CONIVEAU SPECTRAL SEQUENCES OF
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ABSTRACT. Let k be an algebraically closed field of ch(k) = 0
and G be a simple simply connected algebraic group G over k. By
using results of cohomological invariants, we compute the coniveau
spectral sequence for classifying spaces BG.

1. INTRODUCTION

Let G be a simple simply connected algebraic group over an alge-
braically closed field & in C. The cohomological invariant Inv*(G;Z/p)
is (roughly speaking) the ring of natural maps H'(F; G) — H*(F;Z/p)
for finitely generated field F' over k. (For detailed definition and prop-
erties, see the book [Ga-Me-Se] by Garibaldi, Merkurjev and Serre.)

Let BG be the classifying space of G. Totaro showed that

Inv*(G;Z/p) = H*(BG; Hy,)

where H*(X QHZ/p) is the cohomology of the Zarisky sheaf induced
from the presheaf H},(V;Z/p) for open subsets V of X. This sheaf
cohomology is also the Fs-term

Ey* = H'(BG; Hy,) = H*(BG;Z/p)

of the coniveau spectral sequence by Bloch-Ogus [Bl-Og].

We restrict to consider a group G such that it has only one con-
jugacy class of nontoral maximal elementary abeilan p-group A. For
exceptional cases, G = Gy, Fy, Fg for p = 2, G = Fy, Eg, E; for p = 3,
and G = FEjy for p = 5. We also consider groups Spin,, n > 7.

Let Wg(A) be the Weyl group of G for A. Then by using Rost, Serre
and Garibaldi’s results [Ga], we easily see that

Respy - Inv*(G;Z/p) = Inv*(A; Z/p) "o
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for cases of the above groups except for (Eg, p = 2) and (Spin,, p = 2),
n > 10.
Let @; be the Milnor operation and let

Q(n) = AMQo, .., @n).
We easily see that operations (); can extend on H*(BG; H; /p) for
these fields k. In particular, H*(BA; Hz/p)WG(A) has also the Q(oc0)-
module structure. We can prove that for the above cases except for
(E7,p = 3), the invariant is generated as ()(co)-algebras by elements
in Res(Inv*(G;Z/p)) and Res(H*(BG; H3,)) = Res(CH*(BG)/p).
(Moreover it is a direct sum of free Q(n)-modules.)
These facts imply the following theorem.

Theorem 1.1. Let G = Go, Spin,(7T < n < 9),Fy forp =2, G =
Fy, Eg forp =3, or G = Eg, p = 5. Then the follouwing restriction
map
Resg, : H*(BG; Hy),) — H*(BA; Hy,,)"¢
15 an epimorphism.
For (E;,p = 3), the map Resg, is not epic, while Resyy,, is epic.
We note that the restriction map
Respzy, « H(BG,Z[/p) — H*(BA; Z/p)We )
is not an epimorphism for p > 3, while H*(BA;Z/p) = H*(BA; H;/p)
as algebras. (Indeed, BG is 3-connected but H°(BG; H3,,) # 0.) Note

also that the right hand side invariant and Im(Resyz/,) are computed
by Kameko-Mimura [Ka-Mi] for odd primes p.

When p = 2, the maps Respz/» are even isomorphic except for the
case Eg. However note ([Or-Vi-Vol))

H*(BA; Hy ) = grH*(BA; 2/2) = Z/2[y1, ., yn] © M1, ..., )
with Sz; = y; but y; # 2 = 0 as the cases p = odd. So we know

< !
ResHZ/2 =~ QT(H*(BA; Z/2)WG(A)) £ H*(BA; H2/2>WG(A)

for the above groups.
The arguments seem something subtle and we give here an exam-

ple, the case G = G and p = 2. Then A = (Z/2)% and Wg(A) =
GL3(Z/2), moreover

H*(BGy;Z,/2) = H*(BA; 7/2)Ve¢W = 7,/2wy, we, wq]  |w;| = i.
The cohomological invariant is known by Rost and Serre
Inv*(Go;Z2/2) = Z/2{1,u3} |usg| =3
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where uz = r12923 in H°(BA, HE/Q). From Mui and Kameko-Mimura
results [Ka-Mi|, we can show

HY(BA; HE)) VoD = 2/9(ey, c) ® (2/2{1} & Z/2[ex] © Q(2) {us})
where QoQ1Q2(u3) = ¢z, deg(c;) = (i,4) (and w? = ¢; in H*(BA;7Z/2)).

These c¢; are represented by Chern classes, and hence Resp, is an epi-
morphism.
Of course uz € Respz/2, and moreover we see

]’I*(B‘A7 HEI/Q)WG(A)/RGSHz/Q = Z/2[64, C@]{Ug}.
For example, we have

Qo(us) = ws, Qi(us) =ws, QoQi(uz) =wr, Qa(us) = wiws.
Here u3 does not exist in H*(BGy;Z/2), and hence d,.(u3) =y # 0 for
some r > 2 and y € H*(BG»; H}, /2) in the coniveau spectral sequence.
We can see this r = 2.

Theorem 1.2. We have the epimorphism (as bidegree Q(2)-modules)
from H*(BGy; Hgl/z) onto

H* (BA; Hy),) VoW @ (H*(BA; H)p)e™ [ Resyzya) (—1)[2

= Z/2]es, ce] @ (Z/2{1,y} @ Z/2[c7] @ Q(2){us})
where (—1)[2] is the degree shift operation so that deg(y) = (2,2).
Moreover ds(uz) =y in the coniveau spectral sequence.

Moreover if the Gottlieb transfer exists in the motivic cohomology,
then the above epimorphism is indeed isomorphism. The similar fact
also holds for G = Spin; and p = 2.

Note that y in the above theorem, is a (mod(p)) Griffith element,
namely,

y € Ker(cycle map : CH*(BG)/p — H**(BG;Z/p)).

Each non zero element in (H*(BA; Hz/p)WG(A)/ReSHZ/p) of deg = (x—
2,% + 1) corresponds to a Griffith element of deg = (*, *). So we can
construct many Griffith elements in C H*(BG) /p for the above groups
G.

An outline of this paper is following. In §2, we recall the relation be-
tween the motivic cohomology H** (X; Z/p) and the sheaf cohomology
H*(X; H%'/p). In §3, we show that H*(X; HZ/p) has the Q;-action. In
84, we recall the cohomological invariant and give a sufficient condition
such that Resg, is epic when Inv*(G;Z/p) is known. In §5, we study

the Dickson invariant for H*(BA; Hzl/p) using (); actions by Kameko-

Mimura. In §6 — §8, we compute H*(BG; HZ/p) for concrete cases,
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e.g., (Ga,p = 2) is studied in §6. In §9, we study the relation between
H*(BG; HZ/p) and the Brown-Peterson theory BP*(BG). In the last

section, we study the image of Griffith elements to BP*(BG)®pp«Z/p,
in particular, for (Sping,p = 2).

2. MOTIVIC COHOMOLOGY

Let X be a smooth (quasi projective) variety over a field k C C. Let
H**(X;Z/p) be the mod(p) motivic cohomology defined by Voevodsky
and Suslin ([Vol-3]).

Recall that the (mod p) B(n,p) condition holds if

H™™(X;Z/p) = H (X p™) for all m < n.

Recently M.Rost and V.Voevodsky ([Vo5],[Su-Jo],[Ro]) proved that
B(n,p) condition holds for each p and n. Hence the Bloch-Kato con-
jecture also holds. Therefore in this paper, we always assume the
B(n, p)-condition and also the Bloch-Kato conjecture for all n, p.
Moreover we always assume that k£ contains a primitive p-th root

~Y

of unity. For these cases, we see the isomorphism HJ}(X; uf?”) =
H™(X;Z/p). Let T be a generator of H%!(Spec(k);Z/p) = Z/p, so
that
colim; T H** (X Z/p) = H*(X; Z/p).
Let H*(X; Hzl/p) be the sheaf cohomology where Hy, is the Zarisky

sheaf induced from the presheaf H,(V';Z/p) for open subset V' of X.
Let X = |JU, for Zarisky open sets U,. The sheaf cohomology
H*(X;H Z/p) is defined as the colimit of the cohomology of the following

Ceck complex

5
(2.1) - Hr(il ----- in) ™ Hr(jl ----- Jnt1) 7
where T, 0 =TWU,N..NU;; H (U, N...N0U;,; Z/p)*)

and where H*(—;Z/p)® is a sheaficication of the presheaf H*(—;Z/p).
Here ¢ is induced map from the inclusions U; "U; C U;, U;NU; C U;.

The Beilinson and Lichtenbaum conjecture ( hence B(n, p)-condition
) (see [Vo2,5]) implies the exact sequences of cohomology theories

Theorem 2.1. ([Or-Vi-Vo], [Vo5]) There is a long exact sequence
— H™" (X Z/p) = H™"(X;Z/p)
= H"N(X; Hyy,) = H™ UG Z/p) =

In particular, we have
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Corollary 2.2. We have the additive isomorphism
H™"(X: Hp),) = H™"(X;Z/p)/ (1) © Ker(r)|H™ " (X3 Z/p)
where H™"(X;Z/p)/ (1) = H™"(X;Z/p)/(TH™ " (X; Z/p)).

Note that the long exact sequence in Theorem 2.1 induces the 7-
Bockstein spectral sequence

E(r)y = H""(X; Hyy,) = colim;r' H™" (X; Z/p) & H(X;Z/p).
On the other hand, the filtration coniveau is given by
NCH[(X;Z[p) = Uz Ker{ HZ/(X; Z/p) — He (X — Z;Z/p)}

where Z runs in the set of closed subschemes of X of codim = c.
The induced spectral sequence is called the coniveau spectral sequence.
Bloch-Ogus [Bl-Og| proved that its Es-term is given by

B(e)™ = HC(X, Hyj,*).

By Deligne ( foot note (1) in Remark 6.4 in [Bl-Og]) and Paranjape
(Corollary 4.4 in [Pj]), it is proven that there is an isomorphism of the
coniveau spectral sequence with the Leray spectral sequence for the
natural map of the sites. Hence we have ;

c,m—c ~v

Theorem 2.3. (Deligne, Parajape) There is the isomorphism E(c)¢
E(7)."77 forr > 2 of spectral sequences. Hence the filtrations are the
same N°H}(X;Z/p) = FI™™°¢ where

Frm=e = Im(x7°: H™™"(X;Z/p) — H™™(X;Z/p)).

3. COHOMOLOGY OPERATION

Let tc : H**(X;Z/p) — H*(X(C);Z/p) be the realization map
([Vol]) for the inclusion k& C C. The motivic cohomology has (Bock-
stein, reduced powered) cohomology operations ([Vo2,4])

B8 H(X;Z/p) = H (X Z/p)
P 0 (X, Z)p) — H* 2=+ 41 (. 7 /)

which are compatible with the usual (topological) cohomology opera-~
tions by the realization map t¢c. Voevodsky defines the Milnor opera-
tion (); also in the mod p motivic cohomology

Qi H(=5Zp) — H™ =0 (= 2 p).
Here we define the weight degree by

w(x) =2n—m (resp. =n' —m')



6 M. KAMEKO, M. TEZUKA, AND N. YAGITA

for 0 # x € H™™(X;Z/p) (resp. H™ (X; H"/ )). Similarly, we also
define the weight degree for cohomology operations and differentials of
spectral sequences,e.g.,

w(t) =2, wP')=0, w(Q;)=-—

Let p, = (&) € k*/(k*)P = H'(Spec(k); Z/p) where &, is the prim-
itive p-th root of unity. The @); operation has the same property as the
topological case only with mod(ps). For example, Q); is a derivative
only mod(ps).

Let A, be the mod p Steenrod algebra generated by all cohomology
operations on H**(X;Z/p). ( Voevodsky proved that A, is multi-
plicatively generated by elements in H** (Spec(k); Z/p), P? and Q;.)

Lemma 3.1. Suppose p, = 0. Then the Steenrod algebra A, acts on
the etale cohomolgy H*(X;Z/p).
Proof. In H** (Spec(k); Z/p), we know

Pi(1)=0 fori>0, and B(r)=p,=0.

When p > 3, the Cartan formula holds in the motivic cohomology
(Proposition 9.6 in [Vod]), and we have

P'(tx) = 7P'(z) for i >0, and pB(rz)=78(x).

From the B(n, p) condition, H,(X;Z/p) = colim;7' H** (X; Z/p), which
implies the lemma.
For p = 2, we also know from Proposition 9.6 in [Vo4],

ZSQQZ Sq2* 2@ +TZSq2z+l Sq2* 24— l(y)’

2*+1 Z Sq 2*+1—j(y) + P2 Z Sq%“(x)SqQ*_zi_l(y).

Since py = 0, we see S¢*T!(7) = 0, and so S¢*(tx) = 7Sq*(z). This
also induces the lemma. 0

Theorem 3.2. Suppose p, = 0. Then the cohomology operation Q)
and P can be extended on the T-Bockstein spectral sequence and so on
the coniveau spectral sequence E,, r > 2 (e.g., on H*(X; Hi/p)).

Proof. In the stable Al-homotopy category SHot, let HZ/p be the
Eilenberg-MacLane spectrum representing the mod p motivic coho-
mology

H*(X;Z/p) = Homsuu(X,S*™ A HZ/p)

where S** is the sphere of bidegree (*, *').
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Let op. = Q; or P’ of bidegree (m,n). Consider the diagram
SOUANHZp — HZ/p L cone

opl opl

St A HZ/p —T S™" A HZ/p —L— S™™ A cone.
Here cone is the mapping cone of 7 so that
H*™(X; HZ/p) >~ Homspoa(X,S** A cone).

In the above diagram, we see p - op. - 7 = 0. Hence there is a map
op'. : cone = S™™ A cone such that p-op. = op'. - p. O

Here we do not see yet that A, acts on E,, e.g., we do not see that
Q; generates the exterior algebra (Q(co). However when r = 2, the
following theorem holds.

Lemma 3.3. Let k be an algebmz’cally closed field. Then the Steenrod
algebra A, acts on H*(X; Hg/p))
Proof. Recall that H*(X; Hj Jp) is defined as the cohomology of the

Ceck complex. Given op. € A,, by the universality of sheaficication,
the following diagram from (2.1) is commutative

é
HF(Zl ..... Zn) — HF(]l ~~~~~ ]n+1)

5
[0y — T Grrnsn)-
Thus we have the desired result. O

Let us write H** = H** (Spec(k); Z/p) and H* = K};(k)/p so that
H** = H*[r]. (Note if k is algebraically closed, H** =2 Z/p|[r].) For
an elementary abelian p-group A = A,, = (Z/p)", the mod(p) motivic
cohomology is given by Voevodsky ([Vo2,4])

H*’*/(BA; Z]p) = H*’*/[yl, oy Yn] @ Az, .., )

with 27 = y7 + xp, for p = 2 and z? = 0 otherwise.
Since Ker(r)|H** (BA;Z/p) = 0, from Corollary 2.2, we have

H*(BA; Hjy,) = H™(BA; Z/p)/(rH™* " (BA; Z/p))

S Ho gy, © Aon, ) (mod(p2))
for all primes p. Each Q; is a derivation mod(pQ), and hence

Qo Quor(w1m) = Y sgn(jn, )yt 8"y # 0 mod(py)
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where (j1, ..., js) are permutations of (0, ...,s — 1).
Let us write

B Q(’I’L) :A(Qoa'-'aQn)a
Q(n) =Qn) = Z/p{Qo...Qn} = Z/p{Qiy---Qi,[0 < i, <n, s <n}.
Let u; = x1...7; € H°(BA; H%/p). For example, we have

H*(BA; Hz,) D H[yr, - yn] @ (@:Q(0 — 1){ui})

D @il [y1, 1] © QU = Dfwi} (%)
since Qo...Qi—1(w;) € H*[y1, ..., yil{v1...yi }. In sections bellow, we show
that the last sum (x) of free Q(i—1)-modules contains H*(BG; Hz'/p)WG(A),
as a direct summand , for many cases of G. (See Assumption (1) in

§4.)
4. COHOMOLOGICAL INVARIANT

Let G be a linear algebraic group over k. Recall that H'(k; Q) is
the first non abelian Galois cohomology set of G, which represents the
set of G-torsors over k. The cohomology invariant is defined by

Inv'(G,Z/p) = Func(H'(F;G) — H'(F;Z/p))

where F'unc means natural functions for each field F' which is finitely
generated over k. (For details for the definition or properties, see the

book [Ga-Me-Se].)

Totaro proved [Ga-Me-Se| the following theorem in the letter to
Serre.
Theorem 4.1. (Totaro) Inv*(G;Z/p) = H°(BG; Hy),).

Hereafter (throughout this paper), we assume that k is an algebraically
closed field in C. Moreover, in this paper, we only consider simple
simply connected groups G which have the following property. we as-
sume that the algebraic group G has only one conjugacy class A of non
toral maximal elementary abelian p-subgroups. Exceptional groups are

G27F47E6 fOTp:Z
G = Fu, Es, E7 forp=3
Eg  forp=5.
For spin groups Spin,,, we consider the cases n < 9 only in this paper.

We consider the restriction maps (of cohomology) to A and the max-
imal torus Tg

Resyzy, : H(BG; Z,/p) 5 H*(BTg; Z/p) x H*(BA; Z/p)
" H*(BA; Z/p)"Ve.
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By the Quillen’s theorem the above ¢* has nilpotent kernel. More
strongly, Toda, Kono, Tezuka and Kameko show ¢* is really injective,
namely, H*(BG;Z/p) is detected by A and T;. Moreover when p = 2,
Respzyo are isomorphic except the case Eg. However Respz, is not
epic for p > 3.

On the other hand, by Serre, Rost and Garibaldi(|Ga-Me-Se],[Gal),
Inv*(G;Z/p) are computed for these groups, e.g.,

(Z)p{1,us}  for (Ga, Eg,p=2), (Fy, Ez,p=3),
(Es,p=15)

Z[p{1,u3,us} for (Spinz,p=2), (Ee,p=3)
Z[p{1,u3,us,us}  for (Sping,p = 2)
Z[p{1, us, us,uy, ust  for (Spins,p = 2)
| Z/p{1,us3,us}  for (Fy,p=2).
(Moreover Rost and Garibaldi determined Inv*(Spin,;Z/2) for n <
12).

i“or these groups, we note (Ga-Me-Se|,[Gal) the the restriction

Respny : Inv* (G5 Z/p) — Inv*(A;Z)p) = Axq, ..., zy).

Inv*(G;Z[p) =

is injective (identifying w; = xy...x; and u)y = zyxewsws). We will show
the following theorem in §6 — 8 bellow (by computations of concrete
cases)

Theorem 4.2. Let G be an above type except for G = Eg and p = 2.
Then

ReSmy : Inv* (G5 Z)p) = Inv* (A; Z/2)Ve).

Remark. When G = Fg and p = 2, the above Resy,, is not epic.
We want to extend above isomorphism in the theorem to say that

Resg, : H*(BG; Hy, ) — H*(BA; Hy, )"

is an epimorphism. (Of course for p > 3 the above map is not injective.)
We will prove the following assumption (in the sections bellow) for
the above groups except for (Eg,p = 2) and (E7,p = 3). (When
G = Sping, some modification of Assumption (1) holds.)

Assumption When Inv*(G;Z/p) = Z/p{1,u;,, ..., u;, }, there is a
bidegree isomorphism

(1) H*<BA; Hz//p)WG(A) = EB;rL:lZ/p[fsla A fsk‘s] 2 Q@s - 1){uis}
(2) fac€ ResHZ/p(HQ*’*(BG; Z/p)) = Res(CH*(BG)/p)
forall1<s<m, 1<t<k,.
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If this assumption is satisfied then H*(BA; H*')"¢(“) is generated
as bidegree Q(oo)-algebra by w;, and Res(CH*(BG)/p). Hence the

surjectivity of Resg, is immediate.

Lemma 4.3. If Assumption (1),(2) are satisfied, then
Resg, : H(BG; Hy),) — H*(BA; Hy, )"

18 an epimorphism.

Thus we can prove Theorem 1.1 in the introduction. As for the
statements of differential and (Griffith elements), the following lemma
is useful.

Lemma 4.4. Let Resp,,(a) # 0 fora € Inv'(G;Z/p) = H°(BG; H3,,).
(Namely, the above element is a permanent cycle in the coniveau spec-
tral sequence.) Moreover let

Qjr---Qj,_,(a) € H(BG;,Z/p).

Then dy(a) =y # 0 € H*(BG; HZ;) in the coniveau spectral sequence,
and elements

Qj,--Qj,_,(y) #0 € CH*(BG)/p = H**(BG;Z/p)
are Griffith elements (i.e., in the kernel of CH*(BG)/p — HZ% (BG;Z/p)).

Proof. Take ¢ = Qj,...Q0;,_,(a). Since ¢ does not exist in H*(BG;Z/p),
we see d,(q) # 0 in the spectral sequence for some 7.
This » = 2 because the following reason of weight degree. First note

w(d,) =wt(l,1—r)=2(1—-r)—1=1-2r.
Since w(q) = w(a) — (i — 3) = 3, we have
w(d(q)) =3+1—2r=4-"2r

If » > 3, then the above weight is negative and d,(q) = 0.
This implies that dy(a) # 0. Otherwise

dQ(Q) = dQ(le'“jS—sa) = le"'an% (dQ(a)) =0,

which is a contradiction. O

5. DICKSON INVARIANT

At first we assume p > 3. Dickson computed the ring of invariants
of Z/plyi, ..., yn] with respect to the action of GL,(Z/p). The ring of
invariants is a polynomial algebra

Dn = Z/p[ylu () yn]GLn(Z/p) = Z/p[cnﬂa () Cn,nfl]
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where the generators are given by the equation

n—1
0.)= [l (X+y)=X"+ > (~1)e, X7
YEZ/p{y1, syn} j=

Let reg : A — GL,(C) be the regular representation and ¢(reg) the
total Chern class. Then it is well known that

c(reg) =0,(1) =1 —cpp1+ ... +(=1)"cpp.
We also note the following lemma.
Lemma 5.1. (Lemma 2.3,2.4 in [Ka-Ya2]) Let p: A, — GL,,(C) be

an representation such that c(p) € H*(BA; Z/p)t2/P) . Then c(p)
c(reg)® for some a > 0.

For the invariant ring SD,, under SL,(Z/p), we have
SD, = Z/ply1, ..., yn) S @/P)
=~ D {1, en, ..., 72} with 2™ = ¢,
~ D), @ Z/plen] with D), =Z/plcn, s Cnn-1]-
Mui computed the ring of invariants of
H*(BA,; Hz//p) =Z/p[Y1s s Yn) @ Ay, ...y)

with respect to the action of SL,,(Z/p). (In fact, Mui studied H*(BA;Z/p)
for odd prime p, however we study H*(BA; HZ/p) for all primes.) Of
course U, = ry...T, is invariant under SL,(Z/p). In terms of Milnor’s
operation, we may state Mui’s result in the following form.

Theorem 5.2. (Mui/Mu/, Kameko-Mimura [Ka-Mi])
H*(BA; HE//p)SLn(Z/p) = Z/plen, cna, s Cn,n—l]®(Z/p{1}@Q(n_1){un})
=D, ®SD, ®Q(n —1){u,}
where Qg...Qn_1U, = €,.
The @Q;-operation acts on u,, as follows.

Lemma 5.3. (Kameko-Mimura [Ka-Mi/,[Ka-Yal]) Forx € H*(BA, Hg/p)
it holds

Qn + Z n Cn ZQZ ( ) - 07 QOQ@Qn(un> = Cn,iCn-

Let U, C SL,(Z/p) be the maximal unipotent subgroup generated
by upper triangular matrices with diagonals 1, so that U, is a Sylow
p-subgroup of SL,(Z/p). The invariant under this group is given by
Mui, Kameko-Mimura.
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Theorem 5.4. (Kameko-Mimura Theorem 4.2 in [Ka-Mi]) Let G' C
GL,(Z/p) such that Z/p[y, ..., yx|® = Z/plf1, ..., fo] and
H*(BAy; Hy) ) 2 Z/plfr, .o, ful{vr = 1, ... 020 }.
Then the invariant under G = (G', Upy1) C GLyi1(Z/p) is given by
(1) Z/plyss s Y] Z Z/DLfrs s fry On(Ynin)]
() H(BAur; HE,)O =
Z[plf1: s fur On(Yns1)] @ (Z/p{ur, s v2n } © Q0 — D{unga})-
Corollary 5.5.
HY(BA; HE),)P 2 60,2 /pO0(11), s Or 1 (31)] © Qi — 1){uc}
Corollary 5.6. (Lemma 5.8 in [Ka— Ya/)

(yn+1 Qn+z n anQ (un-i—l)'

Hereafter this section, we assume p = 2. Of course we have the
isomorphism H*(BA;Z/2) = Z/2[xy,...,x,| and its invariant under
GL,(Z/2) = SL,(Z/2) is

Z)2[x1, s 2| S ED 2 710 d, g, oy diyy 1]

where the generators are given by the equation

n—1
O (X) = [I &+a)=x"+> d. x*.
z€Z/p{x1, xn} j=0

Here d} ; = ¢,; in H*(BA;Z/2) identifying y; = x7. The Milnor Q;-
operations (see (2.6) in Schuster-Yagita [Sc-Yal) are given as the case
p odd. (Hereafter let us write d,,; by d; simply.)

do = Qo..-Qn—2(un), d; = Qo---Qiq---an(un)/do-
From Lemma 2.1 in [Sc-Ya], we have
(*)  Qna(di) = dod;,  Qi—1(d;) = do.

In H*(BA; H}, /2) we can get more strong result. Let us write simply
L(GLy) = gr(H"(BAy; 2/2)%" %)) € H*(BA; Hj )
Igr(GLy) = H*(BAy; Hijp) @72,

By Kameko-Mimura theorem, we have showed
Igr(GL,) 2 D, & D, ® Q(n — 1){u,})
where D, =7/2[chn-1,- cno] and D) =7/2[chn_1,-sCn1l-
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Lemma 5.7. In H*(BA; HEI/Q), we have

d; = QO---QAifl---anIOLn)a didg = QO---Qifl---anl(un)-
did; = Qo Qi—1..Qj—1...Qur(uy) i # .
Proof. Consider the element

a; = QO---Qi—l---Qn—QQn—l(un) € Igr(GLy).

Then Qi,l(ai) = do and anlal' = dodz
Using property (x), we see @Q;(a; — d;) = 0 for all j. Of course
a; —d; € Igr(GL,). From Kameko-Mimura theorem, we still know

Igr(GL,) NN;jKer(Q;) = D,.
This means d; = a; € Igr(GL,). (In fact d; = a; mod(D,) in
H*(BA,;Z/2), but d; = a; exactly in H*(BA,; HZ/2))
Therefore we have

d; = QO---Qifl---anl(un)a didy = Qo---@zq---an(Un)-

By the similar arguments, we have

didj = QO---Qi—l---Qj—l---Qn—l (Un)
0J

Of course I(GL,) C Igr(GL,), but this injection is not an isomor-
phism for n > 3.

Lemma 5.8. Let n > 3. Then we have
Igr(GLy)/I(GLa) D Q(n —1)/(Q(n — 1)")"*{un}.
Proof. Consider the element
r = QO...Qi_l...Qj_l...Qk_l...Qn_l(un).
Its image Q;_1(x) = d;dj, or d; (when k = n.) Hence x is not in I(GL,,)
because (); maps n-product elements into also n-product elements. (If

x € I(GL,), then x must be a sum of d; or d;d;, but it still appeared
in (Q(n —1)7)"2(u,).) Thus we get the lemma. O

Let A = A, be a maximal elementary abelian p-subgroup of G and
Wea(A) its Weyl group.

Lemma 5.9. If Respy, : Inv*(G;Z/p) — Inv*(An; Z/p)VeW is an
epimorphism, then

(Q(n —1)")""*{u,} C Resy,, (H*(BG;Z/p) = H*(BAy; Z/p))
(e.g., di,...;dy—y1 for p=2 are in Resp,, ).
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Proof. Let z be an element in H*(BG; Hg'/p) with

Resp,(x) = Q4 ...Qi,,_, (uy).

Then w(z) = n — (n —2) = 2. However the weight of the differential
d, of the coniveau spectral sequence is w(d,) = 1 — 2r (see the proof
of Lemma 4.4). Hence d,(x) = 0 for r > 2, namely, z is a permanent

cycle and is an element in H*(BG;Z/p). O

6. We(A) = SLs(Z/p)

We consider the cases of A = (Z/p)® and Wg(A) = SL3(Z/p),
namely, (Gq,2), (Fy,3) and (Fg,5). These cases

Inv*(G; Z/p) = Z/p{1, us}.

(These us are called the Rost invariants.)
Let G = G5 and p = 2. Tt is well known that

H*(BG;Z)2) = 1(GL3) = Z /2wy, we, wr]
where w; is the Stiefel-Whitney class of Gy C SO7. We can identify
Wy = dg,z, We = d3,1, wr = ds,o-
On the other hand, Kameko-Mimura theorem implies
Lgr(GLs) = Z/)2[c, cs] @ (Z/2{1} & Z/2[c7] @ Q(2){us}).
Also by using Lemma 5.8, we can show
Igr(GL3)/I(GL3) = 7Z/2]cy, cs]{us}.
In fact (from Lemma 5.7 or from dimensional reason), we have
Qo(uz) = wy, Q1(uz) = ws, QouQ1(uz) = wr, Qa(uz) = wyws.
Moreover we note
CrlUz = WaWeW7

because both above elements are same after acting Q;, e.g. Qo(cruz) =

crwg = Qo(wywgwy) (see the proof of Lemma 5.7 or see [Ya2]).
Therefore Assumption (1),(2) are satisfied. Moreover from Lemma

4.4, we see dy(u3) =y # 0. Therefore we have the following theorem.

Theorem 6.1. There is a Q(2) bidegree module epimorphism from
H*(BGy; Hj,) to

Lgr(GL3)DZ/2]cs, csl{y} = Z/2[ca, c6|D(Z/2{1, y } DL/ 2[cr]@Q(2){us}).
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Remark. If there is a Gottlib transfer in the motivic theory H** (—; Z/2)
or the sheaf theory H*(—; H; /2), then the above epimorphism is in fact
an isomorphism.
Next we consider the odd prime cases i.e., (G, p) = (Fy,3) or (Eg, ).
From Kameko-Mimura theorem, we also have
Igr(SLs) = Dy & SD; @ Q(2){us}-
Moreover from Kameko (Lemma 5.2 in [Ka-Yal]), it is known that

Igr(SLs)/Resuz, = SDs3/(e){us}
as the case (G3,2). Hence Assumption (1) satisfied and Lemma 4.4
can be applied so that ds(usz) = y.

To see Assumption (2), we consider the representations. We consider
the case (Es,5). (The case (F}y,3) is similar.) It is known that there is
a non trivial representation ([Ad], [Ka-Ya2|)

p: Es — SO(248).
We consider the total Chern class of the representation p|A for A =
(Z/5),
c(plA) = (1 —c32+c31—c30)* fora>0
from Lemma 5.1. Since p|A is non trivial, a > 1. Moreover
ez = 2(5° — 1) = 248.

So a = 1. This means that ¢, are represented by Chern classes. (We
also note c3; = Plcso for the reduced power operation P'.) Hence
w(cg 1) = w(cs2) = 0. Thus we can see Assumption (2).

Theorem 6.2. Let (G,p) = (Fy,3) or (Es,b5). Then there is an epi-

morphism of Q(2)-bidegree modules from H*(BG; Hz/p) to

Z[plesa, csal @ (Z/p{1,y} © Z/ples] ® Q(2){us}).

7. Wa(A) = (Us, SL3(Z/p))
We consider the cases of A2 (Z/p)* and
Wy = Wa(A) = (Us, SLs(Z/p)),
namely, (Spinz,2), (Fs,3). For these cases, we have the isomorphism
Inv*(G;Z/p) = Z/p{1, us, us}.

We also study the case (E7,3), while the above facts do not satisfied.
Let G = Spin; and p = 2. It is well known that

H*(BG;7)2) = I(Wy) = Z/2[xy, ..., 24"
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= 7./2[wy, wg, wr, ws)
where wg is the Stiefel-Whitney class of some spin representation. We
can identify wg = Of(xy).
Lemma 7.1.
Tgr(Wy) = Igr(GL3)®Z/2[cy, c6|R(Z)2[cs]{cs }BZ ) 2[cr, cs|RQ(3){us}).
Proof. Recall that using Q(2), we have (Q2Q1Qo(u3) = c7)
Tgr(GL3) & 7/2[cy, o, c7) @ (Z/2{1} ® Q(2){us}).
By Theorem 5.4, we have
Igr(Wa) 2 Z/2[cy, c6, 1, cs] @ (Z/2{1} & Q(2){us} & Q(2){u4})

= Z)2[cs, ce] (L) 2]es {1} L/ 2[cr] 0Q(2){ us } B Z/ 2[cr, c5] RQ(3){ua}).

The last isomorphism is shown by using the following facts. From
Lemma 5.6, we can see (Lemma 5.8 in [Ka-Ya2])

O3(ya)uz = (Q3 + 3202 + c31Q1 + ¢30Q0) (ua),
namely, Q3(us) = cguz + caQa(us) + c6Q1(ua) + c7Qo(us). Hence
Q(2){ud} ® Q(2){csus} = Q(3){us}-
Using QoQ1Q2Q3(us) = crcs, we get the last isomorphism. O
Lemma 7.2.
Lgr(Wa)[I(Wy) = Igr(GLs)/I(GLs3)D
Z,)2[cq, o, c8] @ {1, Qo, ..., Q3 } {us}.
Proof. At first, we see
Q1Qo(us) = Q1Qo(uzzs) = Q1(WwaTs + u3ys)
= wry +ways + weys = wg  in H*(BA; HZ/Q).
(This fact also follows from ds 3 = wg and Lemma 5.7.) Similarly, we

can compute the @); action on w4, which is given as QoQ1(us) = ws,

Qon(m) = wWyws, Qle(U4) = WeWs, Qon(U4) = CgWy, Qle(U4) =
C3We, QzQs(U4) = CgW4Ws.
Moreover we have

C7Ug = C7U3T4 = WAWeW7 T4 = WAWeWS.
Therefore Q;us ¢ 1(Wy) but Q;Q;(us) € I(W,). Thus we have
Tgr(Wa)/I(Wy) = Z/2[cs, c6) @ (Z/2{us} ®Z/2[cs {1, Qo, .., Qs }{ua}).
O

Therefore Assumption (1),(2) are satisfied. Therefore we can com-
pute ;
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Theorem 7.3. There is a Q(2) bidegree module epimorphism from
H*(BSping; HZ/Q) to

H*(BGy; 2//2)692/2[04,06,08]®(Z/2{08,y§,Qoyé,...,ng;}@Z/Q[c7]®Q(3){u4})
where QoQ1Q2Q3uy = crcs. The differentials ds(uz) = ya, da(uy) = yh

in the coniveau spectral sequence.

Remark. If the epimorphism in Theorem 6.1 is an isomorphism,
then that in the above theorem is also an isomorphism.

Remark. The notations in [Ya3] are given : o' = uy as a virtual
element and

3 = Quyys & = Qv &6 = Qays, Csya = Q3.
Next we consider the odd prime cases i.e., (G,p) = (Eg,3). Let us
denote by O simply, O3(z4) so that e, = QoQ1Q2Q3(uy) = e3O. Then
I,

from Kameko-Mimura lemma, we also have ([Ka-Mi
Igr(W,) = SD/(e)[O] ® SD;3[0] ® Q(2){us, us}
= SDs3/(e)[0] ® SDs © Q(2){us} ® SDs[0] @ Q(3){ua}-
Moreover from Kameko (Lemma 5.2 in [Ka-Yal]), it is known that
Tgr(Wy)/Respzyp = SDs/(e)®(Z/)3{us}®Z/3[O{us, Qoua, ..., Q3us})

as the case (Spinyz,2). Hence Assumption (1) satisfied and Lemma 4.4
can be applied so that ds(usz) = y.

To see Assumption (2), we consider the representations. It is known
that there is a non trivial representation Fg — SO(26). Hence we know
that c3; is represented by Chern classes by the arguments similar to
the case (Fy,3). As for the element O, we consider the restriction

Here a4 € A is the dual of x4, € Hom(A;Z/3). We see O|{as) # 0 but
SDs|{as) = 0. Hence the fact

cas(pl(aa)) =y #0

implies O (modulo elements in SDj3) can be represented by a Chern
class. Hence Assumption (2) is also satisfied.

Theorem 7.4. There is an epimorphism of Q(3)-bimodules
from H*(BFEg; HZ/3) to

H*(BFy; Zl/g) D Z/3[cz2,¢31, 0l @ (Z/3{O, y5, Qoya, -, Q3y5}
DL/2es] @ Q(3){ua})-
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At last of this section, we consider the case (E7,3). This case
We(A) = W, = (Wy, diag(1,1,1,—1)) C GL4(Z/3).
The invariant is also computed by Kameko-Mimura
Igr(Wy) = SD/(¢)[0%] & SD5[0%] ® Q(2){us, Ous}
Moreover from Kameko (page 2279 in [Ka-Yal]), it is known that
Igr(Wi)/Respzss = SDs/(€)|0°] ® (Z/3{us} & Q(2){Oua}).
It is also known Inv*(F;;Z/3) = 7Z/3{1,us} and hence
Inv*(Er; 2/3) = Inv*(A; Z,/3)Ws

from the above result.

There is the natural representation p : £y — SO(52). Hence we see
that O? can be represented by a Chern class. So Assumption (2) is
satisfied. However Assumption (1) is not.

Theorem 7.5. The following restriction map
ReSEQ : H*(BE'?u 2/3) - H*<BA7 ]¥zl/3)vvz1
1s not an epimorphism.

Proof. Recall arguments in the proof of Lemma 5.9. Suppose Quy €
Resp, and Res(z) = Ouy for x € H*(BEx; HZ/?)).
Of course w(x) = w(Ouy) = 4. The weight QoQ1(x) = 2. Recall
w(d,) =1—2r and
d (QoQ1(x)) =0 forr>2.

Hence QoQ1(x) € H*(BE3;Z/3) from the coniveau spectral sequence.
So QoQ1(Ouy) € Resyzys, which contradicts to the result above

Lgr(Wy)/Resuzys O Q(2){Oud}.

8. Sping FOR p = 2

In this section, we consider the groups Sping, Sping, Fy, Fg for p = 2.
At first we consider the case G = Sping. Then the maximal elementary
abelian 2-group is ranky = 5, and the Weyl group is

Wea(A) =Ws = (Us, SL3) C SL5(Z/2).
The cohomology is known that
H*(BG;Z/2) = H*(BA; Z/Q)WG(A) = Z/2[ws, we, wr, ws, wig]
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where w;g is the Stiefel-Whitney class of some spin representation. We
can also identify

Wi = OQ(ZLB) = IL‘L})6 -+ ngL‘g + dzl‘g -+ dlfL‘g + dol‘5

where d3 = ws, dy = wgwy, di = wswg, dy = wsw; (see the proof
of Lemma 7.2 or pl051 in [Sc-Yal]). As the case (%) in §5, we know
([Sc-Yal)

Qzwis = dowss, Qu(dowrs) = dgwis.

We can prove from Kameko-Mimura theorem

Lemma 8.1.
Tgr(Ws) = Igr(Wy) & Z/2[cy, ¢, c16] @ (Z/2[cs]{c16} P
L2[c7] ® Q(2){cr6us} @ Z/2cr, cs] © Q(4){us})

Proof. Recall that

Lgr(Wa) 22 Z/2[eq, co, 1, 5] @ (Z/2{1} @ Q(2){us} © Q(2){us}).
From Kameko-Mimura theorem (Theorem 5.4) we see that
Lgr(Ws) = Z/2[cy, co, c1, cs, c16]®(Z/2{1}0Q(2){us}0Q(2){ua}@Q(3){us}).

Using Q201 Qo(u3) = ¢7 and Q3(uy) = cguz+... as the case for Spiny,
we have the isomorphism

Q2){us} = Z/2{cr}@Q(2){us}, Q) {ua} = Q(2){csus}EQ(2){ua}-
Hence Igr(W;) is isomorphic to
L]2[ca, cg, c16] ® (Z/2]cs] & Z/2[er] © Q(2){us}d

Z[2cq, cs] @ Q(3){ua} & Z/2[cr, cs] @ Q(3){us})
Using the fact Q4(us) = cipuq + ... from Lemma 5.6, we have the
isomorphism

Q(4){us} = Q(3){cieua} O Q(3){us}.
This induces the isomorphism
Tgr(Ws) =2 Z/2[cy, cg| @ (Z)2[cs, c16] ® Z/2[c7, c16] @ Q(2){us}

®Z/2cr, cs) @ Q(3){us} ® Z/2[cq, cs, c16] @ Q(4){us}).
Hence we have the desired isomorphism. O]

The cohomological invariant is known
Inv*(Sping, Z/2) = Z/2{1, us, uy, us }.

Hence Assumption (1),(2) are also satisfied for (Sping,2) (from the
last isomorphism in the above proof).
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Lemma 8.2.
Lgr(Ws)/1(W5) = Igr(Wy)/(Wa) @ Z/2[ca, co, c16] ® (Z/2{cr6us} &
®Z/2[es] @ ((Q(4)/(QA) ") {us} ® Z/2{crus})).
Proof. Since
Qo(us) = Qo(uaws) = Qo(ua)ws + usys,

we can compute

Q2Q1Qo(us) = Q2Q1Qo(U4)SL’5+Q1Q0(U4)y§+Q2Q0(U4)y§+Q2Q1(U4)y5
= WrwsTs + WsYs + WiWsY3 + WeWsYs = Wi
(This fact also follows from dss4 = wig.) Let us write Q... (us) =
i1,...,i; Simply. Similarly we can compute
Qo2 = wis, Qoiz = wieWws, Qo3 = WisWaWs, Q123 = W16WeWSs,
Q014 = C16Ws3, Q024 = C16WgWsy, Q034 = C16C8W4,
Q124 = creWews, Qi34 = C16C8Ws, (234 = C16C8WAWe.
We can compute
QO(C7U5) = QO(C7U4375) = Qo(w4w6w8$5)
= WaWrWT5 + WaWgWgY5 + ... = W4W16.-
Let us write Qy,...i,(crus) = @,

_____ i; simply. Then we can compute

/ / !/ /
Qo = W16W4, Q1 = W16Ts, Qg = W16W4We, Qg = W1sW4WeWSs,
/ / / /
Q4 = C16W4We W3, Qm = WieWr, Qu = Wi1eWeW7, Qo4 = C1eW7W4Ws.
Moreover
2
CrUs = CTWLWeW8T5s = W4 WeW7W16-

There appear all generators of the Z/2[cy, cg, cs, ¢16]-module with
modulo Ideal(c7,w7). Thus we can see

Lgr(Ws)/1(Ws) = Z/2[cs, o] @(Z/2[c16{us} BZ/2[cs)(Q(3)/(Q(3) ") *{ua}

DZ/2[cs, c16] @ ((Q(4)/(Q4) ") {us} & Z/2{crus})).
O

Theorem 8.3. There is an epimorphism of Q(4)-modules
from H*(BSping; HZ’/Q) to

H*(BSping; HZ/?))EBZ/p[czl, e, C16) (2 2[c7]@Q(2){cr6us } DZ/2{c16y }
®L/2[cs, c7) @ Q(4){us} ® Z/2[cs] © (Q(4)/(Q(4))*{y"})

where dyus =y and dy(us) = y".
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Remark. However note that we can not see dy(c7us) # 0 or not.
From Lemma 4.4, we know ds(us) = y” # 0 and we get many Griffith
elements

Q:iQ;(y") for0<i<j<A4.
We study the image of the cycle map cl to BP*(BSping) ®pp+ Z/2 in

the last section (indeed cl(Q;Q;(y") # 0).
Next we consider the case (Sping,2). The Weyl group is

Wy C Wa(A) =Wy = {(wy;) € GLs(Z/2)|ws 4 = 0} C Ws.
We can compute
Tgr(W) = Igr(Wy) @ Z/2[cy, cg, ¢, cs]@
(Z/2{cs} © Z/3[cr] ® Q(3){uy} © Z/2[er] © Q(4){us})-
Hence Assumption (1) (with some modification for «}) and (2) are

satisfied.
We consider the case (Fy,2) also . This case A = (Z/2) but

Wa(A) = W, = (Us, GLy(Z/2) & GL(Z/2)) C GLs(Z/2).
The cohomology is given by
H*(BG;7Z/2) = H*(BA;Z/2)"VeW 2 7,/9[wy, we, wr, T16, T24]
where x5 = wg +wqg and xoy = wgwig. We consider the representation
(ag,a5) C A C Fy 5 SO(26)
where a4, as are dual of x4, x5. Then the total Chern class is
c(pl{as, as)) = (1 + ca1 + c20)"

from Lemma 5.1. By dimensional reason, a < 8. So we see z%5 and 3,
are represented by Chern classes. Thus we can write

Igr(W5) = Z/2[cq, ce] @ (Z/2[cr6, caa] © Z/2]e7, c2a] @ Q(2){us}

BZL/2cr, cr6, caa] © Q(4){us}).
Hence Assumption (1),(2) are also satisfied. So Resg, is an epimor-
phism for (Fy,2).
At last of examples, we consider the case (Eg, 2). This case Wg(A) =
W! same as the case Fy. But it is known ([Ga-Me-Se]) that

Inv*(Es, Z)2) = Z/2{1, us}.
Therefore we see
Lemma 8.4. When G = Eg and p = 2, the restriction map
Resg, : H*(BG; Hjy) — H*(BA; Hy )¢

s not an epimorphism.
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The above fact also proved by using the cohomology H*(BEg; Z/2)
and Lemma 5.9 as follows.

Theorem 8.5. The restriction maps
Resppy - Inv* (G Z)2) — Inv*(As; Z/2)VeAs)
are epimorphisms for G = Eg and G = Spin,,, n > 10.
Proof. Of course there is the embedding i : Sping C Spinig. From
Kono-Mimura [Ko-Mi|, we know
H*(BSpiny; Z/2) = H*(BSping; Z]2) ® 7./ 2[x10, T32] [ (w7210).

Hence H*(BEg;Z/2) does not contain an element x with i*(x) = wy
for wig = ds 4 = QoQ1Q2(us). From Lemma 5.9, we see that Resyy,, is
not an epimorphism.

There is the embedding Fy C Fg. From also Kono-Mimura [Ko-Mi],
we know

H*(BEg;Z/2) = H*(BSping; Z)2) 7/ 2[x10, T18, T3, T4s]/ (relations).

Hence Resp,, is not epic from the lack of element . O

9. BP-THEORY AND GRIFFITH ELEMENTS

In this section, we recall the results in §5 in [Yal] and consider the re-
lation between B P-theory and results in the preceding sections. We al-
ways assume k = C in this section. Let BP*(—) be the Brown-Peterson
theory with the coefficient ring BP* = Z,[v1, ...], |vi] = =2(p" — 1).
The Thom map induces p : BP*(X) ®pp- Zp) — H*(X;Zy)). Totaro
constructs [Tol] the map

c: CH* (X)) — BP*(X) @pp- L)

such that the composition p - cl is the usual cycle map cl = t¢ which is
also the realization map. Totaro conjectured that this map is isomor-
phic for X = BG.

Let us write by

P(n)* = BP*/(p,v1, ..., Un_1),

e.g., P(0)* = BP*, P(1)* = BP*/p and P(c0)* =Z/p.
Many cases of X ([Te-Ya2|, [Ko-Ya]), BP*(X) are computed by the
Atiyah-Hirzebruch spectral sequences

E}* = H*(X) ® BP* = BP*(X).
It is known that dyyi_1(x) = v; ® Q;(x) mod(M;) where M; is the ideal

*,%7

of E;p*l_l generated by elements in (p, ..., v;_1)F,
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We assume that H*(X) has no higher p-torsion and all non zero
differentials are of form
(9.1)  dopi_1(x) = v; ® Qi(x) mod(M;).
Let us write
(9.2) grBP* (X)X E* > A® B
where A (resp. B) is a BP*-module generated by elements in H*(X)/p
(resp. pH*(X) & E%™"™) so that B C Ker(p,). Then we can write

A By 1P(n+1)"G,
by the prime invariant ideal theorem of Landweber ; if P(n)*/(a) is a
BP*(BP)-module, then a = v? for some s > 1.
Lemma 9.1. (Lemma 5.1 in [Yal]) Let H*(X)y has no higher p-
torsion. Suppose (9.1) and A = @, _1P(n + 1)*G,, in (9.2). Then
there is a injection of Q(oco)-modules
It is proved ([Ko-Ya],[Ka-Ya],[Yal]) that all X = BG in Theorem
1.2 satisfy the assumption in the above lemma. Hence
H*(BG;Z/p) = @2 1Q(n)Go.
Moreover when n # —1, we still know
w(G,) = n.

Indeed if n > 0, then G,, = G/ {u,} where G/ is represented by ele-
ments in CH*(BG)/p (see Assumption (1),(2)). From Theorem 1.2,
we also know

Corollary 9.2. Let G be a group in Theorem 1.2. Then there is a
bidegree Q(n)-module injection

®iz0Q(n)G, C H*(BG; HZ/p)-
Lemma 9.3. (Lemma 5.2 in [Ya]) Let H*(X)q) has no higher p-
torsion.
(1) If (9.1) is satisfied and in (9.2),
A2 @, 1P(n+1)*G, and B = ®oBP*{p,vy,..,v:} K,

then we have the isomorphism

H*(X;7/p) = (Bne1Q(n)Gr) — (0:Q(s)K,)

with Qo...QnGn = G, , and Q1..Q. K, = K.
(2) If Qo..Q.Gn € Im(p) and |Q;..QsKs| = even, then the
converse also holds.
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Corollary 9.4. Let G be a group in Theorem 1.2 so that Assumption
(1),(2) are satisfied. Then there are epimorphisms from gr BP*(BG) =
E5 to

(9.3) @y P(is) [fory oos for {1} © ©BP*(p, oo v) { K}
and from BP*(BG) ®pp+ Z/p to

DLZ/plfors oo [ i} ® BZ/p{p, ., v H K}
where ;, = Qi,—1...Qo(u;,) and Igr(W)/Respz, = ®:Q(t) K.
We give examples. At first we recall the Atiyah-Hirzebruch spectral

sequence for BGy in [Ko-Yal. Since H*(BG) has no higher torsin, we
have

H*(BGQ)(2) = Z(g) [w4, C(;] ® (Z(g){l} & Z/Q[w7]{w7}).
Let us write By, 5, = Z)[ciy, .., ¢i;], €8, Bag = L)[ca, co].
Since (1 (wy) = wy, we have d3(w,) = v; ® wy. Hence the Ey-term
of the spectral sequence is
E(Ga)y" = Bie ® (BP™{1,2ws} & P(2)[erl{cr, wr}).
Next differential is dr(w7) = vy ® Q2(w7) = v9c7 and
E(Gg);* = B476 & (BP*{]_, 211)4} D P(g)*[07]{07})
which is isomorphic to F(G»)%*. In particular
BP*(BG) ®pp+ 2.)2 = 7]2[cy, cs) @ (Z)2{1, 2w} © Z/2[c7]{c7}).
This result is also immediate from Corollary 9.4 and Theorem 6.1,
in fact, we have the epimorphism
H*(BGa; Hy ) — Z/2[ca, ¢6) @ (Z/2{1,y} @ Z/2[c7] © Q(2){us}).

Here 13 = QoQ1Q2(us) = ¢; and dy(uz) = y in the coniveau spectral
sequence, and we have

Q(O)KO = KO = Z/Q[C4, Cd{’d}.
Hence the cycle map ¢l is epimorphism and cl(y) = {2w,} (which is
represented by a Chern class ¢3). Moreover we know [Ya2] that this ¢l

is a really isomorphism.
Next consider the case Spin;. From [Ko-Yal, we can compute

E(Sping)1s = By @ P(3)"[crl{cr}@
B4,6,8 ® (BP*{]_, 211)4, 2w4w8, 2w8, ’Ul’wg} ) P(4)*[C7]{C708}).
This term is also the infinity term. Hence we have
BP*(BG) ®pp+ Z/2 = BP*(BGy) ®pp+ 7./2®
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7,)2[cy, o, cs] @ (Z]2{cs, 25wy, 2wqws, 2ws, viwg} & Z/2[c7]{crcs})
This result is also get from Corollary 9.4 and Theorem 7.3, indeed, we
have the epimorphsm

H*(BSping; Hy)y) — H*(BGa; Hy ))&
Z)2cy, g, cs) @ (Z)2{cs, ya, Qolss -, Q3ys} & Z/2[c7] @ Q(3){ua})

This case dy(us) = y, d2(ug) = 3 in the coniveau spectral sequence.
Recall

®:sQ(s) K = Igr(Wa)/I(Wy) = 1(GLs)/1(GLs)&

Z/2[04a Ce, 08]{17 Q07 [RXD) Q3}{u4}
We can take

Q(l)Kl = Z/2[047 Ce, 08]{17 Q07 Ql}{u4}
Q(0)Ko = Z/2[eq, cs] ® (Z/2{us} © Z/2{Q2ua, Q3ua}).
The cycle map cl is given by
Qo(y') = viws QY = 2w, QoY+ 2wawg , Qzy’ > 2czwy.
Of course the cycle map ¢l is isomorphic. This fact is still proved by
P.Guillot [Gul], and the case G = Sping is computed by Molina [Mo].
10. BP*(BSping) @pp+ Z/2

At last of this paper, we consider the case Sping. In [Ko-Yal, we can
compute (which is quite complicated)

E(Sping)sy = Bygsie @ (BP*{1, 2wy, 2wyws, 2ws, viws,
2waw1g, 2W4WeW16, 2WW16, V1 W16, 2W16, U1w16-U2w16}
DP(5) [crl{crcsci6}) B Bug7s@P(4) [cr[{cres} D Bae 6@ P(3)"[cr]{cr}
This term is the infinite term. (See Theorem 8.3 also.)
Lemma 10.1. ([Ko-Ya/)
BP*(BSping) ©pp- Z)2 = BP*(BSpin;) @pp- L/265
Z./2[cy, cg, cs, c16] @ (Z/2{c16, 2wyc16, 2wacsCr6, (2, v1)Wsc1g, 2W4wsC1g,
(2,01, v2)wig, 2Waw1g, (2, V1) wWswie, 2Wawgwie} ® Z/2[cr|{ciecr}).

We still know there is an epimorphism from H*(BSping; H Z/Q) to
H*(BSping; Hz}z)@Z/2[c4, Co, C16) @ (Z/2[cr]|@Q(2){cr6us } OZ/2{c16y }

®L/2[cs, 7] ® Q(A){us} @ Z/2[es] @ (Q(4)/(Q(4) ") {y"})

where dyus = y and dy(us) = y”.
We can see the following lemma;
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Proposition 10.2. When (G, p) = (Sping,2), the cycle map

cl: CH*(BG)/2 — (BP*(BG) @pp~ Z/2)
is an epimorphism with mod(7Z/2[cy, g, s, C16){2waw16}).

The image of the cycle map cl is given as follows. By arguments for
G, we see
da(crus) — 2wycrp
If we can see
ds(crus) — 2wywig,
then the Totaro’s map ¢l is an epimorphism. Unfortunately, we do not
see even dy(crus) = cry” = 0 yet.
Let us write Q;; = Q;Q;(d2us) = Q;Q;(y”). Then the cycle map cl
is written as

Qo1 — vowis, Qo2 — viwig, Q2 = 2w,
Qo3 = viwgwys, Q13 — 2wgwig, Q23 — 2wawswss,
Qos = viwgcrs, Qs > 2wscrs, Qa4 — 2wywscs,
Q34 — 2wycsC16.
By the arguments for Spinz, we still know, for example Q) (dauyg) —
2ws, so we get the QuQ1(daus) — 2wscig using Qq(us) = creug + ...
Similarly we get the maps for (),4 from that for Spin;.

For other maps, we use the Quillen operation in BP*(—) theory. For

a sequence a = (aq, ..., ), @; > 0, we have the Quillen cohomology
operation in BP*(X) (and also in ABP*(X)) (see [Ral, [Hal, [Ya2])

ro: BPY(X) = BPI(X) o] =) 2p'ey

such that p(r,) = P® the fundamental basis of the reduced power
operations (see [Ha]) and r,(v;) € Ideal(p,...,v;). Hence r, acts also
on BP*(X) ®gpp+ Z/p.

Let us write by S¢®“" the Quillen operation corresponding Sq
By the definition of Q;, se see the equation Sq'%Sq¢®(Q2Q1(us)) =
Q1Q1(us) in H*(BG;Z/2). We still know the image of the cycle map

Sq165q8<Q12) = Q14 — 2’11]8016 c BP*(BG) X Bp* Z/2
Let cl(Q12) = x. Then
Sq*°Sq®(x) = 2wseys  in BP*(BG) @pp- 7/2.

So z is non zero. The equation Sq¢'%Sq®(wis) = wgcig in H*(BG;Z/2)
implies

even

Sq*°Sq®(2wi) = 2wscrg mod(vy,...) in BP*(BG).
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Hence we can take x = 2wqg.

Using S¢*Sq? and dimensional reason, we have the first map Qg —
vowig. The other cases are also proved similarly.

The above @);; are all Griffith elements. From Corollary 9.4, we can
write

Q(){us}/(QM) ") {us} = &L, Q(1) K.

In fact, we can take

Q(Q)Ké = Z/Q{U5, Qo, Q1, Q2, Qot, Qoz, Q12}7

Q(l)K{ = 7/2{Q@3, Qo3, Q13, Qu1, Qos, Qua},
Q(O)Ké = 7/2{Q23, Q24, Q34}.
Recall Corollary 9.4 and Igr(W)/Respz;, = ©,Q(t)K;. Let k € K;.
Then we can identify k € H*(BG; HZ/p) and

k(i) = Qo...Qi--Qu(k) € Q1) K, C Igr(W)/Respzyp.

Moreover suppose w(k) = t+3. Since w(k(i)) = 3 and w(d,) = 1—2r,
we see

dy(k(i)) # 0 (hence do(k) # 0).

Let us consider the projection map
pr.: BP*(X) ®pp- Z/p — (9.3) @pp+ Z/p — (p, 01, ...y ve) {k}

where k= Qo---Qi(k). For G = Gy, Spiny and Spinyg, it holds that
pr.cl(ds(k(7))) = v;k, that is,

pr.cl(dy(Qo...Q:...Qu(K))) = 1:Qo...Qu(K),

while we do not show it for general cases.
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