
ON THE ESSENTIAL DIMENSION

OF INFINITESIMAL GROUP SCHEMES

DAJANO TOSSICI AND ANGELO VISTOLI

Abstract. We discuss essential dimension of group schemes, with particular
attention to infinitesimal group schemes. We prove that the essential dimen-
sion of a group scheme of finite type over a field k is at least equal to the
difference between the dimension of its Lie algebra and its dimension. Further-
more, we show that the essential dimension of a trigonalizable group scheme
of length pn over a field of characteristic p > 0 is at most n. We give several
examples.

1. Introduction

The notion of essential dimension of a finite group over a field k was introduced
by Buhler and Reichstein ([BR97]). It was later extended to various contexts.
First Reichstein generalized it to linear algebraic groups ([Rei00]) in characteristic
zero; afterwards Merkurjev gave a general definition for covariant functors from
the category of extension fields of the base field k to the category of sets ([BF03]).
Brosnan, Reichstein and Vistoli ([BRV09a]) studied the essential dimension of an
algebraic stack, a general class which includes almost all the examples of interest.

Important results on the essential dimension of finite groups in characteristic 0
have been proved by Florence ([Flo07]) and Karpenko and Merkurjev ([KM08]).
The essential dimension of finite groups in positive characteristic has been studied
by Ledet [Led04]. As to higher dimensional groups, there are works of Reichstein
and Youssin ([RY00]), Chernousov and Serre ([CS06]), Gille and Reichstein [GR09],
Brosnan, Reichstein and Vistoli [BRV09b] on algebraic groups, Brosnan [Bro07] on
abelian varieties over C, and Brosnan and Shreekantan [BS08] on abelian varieties
over number fields.

The case of non-smooth group schemes (necessarily in positive characteristic) has
not been investigated. It is certainly known to experts that the essential dimensions
of αpm and µpm over a field of characteristic p > 0 are 1, and that the essential
dimension of µ

n
pm is n. To the authors’ knowledge nothing else was known. The

purpose of this paper is to throw some light on this subject. In particular we will
focus on the essential dimension of infinitesimal (i.e. connected and finite) group
schemes. This could give, for instance, some information about the essential dimen-
sion of supersingular Abelian varieties in characteristic p > 0 (an Abelian varieity
is supersingular if its p-torsion subgroup scheme is infinitesimal). If an Abelian
variety A is not supersingular, its essential dimension is conjecturally infinite, since
for any n > 0 the group scheme A contains, over an algebraic closure of k, the
group scheme Z/pnZ, whose essential dimension is conjecturally equal to n.
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If G is a group scheme of finite type over a field k, its essential dimension edk G
is the essential dimension of the stack BkG. Let us recall the definition. Let k
be a field, and G be a group scheme of finite type over k. If X is a k-scheme, a
G-torsor is a k-scheme P with a right action of G, with a G-invariant morphism
P → X , such that fppf locally on X the scheme P is G-equivariantly isomorphic to
X ×Speck G. Isomorphism classes of G-torsors on X form a pointed set H1(X, G);

if G is commutative, then H1(X, G) is a group, and coincides with the cohomology
group of G in the fppf topology.

Definition 1.1. Let G be a group scheme of finite type over a field k. Let k ⊆ K
be an extension field and [ξ] ∈ H1(X, Spec(K)) the class of a G-torsor ξ. Then
the essential dimension of ξ over k, which we denote by edk(ξ), is the smallest
nonnegative integer n such that there exists a subfield K ′ of K containing k, with
tr. d.(K ′/k) ≤ n such that [ξ] is in the image of the morphism H1(X, Spec(K ′)) →
H1(X, Spec(K)).

The essential dimension of G over k, which we denote by edk(G), is the supremum
of edk(ξ), where K/k ranges through all the extension of K, and ξ ranges through
all the G-torsors over Spec(K).

If G is smooth, then G-torsors are locally trivial in the étale topology, and our
definition coincides with that of Berhuy and Favi ([BF03]); in the general case, to
get meaningful results one needs to use the fppf topology. For example, if G is an
infinitesimal group scheme, the G-torsors over a reduced scheme that are locally
trivial in the étale topology are in fact trivial.

Our first result is the determination of a general lower bound for the essential
dimension.

Theorem 1.2. Let G be a group scheme of finite type over a field k. Then

edk G ≥ dimk Lie G − dim G .

Considering how hard it is in general to prove lower bounds for the essential
dimension, it is a little surprising that the proof of Theorem 1.2 is little more than
an observation.

We also have a general upper bound. We firstly recall the definition of a trigo-
nalizable group scheme.

Definition 1.3. Let G be an affine group scheme of finite type over a field k. G
is called trigonalizable if it has a normal unipotent subgroup U scheme such that
G/U is diagonalizable.

The name is justified by the fact that, if G is trigonalizable and of finite type
over k, then there exists a monomorphism of G in some trigonal group. Any affine
commutative group scheme over an algebraically closed field is trigonalizable (see
[DG70, IV, §3, 1.1]).

Theorem 1.4. Let G be a finite trigonalizable group scheme, over a field of char-

acteristic p > 0, of order pn. Then edk G ≤ n.

For constant p-group schemes (which are unipotent) the above result has already
been proved by Ledet ([Led04]).

The second and the third sections are devoted to the proofs of these two theorems.
In the last section, combining the lower and upper bounds above, we calculate the
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essential dimension of some classes of infinitesimal group schemes. In particular we
prove that the essential dimension of a trigonalizable group scheme of height ≤ 1, i.e.
such that the Frobenius F is trivial on it, is equal to the dimension of its Lie algebra
(Corollary 4.3). We do not have examples of infinitesimal group schemes with
essential dimension strictly bigger than the dimension of its Lie algebra. For not
trigonalizable group schemes such an example should probably exist: for example,
there should be twisted forms of µp whose essential dimension is larger than 1.
Over an algebraically closed field, the issue is less clear. In Example 4.8 we propose
a class of a commutative unipotent group scheme whose essential dimensions we are
unable to determine, which should be an important test case to determine whether
it is reasonable to conjecture that equality hold for trigonalizable group schemes.

2. The proof of Theorem 1.2

We first state a well known lemma.

Lemma 2.1. If G is a subgroup scheme of a group scheme H, then edk G+dimG ≤

edk H + dimH.

Proof. This follows from [BRV09a, 3.2] applied to the stack morphism BkG →

BkH . ♠

We now prove the Theorem. If the characteristic of k is 0, then G is smooth
and there is nothing to prove. Suppose that the characteristic of k is p > 0. Since
the essential dimension does not increase after a base change ([BF03, 1.5]), we may
assume that k is algebraically closed.

Let G1 be the kernel of the Frobenius map G → G defined at the level of algebras
by a 7→ ap; then G1 is an infinitesimal group scheme, and Lie G1 = Lie G. Since
by 2.1 we have edk G1 ≤ edk G − dimG, it is sufficient to show that edk G1 ≥

dimk LieG1; in other words, we may assume that G = G1, i.e., by definition, G has
height at most 1. This implies that k[G] is isomorphic to k[x1, . . . , xn]/(xp

1, . . . , xp
n)

as a k-algebra ([DG70, II §7, 4.2]).
Let G act freely on an open subscheme X of a representation of G. If K is

the function field of the quotient X/G and E is the function field of X , then we

have a generic G-torsor Spec E → Spec K. Set n
def

= dimk LieG. Suppose that
the G-torsor is defined over an extension L of k contained in K; we need to show
that the transcendence degree of L over k is at least n. Let Spec R → Spec L the
G-torsor yielding Spec E → Spec K by base change. Clearly R is a field. We claim
that R ⊆ L1/p; in other words, the pth-power homomorphism R → R has its image
contained in L ⊆ R.

In order to prove this we may base change to an algebraic closure K of K; then
K ⊗K E is isomorphic as a K-algebra to the Hopf algebra K[G]. Since K[G] is
isomorphic to K[x1, . . . , xn]/(xp

1, . . . , xp
n) as a K-algebra, it is clearly true that

the Frobenius map carries K ⊗K E into K; hence R ⊆ L1/p, as claimed. Since the
degree [R : L] is pn, the result follows from the following well known fact.

Lemma 2.2. Let L be a finitely generated extension of transcendence degree d of

a perfect field k of characteristic p > 0. Then [L1/p : L] = pd.
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3. The proof of Theorem 1.4

Let us start with stating a few Lemmas that we will use in the proof. The first
two are well known.

Lemma 3.1. [DG70, IV §2, 2.5] Let G be a commutative unipotent group scheme

over a field K. Then there exists a central decomposition series

1 = G0 ⊆ G1 ⊆ · · · ⊆ Gr = G

of G, such that each successive quotient Gi/Gi−1 is a subgroup scheme of Ga.

Lemma 3.2. [DG70, IV §2, 2.6] If G is a group scheme over a field K and E
is an extension of K, then Spec E ×Spec K G → Spec E is unipotent if and only

if G is unipotent. In particular, any twisted form of a unipotent group scheme is

unipotent.

Lemma 3.3. Let G be a commutative unipotent group scheme over a field K. Then

Hi(K, G) = 0, for i ≥ 2.

Proof. By Lemma 3.1, we may assume that G is a subgroup of Ga. The quotient
Ga/G is isomorphic to Ga ([DG70, IV §2, 1.1]); then the result follows from the

fact that Hi(K, Ga) = 0 for i ≥ 1. ♠

We here prove the key Lemma.

Lemma 3.4. Suppose that we have an extension

1 −→ G1 −→ G −→ G2 −→ 1

of group schemes over k, where G1 is a commutative unipotent normal group sub-

scheme of a group scheme G. Let P → Spec K be a G-torsor over an extension K
of k. Then there exists an intermediate extension k ⊆ E ⊆ K and a twisted form

G̃1 → Spec E of G1 over E, such that P is defined over an intermediate extension

of transcendence degree at most edk G2 + edE G̃1 over k.

Furthermore, if G1 is central in G, then G̃1 = Spec E ×Speck G1.

Proof. Consider the induced G2-torsor Q
def

= P/G1 → Spec K. There exists an
intermediate extension k ⊆ E ⊆ K with tr degk E ≤ ed G2, such that Q comes by
base change from a G2-torsor QE → Spec E. I claim that QE lifts to a G-torsor
PE → Spec E.

To see this, consider the fppf gerbe of liftings L → (Sch/E). It is a fibered
category over the category (Sch/E) of E-schemes, whose objects over an E-scheme
T → Spec E are G-torsors PT → T , together with isomorphisms of G2-torsors
PT /G1 ≃ T ×SpecE QE , or, equivalently, G-equivariant morphisms of T -schemes
PT → T ×Spec E QE. The arrows from PT → T ×SpecE QE to P ′

T ′ → T ′×Spec E QE

are defined in the obvious way, as diagrams

PT

F

��

// T ×SpecE QE
pr

1
//

f×id

��

T

f

��

PT ′
// T ′ ×SpecE QE

pr
1

// T ′

in which F is G-equivariant. We need to show that L has a global section over
Spec E.
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The action of G on G1 by conjugation descends to an action of G2 on G1,

since G1 is commutative. Denote by G̃1 the twisted form of the group scheme

Spec E ×Speck G1 coming from the G2-torsor QE → Spec E; in other words, G̃1

is the quotient (QE ×Speck G1)/G2, where G2 acts on the right on QE, and on

G1 by right conjugation. We claim that the gerbe L is banded by G̃1; that is,
if PT → T ×SpecE QE is an object of L(T ), the automorphism group Aut(PT ) is

isomorphic to G̃1(T ), and this isomorphism is functorial in T . In fact, the twisted

form G̃ of G obtained as the quotient P ×Spec k G by the action of G on conjugation

on G is the automorphism group scheme of the G-torsor PT → T , and it contains G̃1

as the subgroup scheme of automorphisms inducing the identity on T ×SpecE QE.

Hence G̃1 is the automorphism group scheme of the object PT → T ×SpecE QE,
and this proves the claim.

By [Gir71, IV 3.4], the equivalence classes of gerbes banded by G̃1 are para-

metrized by the group H2(K, G̃1); a gerbe corresponds to 0, i.e., it is equivalent to

the classifying stack BEG̃1, if and only if it has a section. Now, by Lemma 3.2,

G̃1 is unipotent; hence by Lemma 3.3 H2(E, G̃1) = 0, so L has a section, and the
G2-torsor QE → Spec E lifts to a G-torsor PE → QE → Spec E.

There is no reason why Spec K ×SpecE PE should be isomorphic to P → Spec K
as a G-torsor. However, by construction, we have P/G1 ≃ Spec K×SpecEQE . Since

as we just saw L is a trivial gerbe banded by G̃1, we have that L is equivalent to the

classifying stack BEG̃1, in such a way that the lifting PE → QE corresponds to the

trivial torsor G̃1 → Spec E. Then P → Q gives an object of L(Spec K); this will
be defined over a intermediate extension E ⊆ F ⊆ K of transcendence degree at

most edE G̃1 over E. So over F there will exist an object PF → Spec L×SpecE QE

which is isomorphic to P → Q when pulled back to K. Hence P is defined over F ,

and, since the transcendence degree of F is at most equal to edk G2 + edE G̃1, the
result follows. ♠

Now we are ready to prove the theorem.
First of all, suppose that G is a diagonalizable group of order pn; then G is a

product µpd1×· · ·×µpdr for certain positive integers d1, . . . , dr with d1+· · ·+dr = n.
Then G is a subgroup scheme of Gr

m, hence by the Lemma 2.1 we have ed G ≤ r ≤ n.
Now, assume that G is commutative unipotent of order pn, with n > 0. Suppose

that G is a subgroup of Ga; then again by Lemma 2.1 we have edk G ≤ dim Ga =
1 ≤ n, and we are done.

If it is not a subgroup scheme of Ga, we proceed by induction on n. Assume
that the result holds for all commutative unipotent subgroup schemes of order pm

with m < n. Let G1 be a nontrivial subgroup scheme that is a subgroup scheme of
Ga and call pm its order. The group scheme G1 exists by 3.1. Then by Lemma 3.4
we have

edk G ≤ edk(G/G1) + edE G1E ≤ (n − m) + m = n;

so the result holds for G.
Let G be a trigonalizable infinitesimal group scheme of order pn. Once again,

we proceed by induction on n. Let us suppose that the result is true for all trigo-
nalizable groups of order pm with m < n. By definition, G is an extension

1 −→ Gu −→ G −→ Gd −→ 1 ,
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where Gu is unipotent and Gd is diagonalizable. We may assume that Gu is non-
trivial, otherwise G is diagonalizable and we are done. If G1 denotes the center
of Gu, then G1 is a nontrivial commutative unipotent normal subgroup of G; set

G2
def

= G/G1. Call pm the order of G2; by induction hypothesis we have edk G2 ≤ m.

Once again using Lemma 3.4, we have that edk G ≤ edk G2 + edE G̃1 for some

twisted form of G1; but by Lemma 3.2 the group scheme G̃1 is still commutative

unipotent, hence by the previous case edE G̃1 ≤ n − m, and we are done.

4. The essential dimension of some group schemes

The two Theorems above give rise to two natural questions.

• For which group schemes G of finite type over a field k does the equality

(4.1) edk(G) = dimk(Lie(G)) − dimG

hold?
• Is it true that for a finite group scheme of order pn over a field of charac-

teristic p > 0 we have edk(G) ≤ n?

It is clear that if G is a finite group scheme of order pn over a field of characteristic
p > 0 that satisfies (4.1), then edk G ≤ n.

The class of smooth group schemes satisfying the first equality is well known, it
is that of the so-called special groups. This were introduced by J.P. Serre in [Ser58]
and studied by Grothendieck in [Gro58], and by many other authors since then.

For singular groups the question becomes substantially harder. The observation
above about smooth group schemes motivates the following definition.

Definition 4.1. Let G be a group scheme of finite type over a field k. If

edk(G) = dimk(Lie(G)) − dimG

then G is called almost special.

In the following we give several examples of almost special group schemes. Most
of them are connected and trigonalizable. We do not know whether all connected
trigonalizable group scheme are almost special. For diagonalizable group scheme
this is true (see Example 4.2). In the unipotent case this is open: in 4.9 we discuss
what we consider to be a key example to analyze to clarify this question.

It is easy to give examples of infinitesimal almost special group schemes that are
not trigonalizable: for example, if G is a non-trigonalizable smooth group scheme
(e.g. G = Gln), the kernel of its Frobenius FG is almost special, as it follows from
Theorem 1.2 and Lemma 2.1.

Finally we remark that if G and H are almost special then the product G × H
is also almost special, and edk(G × H) = edk(G) + edk(H).

About the second question above, our guess is that the upper bound does not
hold in general. An example could be given by some twisted form of µp; however,
we are unable to prove this, as, unlike what happens for smooth group schemes, a
group scheme of essential dimension 1 is not necessarily contained in PGL2.

The following simple strategy lets us to find some almost special group schemes.
If an infinitesimal group scheme G can be embedded in a special smooth algebraic

group scheme of dimension n
def

= dimk Lie(G) then, using Theorem 1.2 and Lemma
2.1, we can conclude that the essential dimension is exactly n, i.e. G is almost
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special. Here is an example when this happens. Later in 4.8 we will see another
example in which this argument can not be applied.

Example 4.2. If n is a positive integer, we denote by Wn the group scheme of
truncated Witt vectors of length n (see [Ser79, Chapter 2, § 6], [Haz78, Chapter 3,
§ 1] and [DG70, Chapter 5, § 1]). Let G be the group scheme

t∏

j=1

F
mj Wnj

×

s∏

i=1

µpli ,

where FmWn is the kernel of the iterated Frobenius Fm : Wn → Wn. Then G is
almost special, i.e.

(4.2) edk G = s +

t∑

j=1

nj = dimk Lie G.

Indeed, by the remark above, it is enough to remark that G is a closed subgroup of∏t
j=1 Wnj

× Gs
m, which is special.

Another example in which the equality (4.1) holds is given by the following
Corollary.

Corollary 4.3. Any trigonalizable group scheme G of height ≤ 1 and of finite type

over k is almost special.

Proof. If G has order pn then, since G has height ≤ 1, the dimension of its Lie
algebra is n. Therefore the result follows from Theorems 1.2 and 1.4. ♠

As a consequence of Theorem 1.4 and Lemma 3.4 we prove the following result.

Corollary 4.4. Let

1 −→ G1 −→ G −→ G2 −→ 1

be an extension of group schemes over a field k of characteristic p > 0, with G1

unipotent commutative of order pn, then

edk(G1) ≤ n + edk(G2).

Remark 4.5. In particular one can apply the corollary under the further hypothesis
edk(G1) = n. In this situation we have the interesting upper bound

edk(G) ≤ edk(G1) + edk(G2).

Later we will see some cases in which equality holds.
By Corollary 4.3, the hypothesis edk(G1) = n is satisfied if G1 is commutative

unipotent of height at most 1. If k is a perfect field, any unipotent commutative
k-group scheme of height at most 1 is isomorphic to a finite direct product of FWn,
n ∈ N, where FWn is the kernel of the Frobenius F : Wn → Wn (see [DG70, IV, §2,
2.14]).

This hypothesis is also satisfied when G1 is a twisted form of Z/pnZ with n ≤ 2
and conjecturally for any n (see Example 4.9).

Proof. Let P → Spec K be a G-torsor over an extension K of k. Then, from
Lemma 3.4, there exists an intermediate extension k ⊆ E ⊆ K and a twisted form

G̃1 → Spec E of G1 over E, such that

edk P ≤ edE(G̃1) + edk(G2).
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By Lemma 3.2, G̃1 is unipotent. Hence by Theorem 1.4 we have edE(G̃1) ≤ n, and
the result follows. ♠

Example 4.6. In addition to the hypotheses of the Corollary 4.4, let us suppose
that G1 and G2 are almost special and

dimk Lie(G) = dimk Lie(G1) + dimk Lie(G2).

In particular G1 must be of height ≤ 1. From Corollary 4.4 and Theorem 1.2 it
follows that

edk(G) = edk(G1) + edk(G2).

The hypothesis on the dimension of the Lie algebra of G is satisfied, for instance,
if the extension is split.

So, for example, if G1is a commutative unipotent group scheme of height ≤ 1
(hence almost special) and G2 is almost special then the group scheme G = G1⋊G2

is almost special and its essential dimension is edk(G1) + edk(G2). This could be
applied for example when G1 is a commutative unipotent group scheme of height
≤ 1 and G2 is one of the finite group schemes of the Example 4.2.

Example 4.7. The above example lets us to compute, in particular, the essential
dimension of αp ⋊µpn , which is 2. But the argument does not apply to αpm ⋊µpn ,
for m > 1. However in this case the essential dimension is also 2. From the Theorem
1.2 it is at least 2 and we now prove it is exactly 2. One observes (quite easily) that
for any field K of positive characteristic the automorphism group scheme of αpn

is smooth and trigonalizable. In particular this is true for the field Fp. Hence we
have that AutFp−gr(αpn) is special. Indeed it is an extension of a smooth unipotent
group scheme by a smooth diagonalizable group scheme and both are special. For
a smooth diagonalizable group scheme it is immediate to see that it is special while
for an unipotent smooth group scheme it is enough to observe that, since Fp is
perfect, it has a central decomposition series with quotients isomorphic to Ga (see
[DG70, IV, §2 3.9]). A fortiori AutK−gr(αpn) is almost special for any field K of
characteristic p > 0, since the essential dimension does not increase by base change
(see ([BF03, 1.5])). This implies that there are no non trivial twisted forms of αpn .
The claim now follows from the Lemma 3.4, since edk(αpn) = 1. With the same
argument one obtains, if G is an almost special group scheme G acting on αpr , that
αpr ⋊ G is almost special, i.e.

edk(αpr ⋊ G) = edk G + 1.

Example 4.8. We do not have examples of infinitesimal group schemes that are
not almost special. Some such group schemes could be maybe found among the
twisted forms of diagonalizable group schemes, i.e. group schemes of multiplicative
type. If such an example exists among trigonalizable group schemes, a candidate
should be the following.

Let us consider the kernel Gr,m,n of the morphism Fm +V r : Wn → Wn, where
V is the Verschiebung (called “shift” in [Ser79] and “decalage” in [DG70]), m > 0
and 0 < r < n. This is a group scheme of order pmn. The dimension of its
Lie algebra is r, and it it is embedded in a special group scheme of dimension n,
therefore r ≤ edk(Gr,m,n) ≤ n.

Now consider the case r = 1. Then we will prove that G can not be embedded in
any special algebraic group scheme G of dimension 1, so we can not use an argument
as in the Example 4.2 to conclude that edk(G1,m,n) = 1. To prove this fact we can
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clearly suppose that k is algebraically closed. Now let us suppose that such a
group G exists. First of all we can suppose it is connected. Secondly we observe
that it should be unipotent. Indeed, since it is special, it should be affine ([Ser58,
Théorème 1]) and smooth (see Theorem 1.2); therefore, if it was not unipotent,
from [DG70, IV §3.11] we conclude that it contains a subgroup scheme isomorphic
to Gm. This implies that the kernel of Frobenius, FG, is not unipotent, since it
contains a subgroup scheme isomorphic to µp. But since the Lie algebra of G1,m,n

is equal to the Lie algebra of G we have that FG = FG1,m,n, which is a contradiction
since G1,m,n is unipotent. But any unipotent smooth and connected group scheme
of dimension 1 over a perfect field is isomorphic to Ga ([DG70, IV, §2, 2.10]). And
G1,m,n is not a subgroup scheme of Ga.

This example is also interesting since, if k is perfect, the group scheme G1,1,2 is
the p-torsion group scheme of a supersingular elliptic curve. The pn-torsion group
scheme of the same curve has a decomposition series with quotients isomorphic to
G1,1,2

Example 4.9. It is conjectured that the essential dimension of Z/pnZ over a field
k of characteristic p is n. The conjecture has been proved (easily) for n ≤ 2. Since
Z/pnZ is contained in the group scheme of Witt vectors of dimension n, Wn, and
this group is special then edk(Z/pnZ) ≤ n. The same result also follows from
Theorem 1.4, which for constant p-group schemes was already known. The open
problem (for n > 2) is to prove the opposite inequality. We remark that if this
conjecture is true over an algebraic closure k̄ of k then edk(G) is equal to n for any
twisted form G of Z/pnZ. Indeed such a group scheme would be unipotent (see
Lemma 3.1) so, by the Theorem 1.4, its essential dimension is smaller or equal to n.
On the other hand it is at least n, since the essential dimension does not increase
by base change (see [BF03, 1.5]).

Even if the essential dimension of a cyclic constant p-group is not known it is
possible to determine the essential dimension of group schemes with Z/pnZ as direct
summand. Let G be an infinitesimal group scheme with essential dimension n and
contained in Wn. Then

edk(G × Z/pm
Z) = n

if m ≤ n. First Z/pmZ is a subgroup of Z/pnZ and this one is the kernel of
F−1 : Wn → Wn. Moreover since G is infinitesimal and Z/pn

Z is étale the
morphism, induced by multiplication inside Wn,

G × Z/pm
Z −→ Wn

is injective. Therefore

n = edk(G) ≤ edk(G × Z/pm
Z) ≤ n

For instance, if m, n, r ∈ N and m ≤ n then we have

edk(FrWn ×Z/pm
Z) = n.
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