ϕ ⊗ L is isotropic, then ϕ ⊗ L ∼ 〈1〉, and so τ ⊗ L ∼ 0. This
shows that τ ⊗ L is either anisotropic or hyperbolic. Thus τ has height 1.
Furthermore 1 ∈ D(τ). As already established before (§20, Theorem 5), τ is
a Pfister form. It follows that ϕ = −τ ′.

Let us now continue by proving Theorem 1 for chark = 2 and dimϕ odd,
dimϕ = 2m + 1 with m > 0. Without loss of generality we may assume
that ϕ has quasi-linear part QL(ϕ) = [1]. We have to show that ϕ is a close
neighbour (cf. §16) of a Pfister form.

We deal with the case m = 1 separately. In this case we have

ϕ ∼= [1] ⊥ c

[
1

1

1

b

]
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with c ∈ k∗, b ∈ k, and so ϕ is a close neighbour of the Pfister form 〈1, c〉 ⊗[
1
1

1
b

]
.

From now on let m ≥ 2, and thus dimϕ ≥ 5. We require an easy lemma
of a general nature that we will prove at a later stage.

Lemma. Let ψ and χ be quadratic forms over k, and assume that ψ ⊥ χ is
nondegenerate. Then

indψ + dimχ ≥ ind(ψ ⊥ χ).

We have an orthogonal decomposition

ϕ ∼= [1] ⊥ ρ

with ρ strictly regular, dim ρ = 2m. Since the height of ϕ is 1 we have
ind(ϕ⊗ k(ϕ)) = m. The lemma implies that

ind(ρ⊗ k(ϕ)) ≥ m− 1 > 0.

So, ρ⊗k(ϕ) is in particular isotropic. Since ϕ⊗k(ρ) is trivially also isotropic
it follows that k(ϕ) ∼k k(ρ) and then

ind(ρ⊗ k(ρ)) ≥ m− 1.

Let us assume for the sake of contradiction that ind(ρ⊗ k(ρ)) > m− 1, thus
ρ⊗ k(ρ) ∼ 0. By earlier work we have that ρ = aσ where σ is a Pfister form.
Hence ϕ = [1] ⊥ aσ is a neighbour of the Pfister form τ : = 〈1, a〉 ⊗ σ. It
follows from §22, Theorem 1 that k(ϕ) ∼k k(τ). This implies k(ρ) ∼k k(τ),
since k(σ) is also specialization equivalent to k(ϕ) over k. By §21, Corollary
to Theorem 1, this means σ ∼= τ , which is not possible since dim τ = 2 dimσ.
Therefore

ind(ρ⊗ k(ρ)) = m− 1.

Thus ρ ⊗ k(ρ) is the orthogonal sum of m − 1 hyperbolic planes and an
anisotropic binary form. Hence ρ ⊗ k(ρ) has non-vanishing Arf invariant.
Thus we certainly have Arf(ρ) 6= 0. Let Arf(ρ) = a+ ℘k and

σ: =

[
1

1

1

a

]
.

Consider the form τ : = σ ⊥ ρ. Then ϕ < τ and Arf(τ) = 0. {Note that we
are now in a situation which is similar to the proof involving the form τ in
char k 6= 2.} Assume that ϕ⊗k(σ) is anisotropic. This form then has height 1
and

ϕ⊗ k(σ) = [1] ⊥ ρ⊗ k(σ).

Thus, we should get Arf(ρ⊗ k(σ)) 6= 0, which is false. Therefore ϕ⊗ k(σ) is
isotropic and it follows that

ϕ⊗ k(σ) ∼= [1] ⊥ m×H.
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§23 Regular Forms of Height 1 171

Hence, m×H < τ ⊗ k(σ). Since dim τ = 2m+ 2 and Arf(τ ⊗ k(σ)) = 0 we
obtain τ ⊗ k(σ) ∼ 0 and so ρ ⊗ k(σ) ∼ 0. By §21, Theorem 1, there exist
a1, . . . , am ∈ k∗ with

ρ ∼= 〈a1, . . . , am〉 ⊗ σ.

Consequently,
τ ∼= 〈1, a1, . . . , am〉 ⊗ σ.

We will now show that τ is anisotropic. Assume for the sake of contradic-
tion that this is not so. Then there exist vectors x0, x1, . . . , xm ∈ k2 with

σ(x0) +
m∑

i=1

aiσ(xi) = 0

and not all xi = 0. Since ρ is anisotropic, we must have x0 6= 0 and thus also
σ(x0) 6= 0. Thus there are vectors y1, . . . , ym ∈ k2 with σ(yi) = σ(x0)

−1σ(xi)
for 1 ≤ i ≤ m. Hence,

1 +

m∑

i=1

aiσ(yi) = 0.

This contradicts the anisotropy of ϕ. Thus τ is indeed anisotropic.
Now it follows easily that ϕ ⊗ k(τ) is isotropic. Indeed, if ϕ ⊗ k(τ) were

anisotropic, then we could apply what we just proved to the form ϕ ⊗ k(τ)
of height 1 and we would conclude that τ ⊗ k(τ) would be anisotropic, which
is of course false.

Hence there exists a place from k(ϕ) to k(τ) over k, and it follows that

ϕ⊗ k(τ) ∼= [1] ⊥ m×H.

Thus τ ⊗ k(τ) > m × H and, since Arf(τ) = 0 and dim τ = 2m + 2, even
τ ⊗ k(τ) ∼ 0. Furthermore, 1 ∈ D(τ) and τ is anisotropic. By earlier work τ
is a Pfister form. The form ϕ is a close neighbour of this Pfister form.

Let us finally supply the proof of the lemma above. Then our theorem
will be completely proved.

The field k may have arbitrary characteristic. Let ψ and χ be quadratic
forms over k. If ind(ψ ⊥ χ) ≤ dimχ, there is nothing to prove. Thus, suppose
ind(ψ ⊥ χ) > dimχ. Let E be the quadratic space of ψ and G the quadratic
space of χ. The space E ⊥ G, nondegenerate by assumption, contains a
totally isotropic subspace V with dimV = ind(ψ ⊥ χ). Let π:V → G be the
restriction of the natural projection E ⊥ G → G to V . The kernel of π is
then V ∩ E. This space is totally isotropic and

dim(V ∩ E) + dimG ≥ dimV.

Therefore,
dim(V ∩ E) ≥ ind(ψ ⊥ χ) − dimχ,

which establishes the assertion of the lemma.
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§24 Some Open Problems in Characteristic 2

We subdivide this section into parts (A) – (D), posing four problems which
seem to be open.

As before, the word “form” stands for nondegenerate quadratic form and
the ground field k is arbitrary, unless indicated otherwise.

(A) Let chark = 2. Which nonregular forms of height 1 are there?

If ϕ is anisotropic and dimϕ = 2+dimQL(ϕ), then ϕ surely has height 1.
Not every such form is excellent! As a simple example we take an anisotropic
4-dimensional form

ϕ = [a1, a2] ⊥
[
a3

1

1

b3

]
.

If ϕ were excellent, it would have to be a Pfister form up to a scalar factor,
which is not the case.

We give another example. Let

ϕ = [a1, a2, a3, a4] ⊥
[
a5

1

1

b5

]

be anisotropic. {E.g., let a1, . . . , a5, b5 be unknowns over a field κ and let
k = κ(a1, . . . , a5, b5).} We have h(ϕ) = 1 and dimϕ = 6. Let ϕ < τ and τ a
strictly regular hull of ϕ (cf. §16). Let χ: = QL(ϕ). By the Scholium in §16
we have

ϕ = χ ⊥ γ, τ = µ ⊥ γ

with χ < µ, dimµ = 2 dimχ = 8. Thus, dim τ = 8 + 2 = 10. The form ϕ is
certainly not a Pfister neighbour.

Let us ask a more precise question: Do there exist any anisotropic forms
of height 1, other than close Pfister neighbours and anisotropic forms ϕ with
dim(ϕ) = 2 + dimQL(ϕ)?

(B) Let ϕ be a neighbour of a Pfister form τ and let η be the complementary
form. Then ϕ⊗k(ϕ) ∼ (−η)⊗k(ϕ) (§20, Theorem 2). Is η⊗k(ϕ) anisotropic?

If the characteristic of the ground field is different from two, this is true,
as shown originally by R. Fitzgerald [F]. Hence (−η)⊗k(ϕ) is the first higher
kernel form of ϕ. Later on, D. Hoffmann proved the following far-reaching
theorem:
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Theorem 1 [H4]. Let char k 6= 2 and let ϕ and η be anisotropic forms over
k. Assume that there exists a 2-power 2m such that dim η ≤ 2m < dimϕ.
Then η ⊗ k(ϕ) is anisotropic.

Does this statement remain true in characteristic 2?37

One could simply try to extend the proofs of Fitzgerald and Hoffmann to
characteristic two. This approach, however, leads to problems very soon since
these proofs make extensive use of the following argument: let ψ1 and ψ2 be
anisotropic forms over k whose orthogonal sum ψ1 ⊥ ψ2 is isotropic. Then
there exists an a ∈ k∗ such that ψ1 = [a] ⊥ ψ′

1 and ψ2 = [−a] ⊥ ψ′
2. But this

is only correct when k has characteristic 6= 2.38 In characteristic 2 there does
not seem to exist anything that achieves results similar to this simple, but
effective argument.

(C) Definition. Let L/k be a field extension and ψ a form over L. We say
that ψ is definable over k if there exists a form η over k such that ψ ∼= η⊗L.

Let ϕ be a form over k. Let (Kr | 0 ≤ r ≤ h) be a generic splitting tower
of ϕ and let ϕr: = ker(ϕ⊗Kr), the r-th higher kernel form of ϕ (0 ≤ r ≤ h).
We are interested in the situation where all ϕr are definable over k. One
should observe that this property is independent of the choice of the generic
splitting tower (Kr | 0 ≤ r ≤ h).

Problem. For which anisotropic forms ϕ over k are all higher kernel forms
of ϕ definable over k?

Theorem 3 from §22 tells us that this is the case for excellent forms. For
char k 6= 2 it is known that there are no other forms with this property [K6,
Th.7.14]. {For this reason many texts, e.g., also [KS, §13], define excellence
via this property when char k 6= 2. We will not do that here.}

Obviously every anisotropic form of height 1 satisfies this property. Among
such forms there are non-excellent ones, as seen under (A). In case the first
problem under (B) has an affirmative answer,35 it is not so hard to obtain
further examples of anisotropic forms whose higher kernel forms are definable
over the ground field. Simply embed η into an anisotropic Pfister form τ , of
dimension > 2 dim η (we may assume without loss of generality that 1 ∈
D(η)). Then all higher kernel forms of the polar ϕ of η in τ are also definable
over k.

(D) Let (Kr | 0 ≤ r ≤ h) be a generic splitting tower of a form ϕ over k
and let (ϕr | 0 ≤ r ≤ h) be the associated higher kernel forms of ϕ. We fix
a number r with 0 < r < h. We assume that ϕr is definable over k. Is there,
up to isometry, only one form η over k such that ϕr ∼= η ⊗Kr? {Note that
this is trivially true for r = 0 and r = h.}
37See Addendum at the end of this section!
38In characteristic 2 the argument remains valid only for symmetric bilinear forms.
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It is known that the answer is “yes” for char k 6= 2. A proof can be found
in [K6, §7]. Fortunately this proof remains valid in characteristic 2 when
the form ϕ is strictly regular. We will reproduce it below. In slightly more
generality we can show:

Theorem 2. Let ϕ be strictly regular. Let η1 and η2 be anisotropic forms
over k with η1 ⊗Kr ∼ η2 ⊗Kr ∼ ϕ ⊗Kr and dim η1 < dimϕr−1, dim η2 <
dimϕr−1. Then η1 ∼= η2.

Proof [K6, p.1 ff.]. We assume without loss of generality that the form η1 has
minimal dimension among all anisotropic forms δ over k with δ⊗Kr ∼ ϕ⊗Kr.

We first settle the case r = 1. Assume that η1 and η2 are not isometric.
Then η1 ⊥ (−η2) has a kernel form ζ 6= 0 with ζ ⊗ k(ϕ) ∼ 0. By the Norm
Theorem and the Subform Theorem there exist a form ψ over k and an
element a ∈ k∗ such that

ϕ ⊥ ψ ∼= aζ.

It follows that ϕ⊗ k(ϕ) ∼ (−ψ) ⊗ k(ϕ). Now

dim η1 + dim η2 ≥ dim ζ = dimϕ+ dimψ,

and so
dim η1 − dimψ ≥ dimϕ− dim η2 > 0.

This contradicts the minimality of dim η1. Therefore, η1 ∼= η2.
Assume next that r ≥ 2. We proceed by induction on r. Assume that

η1 and η2 are not isometric, and thus η1 6∼ η2. Let s be the largest integer
between 0 and r − 1 such that η1 ⊗ Ks 6∼ η2 ⊗ Ks. If s > 0 we apply the
induction hypothesis for r−s to the kernel forms of ϕ⊗Ks, η1⊗Ks, η2⊗Ks,
and obtain a contradiction. Hence s = 0. For the kernel form ζ of η1 ⊥ (−η2)
we have again that ζ ⊗ k(ϕ) ∼ 0 and, just as in the case r = 1 above, we
obtain a contradiction with the minimality of dim η1.

Let ϕ be a neighbour of a Pfister form τ and let η be the complementary
form of ϕ. By §20 we have ϕ⊗ k(ϕ) ∼ (−η) ⊗ k(ϕ). We further assume that
dim η ≥ dimQL(η) + 2. {In the case chark 6= 2 this implies dim η ≥ 2.} Now
we can form the function field k(η). We have k(ϕ) ∼k k(τ) and τ ⊗ k(η) ∼ 0.
Hence there exists a place from k(ϕ) to k(η) over k, and so we also have
ϕ⊗ k(η) ∼ (−η) ⊗ k(η). Conversely we now ask:

Let ϕ and η be anisotropic forms over k with dimϕ > dim η ≥ 2+dimQL(η).
Assume that ϕ⊗k(ϕ) ∼ η⊗k(ϕ) and ϕ⊗k(η) ∼ η⊗k(η). Is then ϕ a Pfister
neighbour with complementary form −η?

If char k 6= 2, this is true, cf. [K6, Th. 8.9]. The proof of this fact again
utilizes the argument described in (B), which breaks down in characteristic 2.

Addendum (2009)

Problem (B) is now solved. Hoffmann and Laghribi have established Theo-
rem 1 above also in characteristic two, without any restrictions [HL], [EKM,
§26].
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§25 Leading Form and Degree Function

Let k be a field of arbitrary characteristic and let ϕ be a form over k, which
is just as before understood to be a nondegenerate quadratic form.

In case the characteristic of k is different from 2, we alternatively interpret
ϕ as a bilinear form. In fact we identify ϕ with the bilinear form β on kn

(n = dimϕ) which satisfies ϕ(x) = β(x, x). {Thus β = 1
2Bϕ, where Bϕ is the

bilinear form associated to ϕ.} In particular we make the identification

〈a1, . . . , an〉 = [a1, . . . , an] (ai ∈ k∗).

One should bear in mind that with respect to this identification quadratic
Pfister forms over k correspond to bilinear Pfister forms over k.

In the rest of this section we will always assume that ϕ is strictly regular.

Theorem 1. Assume that ϕ is not hyperbolic. Then the minimum of the
dimensions of the kernel forms ker(ϕ ⊗ L), where L runs through all field
extensions of k with ϕ⊗ L 6∼ 0, is a 2-power 2d.

Proof. If dimϕ is odd (and thus charK 6= 2), this minimum is clearly 1, and
the statement holds with d = 0.

Thus assume that dimϕ is even. Let (Kr | 0 ≤ r ≤ h) be a generic splitting
tower of ϕ. Since ϕ is not hyperbolic we have h ≥ 1.

The kernel form of ϕ ⊗Kh−1 has height 1. By §20, Theorem 5 it is thus
of the form aτ with a ∈ K∗

h−1 and τ a d-fold Pfister form over Kh−1 for some
d ≥ 1. By our generic splitting theory (cf. the end of §9 or §10, Theorem 4)
it is clear that 2d is the required minimum.

Definition 1. We call the number d, appearing in Theorem 1, the degree of
the form ϕ and denote it by degϕ. If ϕ is hyperbolic, we set degϕ = ∞.

According to the proof of Theorem 1, we have degϕ = 0 in case dimϕ
is odd (and so char k 6= 2), and degϕ ≥ 1 otherwise. An anisotropic n-fold
Pfister form clearly has degree n.

The notion of degree of a form is closely connected to the notion of a
“leading form”, which we introduce next.

Definition 2. Let ϕ be nondegenerate and let (Kr | 0 ≤ r ≤ h) be a generic
splitting tower of ϕ.
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(a) We call any field extension of k, which is specialization equivalent to
Kh−1 over k, a leading field for ϕ.

(b) Let F be a leading field for ϕ. By §23 the kernel form ψ of ϕ⊗F is of the
form aτ for dimϕ even, and of the form aτ ′ with a ∈ F ∗ and τ a Pfister
form for dimϕ odd. {Recall: τ ′ denotes the pure part of τ .} We call this
Pfister form τ over F the leading form of ϕ over F .

From the proof of Theorem 1 it is clear that in even dimension the degree
of ϕ corresponds to the degree of any leading form τ of ϕ. In odd dimension
there is a connection between the degree of τ and the degree of the even-
dimensional form ϕ ⊥ −d(ϕ), where d(ϕ) denotes the signed determinant of
ϕ, interpreted as a one-dimensional quadratic form, cf. §2.

Theorem 2. Assume that ϕ is not split and that dimϕ is odd (and so
char k 6= 2 since ϕ is strictly regular). Let τ be a leading form of ϕ. Then the
forms τ and ϕ ⊥ −d(ϕ) have the same degree.

Proof. The form ψ: = ϕ ⊥ −d(ϕ) is not split. It has signed determinant39

d(ψ) = 1. Let F be a leading field for ϕ and E a leading field for ψ. We have

ϕ⊗ F ∼ aτ ′, ψ ⊗ E ∼ bσ,

where a and b are scalars, τ is the leading form of ϕ and σ is the leading form
of ψ. Let n: = deg τ , m: = deg σ = degψ. Since d(ψ) = 1 we have d(σ) = 1,
and so m ≥ 2. Now d(τ ′) = 〈−1〉, so that d(ϕ)⊗F = d(ϕ⊗F ) = 〈−a〉. Hence

ψ ⊗ F ∼ aτ ′ ⊥ 〈a〉 = aτ.

Therefore the kernel form of ψ ⊗ F has dimension 2n and it follows that
m ≤ n. On the other hand we have

ϕ⊗ E ∼ bσ ⊥ (d(ϕ) ⊗ E).

The form on the right hand side is of dimension 2m+1. It cannot be split since
σ is anisotropic and has dimension ≥ 4. From the generic splitting theory (see
for instance §4, Scholium 1) it follows that 2m + 1 ≥ dim(aτ ′) = 2n − 1, and
so 2m + 2 ≥ 2n. Since m ≤ n and m ≥ 2, we must have m = n.

We now describe a situation where the leading form of ϕ can be deter-
mined.

Theorem 3 (cf. [K5, Th.6.3] for chark 6= 2). Let n ∈ N. Let ϕ be an orthog-
onal sum aτ ⊥ ψ with a ∈ k∗, τ a Pfister form over k of degree n ≥ 1, and
ψ a form over k with degψ ≥ n+ 1. Let F be a leading field for ϕ.

(i) The leading form of ϕ over F is τ ⊗ F .

(ii) If degψ ≥ n+ 2, then ϕ⊗ F has kernel form (aτ) ⊗ F .

39We write d(ψ) = 1 instead of d(ψ) = 〈1〉.
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Proof (as in [K5, p.88f]). (i) We may assume that ψ is not split. We will show
that ϕ has degree n.

Let (Li | 0 ≤ i ≤ e) be a generic splitting tower of ψ. Assume that τ⊗Le ∼
0. Let s be maximal in40 [0, e−1] with τ⊗Ls 6∼ 0, so that τ⊗Ls is anisotropic.
Let ψs be the kernel form of ψ ⊗ Ls. Then τ ⊗ Ls(ψs) ∼ 0. It then follows
from the Norm Theorem and the Subform Theorem in the usual manner that
bψs < τ ⊗ Ls for some b ∈ L∗

s. Thus, degψ = degψs ≤ n, which contradicts
our assumption about ψ. Therefore τ ⊗ Le is anisotropic. Hence, ϕ⊗ Le has
kernel form (aτ) ⊗ Le, and it follows that degϕ ≤ n.

Assume that ϕ has degree m < n. Let (Kj | 0 ≤ j ≤ h) be a generic
splitting tower of ϕ. Now ϕ⊗Kh−1 is of the form bρ with b ∈ K∗

h−1 and ρ a
Pfister form of degree m over Kh−1. We have

ψ ⊗Kh−1 ∼ bρ ⊥ (−a)(τ ⊗Kh−1).

The form on the right has dimension 2m + 2n < 2n+1. From degψ ≥ n+ 1 it
follows that ψ ⊗Kh−1 ∼ 0.

We obtain bρ ∼ a(τ ⊗ Kh−1). Since dim ρ < dim τ , it follows that τ ⊗
Kh−1 ∼ 0, and so ρ ∼ 0, a contradiction. Thus ϕ has degree n.

(ii) We have ψ ⊗ Kh ∼ (−aτ) ⊗ Kh and degψ > n. Thus ψ ⊗ Kh ∼ 0
and so τ ⊗Kh ∼ 0. Let s be maximal in [0, h− 1] with τ ⊗Ks 6∼ 0, so that
τ ⊗Ks is anisotropic. From the Norm Theorem and the Subform Theorem
it follows again that bϕs < τ ⊗Ks for some b ∈ K∗

s . Since ϕ has degree n we
must have s = h− 1 and

ϕh−1
∼= b(τ ⊗Kh−1).

Thus τ ⊗Kh−1 is the leading form of ϕ over Kh−1. Furthermore,

ψ ⊗Kh−1 ∼ [ϕ ⊥ (−aτ)] ⊗Kh−1 ∼ 〈b,−a〉 ⊗ τ ⊗Kh−1.

If degψ ≥ n+ 2, then ψ ⊗Kh−1 ∼ 0 and so

ϕh−1
∼= (aτ) ⊗Kh−1.

It is already clear from Definition 1 that every form which is Witt equiv-
alent to ϕ is of the same degree as ϕ. Therefore we have a degree function

deg: Wq(k) −→ N0 ∪ {∞}

on the Witt groupWq(k) of strictly regular forms over k, given by deg({ϕ}): =
degϕ. In char k = 2 this function has values in N ∪ {∞}.

The degree function motivates a further definition.

Definition 3. For every n ∈ N we denote by Jn(k) the set of all Witt classes
ξ of strictly regular forms with deg(ξ) ≥ n.

40For n ∈ N we denote the set of numbers 0, 1, 2, . . . , n by [0, n].
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What does this notation mean for n = 1? Clearly J1(k) is the set of Witt
classes of strictly regular forms of even dimension. If char k = 2, we thus have
J1(k) = Wq(k). If char k 6= 2, then Wq(k) = W (k) is a ring and J1(k) is an
ideal of W (k), namely the kernel of the dimension index

ν:W (k) −→ Z/2, {ϕ} 7−→ dimϕ+ 2Z,

which already made an appearance in §2. This homomorphism ν is also avail-
able in characteristic 2. Its kernel is denoted by I(k) and is called the fun-
damental ideal of W (k). Thus W (k)/I(k) = Z/2. In char k 6= 2 we have
I(k) = J1(k).

In more generality we have:

Theorem 4. For every n ∈ N, Jn(k) is a W (k)-submodule of Wq(k).

Proof. (As in [K5, p.89f].)
(a) We want to show that Jn(k) is closed under addition in Wq(k). We will

prove the following equivalent statement: for any two strictly regular forms
ϕ1, ϕ2 over k we have

(∗) deg(ϕ1 ⊥ ϕ2) ≥ min(degϕ1, degϕ2).

This statement is trivial when ϕ1 or ϕ2 has odd dimension, and also when
ϕ1 ⊥ ϕ2 ∼ 0. In the following we exclude these cases.

Let n: = deg(ϕ1 ⊥ ϕ2). There exists a field extension L of k such that

ker(ϕ1 ⊗ L ⊥ ϕ2 ⊗ L) = aρ,

for some a ∈ L∗ and a Pfister form ρ of degree n. By definition of the degree
function we have

deg(ϕi ⊗ L) ≥ degϕi (i = 1, 2).

Therefore it suffices to prove the statement for the forms ϕ̃i: = ϕi⊗L instead
of ϕi. If deg ϕ̃2 > n, then the Witt equivalence

ϕ̃1 ∼ aρ ⊥ (−ϕ̃2)

and Theorem 3 give us that ϕ̃1 has degree n. Thus we always have

min(deg ϕ̃1, deg ϕ̃2) ≤ n.

(b) W (k) is additively generated by the one-dimensional bilinear forms
〈a〉. Since for every strictly regular form ϕ, the form aϕ is of the same degree
as ϕ, it is clear that every Jn(k) is stable under multiplication with elements
from W (k).

An immediate consequence of Theorem 4 is

Corollary 1. Let ϕ and ψ be strictly regular forms over k with degϕ 6= degψ.
Then
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deg(ϕ ⊥ ψ) = min(degϕ, degψ).

It is commonplace to denote the n-th power of the ideal I(k) by In(k)
(instead of I(k)n). It is also customary to leave out the curly brackets {, },
which indicate that not the form itself, but rather its Witt class, is consid-
ered. For example, one writes γ ∈ In(k) to indicate that the Witt class of a
nondegenerate bilinear form γ is in In(k). We will follow this custom.

The ideal I(k) is additively generated by the bilinear forms a〈1, b〉 where
a, b ∈ k∗. Thus In(k) is additively generated by the forms aτ where a ∈ k∗

and τ is an n-fold bilinear Pfister form which we may in addition assume to
be anisotropic. This is also true for n = 0, if we formally write I0(k) = W (k).

The W (k)-module J1(k) is additively generated by the binary forms
a
[
1
1

1
b

]
. Thus the W (k)-module In(k)J1(k) is additively generated by the

forms aτ , where a ∈ k∗ and τ is a quadratic anisotropic Pfister form of de-
gree n + 1. Thus, by Theorem 4, every element of In(k)J1(k) is of degree
≥ n+ 1. Hence we obtain

Corollary 2. For every n ∈ N0 we have

In(k)J1(k) ⊂ Jn+1(k).

Arason and Pfister already showed in 1970, without a generic splitting
theory (which did not exist yet at the time), that in characteristic 6= 2 every
anisotropic form ϕ 6= 0 which lies in In(k) is of dimension at least 2n (the
so-called Arason-Pfister Hauptsatz [AP]). The proof of Arason-Pfister can be
modified in such a way that it also works in characteristic 2, but we will not
elaborate that here. {One should of course replace In(k) by In−1(k)J1(k).}
The statement of our Corollary 2 is equivalent to the Arason-Pfistert Haupt-
satz, in every characteristic.

Next we wish to characterize the strictly regular even-dimensional forms
ϕ of degree 1 by employing the discriminant algebra ∆(ϕ) (cf. the beginning
of §13). We begin with some comments on this invariant of ϕ.

If L/k is a quadratic separable field extension, there exists a generator ω
of L/k with minimal equation ω2 +ω = a, where 1+4a ∈ k∗. The norm form
NL/k(x) of L/k has the value matrix

[
1
1

1
a

]
with respect to 1, ω. If char k 6= 2

then 1, 1+ 2ω is an orthogonal basis with respect to the norm form, which is
thus of the form 〈1,−1 − 4a〉. Also, (1 + 2ω)2 = 1 + 4a.

All of this remains basically true for a = 0 when L is equal to the split
quadratic separable algebra k × k. In this case the norm form is hyperbolic
instead of anisotropic as before.

This can all be verified easily and so we obtain straight away the following
elementary lemma.

Lemma 1. The isomorphism classes of quadratic separable k-algebras L
are in one-one correspondence with the isometry classes of binary (= 2-
dimensional ) Pfister forms τ via L = ∆(τ), τ = NL/k.
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We recall further that in characteristic 2 the discriminant algebra ∆(ϕ) is
just the Arf invariant in disguise (see the beginning of §13), while in character-
istic 6= 2 it corresponds to the signed determinant d(ϕ) since then 〈1,−d(ϕ)〉
is the binary Pfister form associated to ∆(ϕ). Thus one verifies immediately:

Lemma 2. Let ϕ1 and ϕ2 be two regular forms of even dimension.

(a) ∆(ϕ1 ⊥ ϕ2) = 1 if and only if ∆(ϕ1) = ∆(ϕ2).

(b) ∆(ϕ1 ⊥ ϕ2) = ∆(ϕ1) if and only if ∆(ϕ2) = 1.

Remark. These statements can be placed on a more conceptual footing by
endowing the set of isomorphism classes of quadratic separable k-algebras
with a multiplication, which turns it into an abelian group QS(k) of ex-
ponent 2, and observing that for regular forms ϕ1, ϕ2 of even dimension,
∆(ϕ1 ⊥ ϕ2) = ∆(ϕ1) ·∆(ϕ2), cf. [B1, Chap.IV], [B2], [Kn3, §10].

Theorem 5. Let ϕ be a strictly regular form of even dimension. Let τ be the
binary Pfister form over k with ∆(ϕ) = ∆(τ) (cf. Lemma 1).

(a) If ∆(ϕ) = 1, then degϕ ≥ 2.

(b) If ∆(ϕ) 6= 1 (thus τ is anisotropic), then deg(ϕ) = 1 and ϕ ∼ τ ⊥ ψ
for some strictly regular form ψ of degree ≥ 2. Furthermore, if F is a
leading field for ϕ, then τ ⊗ F is the associated leading form of ϕ.

Proof. Let F be a leading field for ϕ, and ρ the associated leading form of ϕ.
Thus ker(ϕ ⊗ F ) = aρ for some scalar a ∈ F ∗. If ∆(ϕ) = 1, then ∆(aρ) = 1.
It follows that ρ, and thus also ϕ, is of degree ≥ 2.

Assume now that ∆(ϕ) 6= 1. By Lemma 2 the form ψ: = ϕ ⊥ τ has
discriminant ∆(ψ) = 1. Thus degψ ≥ 2, by the first part of the proof. From
ϕ ∼ −τ ⊥ ψ and Theorem 3 it follows that ϕ has degree 1 and leading form
τ ⊗ F .

We note that only part (a) of the Lemma was used. Part (b) will be needed
for the first time only in §27.

It follows immediately from this Theorem that J2(k) is the set of all Witt
classes {ϕ} of regular forms ϕ with dimϕ even and ∆(ϕ) = 1. By the remark
after Lemma 2 it follows further that the group QS(k) is isomorphic to the
additive group J1(k)/J2(k). We will not need this in the sequel, but it is
nevertheless good to know.

We return to an examination of the modules Jn(k) for arbitrary n.

Theorem 6. Let ϕ be a strictly regular quadratic form and α a nondegenerate
bilinear form. Assume that α has odd dimension. Then

deg(α⊗ ϕ) = degϕ.

Proof. This is clear when the dimension of ϕ is odd, and also when ϕ ∼ 0.
Therefore we will exclude those cases. Thus let h(ϕ) > 0 and n: = degϕ ≥ 1.
By Theorem 4 we have deg(α⊗ ϕ) ≥ n.
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We choose a leading field F for ϕ and obtain ϕ ⊗ F ∼ aτ for some
a ∈ F ∗ and some n-fold anisotropic Pfister form τ . We also consider some
decomposition

α ∼= 〈b〉 ⊥ b1ρ1 ⊥ . . . ⊥ brρr

where b, b1, . . . , br ∈ k∗ and ρ1, . . . , ρr are binary bilinear Pfister forms.
Hence,

(α⊗ ϕ) ⊗ F ∼ bτ ⊥ b1(ρ1 ⊗ τ) ⊥ . . . ⊥ br(ρr ⊗ τ),

where we shortened (ρi⊗F )⊗τ to ρi⊗τ . The ρi⊗τ are (n+1)-fold quadratic
Pfister forms. By Theorem 4, b1(ρ1⊗τ) ⊥ . . . ⊥ br(ρr⊗τ) has degree ≥ n+1.
By Theorem 3 (or Corollary 1), (α ⊗ ϕ) ⊗ F has degree n. It follows that
deg(α⊗ ϕ) ≤ n and so deg(α⊗ ϕ) = n.

We record a much weaker, but still interesting, version of this theorem:

Corollary. Let α be a bilinear form of odd dimension and ϕ a quadratic
strictly regular form with ϕ 6∼ 0. Then α⊗ ϕ 6∼ 0.

Theorem 7. For arbitrary m ≥ 1, n ≥ 1 we have

Im(k)Jn(k) ⊂ Jm+n(k).

Proof. (cf. [K5, p.91]). Of course it suffices to show that I(k)Jn(k) ⊂ Jn+1(k).
Since I(k) is generated by the forms 〈1, a〉 as an ideal, the theorem boils down
to the following statement: If ϕ is a strictly regular quadratic form of even
dimension over k which is not hyperbolic, then, for given a ∈ k∗, the degree
of 〈1, a〉 ⊗ ϕ is larger than the degree of ϕ.

We prove this statement by induction on h(ϕ). The case h(ϕ) = 1 is clear.
Let h(ϕ) > 1. If the form α: = 〈1, a〉⊗ϕ splits, the statement is true. Assume
now that α 6∼ 0. We choose a leading field F for α. Let ρ be the associated
leading form of α over F . Since deg(ϕ ⊗ F ) ≥ degϕ it suffices to show that
deg ρ > deg(ϕ ⊗ F ). We have h(ϕ ⊗ F ) ≤ h(ϕ). If we replace k by F and ϕ
by ϕ⊗ F , we are reduced to the case

(1) 〈1,−a〉 ⊗ ϕ ∼ ρ

for some anisotropic Pfister form ρ. Now we must show that deg ρ > degϕ.
Assume next that ρ⊗ k(ϕ) is anisotropic. We have

〈1,−a〉 ⊗ (ϕ⊗ k(ϕ)) ∼ ρ⊗ k(ϕ)

and deg(ϕ⊗ k(ϕ)) = degϕ, deg(ρ⊗ k(ϕ)) = deg(ρ), h(ϕ⊗ k(ϕ)) = h(ϕ)− 1.
Thus deg ρ > degϕ by the induction hypothesis.

The remaining case is when ρ ⊗ k(ϕ) splits. By the Norm Theorem and
the Subform Theorem we have

(2) ρ ∼= bϕ ⊥ ζ,

for some b ∈ k∗ and some form ζ over k. Assume that ζ = 0. Then
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〈1,−a,−b〉 ⊗ ϕ ∼ 0

by (1) and (2), contradicting the corollary to the previous theorem. Hence
ζ 6= 0, and so dimϕ < dim ρ. Since ρ is a Pfister form, it follows that degϕ <
deg ρ.

Nowadays it is known that for every natural number n,

Jn(k) = In(k)

when chark 6= 2 [OVV], and

Jn(k) = In−1(k)Wq(k)

when char k = 2 [AB]. Thus, in Theorem 7 we have, de facto, Im(k)Jn(k) =
Jn+m(k).

The proofs of these statements are very dissimilar, and go far beyond the
scope of this book. The case characteristic 6= 2 seems to be the more difficult
one.
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§26 The Companion Form of an

Odd-dimensional Regular Form

In this section k is an arbitrary field and ϕ is always a regular form of odd
dimension over k.

If chark 6= 2, then ϕ is strictly regular. In characteristic 2 however, ϕ has
a one-dimensional quasilinear part, QL(ϕ) = [a]. In characteristic 6= 2 we
also interpret ϕ as a bilinear form in the manner indicated at the beginning
of §25.

Theorem 1. Up to isometry there is a unique form ψ over k with the fol-
lowing four properties:

(1) ψ is strictly regular.

(2) ∆(ψ) = 1.

(3) ϕ < ψ.

(4) dimψ = dimϕ+ 1.

Proof. If char k 6= 2, we need ψ = ϕ ⊥ 〈b〉 for some b ∈ k∗ such that the
condition d(ψ) = 1 is satisfied. So we take b such that 〈b〉 = −d(ϕ).

Now let char k = 2. We choose an orthogonal decomposition ϕ: = χ ⊥ [a].
Thus χ is strictly regular and QL(ϕ) = [a]. We need ψ = χ ⊥ α for some
binary strictly regular form α, to be determined. The condition χ ⊥ [a] < ψ
is equivalent with [a] < α (cf. §17, Theorem 3). Thus, by §25, Lemma 2(a),
α should be chosen in such a way that a ∈ D(α) and ∆(α) = ∆(χ). By §25,
Lemma 1, there is exactly one binary Pfister form τ with ∆(τ) = ∆(χ). We
must take α = aτ .

Definition 1. We call the form ψ, described in Theorem 1, the companion
of ϕ. We denote this form, which is uniquely determined by ϕ, by Com(ϕ).

Remark. The mapping ϕ 7→ Com(ϕ) satisfies the following rules:

(1) If α is a strictly regular form with ∆(α) = 1, then Com(ϕ ⊥ α) =
Com(ϕ) ⊥ α. In particular, Com(γ) ∼ Com(ϕ) for every regular form
γ ∼ ϕ.

(2) Com(aϕ) = aCom(ϕ) for every a ∈ k∗.

(3) Com(ϕ⊗ L) = Com(ϕ) ⊗ L for every field extension L ⊃ k.

(4) If chark 6= 2, then Com(ϕ) = ϕ ⊥ −d(ϕ).
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Proof. The rules (1) – (3) follow immediately from the definition of a com-
panion. Rule (4) is clear from the proof of Theorem 1 above.

Conversely, every strictly regular form ψ of even dimension and discrimi-
nant 1 generally acts as the companion of many regular forms ϕ. More pre-
cisely the following theorem holds, which can easily be verified upon consult-
ing the explanations about polars in §16.

Theorem 2.

(i) Let ψ be a strictly regular form of even dimension over k with ∆(ψ) = 1.
For every a ∈ D(ψ) the polar ϕ: = Polψ([a]) (cf. §16) is a strictly regular
form of odd dimension with Com(ϕ) = ψ. If k is of characteristic 2, then
[a] = QL(ϕ). If k is of characteristic 6= 2, then 〈a〉 = −d(ϕ).

(ii) The isometry classes (ϕ) of strictly regular forms ϕ of odd dimension
over k are in one-one correspondence with the pairs

(
(ψ), [a]

)
, where (ψ)

is the isometry class of a strictly regular form of even dimension and
discriminant 1 (thus {ψ} ∈ J2(k)) and a ∈ D(ψ), via ϕ = Polψ[a] and
ψ = Com(ϕ), [a] = QL(ϕ) for chark = 2, 〈a〉 = −d(ϕ) for chark 6= 2.

The following theorem gives another method for retrieving ϕ from ψ and
d(ϕ) from QL(ϕ), respectively, by means of the Cancellation Theorem (§6,
Theorem 2 – for fields).

Theorem 3. Let ψ = Com(ϕ).

(a) If char k 6= 2, then ϕ ⊥ H ∼= ψ ⊥ d(ϕ).

(b) If char k = 2, then ϕ ⊥ H ∼= ψ ⊥ QL(ϕ).

Proof. (a) This is clear since ψ = ϕ ⊥ −d(ϕ) in this case.
(b) Since QL(ϕ) = [a] we have

ϕ ⊥ H ∼= Polψ([a]) ⊥ H ∼= Polψ⊥H([a]).

Furthermore, ψ ⊥ H ∼= ψ ⊥
[
a
1

1
0

]
. Thus,

Polψ⊥H([a]) ∼= ψ ⊥ [a].

Next we present necessary and sufficient conditions for the companion
Com(ϕ) to be isotropic or split.

Theorem 4. The following statements are equivalent:

(i) Com(ϕ) is isotropic.

(ii) There exists an element b ∈ k∗ and a strictly regular form χ of even
dimension with ∆(χ) = 1 and ϕ ∼= χ ⊥ [b].

(iii) There exists a strictly regular form χ of even discriminant with ∆(χ) =
1, χ < ϕ and 1 + dimχ = dimϕ.
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If (i) – (iii) hold, then Com(ϕ) = χ ⊥ H and, furthermore, [b] = QL(ϕ)
when char k = 2 and 〈b〉 = d(ϕ) when chark 6= 2.

Proof. If χ is a strictly regular form with χ < ϕ, dimχ = dimϕ − 1, then
we have a decomposition ϕ ∼= χ ⊥ [b] for some b ∈ k∗. This establishes the
equivalence (ii) ⇔ (iii). We also see that then QL(ϕ) = [b] in characteristic 2
and d(ϕ) = 〈b〉 in characteristic 6= 2.

Let ψ: = Com(ϕ). By Theorem 3 we have an isometry ϕ ⊥ H ∼= ψ ⊥ [b].
If ψ is isotropic, we have in addition a decomposition ψ ∼= χ ⊥ H and we
have ∆(χ) = 1. It follows that ϕ ∼= χ ⊥ [b]. Conversely, if ϕ ∼= χ ⊥ [b] with

∆(χ) = 1, then the form χ ⊥ H ∼= χ ⊥
[
b
1

1
0

]
satisfies the conditions of

Theorem 1, and so χ ⊥ H ∼= ψ.

Theorem 5. Com(ϕ) splits if and only if ϕ splits.

Proof. If ϕ ∼= r ×H ⊥ [a], then the form ψ: = r ×H ⊥
[
a
1

1
0

] ∼= (r + 1) ×H
satisfies the four conditions of Theorem 1. Hence, ψ = Com(ϕ). Conversely,
if Com(ϕ) is hyperbolic, then ϕ ⊥ H splits by Theorem 3. This implies that
ϕ splits.

As a digression we remark that the unicity statement contained in Theo-
rem 4 leads to a new kind of cancellation theorem:

Theorem 6. Let a ∈ k and let χ1, χ2 be two strictly regular forms of even
dimension with ∆(χ1) = ∆(χ2) and χ1 ⊥ [a] ∼= χ2 ⊥ [a]. Then χ1

∼= χ2.

Proof. This is trivial when a = 0. Thus let a 6= 0. If ∆(χ1) = ∆(χ2) = 1,
the statement follows immediately from Theorem 4. If only ∆(χ1) = ∆(χ2),
then ∆(χ1 ⊥ χ2) = ∆(χ2 ⊥ χ2) = 1 by §25, Lemma 2. We have χ1 ⊥ χ2 ⊥
[a] ∼= χ2 ⊥ χ2 ⊥ [a], and deduce that χ1 ⊥ χ2

∼= χ2 ⊥ χ2, and finally that
χ1

∼= χ2 with the old Cancellation Theorem §6, Theorem 2.

We make a general statement about the Witt indices of ϕ and Com(ϕ):

Theorem 7. We have

ind(ϕ) ≤ ind(Com(ϕ)) ≤ 1 + ind(ϕ).

Proof. Let ψ: = Com(ϕ). Since ϕ < ψ we have ind(ϕ) ≤ ind(ψ). On the other
hand we have an isometry ϕ ⊥ H ∼= ψ ⊥ [a] by Theorem 3. Hence

ind(ψ) ≤ ind(ψ ⊥ [a]) = 1 + ind(ϕ).

Theorem 8. h(ϕ) ≤ 2h(Com(ϕ)).

Proof. Let ψ: = Com(ϕ), h: = h(ϕ), e: = h(ψ). Then h + 1 is the number of
possible Witt indices of ϕ ⊗ K, where K traverses all field extensions of k,
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thus h+1 = cardSP(ϕ). Similarly, e+1 = cardSP(ψ). Furthermore we have
Com(ϕ⊗K) = ψ ⊗K. If ind(ψ ⊗K) = j, then ind(ϕ⊗K) = j or j + 1 by
Theorem 7. However, if ind(ψ ⊗K) has the highest possible value 1

2 dimψ,
then ind(ϕ⊗K) also has the highest possible value 1

2 dimψ−1 by Theorem 5.
It follows that h+ 1 ≤ 2e+ 1, and so h ≤ 2e.

In §25 we associated to every strictly regular form, which is not split, a
leading form. We will now also introduce a leading form for regular forms of
odd dimension, in characteristic 2. First some preliminaries.

Definition 2. Let τ be a (quadratic) Pfister form over k. Since 1 ∈ D(τ) we
can form the polar Polτ [1], which we call the unit polar of τ and denote by
τ ′.

Remarks.

(1) If dim τ = 2 and char k = 2, then τ ′ = [1], and forming the unit polar
is not interesting. On the other hand, if dim τ ≥ 4, then clearly τ is
the strictly regular companion of τ ′ and τ ′ is the regular form of odd
dimension associated to the pair (τ, [1]) in the sense of Theorem 2.

(2) For an arbitrary Pfister form σ over k we introduced the pure part of σ,
denoted by σ′, earlier (§16). In chark 6= 2 this pure part is identical to
the unit polar.

It stands to reason to look for a relationship between the generic spitting
behaviour of the form ϕ and its companion Com(ϕ) = ψ, and in particular to
compare the leading forms of ϕ and ψ (cf. §23, Def. 2). A result in this vein,
presented below, can already be found in [K5, §5] for the characteristic 6= 2
case. A partial result in characteristic 6= 2 was anticipated in §25, Theorem 2.

Theorem 9. Let ϕ be a regular form of odd dimension over k and ψ: =
Com(ϕ) its companion. Let (Kr | 0 ≤ r ≤ h) be a generic splitting tower of
ϕ and (Ls | 0 ≤ s ≤ e) a generic splitting tower of ψ. We assume that ϕ,
and so (by Theorem 5) also ψ, does not split. Let τ be the leading form of ϕ
over Kh−1 and σ the leading form of ψ over Le−1. Then we claim:

(i) Kh ∼k Le.
(ii) There is a place λ:Le−1 → Kh−1 ∪∞ over k.

(iii) σ has good reduction with respect to every such place λ, and λ∗(σ) ∼= τ .
In particular, deg τ = deg σ = degψ.

Proof. For every field extension L of k we have Com(ϕ ⊗ L) = ψ ⊗ L. Thus
ψ ⊗ L splits if and only if ϕ⊗ L splits by Theorem 5. Hence Kh and Le are
specialization equivalent over k.

The kernel form ϕh−1 of ϕ⊗Kh−1 is of the form aτ ′ for some a ∈ K∗
h−1.

{Incidentally, a can be chosen in k, but we do not need that now.} We have

(∗) ψ ⊗Kh−1 = Com(ϕ⊗Kh−1) ∼ Com(ϕh−1) = aτ.
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It follows that deg τ ≥ degψ. On the other hand, the kernel form ψe−1 of
ψ ⊗ Le−1 is of the form bσ for some b ∈ L∗

e−1. Hence, ϕ ⊗ Le−1 ∼ bσ ⊥ [a],
where [a] = QL(ϕ) in characteristic 2 and [a] = d(ϕ) in characteristic 6= 2.
Since the form σ is anisotropic and of dimension at least 4, bσ ⊥ [a] cannot
split.

It follows from the general generic splitting theory that dimσ+1 ≥ dim τ ′,
hence dimσ + 2 ≥ dim τ . Earlier we established that dimσ ≤ dim τ . Since
dimσ ≥ 4 and the integers dimσ and dim τ are both 2-powers, it follows that
dimσ = dim τ . Now (∗) tells us, by the generic splitting theory, that there
exists a place λ from Le−1 to Kh−1 over k, and furthermore that bσ has good
reduction with respect to every such place λ and that λ∗(bσ) = aτ . Since bσ
has good reduction with respect to λ, bσ will certainly represent a unit c in
the valuation ring oλ. Then we have bσ ∼= cσ, and it follows that σ has good
reduction with respect to λ, and that λ∗(σ) = λ(c)aτ . This forces λ∗(σ) = τ .

As an illustration of the results obtained so far, we classify the anisotropic
regular forms of odd dimension whose strictly regular companion is of
height 1.

Theorem 10. Let ϕ be anisotropic. The companion ψ: = Com(ϕ) is of
height 1 if and only if one of the following two cases happens:

(A) ϕ ∼= aτ ′ for some anisotropic Pfister form τ of degree ≥ 2 and some
a ∈ k∗.

(B) ϕ ∼= aτ ⊥ [b] for some anisotropic Pfister form τ of degree ≥ 2, some
a ∈ k∗ and b ∈ k∗ with −ab 6∈ D(τ).

In case (A) we have ψ ∼= aτ , and so ψ is anisotropic. In case (B) we have
ψ ∼= aτ ⊥ H, and so ψ is isotropic. In case (A) ϕ is of height 1, in case (B)
of height 2. In both cases ϕ is excellent.

Proof. (1) Let τ be a Pfister form of degree ≥ 2 and let a and b be elements
of k∗. If ϕ ∼= aτ ′, then ψ = aτ , and so h(ψ) = 1. Furthermore we have
h(ϕ) = 1 in this case. If ϕ ∼= aτ ⊥ [b] and −ab 6∈ D(τ), then ϕ is anisotropic,

and ψ ∼= aτ ⊥
[
b
1

1
0

]
∼= aτ ⊥ H . Therefore ψ is also of height 1 in this case.

Furthermore,
ϕ ⊥ bτ ′ ∼= a〈1, ab〉 ⊗ τ.

Thus ϕ is a neighbour of the anisotropic Pfister form 〈1, ab〉 ⊗ τ with com-
plementary form bτ ′. Hence ϕ is excellent of height 2.

(2) Assume now that h(ψ) = 1. By Theorem 7 we have ind(ψ) ≤ 1.
Case (A): ψ is anisotropic. Then ψ ∼= cτ for some c ∈ k∗ and some Pfister

form τ of degree ≥ 2. If chark = 2, and QL(ϕ) = [a], then we may choose
c = a and have ϕ = Polψ([a]) ∼= aτ ′. If char k 6= 2, then ϕ is a strictly regular
subform of ψ, and so we obtain again that ϕ ∼= aτ ′ for some a ∈ k∗.

Case (B): ψ is isotropic. Then ψ ∼= aτ ⊥ H for some a ∈ k∗ and some
Pfister form τ of degree 2. By Theorem 3 we have ϕ ⊥ H ∼= ψ ⊥ [b] for some
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b ∈ k∗. Hence, ϕ ∼= aτ ⊥ [b]. Since ϕ is anisotropic it follows that −ab 6∈ D(τ).

Next we will more closely consider and compare the generic splitting tow-
ers of ϕ and ψ: = Com(ϕ). Assume as before that dimϕ is odd. Let further
ak∗2 be the square class with d(ϕ) = 〈−a〉 in case char k 6= 2, andQL(ϕ) = [a]
in case char k = 2. Thus a ∈ D(ψ) and ϕ = Polψ([a]). We need two lemmata.

Lemma 1. Let ϕ0: = ker(ϕ) and ψ0: = ker(ψ). The following statements are
equivalent:

(i) Com(ϕ0) = ψ0.

(ii) Com(ϕ0) is anisotropic.

(iii) ind(ψ) = ind(ϕ).

(iv) a ∈ D(ψ0).

Proof. Let r: = ind(ϕ), hence ϕ ∼= ϕ0 ⊥ r × H and χ: = Com(ϕ0). From
Remark (1) above it follows that

ψ ∼= χ ⊥ r ×H.

This is the Witt decomposition of ψ if and only if ind(ψ) = r or, equivalently,
if and only if χ is anisotropic. This already proves the equivalence of (i) –
(iii).

Furthermore, d(ϕ0) = d(ϕ) = 〈−a〉 if char k 6= 2, and QL(ϕ0) = QL(ϕ) =
[a] if chark = 2. Thus a ∈ D(χ) and ϕ0 = Polχ([a]). If χ = ψ0, then certainly
a ∈ D(ψ0). This establishes (i) ⇒ (iv).

Finally, assume that a ∈ D(ψ0). Of course ψ0 ∼ χ. Hence, Polψ0([a]) ∼
Polχ[a] = ϕ0, and so ϕ0

∼= Polψ0([a]), since the forms ϕ0 and Polψ0([a]) are
both anisotropic. Therefore, ψ0 = Com(ϕ0). This shows (iv) ⇒ (i).

We assume from now on that ϕ, and thus ψ, is not split.

Lemma 2. Let ψ = Com(ϕ) be anisotropic. Let ψ1 denote the kernel form
of ψ ⊗ k(ψ).

(i) There exists a place from k(ψ) to k(ϕ) over k.

(ii) k(ϕ) ∼k k(ψ) if and only if a ∈ D(ψ1) or ind(ψ ⊗ k(ψ)) ≥ 2.

(iii) If k(ϕ) is not specialization equivalent to k(ψ) over k, then ϕ⊗ k(ψ) is
anisotropic.

Proof. (i) is clear since ϕ is a subform of ψ. Let K: = k(ψ). We have Com(ϕ⊗
K) = Com(ψ)⊗K. By the general theory of generic splitting it is clear that
k(ϕ) is specialization equivalent to K over k if and only if ϕ⊗K is isotropic.

A priori we have ind(ϕ⊗K) = ind(ψ⊗K) or ind(ϕ⊗K) = ind(ψ⊗K)−1
(by Theorem 7). If ind(ψ⊗K) ≥ 2, then ϕ⊗K is definitely isotropic. Assume
now that ind(ψ ⊗K) = 1, thus ψK ∼= ψ1 ⊥ H . The form ϕ⊗K is of index 0
or 1. By Lemma 1, ϕ⊗K is of index 1 if and only if a ∈ D(ψ1). This happens
if and only if ϕ⊗K is isotropic.
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Let h: = h(ϕ) and e: = h(ψ). Further, let (Ls | 0 ≤ s ≤ e) be a generic
splitting tower of ψ = Com(ϕ), and let ψs: = ker(ψ ⊗Ls), ηs: = ker(ϕ⊗Ls).
We know that ϕ⊗Le splits, so that ηe is one-dimensional and thus ηe = [−a].

We are looking for an integer m ∈ [0, e], as large as possible, such that
(Ls | 0 ≤ s ≤ m) is a truncated generic splitting tower of ϕ, which signifies
that there is a generic splitting tower (Kr | 0 ≤ r ≤ h) of ϕ with h ≥ m and
Kr = Lr for 0 ≤ r ≤ m.

Theorem 11. Let a ∈ D(ψm) for some m ∈ [0, e− 1].

(a) (Ls | 0 ≤ s ≤ m) is a truncated generic splitting tower of ϕ. Furthermore,
ind(ϕ⊗ Ls) = ind(ψ ⊗ Ls) and Com(ηs) = ψs for 0 ≤ s ≤ m.

(b) If, in addition, a 6∈ D(ψm+1), then ind(ϕ⊗ Lm+1) = ind(ψ ⊗ Lm+1) − 1
and Com(ηm+1) ∼= ψm+1 ⊥ H. The following alternative also holds: if
ind(ψm ⊗ Lm+1) ≥ 2, then (Ls | 0 ≤ s ≤ m + 1) is a truncated generic
splitting tower of ϕ. On the other hand, if ind(ψm ⊗ Lm+1) = 1, then
ηm ⊗ Lm+1 is anisotropic, and so ηm ⊗ Lm+1 = ηm+1 and

ind(ϕ⊗ Lm+1) = ind(ϕ⊗ Lm) = ind(ψ ⊗ Lm).

Proof. By induction on m. Lemma 1 and Lemma 2 give us the case m = 0.
Thus let m > 0. From the induction hypothesis we know that (Ls | 0 ≤
s ≤ m − 1) is a truncated generic splitting tower of ϕ and that ind(ϕ ⊗
Ls) = ind(ψ ⊗ Ls) and Com(ηs) = ψs for 0 ≤ s ≤ m − 1. Let K: = Lm−1.
By assumption we have Lm ∼K K(ψm−1) and a ∈ D(ψm). It follows that
the element a is also represented by ker(ψm−1 ⊗ K(ψm−1)). Furthermore,
ψm−1 = Com(ηm−1). From Lemma 2 it follows that K(ψm−1) ∼K K(ηm−1),
and so Lm ∼K K(ηm−1). Hence, (Ls | 0 ≤ s ≤ m) is a truncated generic
splitting tower of ϕ. Applying Lemma 1 to ηm−1 ⊗ Lm further shows that
Com(ηm) = ψm, and finally that ηm−1 ⊗ Lm and ψm−1 ⊗ Lm have the same
index. By the induction hypothesis ϕ ⊗ Lm−1 and ψ ⊗ Lm−1 also have the
same index. Therefore ϕ⊗Lm and ψ⊗Lm have the same index. This proves
part (a) of the theorem. Applying Lemma 2 again, but this time to ηm and
ψm = Com(ηm), gives part (b).

Theorem 12. We have h ≥ e. {Recall that h: = h(ϕ), e: = h(ψ). We assume
that h > 0, e > 0.} If a 6∈ D(ψ0), then we even have h ≥ e+1. The following
statements are equivalent:

(i) a ∈ D(ψe−1).

(ii) (Ls | 0 ≤ s ≤ e) is a generic splitting tower of ϕ. (In particular, h = e.)

(iii) Com(ηs) = ψs for 0 ≤ s ≤ e− 1.

(iv) ind(ϕ⊗ Ls) = ind(ψ ⊗ Ls) for 0 ≤ s ≤ e− 1.

(v) Le−1 is a leading field for ϕ.

Proof. We distinguish three cases.
Case 1: a 6∈ D(ψ0). For every s ∈ [0, e] we establish the following. We

have a 6∈ D(ψs), and so ψs ⊥ [−a] is anisotropic. By Theorem 3 we have
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ψ ⊥ [−a] ∼= ϕ ⊥ H . Thus ψs ⊥ [−a] ∼ ηs by the anisotropy of both forms,
hence ηs ∼= ψs ⊥ [−a]. For s = e − 1 we obtain ηe−1

∼= bσ ⊥ [−a] for some
b ∈ L∗

e−1 and σ the leading form of ψ over Le−1.
This form ηe−1 is a neighbour of the Pfister form 〈1,−ab〉 ⊗ σ (which

is thus anisotropic) and has ζ: = −aσ′ as complementary form, and thus
(−aσ′)⊗Le−1(ηe−1) as first higher kernel form. The kernel form of ϕ⊗L has
a different dimension for each of the fields L = L0, L1, . . . , Le, Le−1(ηe−1).
Hence h > e.

Case 2: a ∈ D(ψe−1). Since ψe = 0, and thus a 6∈ D(ψe), we may apply
Theorem 11. By part (a) of said theorem, (Ls | 0 ≤ s ≤ e− 1) is a truncated
generic splitting tower of ϕ and Com(ηs) = ψs for every s ∈ [0, e − 1]. In
particular, ηe−1 is not split. But ηe−1 ⊗ Le splits, since ϕ ⊗ Le splits. Thus,
by part (b) of Theorem 11, (Ls | 0 ≤ s ≤ e) is a truncated generic splitting
tower of ϕ. Since ϕ ⊗ Le splits, this tower is actually a full generic splitting
tower of ϕ.

Case 3: The rest. Now there exists a largest integer m ∈ [0, e − 2] such
that a ∈ D(ψm). By Theorem 11(a), (Ls | 0 ≤ s ≤ m) is a truncated
generic splitting tower of ϕ and Com(ηs) = ψs for 0 ≤ s ≤ m. Furthermore,
by Theorem 11(b), Com(ηm+1) = ψm+1 ⊥ H , and we have the following
alternatives:

Case 3(a): ind(ψm⊗Lm+1) ≥ 2. Now (Ls | 0 ≤ s ≤ m+ 1) is a truncated
generic splitting tower of ϕ.

Case 3(b): ind(ψm ⊗ Lm) = 1. Now ηm ⊗ Lm+1 = ηm+1.

(Ls | m + 1 ≤ s ≤ e) is a generic splitting tower of Com(ηm+1) ∼
ψm+1 ⊥ H , and we have a 6∈ D(ψm+1). For this form ψm+1 we are in Case 1,
discussed above, and conclude that h(ηm+1) > h(ψm+1) = e− (m+ 1), and
so h(ηm+1) ≥ e −m. In Case 3(a) we have h(ηm+1) = h− (m + 1), and we
obtain h ≥ e+ 1. In case 3(b) we have ηm+1

∼= ηm ⊗L and we may conclude
that h(ηm+1) ≤ h(ηm) = h−m. Therefore, e−m ≤ h−m and so e ≤ h.

Thus e ≤ h in all cases, and in Case 2 we even have e < h. Our analysis
shows furthermore that all the conditions (i) – (iv) of the theorem hold
in Case 2, and are thus equivalent. The implication (ii) ⇒ (v) is trivial.
Assume (v), then ηe−1

∼= aτ ′ where τ is the leading form of ϕ over Le−1.
Thus ψe−1 ∼ Com(aτ ′) = aτ and then ψe−1

∼= aτ , since the forms ψe−1

and τ are both anisotropic. Hence a ∈ D(ψe−1). This proves the implication
(v) ⇒ (i).

Note that the analysis, carried out above, also establishes the following:

Corollary. If there exists an m ∈ [0, e− 1] with a ∈ D(ψm), a 6∈ D(ψm+1),
and ind(ψm ⊗ Lm) ≥ 2, then h > e.
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Base Field

In the following ϕ denotes a regular (quadratic) form over an arbitrary field k,
F denotes a leading field for ϕ and σ denotes the associated leading form of ϕ.

Definition 1. We say that the leading form of ϕ is defined over k if there
exists a form τ over k such that σ ∼= τ ⊗ F .

Obviously this property is independent of the choice of the leading field
F . Moreover, τ is to a large extent uniquely determined by σ. We namely
have the following

Theorem 1 ([K6, Prop. 9.2] for char 6= 2). Assume that the leading form of
ϕ is defined over k.

(i) If the dimension of ϕ is even, then there exists up to isometry precisely
one form τ over k such that τ ⊗ F ∼= σ.

(ii) If the dimension of ϕ is odd, then there exists up to isometry precisely
one form τ over k such that 1 ∈ D(τ) and τ ⊗ F ∼= σ.

(iii) In both cases τ is a Pfister form.

Proof. We choose a generic splitting tower (Kr | 0 ≤ r ≤ h) of ϕ and assume
without loss of generality that F = Kh−1. Let τ1 and τ2 be forms over k such
that

τ1 ⊗Kh−1
∼= τ2 ⊗Kh−1

∼= σ.

Assume that τ1 6∼= τ2. We must have h ≥ 2. Let s be the largest integer
in [0, h − 2] such that τ1 ⊗ Ks 6∼= τ2 ⊗ Ks, and let ζ be the kernel form of
[τ1 ⊥ (−τ2)]⊗Ks. Then ζ 6= 0 and the dimension of ζ is even. For 0 ≤ r ≤ h
let ϕr denote the kernel form of ϕ ⊗ Kr. The form ζ is split by Ks(ϕs).
By the usual argument (the Norm and Subform Theorems) we thus have a
decomposition

ϕs ⊥ ψ ∼= cζ

for some c ∈ K∗
s and some form ψ over Ks. It follows that

ϕs ⊗Ks+1 ∼ (−ψ) ⊗Ks+1,

and thus dimψ ≥ dimϕs+1. We obtain

(∗) 2 dim τ1 ≥ dim ζ ≥ dimϕs + dimϕs+1 ≥ 2 dimϕs+1 + 2.
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If dimϕ is even, this gives a contradiction and so τ1 ∼= τ2.
Assume now that dimϕ is odd and moreover that [1] < τ1 and [1] < τ2.

Then τ1 ⊥ (−τ2) is isotropic and we obtain from (∗) that

2 dim τ1 ≥ dim ζ + 2 ≥ 2 dimϕs+1 + 4,

which is again a contradiction, so that τ1 ∼= τ2 as before.
In addition there always exists a form τ over k such that 1 ∈ D(τ) and

τ ⊗Kh−1
∼= σ (also when dimϕ is odd). Namely, if η is a form over k such

that η ⊗Kh−1
∼= σ, and if an element c ∈ D(η) is chosen, then cη is such a

form τ .
Now let τ be the uniquely determined form over k with 1 ∈ D(τ) and

τ ⊗Kh−1
∼= σ. Further, let t = (t1, . . . , tn) be an n-tuple of unknowns over

k with n: = dim τ . We consider the forms ϕ̃: = ϕ ⊗ k(t) and τ̃ : = τ ⊗ k(t).
By §13, Theorem 3, (Kr(t) | 0 ≤ r ≤ h) is a generic splitting tower of ϕ̃ and
τ̃ ⊗Kh−1(t) is the associated leading form of ϕ̃⊗ k(t) (also in the event that
dimϕ is odd). Since this leading form is a Pfister form we have

τ̃ ⊗Kh−1(t) ∼= [τ(t)τ̃ ] ⊗Kh−1(t).

The form τ(t)τ̃ also represents 1. It follows from what we already proved
that τ(t)τ̃ ∼= τ̃ . This indicates that τ is strongly multiplicative, and thus is a
Pfister form (cf. §20).

Remark. If dimϕ is odd, we cannot dispense with the assumption that 1 ∈
D(τ) in assertion (ii), as the following example shows. Let ρ be a Pfister
form, a ∈ k∗ and 〈1, a〉 ⊗ ρ anisotropic. Then the form ϕ: = ρ ⊥ [a] is a
neighbour of 〈1, a〉 ⊗ ρ with complementary form

η: = Polρ⊥aρ(ρ ⊥ [a]) = Polaρ([a]) = aPolρ([1]) = aρ′.

Thus ϕ has height 2 and leading form ρ ⊗ F , for instance with F = k(ϕ).
However, we do have ρ ⊗ F ∼= (−aρ) ⊗ F , which does not contradict our
theorem since 1 6∈ D(−aρ).

Definition 2. Assume that h(ϕ) > 0 and that the leading form σ of ϕ is
defined over k. Let τ be the Pfister form over k with σ ∼= τ ⊗F . Then we say
that the leading form of ϕ is defined over k by τ .

Examples.

(1) If ϕ is excellent, then the kernel form of ϕ⊗F is definable over k by §22,
Theorem 3 (for this terminology, see §24(C)). This implies, also when
dimϕ is odd, that the leading form of ϕ is defined over k.

(2) Let ϕ ∼ aτ ⊥ ψ with a ∈ k∗, τ a Pfister form of degree n ≥ 1, and ψ
strictly regular with degψ ≥ n+ 1. By §25, Theorem 3 the leading form
of ϕ is defined over k by τ .

(3) Let dimϕ be odd and ∆(ϕ) 6= 1. Let τ be the anisotropic binary Pfister
form with ∆(τ) = ∆(ϕ) (cf. §25, Lemma 1). The form ψ: = ϕ ⊥ (−τ) has
discriminant ∆(ψ) = 1, and thus degree ≥ 2 (cf. §25, Satz 5). We have
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ϕ ∼ τ ⊥ ψ and deg τ = 1. Thus, by the previous example, the leading
form of ϕ is defined over k by τ .

In the search for forms whose leading form is defined over the ground
field, we may restrict ourselves to forms of even dimension by the following
theorem.

Theorem 2 ([K6, Prop. 9.4] for chark 6= 2). Assume that ϕ is not split and
that dimϕ is odd. Let τ be an anisotropic Pfister form over k (of degree ≥ 2).
The leading form of ϕ is defined over k by τ if and only if this is the case for
the companion Com(ϕ).

Proof. Let ψ: = Com(ϕ). If the leading form of ψ is defined over k by τ , then
§26, Theorem 9 shows that the same is true for ϕ {although the leading fields
of ϕ and ψ might not be equivalent, see Theorem 4 below.}

Assume now that the leading form of ϕ is defined over k by τ . We must
show that the same is true for ψ. Let F be a leading field for ϕ, and let
QL(ϕ) = [a] for chark = 2, d(ϕ) = 〈−a〉 for char k 6= 2, where a ∈ k∗. In
both cases we have ϕ ⊥ H ∼= ψ ⊥ [−a] by §26, Theorem 3.

Furthermore, ker(ϕ ⊗ F ) = c(τ ′ ⊗ F ) for some c ∈ F ∗. We see that
QL(ϕ⊗ F ) = [c] for chark = 2, d(ϕ⊗ F ) = 〈−c〉 for char k 6= 2. Therefore c
and a represent the same square class of F , and we may write

ker(ϕ⊗ F ) = (aτ ′) ⊗ F.

Let E be a leading field for ψ and σ the leading form of ψ over E. By
§26, Theorem 9, σ and τ have the same dimension ≥ 4. The kernel form of
ψ ⊗ E is bσ for some b ∈ E∗.

Suppose for the sake of contradiction that σ is not isomorphic to τ̃ : =
τ ⊗ E. Then σ ⊗ E(τ̃ ) is anisotropic. We introduce the form

α: = b(σ ⊗ E(τ̃ )) ⊥ [−a]

over E(τ̃ ) and know from above that ϕ⊗ E(τ̃ ) ∼ α and dimα = dim τ + 1.
And now for a little thought experiment. Let T be a field extension of

E(τ̃ ) for which α ⊗ T is isotropic. Then the kernel form of ϕ ⊗ T , which
coincides with the kernel form of α⊗ T , has dimension ≤ dim τ ′. Thus there
exists a place from F to T over k. Since ϕ⊗ F ∼ (aτ ′)⊗ F and τ ⊗ T splits,
it follows that

α⊗ T ∼ ϕ⊗ T ∼ a(τ ′ ⊗ T ) ∼ [−a].
By the definition of α and the Cancellation Theorem §26, Theorem 6 we
obtain σ ⊗ T ∼ 0.

This thought experiment shows for starters that α itself must be anisotrop-
ic since σ ⊗ E(τ̃ ) is anisotropic. (Take T = E(τ̃ ).) Secondly, it shows that α
splits over every field extension of E(τ̃ ), over which α is isotropic. Thus α
has height 1. By §23 α is up to a scalar factor the unit polar of a Pfister form.
Hence dimα + 1 is a 2-power. This is the contradiction we were looking for
because dimα+ 1 = dim τ + 2 cannot be a 2-power since dim τ is a 2-power
≥ 4. This proves σ ∼= τ ⊗ E.
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We come to the main theorem of this section.

Theorem 3 ([K6, Th. 9.6] for chark 6= 2). Let n ∈ N, let τ be a Pfister form
of degree n over k and let ϕ be a non-split (strictly) regular form of even
dimension over k. The following statements are equivalent:

(i) The leading form of ϕ is defined over k by τ .

(ii) ϕ ≡ τ mod Jn+1(k).

{Recall: Jr(k) is the module of Witt classes of strictly regular forms over k
of degree ≥ r.}

Proof. The implication (ii) ⇒ (i) was already established in §25, Theorem 3.
Assume now that (i) holds. We want to show that the form ψ: = ϕ ⊥ (−τ)
has degree > n. In order to achieve this we will for the first time make serious
use of the theory developed in §13.

We assume without loss of generality that ψ is not hyperbolic. Let
(Kr | 0 ≤ r ≤ h) be a regular generic splitting tower of ϕ (cf. §13, Def-
inition 5) and let ϕr: = ker(ϕ ⊗ Kr). For every r ∈ [0, h] we consider the
field compositum Kr ·k(τ) over k in accordance with §13, Definition 6. Let
J be the set of all r ∈ [0, h] such that ϕr ⊗ Kr ·k(τ) is anisotropic and let
r0 < r1 < . . . < re be the elements of J . We know from §13, Theorem 3,
that (Kri

·k(τ) | 0 ≤ i ≤ e) is a generic splitting tower of ϕ⊗ k(τ) and, since
ϕ⊗k(τ) ∼ ψ⊗k(τ), also of ψ⊗k(τ). Since ψ 6∼ 0 we have e ≥ 1. Furthermore
ϕ⊗ (Kh−1 · k(τ)) ∼ 0, since ϕ⊗Kh−1 has kernel form b(τ ⊗Kh−1) for some
b ∈ K∗

h−1 and τ ⊗ k(τ) ∼ 0. Thus h− 1 6∈ J . Therefore

ker(ψ ⊗Kre−1 · k(τ)) = ϕre−1 ⊗Kre−1 · k(τ)

has dimension > 2n. This means that ψ ⊗ k(τ) has degree > n.
Let E be a leading field for ψ and ρ the associated leading form of ψ.

By §13, Theorem 3, ρ splits over E · k(τ) = E(τ ⊗ E). This implies by §21,
Theorem 1, and since dim ρ = dim τ , that ρ ∼= τ⊗E, and so ψ⊗E ∼ a(τ⊗E)
for some a ∈ E∗. We therefore obtain

ϕ⊗ E ∼ τ ⊗ E ⊥ a(τ ⊗ E) = 〈1, a〉 ⊗ (τ ⊗ E).

In particular we have deg(ϕ⊗ E) = n+ 1 or = ∞. We now make use of the
lemma below. We apply it to ϕ and the field extension E of k and obtain
τ ⊗ E ∼ 0. But this is nonsense because τ ⊗ E ∼= ρ. Thus we must have
degψ > n.

Lemma. Continuing with the assumptions of Theorem 3, let L be a field
extension of k with deg(ϕ⊗ L) > degϕ. Then τ ⊗ L splits.

Proof. Let (Kr | 0 ≤ r ≤ h) be the affine standard tower of ϕ (§13, Defini-
tion 4). Thus, K0 = k and Kr+1 = Kr(ϕr) where ϕr = ker(ϕ⊗Kr). By §13,
Theorem 3, τ ⊗Kh−1 · L splits.

Assume for the sake of contradiction that τ ⊗L is not split. We certainly
have h ≥ 2. Let s ∈ [0, h−2] be the largest integer with τ⊗Ks ·L anisotropic.
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Let τ̃ : = τ ⊗Ks · L and ϕ̃s: = ϕ⊗Ks · L. Then Ks+1 · L = (Ks · L)(ϕ̃s) and
τ̃ ⊗ (Ks ·L)(ϕ̃s) = 0. By the usual argument it follows that ϕ̃s < cτ̃ for some
c ∈ (Ks · L)∗. In particular, dimϕs ≤ dim τ = dimϕh−1, which is nonsense.
Therefore τ ⊗ L must be split.

Remark. We proved the converse of statement (i) in §25, Theorem 3. For
characteristic 6= 2 the converse of statement (ii) of this theorem was also
proved in [K6, p. 23 ff.]: If ϕ ≡ aτ mod Jn+2(k), then the (h − 1)-st kernel
form ϕh−1 is defined over k by aτ , ϕh−1

∼= (aτ) ⊗ Kh−1. So far it has not
been possible to extend the proof in [K6] to characteristic 2. One runs into
the problem formulated at the end of §24, Part (C), which must be solved at
least in a special case.

By means of Theorem 3 we can improve upon Theorem 2:

Theorem 4. Let ϕ again be a nondegenerate regular form of odd dimension
over k, and let ψ be the companion of ϕ. Let ak∗2 be the square class with
[a] = QL(ϕ), in case chark = 2, and 〈a〉 = −d(ϕ), in case char k 6= 2. Let
(Kr | 0 ≤ r ≤ h) be a generic splitting tower of ϕ with associated kernel
forms ϕr: = ker(ϕ⊗Kr) and let (Ls | 0 ≤ s ≤ e) be a generic splitting tower
of ψ with associated kernel forms ψs: = ker(ψ⊗Ls). Assume furthermore that
the leading form of ϕ – therefore also the leading form of ψ – is defined over
k by τ . Finally, let h > 1. {Note that otherwise ϕ ∼= aτ ′, ψ ∼= aτ , which is
not of interest here.} Then the following statements are equivalent:

(i) dimϕh−2 > dim τ + 1.

(ii) Le−1 ∼k Kh−1.

(iii) a ∈ D(ψe−1), and so ψe−1
∼= (aτ) ⊗ Le−1.

If these statements do not hold, then Le−1 ∼k Kh−2.

Proof. In §26, Theorem 9, we already determined that there exists a place
from Le−1 to Kh−1 over k. Furthermore we have ϕ ⊥ H ∼= ψ ⊥ [−a], and so
ϕ⊗Le−1 ∼ ψe−1 ⊥ [−a]. Hence there is certainly a place from Kh−2 to Le−1

over k. This place can be extended to a place from Kh−1 to Le−1 if and only
if the form ψe−1 ⊥ [−a] is isotropic, so that a ∈ D(ψe−1). This establishes
the equivalence (ii) ⇔ (iii).

If the form ψe−1 ⊥ [−a] is anisotropic, then it is the kernel form of
ϕ⊗Le−1. If dimϕh−2 > dim τ+1, this cannot happen for dimension reasons.
Therefore ψe−1 ⊥ [−a] is isotropic in this case. This proves (i) ⇒ (iii).

Now we assume that (i) does not hold, in other words that dimϕh−2 =
dim τ + 1. We want to show that then Le−1 ∼k Kh−2. Since Kh−1 is not
equivalent to Kh−2 over k, this will imply that (iii) does not hold. This will
prove the implication (iii) ⇒ (i), in addition to the last statement of the
theorem.

We already established above that there is a place fromKh−2 to Le−1 over
k. We have to show that there is also a place over k in the reverse direction.
By the generic splitting theory this means that the kernel form of ψ ⊗Kh−2

must have dimension ≤ 2n.
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Let m: = ind(ϕ⊗Kh−2). Then

2n + 1 = dimϕh−2 = dimϕ− 2m.

Furthermore we have ind(ψ ⊗Kh−2) ≥ m. Hence,

dimker(ψ ⊗Kh−2) ≤ dimψ − 2m = 2n + 2.

If the inequality is strict, then dimker(ψ ⊗Kh−2) ≤ 2n, and we are done.
We assume then that the form α: = ker(ψ⊗Kh−2) has dimension 2n + 2,

and want to obtain a contradiction. We have degα ≥ degψ = n, but dimα <
2n+1, since n ≥ 2. This forces degα = n. By §13, Theorem 3 it is now clear
that α has a leading form overKh−2, defined by τ⊗Kh−2. (The form τ⊗Kh−2

is in particular anisotropic.) By Theorem 3 this means that

α ∼ (τ ⊗Kh−2) ⊥ χ

for some form χ over Kh−2 of degree > n. Let τ̃ : = τ ⊗ Kh−2. We have
χ⊗Kh−2(τ̃ ) ∼ α⊗Kh−2(τ̃ ). Therefore α⊗Kh−2(τ̃ ) has degree > n. However,
dimα < 2n+1. This forces α ⊗ Kh−2(τ̃ ) ∼ 0. The theory of divisibility by
Pfister forms (§21, Theorem 1) then tells us that α ∼= γ ⊗ τ̃ for a suitable
form γ over Kh−2. Now dimα is in particular divisible by dim τ = 2n. This
is the contradiction we were looking for, since dimα = 2n + 2 < 2n+1. This
establishes that Le−1 is specialization equivalent to Kh−2 over k.

In the proof of Theorem 4 we did not use Theorem 12 of §26. (Would the
proof have been simpler if we had?) If (i) – (iii) in Theorem 4 are valid, this
theorem does give us the additional information that the tower (Ls | 0 ≤ s ≤
e) is a generic splitting tower of ϕ, and in particular that h = e.
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§28 Quadratic Places; Specialization of

Bilinear Forms

In this section we mean by a “form” always a nondegenerate symmetric bi-
linear form.

To begin with we recall a result from §3. Let λ:K → L ∪ ∞ be a place
and o = oλ the associated valuation ring. We defined an additive map

λW :W (K) −→W (L),

which has the following values for one-dimensional forms (= square classes):

(1) λW 〈ε〉 = 〈λ(ε)〉 for ε ∈ o∗,

(2) λW (α) = 0 for α ∈ Q(K) \Q(o).

Here we identified the square class group Q(o) = o∗/o∗2 with its image in
Q(K) under the natural map εo∗2 7→ εK∗2.

More generally we have that the natural map {M} 7→ {K ⊗o M} from
W (o) to W (K) is injective. (Here {M} denotes the Witt class of a nondegen-
erate o-moduleM). Thus we can also regardW (o) as a subring of W (K). The
restriction of λW to W (o) can then be interpreted as the ring homomorphism
W (o) → W (L), induced by the ring homomorphism λ|o: o → L. The restric-
tion λW |W (o) is thus also multiplicative. Furthermore, λW :W (K) → W (L)
is semi-linear with respect to W (o) → W (L). In other words, we have for
ξ ∈ W (o) and η ∈W (K), that

λW (ξη) = λW (ξ) · λW (η).

Starting from the map λW we developed a specialization theory for bilinear
forms in §3. In particular we associated to a form ϕ with good reduction
with respect to λ (i.e., a form over K that comes from a nondegenerate
bilinear module over o) a form λ∗(ϕ) over L such that {λ∗(ϕ)} = λW ({ϕ})
and dimλ∗(ϕ) = dimϕ. The form λ∗(ϕ) is only determined up to stable
isometry by the form ϕ however. In truth we thus associated to ϕ only a
stable isometry class of forms over L. Nonetheless we will disregard this fact
and just speak of λ∗(ϕ) as if it were a form over L.

Note that if charL 6= 2, then stable isometry is the same as isometry by
Witt’s Cancellation Theorem and so λ∗(ϕ) is uniquely determined – up to
isomorphism – by λ and ϕ.

Now we would like to associate to a “quadratic place” Λ:K → L∪∞ (see
the following definition) a map ΛW :W (K) → W (L) in a similar manner as
was done above and, using this foundation, develop a specialization theory
for quadratic places that generalizes the theory developed in §3.
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Definition 1. Let K and L be fields. A quadratic place (= Q-place) from K
to L is a triple (λ,H, χ) consisting of a place λ:K → L ∪ ∞ (in the usual
sense), a subgroup H of Q(K) that contains Q(o) (with o: = oλ) and a group
homomorphism χ:H → Q(L) with χ(〈ε〉) = 〈λ(ε)〉 for every ε ∈ o∗, and thus
χ(α) = λ∗(α) = λW (α) for every α ∈ Q(o).

We will often denote the triple (λ,H, χ) by a Greek capital letter, for
instance Λ, and use the symbolic notation Λ:K → L ∪∞. We call a group
homomorphism from a subgroup H of Q(K) to Q(L) a (Q(L)-valued) char-
acter of H .

Example. To every place λ:K → L ∪∞ we can associate a quadratic place
λ̂: = (λ,Hλ, χλ) by letting Hλ = Q(o) and taking for χλ the character 〈ε〉 7→
〈λ(ε)〉 given by λ. This Q-place λ̂ can then be “extended” to a Q-place
Λ: = (λ,H, χ) if we choose a subgroup H of Q(K) which contains Q(o) and
somehow continue the character χλ to a character χ:H → Q(L). Such a
continuation is always possible since H and Q(L) are elementary abelian of
exponent 2, and can thus be interpreted as F2-vector spaces.

In this set-up we imagine that λ̂ is the same object as λ, but just dressed
up, so that the notion of quadratic place generalizes the notion of place.

Theorem 1. Let Λ = (λ,H, χ) be a Q-place from K to L.

(a) There is precisely one additive map

ΛW : W (K) −→W (L)

with the following properties:

(3) ΛW (α) = χ(α), if α ∈ H.

(4) ΛW (α) = 0, if α ∈ Q(K) \H.

(b) The restriction of ΛW to the ring W (K,H), generated by H in W (K),
is a ring homomorphism from W (K,H) to W (L), and ΛW is semilinear
with respect to this ring homomorphism.

Proof. The uniqueness of ΛW is clear since W (K) is additively generated by
Q(K). In order to prove the existence, we choose a subgroup H0 of H with
H = H0 ×Q(o) (i.e., a “complement” H0 of Q(o) in H). Then we define

(5) ΛW (ξ): =
∑

α∈H0

χ(α)λW (αξ) (ξ ∈W (K)).

This map ΛW :Q(K) → Q(L) is clearly additive. It satisfies conditions (3)
and (4), and also possesses the properties stated in part (b), as can be verified
instantly.

Assume now that Λ = (λ,H, χ):K → L∪∞ is a Q-place and that o: = oλ.
We choose a subgroup H0 of H with H : = H0 ×Q(o). Let ϕ be a form over
K.
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Definition 2. We say that ϕ has good reduction (abbreviated GR) with re-
spect to Λ, when ϕ has a decomposition (modulo stable isometry)

(6) ϕ ≈ ⊥
α∈H0

αϕα,

in which the forms ϕα are λ-unimodular. We then also say that ϕ is Λ-
unimodular. Here we used the notation αϕα: = α ⊗ ϕα. (If α = 〈a〉, then
αϕα = aϕα up to isometry.)

One should note that Λ-unimodularity is independent of the choice of the
complement H0 of Q(o) in H .

Example. If H = Q(K), then every form ϕ over K has good reduction with
respect to Λ. Namely, if ϕ ∼= r ×

(
0
1

1
0

)
is hyperbolic, then ϕ is actually λ-

unimodular. Otherwise we choose a diagonalization ϕ ∼= 〈a1, . . . , an〉 and take
those elements 〈aj〉 ∈ Q(K) together that are in the same coset of Q(o).

Definition 3. Assume that ϕ has GR with respect to Λ. We choose a de-
composition (6) of Λ and let

(7) Λ∗(ϕ): = ⊥
α∈H0

χ(α)λ∗(ϕα).

We call Λ∗(ϕ) a specialization of ϕ with respect to Λ.

Theorem 2. If ϕ has GR with respect to Λ then, up to stable isometry, the
form Λ∗(ϕ) does not depend on the choice of the decomposition (6), and also
not on the choice of the complement H0 of Q(o) in H.

Proof. We clearly have

(8) ΛW ({ϕ}) = {Λ∗(ϕ)}.

Moreover, dimΛ∗(ϕ) = dimϕ. Noting that a form over L is uniquely de-
termined up to stable isometry by its Witt class and dimension finishes the
proof.

In the future we will call Λ∗(ϕ) “the” specialization of ϕ with respect to
Λ. Although sloppy, we hope this notation is harmless and helpful.

Remark. This notion of specialization generalizes the one from §3: if λ is a
place from K to L, then a form ϕ over K has GR with respect to λ̂ if and
only if it has GR with respect to λ, and then we have λ̂∗(ϕ) ≈ λ∗(ϕ).

Our goal is now to use these notions of good reduction and specialization
to build a theory, analogous to the theory developed in §3 and then – in the
case charL 6= 2 – to obtain results about the generic splitting of Λ∗(ϕ) from
the generic splitting behaviour of ϕ, analogous to §4, see §30 below.

It is obvious that for forms ϕ, ψ over K which have GR with respect to
Λ, also ϕ ⊥ ψ and ϕ⊗ ψ have GR with respect to Λ and that
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204 Chapter IV. Specialization with Respect to Quadratic Places

(9) Λ∗(ϕ ⊥ ψ) ≈ Λ∗(ϕ) ⊥ Λ∗(ψ), Λ∗(ϕ⊗ ψ) ≈ Λ∗(ϕ) ⊗ Λ∗(ψ).

It is not clear however that the analogue of §3, Theorem 4 remains valid.
When ϕ and ϕ ⊥ ψ have GR with respect to Λ, why should ψ then also have
GR with respect to Λ?

§3, Theorem 4 was crucial for the development of the generic splitting
theory of §4. In order to save this theorem we will now broaden the notion
of “good reduction” to the new notion of “almost good reduction”.

Given a Q-place Λ = (λ,H, χ), we choose a subgroup S of Q(K) with
Q(K) = S ×H . For every form ϕ over K we then have a decomposition

(10) ϕ ≈⊥
s∈S

sϕs

with Λ-unimodular forms S (even with ∼= instead of ≈). This is obvious for
ϕ ∼= 〈a〉 one-dimensional and for ϕ ∼=

(
0
1

1
0

)
, and so clear for every form ϕ

over K. We call the decomposition (10) a Λ-modular decomposition of ϕ.

Lemma 1. For every s ∈ S, the Witt class of Λ∗(ϕs) in a Λ-modular de-
composition (10) of ϕ is uniquely determined by ϕ, Λ and s.

Proof. For every s ∈ S we choose a decomposition (see (6) above)

ϕs ≈ ⊥
α∈H0

αϕs,α

with λ-unimodular forms ϕs,α. Then

ϕ ≈ ⊥
(s,α)∈S×H0

sαϕs,α.

Clearly, λW ({sαϕ}) = {λ∗(ϕs,α)}. Hence the Witt class of λ∗(ϕs,α) is
uniquely determined by ϕ and Λ for fixed s and α. It follows that the Witt
class of

Λ∗(ϕs) ≈ ⊥
α∈H0

χ(α)λ∗(ϕs,α)

is uniquely determined by ϕ and Λ for fixed s and H0. By Theorem 2, Λ∗(ϕs)
does not change, up to stable isometry, if we pass from H0 to a different
complement of Q(o) in H .

Definition 4. Consider a Λ-modular decomposition (11) of ϕ. We say that
ϕ has almost good reduction (abbreviated AGR) with respect to Λ if all forms
Λ∗(ϕs) with s ∈ S, s 6= 1, are metabolic. We then define

Λ∗(ϕ): = Λ∗(ϕ1) ⊥
dimϕ− dimϕ1

2
× H̃,

with H̃ : =
(

0
1

1
0

)
, and call Λ∗(ϕ) “the” specialization of ϕ with respect to Λ..

It is clear from Lemma 1 that the property AGR is independent of the
choice of Λ-modular decomposition (10), and that also the Witt class of Λ∗(ϕ)
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does not depend on this choice. Since dimΛ∗(ϕ) = dimϕ we have that Λ∗(ϕ)
is uniquely determined by ϕ up to stable isometry. It is now also clear that
the property AGR and the stable isometry class of Λ∗(ϕ) are independent of
the choice of the complement S of H in Q(K).

One should note that for the property AGR all three components λ,H, χ
of Λ = (λ,H, χ) play a role, whereas GR only depends on λ and H .

One easily verifies the following

Theorem 3. Let ϕ and ψ be forms over K. If ϕ and ψ have almost good
reduction with respect to Λ, this is also the case for ϕ ⊥ ψ and ϕ ⊗ ψ, and
we have

Λ∗(ϕ ⊥ ψ) ≈ Λ∗(ϕ) ⊥ Λ∗(ψ),(11)

Λ∗(ϕ⊗ ψ) ≈ Λ∗(ϕ) ⊗ Λ∗(ψ).(12)

In addition, the analogue of §3, Theorem 4 also holds for almost good
reduction. The proof of this analogue – in the current state of affairs – will
turn out to be trivial.

Theorem 4. Let ϕ and ψ be forms over K. Assume that the forms ϕ and
ϕ ⊥ ψ have almost good reduction with respect to Λ. Then ψ also has almost
good reduction with respect to Λ.

Proof. We choose Λ-modular decompositions

ϕ ≈⊥
s∈S

sϕs, ψ ≈⊥
s∈S

sψs.

Then
ϕ ⊥ ψ ≈⊥

s∈S

s(ϕs ⊥ ψs)

is a Λ-modular decomposition of ϕ ⊥ ψ. For every s ∈ S we have

Λ∗(ϕs ⊥ ψs) ≈ Λ∗(ϕs) ⊥ Λ∗(ψs).

If s 6= 1, then Λ∗(ϕs) ∼ 0 and Λ∗(ϕs ⊥ ψs) ∼ 0, and thus also Λ∗(ψs) ∼ 0.
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§29 Almost Good Reduction with Respect to

Extensions of Quadratic Places

In this section a “form” will again always mean a nondegenerate (symmetric)
bilinear form.

Definition 1. Let Λ:K → L ∪ ∞ and Λ′:K → L ∪ ∞ be two quadratic
places from K to L, Λ = (λ,H, χ), Λ′ = (λ′, H ′, χ′). We call Λ′ an expansion
of Λ, and write Λ ⊂ Λ′, when λ = λ′, H ⊂ H ′, and χ′|H = χ.

Note that every Q-place Λ = (λ,H, χ) is an expansion of the Q-place

λ̂ = (λ,Q(o), λW |Q(o)) with o = oλ.

Remark. If Λ ⊂ Λ′ and if some form ϕ over K has good reduction (respec-
tively, almost good reduction) with respect to Λ, then it obviously has GR
(respectively, AGR) with respect to Λ′ and we have Λ′

∗(ϕ) = Λ∗(ϕ).

Consider a Q-place Λ = (λ,H, χ) from K to L. If k is a subfield of K,
we obtain from Λ a Q-place Γ = (γ,D, ψ) from k to L as follows: let γ be
the restriction λ|k of λ. The group D ⊂ Q(k) is the preimage of H under
the homomorphism j:Q(k) → Q(K), which maps a square class 〈a〉 = ak∗2

of k to the square class 〈a〉K = aK∗2. (Note that 〈a〉K = 〈a〉 ⊗K when we
interpret square classes as one-dimensional forms.) Finally ψ is the character
χ ◦ j:D → Q(L).

Definition 2. We call Γ the restriction of the Q-place Λ to k and write
Γ = Λ|k.

Caution! If Λ = λ̂ for a place λ:K → L ∪∞ and γ = λ|k, then Λ|k ⊃ γ̂, but
Λ|k is in general different from γ̂.

The following important theorem for quadratic places has no counterpart
for places.

Theorem 1. Let k be a subfield of K and ϕ a form over k. Let Λ:K → L∪∞
be a Q-place and Γ = Λ|k. The form ϕ ⊗ K has AGR with respect to Λ if
and only if ϕ has AGR with respect to Γ , and then Λ∗(ϕ⊗K) = Γ∗(ϕ).

Proof. As above we write Λ = (λ,H, χ), Γ = (γ,D, ψ) with γ = λ|k etc.
We choose a subgroup S of Q(k) with Q(k) = S × D. The homomorphism
j:Q(k) → Q(K) maps S isomorphically to a subgroup of Q(K), which we
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208 Chapter IV. Specialization with Respect to Quadratic Places

denote by SK . We further choose a subgroup T ⊃ SK of Q(K) such that
Q(K) = T × H . It is always possible to do this. We now start with a Γ -
modular decomposition of ϕ,

ϕ ≈⊥
s∈S

s ϕs,

for Γ -unimodular forms ϕs over k. We can interpret

ϕ⊗K ≈⊥
s∈S

sK(ϕs ⊗K)

as a Λ-modular decomposition of ϕ⊗K for the decomposition Q(K) = T×H ,
in which the components for t ∈ T \SK are all zero. By definition ϕ has AGR
with respect to Γ if and only if Γ∗(ϕs) ∼ 0 for all s 6= 1 in S, and ϕ⊗K has
AGR with respect to Λ if and only if Λ∗(ϕs ⊗K) ∼ 0 for all s 6= 1 in S. But
for every s ∈ S we have Λ∗(ϕs ⊗K) ≈ Γ∗(ϕs). Thus ϕ ⊗K has AGR with
respect to Λ if and only if ϕ has AGR with respect to Γ , and in this case we
have, with r: = 1

2 (dimϕ− dimϕ1), that

Λ∗(ϕ⊗K) = Λ∗(ϕ1 ⊗K) ⊥ r × H̃ ≈ Γ∗(ϕ1) ⊥ r × H̃ = Γ∗(ϕ).

Definition 3. As before, let K be a field and k a subfield of K. Consider
Q-places Λ:K → L ∪ ∞ and Γ : k → L ∪ ∞. We call Λ an extension of Γ
when Λ|k ⊃ Γ , and a strict extension of Γ when actually Λ|k = Γ .

Theorem 2. Let Λ:K → L ∪∞ be an extension of Γ : k → L ∪∞. Let ϕ be
a form over k which has AGR with respect to Γ . Then ϕ⊗K has AGR with
respect to Λ and Λ∗(ϕ⊗K) = Γ∗(ϕ).

Proof. By Theorem 1 the statement holds when Λ is a strict extension of Γ .
Thus it suffices to consider the case where K = k and Λ = (λ,H, χ) is an
expansion of Γ = (γ,D, ψ). Thus, let K = k, D ⊂ H , χ|D = ψ.

We choose subgroups S1 of H and T of Q(k) with H = S1 ×D, Q(k) =
T ×H . Then S: = T × S1 is a subgroup of Q(k) with Q(k) = S ×D. Let

ϕ ≈ ⊥
(α,β)∈T×S1

αβ ϕα,β

be a Γ -modular decomposition of ϕ. We let

ϕα: = ⊥
β∈S1

β ϕα,β (α ∈ T ).

For every α ∈ T the form ϕα is Λ-unimodular and

(1) Λ∗(ϕα) ≈ ⊥
β∈S1

χ(β) Γ∗(ϕα,β).

It follows that
ϕ ≈ ⊥

α∈T

α ϕα

Page: 208 job: 372 macro: PMONO01 date/time: 15-Dec-2009/22:24



§29 Almost Good Reduction with Respect to Extensions of Q-Places 209

is a Λ-modular decomposition of ϕ. If α 6= 1, then αβ 6= 1 for every β ∈ S1,
and so Γ∗(ϕαβ) ∼ 0 for every β ∈ S1. From (1) we then see that Λ∗(ϕα) ∼ 0.
Therefore ϕ has AGR with respect to Λ.

Furthermore,

(2) Λ∗(ϕ) ≈ Λ∗(ϕ1) ⊥
dimϕ− dimϕ1

2
× H̃.

If β ∈ S1, β 6= 1, then Γ∗(ϕ1,β) ∼ 0, and we see from the expression (1) with
α = 1 that

(3) Λ∗(ϕ1) ≈ Γ∗(ϕ1,1) ⊥
dimϕ1 − dimϕ1,1

2
× H̃.

From (2) and (3) we obtain

Λ∗(ϕ) ≈ Γ∗(ϕ1,1) ⊥
dimϕ− dimϕ1,1

2
× H̃ ≈ Γ∗(ϕ).

Theorem 3. Let Γ : k → L∪∞ be a Q-place and ϕ a form over k which has
AGR with respect to Γ . Assume that there exists a field extension K ⊃ k such
that ϕ⊗K is isotropic and Γ has an extension to a Q-place Λ:K → L∪∞.
Then Γ∗(ϕ) is isotropic. More precisely,

indΓ∗(ϕ) ≥ ind(ϕ⊗K).

Proof. We have ϕ⊗K ≈ ψ0 ⊥ r×H̃ with ψ0 anisotropic, r = ind(ϕ⊗K) > 0.
By Theorem 2, ϕ⊗K has AGR with respect to Λ and Γ∗(ϕ) ≈ Λ∗(ϕ⊗K).
Theorem 4 from §28 tells us that ψ0 has AGR with respect to Λ. Therefore

Γ∗(ϕ) ≈ Λ∗(ψ0) ⊥ r × H̃.

Theorem 3 inspires the hope that for almost good reduction there are
theorems about the generic splitting of Γ∗(ϕ), analogous to those in §4. As
in §4 one will have to assume that the characteristic of L is different from
two though.
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§30 Realization of Quadratic Places;

Generic Splitting of Specialized Forms in

Characteristic 6= 2

We consider fields of arbitrary characteristic and want to investigate “real-
izations” of a quadratic place in the sense of the following definition.

Definition 1. Let Λ:K → L ∪∞ be a quadratic place. A realization of Λ
(as an ordinary place) is a pair (i, µ) consisting of a field extension i:K →֒ E
and a place µ:E → L ∪ ∞ with the property Λ ⊂ µ̂|K. {Here µ̂ denotes
the quadratic place determined by µ, cf. §28.} The realization is called strict
when actually Λ = µ̂|K.

Strict realizations are not easy to find, but in general the following theo-
rem holds which suffices for our generic splitting theory.

Theorem 1. For every quadratic place Λ:K → L∪∞ there exists a realiza-
tion (i:K →֒ E, µ) with E purely transcendental over K.

For the proof we need a lemma, which follows easily from general princi-
ples pertaining to the extension of valuations, cf. [Bo2, §2, n◦ 4, Prop.3 and
§8, n◦ 3, Th.1].

Lemma 1. Let K be a quadratic field extension of a field E, K = E(α) with
α2 = a ∈ E, α 6∈ E. Let ρ:E → L ∪∞ be a place with ρ(ac2) = 0 or ∞ for
all c ∈ E. Then ρ extends uniquely to a place λ:K → L ∪∞.

Proof of Theorem 1. Let Λ = (λ,H, χ), o: = oλ and m the maximal ideal of
the valuation ring o. We choose a subgroup P of Q(K) with Q(K) = P×Q(o)
and a family (πi | i ∈ I) in m such that the square classes 〈πi〉, i ∈ I, form a
basis of the F2-vector space P . Finally we choose families of indeterminates
(ti | i ∈ I) and (ui | i ∈ I) over the fields K and L respectively.

Let E′: = K(ti | i ∈ I) and F : = L(ui | i ∈ I). The place λ:K → L ∪∞
extends uniquely to a place λ̃:E′ → F ∪∞ with λ̃(ui) = ti for every i ∈ I, cf.
[Bo2, §10, Prop.2]. {Note: with õ: = oλ̃ and m̃ the maximal ideal of õ we have
õ/m̃ ∼= (o/m)(ti | i ∈ I), where ti denotes the image of ti in õ/m̃. The family
(ti | i ∈ I) is algebraically free over o/m. The natural map K∗/o∗ → E′∗/õ∗

is an isomorphism.}
For every i ∈ I and f ∈ E′ we have λ̃(πif

2) = 0 or ∞. Let E: =

E′(
√
πit

−1
i | i ∈ I). This field is again purely transcendental over K. It

follows from Lemma 1 (possibly with Zorn’s lemma) that λ̃ extends uniquely
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to a place ρ:E → F ∪ ∞. (We have ρ(
√
πit

−1
i ) = 0 for every i ∈ I.) Now

〈πi〉E = 〈ti〉E . Thus 〈πi〉E has GR with respect to ρ and ρ∗(〈πi〉E) = 〈ui〉 for
every i ∈ I.

Finally we choose for every i ∈ I an element ai of L with χ(〈πi〉) = 〈ai〉.
There exists a place σ:F → L∪∞ over L, in general not uniquely determined,
with σ(ui) = ai for every i. For every such place σ we have σ̂ ◦ ρ |K ⊃ Λ,
which can be verified easily.

In what follows we require that all fields have characteristic 6= 2. As
before, a “form” is a nondegenerate (symmetric) bilinear form, which is now
the same as a nondegenerate quadratic form.

As indicated at the end of §29, we want to study the generic splitting of
quadratically specialized forms Λ∗(ϕ) of forms with almost good reduction in
a manner, similar to what was done in §4 for specialized forms λ∗(ϕ) of forms
with good reduction. For this purpose we need a supplement to Theorem 2 in
§4 (which itself is a special case of §9, Theorem 4) about generic zero fields.

Theorem 3 [K5, Th.3.3.ii]. Let γ: k → L ∪∞ be a place and ϕ a form over
k with bad (= not good) reduction with respect to γ. Assume there exists an
element c ∈ D(ϕ) with γ(c) 6= 0,∞. Then γ extends to a place λ: k(ϕ) →
L ∪∞.

Proof. We may assume that ϕ = 〈a1, . . . , an〉 with n ≥ 2, γ(ai) 6= ∞ for
all i, γ(a1) 6= 0, γ(anc

2) = 0 or ∞ for every c ∈ k. We can write k(ϕ) =

k(x1, . . . , xn) with the only relation
n∑
1
aix

2
i = 0. The elements x1, . . . , xn−1

are algebraically independent over k and k(ϕ) is a quadratic extension E(xn)
of the purely transcendental extension E = k(x1, . . . , xn−1) of k.

Let u1, . . . , un−1 be indeterminates over L and F : = L(u1, . . . , un−1).
Then γ has a unique extension µ:E → F with µ(xi) = ui (i = 1, . . . , n− 1).
We want to show that µ(x2

nz
2) = 0 or ∞ for every z ∈ E. By Lemma 1 above

we then know that µ extends to a place ρ: k(ϕ) → F ∪∞. By composing ρ
with a place σ:F → L∪∞ over L, we obtain a place λ = σ◦ρ: k(ϕ) → L∪∞,
which extends γ.

Let z ∈ E∗. We write z = dfg−1 with d ∈ k and polynomials f, g ∈
k[x1, . . . , xn−1] whose coefficients are all in the valuation ring o of γ, but not
all in the maximal ideal of o. Then µ(f) and µ(g) are finite and nonzero. We
obtain

µ(x2
nz

2) = −[γ(a1)u
2
1 + . . .+ γ(an−1)u

2
n−1]µ(f)2µ(g)−2γ(a−1

n d2).

On the right hand side all factors, except the last one, are finite and nonzero.
In contrast, γ(a−1

n d2) = 0 or ∞. Therefore the same is true for µ(x2
nz

2).

Theorem 4. Let γ: k → L ∪ ∞ be a place and ϕ a form over k which has
AGR with respect to γ̂. Assume that the form γ̂∗(ϕ) is isotropic. Then there
exists a place λ: k(ϕ) → L ∪∞, which extends γ.
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Proof. Let Γ : = γ̂. If ϕ has GR with respect to γ then our statement is covered
by Theorem 2 from §4, since γ̂∗(ϕ) = γ∗(ϕ) in this case. Assume now that ϕ
has bad reduction with respect to γ. We choose a subgroup P of Q(K) with
Q(k) = Q(oγ) × P . Let

ϕ ∼= ⊥
α∈P

α ϕα

be a Γ -modular decomposition of ϕ. This implies that all forms ϕα are γ-
unimodular. If ϕ1 6= 0 then Theorem 3 tells us that γ extends to a place from
k(ϕ) to L.

Finally assume that ϕ1 = 0. We have dimϕ = dimΓ∗(ϕ) ≥ 2. Thus
there certainly exists an α0 ∈ P with ϕα0 6= 0. Since ϕ has AGR, we have
γ∗(ϕα0) ∼ 0. The form ϕ̃: = α0ϕ has AGR with respect to Γ , since ϕ1 = 0
and thus γ∗(ϕ1) = 0. (γ∗(ϕ1) ∼ 0 would suffice.) We have k(ϕ) = k(ϕ̃). Γ∗(ϕ̃)
has an orthogonal summand γ∗(ϕα0) and is thus isotropic. By the above γ
extends to a place from k(ϕ̃) to L.

Now we can prove a theorem, crucial for a generic splitting theory of
specialized forms. It is the converse of §29, Theorem 3 in characteristic 6= 2.

Theorem 5. Let Γ : k → L∪∞ be a Q-place and ϕ a form over k which has
AGR with respect to Γ . Assume that the form Γ∗(ϕ) is isotropic. Let K ⊃ k
be a generic zero field. Then there exists a Q-place Λ:K → L ∪ ∞, which
extends Γ {i.e., with Λ|k ⊃ Γ , cf. §29, Definition 3}.

Proof. Following Theorem 1 we choose a purely transcendental extension E ⊃
k together with a place µ:E → L∪∞ such that µ̂|k ⊃ Γ . By §29, Theorem 2,
ϕ⊗E has AGR with respect to µ̂ and µ̂∗(ϕ⊗E) = Γ∗(ϕ). Therefore µ̂∗(ϕ⊗E)
is isotropic. The free compositum K · E of K and E over k is specialization
equivalent to k(ϕ) · E = E(ϕ ⊗ E) over E. By Theorem 4 we can extend µ
to a place ρ:K · E → L ∪ ∞. Let Λ:K → L ∪ ∞ be the restriction of the
Q-place ρ̂ to K. Clearly,

Λ|k = (ρ̂ |K)|k = ρ̂ |k = (ρ̂ |E)|k,

and also ρ̂ |E ⊃ µ̂. Therefore

Λ|k ⊃ µ̂|k ⊃ Γ.

With this theorem and §29, Theorem 3, we have all the ingredients at
our disposal to replicate the arguments of §4 about generic splitting of a
specialized form. If we traverse the proof of §4, Theorem 3 and replace the
words “place” and “good reduction” everywhere by “Q-place” and “almost
good reduction” respectively, we obtain the following theorem about the Witt
decomposition of a specialized form.

Theorem 6. Let ϕ be a form over a field k. Let (Kr | 0 ≤ r ≤ h) be a generic
splitting tower of ϕ with associated higher kernel forms ϕr and indices ir. Let
Γ : k → L∪∞ be a Q-place, with respect to which ϕ has almost good reduction.
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214 Chapter IV. Specialization with Respect to Quadratic Places

Finally, consider a Q-place Λ:Km → L ∪∞ for some m, 0 ≤ m ≤ h, which
extends Γ and which in the case m < h cannot be extended to Km+1. Then
ϕm has good reduction with respect to Λ. The form Γ∗(ϕ) has kernel form
Λ∗(ϕ) and Witt index i0 + . . .+ im.

A subtle point to make here is that ϕm has GR with respect to Λ, not
just AGR. Namely, if ϕm only had AGR, then Λ∗(ϕm) would certainly be
isotropic.

We now also obtain a detailed proposition about the generic splitting of
Γ∗(ϕ), which parallels word for word Scholium 3 of §4, and whose formulation
we may thus leave to the Reader.
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Quadratic Forms

The splitting theory of a quadratically specialized form, developed above,
required the assumption that the characteristic is different from two. We
would like to establish such a theory also for characteristic two, generalizing
our theory in Chapter I, from §5 onwards, and in Chapter II.

Thence we will consider quadratic forms instead of bilinear forms. In the
process we will endeavour to stay as close as possible to the specialization
concept of “almost good reduction”, developed in §28–30. Nevertheless im-
portant new problems will occur, which all arise from the lack of obedience
of many forms and the existence of quasilinear parts. An obvious, immediate
generalization of the concept of “almost good reduction” will not suffice.

We first recall some definitions from §7 and §11.
Let λ:K → L ∪∞ be a place between fields of arbitrary characteristic,

o = oλ, m = mλ, k = o/m. The place λ yields a field embedding λ: k → L.
We choose a subgroup T of Q(K) with Q(K) = T × Q(o). A quadratic

space (E, q) = E over K is called weakly obedient with respect to λ if it has a
decomposition

(1) E = ⊥
α∈T

Fα, Fα ∼= 〈α〉 ⊗ Eα

in which every Eα is a quadratic space over K of the form

(2) Eα = K ⊗o Mα = KMα,

for some quadratic module Mα over o, which is free of finite rank, and for
which the quadratic module Mα/mMα over k is nondegenerate. (Mα is then
called “reduced nondegenerate”.) We also called (1) a weakly λ-modular de-
composition of E. We described spaces of the form (2) as having fair reduction
(FR), and denoted the space Mα/mMα⊗λ L by λ∗(Eα). We saw in §11 that
for every α the Witt class {λ∗(Eα)} is determined solely by E, λ and α.

We should keep in mind that the quasilinear part QL(Mα/mMα) of
Mα/mMα has to be anisotropic, but that QL(λ∗(Eα)) could be isotropic.
{We defined Witt equivalence over fields also for forms with isotropic quasi-
linear part, cf. §6.}

If E actually has the decomposition (1), (2), in which every Mα is a non-
degenerate quadratic o-module, then we said that E is obedient with respect
to λ, and further that Eα has good reduction (GR) with respect to Λ. Finally
we then called (1) a λ-modular decomposition of E.
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216 Chapter IV. Specialization with Respect to Quadratic Places

Assume now that λ is enlarged to a quadratic place Λ = (λ,H, χ):K →
L ∪∞. We choose direct decompositions H = H0 × Q(o), Q(K) = S × H .
The group T from above is now S ×H0 = SH0.

We switch to the language of quadratic forms instead of quadratic mod-
ules, and thus use ϕ,ϕα etc. instead of E,Eα etc. A “form” will now always
be a quadratic form.

Let ϕ be a nondegenerate form over K.

Definition 1. We say that ϕ has fair reduction (= FR) with respect to Λ,
or that ϕ is weakly Λ-unimodular, if ϕ has a decomposition

(3) ϕ ∼= ⊥
α∈H0

α⊗ ϕα = ⊥
α∈Hα

αϕα

in which every ϕα has FR with respect to λ, and then set

(4) Λ∗(ϕ): = ⊥
α∈H0

χ(α)λ∗(ϕα).

If there actually exists a decomposition (3) in which all ϕα have GR with
respect to λ, then we say that ϕ has GR with respect to Λ, or that ϕ is
Λ-unimodular.

As in §28 we see that Λ∗(ϕ) is determined by ϕ up to isometry, and also
that it is independent of the choice of the complement H0 of Q(o) in H , if
we utilize the weak specialization λW from §11 instead of the map λW from
§3.41 {In the case of good reduction, the operator λW from §7 suffices.}

It goes without saying that ϕ must be weakly obedient (resp. obedient)
with respect to λ in order for ϕ to have FR (resp. GR) with respect to Λ.
It can happen that Λ∗(ϕ) is degenerate; for fair reduction even in the case
where λ is the canonical place K → o/m ∪∞ associated to o.

Remarks.

(1) If ϕ, ψ have FR (resp. GR) with respect to Λ, and if ϕ is strictly regular,
then ϕ ⊥ ψ has FR (resp. GR) with respect to Λ and

(5) Λ∗(ϕ ⊥ ψ) ∼= Λ∗(ϕ) ⊥ Λ∗(ψ),

which can be seen easily.

(2) If σ is a bilinear form which has GR with respect to Λ, ϕ is a quadratic
form which has FR (resp. GR) with respect to Λ, and if Λ∗(ϕ) is strictly
regular, then σ ⊗ ϕ has FR (resp. GR) with respect to Λ and

(6) Λ∗(σ ⊗ ϕ) ∼= Λ∗(σ) ⊗ Λ∗(ϕ),

which can also be verified easily. Note that Λ∗(σ) is determined by Λ, σ
only up to stable isometry. Nevertheless this formula (with true isometry)
is correct.

41In order to be able to repeat the conclusion of §28, it is important that for
our definition of Witt equivalence over fields (§6, Def. 10), the statement “If
E ∼ F, dimE = dimF , then E ∼= F” also holds for degenerate spaces.
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(3) It is important that Λ∗(ϕ) is strictly regular in formula (6), at any rate
when Λ∗(σ) is isotropic. This follows already from the following observa-
tion. Let charL = 2 and let a, b, c ∈ L∗. Then

〈a, a〉 ⊗ [c] ∼= [ac, ac] ∼= [ac, 0],

and likewise 〈b, b〉 ⊗ [c] ∼= [bc, 0]. Furthermore

〈a, a〉 ∼=
〈
a

1

1

0

〉
≈
〈
b

1

1

0

〉
∼= 〈b, b〉,

but in general [ac, 0] 6∼= [bc, 0].

If ϕ is weakly obedient with respect to λ and if

(1)′ ϕ = ⊥
(s,β)∈S×H0

sβ ϕs,β

is a weakly λ-unimodular decomposition of ϕ, in which thus every form ϕs,β
has FR with respect to λ, then we can combine the forms ϕs,β , for fixed s,
in a form

(5) ϕs: = ⊥
β∈H0

β ϕs,β

which is weakly Λ-unimodular. This results in a coarser decomposition

(6) ϕ = ⊥
s∈S

s ϕs.

We call such a decomposition (6) a weakly Λ-modular decomposition of ϕ. If
ϕ is actually obedient with respect to λ, then we have such decompositions
(5), (6), in which the ϕs,β have GR with respect to λ and the ϕs have GR
with respect to Λ, and then call (6) a Λ-modular decomposition of ϕ.

Definition 2. (a) We say that ϕ has almost fair reduction (= AFR) with
respect to Λ if ϕ is weakly obedient with respect to λ, and if in a Λ-modular
decomposition (6) of ϕ the specializations Λ∗(ϕs), with s ∈ S \ {1}, are all
hyperbolic.

(b) We say that ϕ has almost good reduction (= AGR) with respect to Λ
if there is a Λ-modular decomposition (6) in which Λ∗(ϕs) is hyperbolic for
each s ∈ S \ {1}.

Note that these properties are independent of the choice of decomposition
(6) since every Λ∗(ϕs) is up to Witt equivalence uniquely determined by ϕ,
Λ and s.

As in §28 we see that by almost fair reduction the form

Λ∗(ϕ): = Λ∗(ϕ1) ⊥
dimϕ− dimϕ1

2
×H

is determined up to isometry (instead of only Witt equivalence) by Λ and ϕ
alone. We call Λ∗(ϕ) the specialization of ϕ with respect to Λ.
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218 Chapter IV. Specialization with Respect to Quadratic Places

Next there follow two theorems which can be proved in exactly the same
way as the analogous statements in §28 and §29.

Theorem 1. Let ϕ and ψ be quadratic forms over K. Assume that ϕ is
strictly regular and has AGR with respect to Λ. Assume that ψ has AFR
(resp. AGR) with respect to Λ. Then ϕ ⊥ ψ has AFR (resp. AGR) with
respect to Λ and

Λ∗(ϕ ⊥ ψ) ∼= Λ∗(ϕ) ⊥ Λ∗(ψ).

Theorem 2. Let ϕ be a quadratic form, weakly obedient (resp. obedient) with
respect to λ:K → L ∪∞. As before, let Λ = (λ, χ,H):K → L ∪∞ be a Q-
place with first component λ. Let further E ⊃ K be a field extension and
M :E → L ∪∞ a Q-place with M |K ⊃ Λ.

(a) If ϕ has AFR (resp. AGR) with respect to Λ, then ϕ⊗E has AFR (resp.
AGR) with respect to M , and M∗(ϕ⊗ E) = Λ∗(ϕ).

(b) If actually M |K = Λ, and if ϕ⊗E has AFR (resp. AGR) with respect to
M , then ϕ has AFR (resp. AGR) with respect to Λ.

However, can we establish, as in §28, wether for two forms ϕ, ψ over K
where ϕ and ϕ ⊥ ψ have AGR with respect to Λ:K → L ∪ ∞, also ψ has
AGR with respect to Λ, even when ϕ and ψ are both strictly regular?

This is a debatable question since (at least for the author) there is no
discernible reason why ψ should be obedient with respect to the place λ.

Thus we are forced to make a new turn and follow a different path. The
fact that for almost fair reduction, or even almost good reduction, the quasi-
linear part QL(Λ∗(ϕ)) could be isotropic, will be an obstacle. We want to
exclude this possibility.

Definition 3. Let Λ:K → L ∪∞ be a quadratic place and let ϕ be a form
over K. We say that ϕ has conservative reduction (= CR) with respect to Λ
if ϕ has AFR with respect to Λ and QL(Λ∗(ϕ)) is anisotropic.

If ϕ actually has AGR with respect to Λ, then clearly QL(Λ∗(ϕ)) =
Λ∗(QL(ϕ)). Hence ϕ certainly has CR in this case if ϕ is in addition regular.
If ϕ only has AFR, then QL(Λ∗(ϕ)) may be isotropic, even if ϕ is regular.

As a result of the following lemma we obtain a connection between con-
servative reduction with respect to Λ and fair reduction with respect to an
ordinary place. In the process we will be able to utilize results from §11.

Lemma 1. Let (K →֒ E, µ) be a realization of Λ, i.e., E ⊃ K is a field
extension and µ:E → L∪∞ is a place with µ̂|K ⊃ Λ. {Note that there exists
a realization of Λ with E ⊃ K even purely transcendental, as demonstrated
in §30.} If ϕ has conservative reduction with respect to Λ, then ϕ ⊗ E has
fair reduction with respect to µ and µ∗(ϕ⊗ E) = Λ∗(ϕ).

Proof. We use Theorem 2(b). Let ϕ = ⊥
s∈S

〈s〉 ⊗ ϕs be a weakly Λ-modular

decomposition of ϕ. For every s ∈ S we have 〈s〉E ∈ Q(oµ). If s 6= 1, then
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ϕs ⊗ E has FR with respect to µ, and µ∗(ϕs ⊗ E) = Λ∗(ϕs) is hyperbolic.
Furthermore, the anisotropy of QL(Λ∗(ϕ)) = QL(Λ∗(ϕ1)) yields that ϕ1⊗E
has fair reduction with respect to µ and µ∗(ϕ1 ⊗E) = Λ∗(ϕ1). Hence ϕ⊗E
has FR with respect to µ and

µ∗(ϕ⊗ E) = Λ∗(ϕ1) ⊥
dimϕ− dimϕ1

2
×H = Λ∗(ϕ).

Theorem 3. Let ϕ, ψ be quadratic forms over K, both having CR with respect
to Λ:K → L ∪∞. Assume that ϕ < ψ. Then Λ∗(ϕ) < Λ∗(ψ).

Proof. We choose a place µ:E → L ∪ ∞ with E ⊃ K and µ̂|K ⊃ Λ. By
the lemma ϕ ⊗ E and ψ ⊗ E both have FR with respect to µ with Λ∗(ϕ) =
µ∗(ϕ ⊗ E), Λ∗(ψ) = µ∗(ψ ⊗ E). The form ϕ⊗ E is a subform of ψ ⊗ E. By
§11, Theorem 2 (Corollary 2) µ∗(ϕ⊗ E) is a subform of µ∗(ψ ⊗ E).

Now we come to the key definition, which allows us to tame disobedient
forms at least a little bit.

Definition 4. Let ϕ be a quadratic form overK and, as before, Λ:K → L∪∞
a quadratic place.

(a) ϕ has stably conservative reduction (= SCR) with respect to Λ if there
exists an r ∈ N0 such that ϕ ⊥ r × H has conservative reduction with
respect to Λ.

(b) In this case r×H is a subform of Λ∗(ϕ ⊥ r×H) by Theorem 3. We then
denote by Λ∗(ϕ) the form over L, uniquely determined up to isometry,
for which

Λ∗(ϕ ⊥ r ×H) = Λ∗(ϕ) ⊥ r ×H,

and call Λ∗(ϕ) the specialization of ϕ with respect to Λ.

Remark. Λ∗(ϕ) is independent of the choice of r. Namely, if s ∈ N is arbitrary
then, in the situation of Definition 4(a), ϕ ⊥ (r+s)×H = (ϕ ⊥ r×H) ⊥ s×H
also has conservative reduction and

Λ∗(ϕ ⊥ (r × s) ×H) = Λ∗(ϕ ⊥ r ×H) ⊥ s×H = Λ∗(ϕ) ⊥ (r + s) ×H.

Definition 5. Similarly we define: a quadratic form ϕ over K has stably
almost good reduction (= SAGR) with respect to Λ if there exists an r ∈ N0

such that ϕ ⊥ r ×H has AGR with respect to Λ.

Remark. If ϕ has SAGR, then QL(ϕ) has good reduction with respect to
Λ. Such a form ϕ has SCR with respect to Λ if and only if Λ∗(QL(ϕ)) is
anisotropic, and then Λ∗(QL(ϕ)) = QL(Λ∗(ϕ)).

Finally we can derive a full analogue of the additive statements in §28,
Theorem 3 and §28, Theorem 4.
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Theorem 4. Let ϕ and ψ be quadratic forms over K. Assume that ϕ is
strictly regular and that it has SAGR with respect to Λ:K → L ∪∞.

(a) If ψ has SCR with respect to Λ, then ϕ ⊥ ψ has SCR with respect to Λ
and

Λ∗(ϕ ⊥ ψ) ∼= Λ∗(ϕ) ⊥ Λ∗(ψ).

(b) If ϕ ⊥ ψ has SCR with respect to Λ, then ψ has SCR with respect to Λ.

Proof. (a) Choose r ∈ N0, s ∈ N0 such that ϕ ⊥ r × H has AGR and
ψ ⊥ s×H has CR with respect to Λ. From Theorem 1 it follows immediately
that ϕ ⊥ ψ ⊥ (r + s) ×H has CR with respect to Λ and that

Λ∗(ϕ) ⊥ r ×H ⊥ Λ∗(ψ) ⊥ s×H = Λ∗(ϕ ⊥ ψ ⊥ (r + s) ×H).

Therefore,
Λ∗(ϕ) ⊥ Λ∗(ψ) = Λ∗(ϕ ⊥ ψ).

(b) We choose integers r, t ∈ N0 with t ≥ r and such that ρ: = ϕ ⊥ r ×H
has AGR and that τ : = (ϕ ⊥ ψ) ⊥ t×H has AFR. We have

ρ ⊥ ψ ⊥ (t− r) ×H ∼= τ.

Therefore,
ψ ⊥ (t− r + dim ρ) ×H ∼= (−ρ) ⊥ τ.

By part (a) of the Theorem, (−ρ) ⊥ τ has SCR with respect to Λ. Thus ψ
has SCR with respect to Λ.

Furthermore we can extend Theorem 3 and part of Theorem 2 to stably
conservative reduction.

Theorem 5. Let ϕ, ψ be quadratic forms over K which have SCR with respect
to Λ. Assume that ϕ < ψ. Then Λ∗(ϕ) < Λ∗(ψ).

Proof. We choose an r ∈ N such that ϕ ⊥ r ×H and ψ ⊥ r ×H have CR.
By Theorem 3 we have

Λ∗(ϕ) ⊥ r ×H = Λ∗(ϕ ⊥ r ×H) < Λ∗(ψ ⊥ r ×H) = Λ∗(ψ) ⊥ r ×H.

Hence, Λ∗(ϕ) < Λ∗(ψ).

Theorem 6. Let K ⊂ E be a field extension and let Λ:K → L ∪ ∞,
M :E → L ∪ ∞ be quadratic places with M |K ⊃ Λ. Let ϕ be a quadratic
form over K which has SCR with respect to Λ. Then ϕ ⊗ E has SCR with
respect to M and M∗(ϕ ⊗ E) = Λ∗(ϕ).

Proof. We choose an r ∈ N0 such that ϕ ⊥ r ×H has CR with respect to Λ.
By Theorem 2(a), ϕE ⊥ r ×H has AFR with respect to Λ and

M∗(ϕE ⊥ r ×H) ∼= Λ∗(ϕ ⊥ r ×H) = Λ∗(ϕ) ⊥ r ×H.

In particular, QL(M∗(ϕE ⊥ r×H)) is anisotropic. Thus ϕE ⊥ r×H has CR
with respect to M . Therefore ϕE has SCR with respect to Λ and

M∗(ϕE) ⊥ r ×H ∼= Λ∗(ϕ) ⊥ r ×H.

It follows that M∗(ϕE) ∼= Λ∗(ϕ).
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Specialized Quadratic Forms

For a quadratic form ϕ over a field k, which has SCR with respect to a
quadratic place Γ : k → L ∪∞, we will show how the splitting of Γ∗(ϕ) with
respect to extensions of the field L, conservative for Γ∗(ϕ), is regulated by
an arbitrarily given generic splitting tower (Kr | 0 ≤ r ≤ h) and quadratic
places coming from the fields Kr (see Theorem 2 below).

For this purpose we need the concept of composition of two quadratic
places.

Definition 1. Let Λ = (λ,H, χ):K → L∪∞ and M = (µ,D, ψ):L→ F ∪∞
be two quadratic places. Let

H0: = {x ∈ H, χ(α) ∈ D}.

Clearly
M ◦ Λ: = (µ ◦ λ,H0, ψ ◦ (χ|H0))

is a quadratic place from K to F , called the compositum of Λ and M .

The theory of these composita is fraught with danger. We will not look at
its details, as we would like to advance as quickly as possible towards the core
of a generic splitting theory of stably conservative specialized forms Λ∗(ϕ).
This is possible just with Definition 1 and §31, although many things would
become clearer conceptually after a detailed study of the formal properties
of composita of quadratic places.

We only note the following trivial fact.

Remark. If Λ′:K → L∪∞, M ′:L→ F ∪∞ are quadratic places with Λ′ ⊃ Λ,
M ′ ⊃M , then M ′ ◦ Λ′ ⊃M ◦ Λ.

Theorem 1. Let Γ : k → L∪∞ be a quadratic place and ϕ a quadratic form
over k which has SCR with respect to Γ . Let r ∈ N0 and let K ⊃ k be a
field extension which is ϕ-conservative and generic for the splitting off of r
hyperbolic planes. Then the following statements are equivalent:

(1) ind(Γ∗(ϕ)) ≥ r.

(2) There exists a quadratic place Λ:K → L ∪∞ with Λ∗|k ⊃ Γ .

Proof. (2) ⇒ (1): By §31, Theorem 6, ϕ⊗K has SCR with respect to Λ and
Λ∗(ϕ⊗K) ∼= Γ∗(ϕ). Now r ×H < ϕ⊗K and thus, by §31, Theorem 5, also
r ×H < Λ∗(ϕ⊗K). Hence Γ∗(ϕ) has Witt index ≥ r.
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(1) ⇒ (2): We carry out the proof in two steps.
(a) We choose a purely transcendental extension E ⊃ k and a place

µ:E → L ∪ ∞ with µ̂|k ⊃ Λ. This is possible by §30, Theorem 1. Then
we choose a generic splitting field F ⊃ E of ϕ ⊗ E for the splitting off of r
hyperbolic planes. Finally we choose an s ∈ N0 such that ϕ ⊥ s×H has CR
with respect to Γ . By §31, Lemma 1, (ϕ ⊥ s×H)E = ϕE ⊥ s ×H has FR
with respect to µ, and

µ∗(ϕE ⊥ s×H) = Γ∗(ϕ ⊥ s×H) = Γ∗(ϕ) ⊥ s×H.

E is a generic splitting field of ϕE ⊥ s × H for the splitting off of r + s
hyperbolic planes. The form Γ∗(ϕ) ⊥ s × H over L is nondegenerate since
by assumption (1) its quasilinear part is anisotropic. Moreover, this form has
Witt index ≥ r + s by assumption (1). Thus, by the generic splitting theory
of §12, there exists a place σ:F → L∪∞ which extends µ. For the associated
quadratic place σ̂:F → L∪∞ we have σ̂|E ⊃ µ̂ and thus σ̂|k ⊃ µ̂|k ⊃ Γ . One
should observe now that F is also a generic splitting field for the splitting off
of r hyperbolic planes from ϕ (instead of ϕE). So for this field F instead of
the given field K we have a proof of statement (2).

(b) The fields K and F are specialization equivalent over k. We choose a
place ρ:K → F ∪∞ over k and form the compositum Λ = σ̂ ◦ ρ̂:K → L∪∞.
We verify that Λ|k ⊃ Γ and are done.

We have ρ̂ = (ρ,Q(oρ), ρ̌), σ̂ = (σ,Q(oσ), σ̌), where ρ̌, σ̌ are the characters
Q(oρ) → Q(L), Q(oσ) → Q(L), induced by ρ, σ, i.e., ρ̌(〈a〉) = 〈ρ(a)〉 for
a ∈ o∗ρ, and σ̌(〈b〉) = 〈σ(b)〉 for b ∈ o∗σ. Hence Λ = (σ ◦ ρ,H0, χ) with

H0 = {〈a〉 ∈ Q(K) | a ∈ o
∗
ρ, 〈ρ(a)〉 ∈ Q(oσ)}

and χ = σ̌ ◦ (ρ̌|H0).
Let Γ = (γ,D, η). For a ∈ k∗ with 〈a〉 ∈ D we have 〈a〉K ∈ Q(oρ) and

ρ̌(〈a〉K) = 〈a〉F , since ρ is a place over k. Since σ̂|k ⊃ Λ we have 〈a〉F ∈ Q(oσ),
hence 〈a〉K ∈ H0 and furthermore

χ(〈a〉K) = σ̌(〈a〉F ) = η(〈a〉).
Thus we have verified that Λ|k ⊃ Γ .

As a result of §31 (Theorems 4 and 6) the following corollary of Theorem 1
is obvious.

Scholium. Assume that statements (1) and (2) of the theorem hold. Let
ϕ⊗K ∼= ψ ⊥ r ×H . Then ψ has SCR with respect to Λ and

Γ∗(ϕ) ∼= Λ∗(ψ) ⊥ r ×H.

Now nothing stands in the way of a generic splitting theory for Γ∗(ϕ). We
note an easy lemma.

Lemma 1. Let Λ:K → L ∪∞ be a quadratic place and ϕ a quadratic form
over K which has CR (resp. SCR) with respect to Λ. Further, let j:L →֒ L′
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be a field extension, i.e., a trivial place, which is Λ∗(ϕ)-conservative. Then ϕ
also has CR (resp. SCR) with respect to ĵ ◦ Λ and

(ĵ ◦ Λ)∗(ϕ) = Λ∗(ϕ) ⊗L L′.

Proof. Let Λ = (λ,H, χ). We have ĵ = (j,Q(L), Q(j)), where Q(j) denotes
the homomorphism from Q(L) to Q(L′), induced by j. We obtain

ĵ ◦ Λ = (j ◦ λ,H,Q(j) ◦ χ),

and of course oj◦λ = oλ. This yields the assertion for conservative reduction.
The extension to the case of SCR is obvious.

Theorem 2. Let ϕ be a quadratic form over k and Γ : k → L∪∞ a quadratic
place with respect to which ϕ has SCR. Let (Kr | 0 ≤ r ≤ h) be a generic
splitting tower of ϕ with higher indices ir and higher kernel forms ϕr. Finally,
let L′ ⊃ L be a Γ∗(ϕ)-conservative field extension of L. We choose a quadratic
place Λ:Km → L′ ∪∞ which extends ĵ ◦ Γ (i.e., Λ|k ⊃ ĵ ◦ Γ ), and which in
the case m < h cannot be extended to a quadratic place from Km+1 to L′.
Then

ind(Γ∗(ϕ) ⊗ L′) = i0 + . . .+ im.

The form ϕm has SCR with respect to Λ and

ker(Γ∗(ϕ) ⊗ L′) = Λ∗(ϕm).

Proof. By Lemma 1 we may replace Γ by the quadratic place ĵ ◦ Γ :K →
L′ ∪ ∞ and may thus assume without loss of generality that L′ = L. We
finish by traversing the proof of §12, Theorem 4 once more and replacing γ
by Γ , λ by Λ and FR by SCR everywhere.

If charL 6= 2 then Theorem 2 is essentially the same theorem as §30,
Theorem 4. We have thus found a new proof for that theorem, which is
clearly different from the proof in §30. There, a theorem about bad reduction
(§30, Theorem 2) was an important tool, for which we have not developed a
counterpart which is valid when charL = 2.

We have reached a point where we can envisage applications in the theory
of quadratic forms, and in particular in the generic splitting theory, which
necessitate the employment of quadratic places, similar to what we did in
Chapter III for ordinary places. This would go beyond the scope of this book
however. From a scientific point of view we would also be threading on virgin
soil. To my knowledge there exist only two publications, [K7] and [KR], in
which quadratic places are used. Both works assume characteristic 6= 2.
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mutatifs. Hermann, Paris 1967.

[CE] H. Cartan, S. Eilenberg, “Homological algebra”. Princeton Univ. Press
1956.

[EKM] R. Elman, N. Karpenko, A. Merkurjev, “The algebraic and geometric the-
ory of quadratic forms”. Amer. Math. Soc. 2008.

[E] O. Endler, “Valuation theory”. Springer 1972.

[EP] A.J. Engler, A. Prestel, “Valued fields”. Springer 2005.

[F] R.W. Fitzgerald, Quadratic forms of height two. Trans. A.M.S. 283 (1984),
339–351.

[H1] D.W. Hoffmann, On quadratic forms of height two and a theorem of
Wadsworth, Trans. A.M.S. 348 (1996), 3267–3281.

[H2] D.W. Hoffmann, Splitting patterns and invariants of quadratic forms.
Math. Nachr. 190 (1998), 149–168.

[H3] D.W. Hoffmann, The dimensions of good quadratic forms of height 2.
Preprint Besançon 1996.
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