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Abstract. We prove: (1) The group of multipliers of similitudes of a 12-
dimensional anisotropic quadratic form over a field K with trivial discriminant
and split Clifford invariant is generated by norms from quadratic extensions
E/K such that qE is hyperbolic. (2) If G is the group of K-rational points
of an absolutely simple algebraic group whose Tits index is E66

8,2, then G is

generated by its root groups, as predicted by the Kneser-Tits conjecture.

1. Introduction

The Kneser-Tits conjecture—first formulated in [21]—predicts that the group of
K-rational points (for some field K of arbitrary characteristic) of an absolutely
simple algebraic group with Tits index� � � � �� � �
is generated by its root groups. This Tits-index is denoted by E66

8,2 in [19]. Groups
with this Tits index are classified by similarity classes of anisotropic 12-dimensional
quadratic forms over K with trivial discriminant and split Clifford invariant. By
[22, 42.6], they are also the groups whose corresponding spherical building is a
Moufang quadrangle of type E8 as defined in [22, 16.6].

Given a quadratic form q defined over a field K, we denote by clif(q) the Clifford
invariant of q, by G(q) the group of multipliers of similitudes of q, by Hyp(q) the
subgroup of K× generated by K×2 and the norms from finite extensions E/K such
that qE is hyperbolic and by Hyp2(q) the subgroup of Hyp(q) generated by K×2

and the norms from quadratic extensions E/K such that qE is hyperbolic (including
inseparable ones).

Our goal is to prove the following closely related statements.

Theorem 1.1. If q is an anisotropic quadratic form with trivial discriminant, then
G(q) = Hyp2(q) in the following cases:

(i) dim q = 8 and the index of clif(q) is 2;
(ii) dim q = 12 and clif(q) is split.

Theorem 1.2. If G is the group of K-rational points of an absolutely simple alge-
braic group whose Tits index is E66

8,2, then G is generated by its root groups.
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We give two very different proofs of these theorems. In §2 we lay the groundwork
that is common to the two proofs, and show that the equality G(q) = Hyp(q) holds
for quadratic forms as in Theorem 1.1. As a consequence, the connected compo-
nent of the identity PGO+(q) in the group of projective similitudes is R-trivial if
char(K) 6= 2: see Corollary 2.19. In §3, we give proofs of Theorems 1.1 and 1.2
based on results in [23] and [24]. In particular, the notion of a quadrangular alge-
bra introduced in Chapters 12–13 of [22] and in [23] plays a central role in these
proofs. In §4 we show how the R-triviality of PGO+(q) for q as in Theorem 1.1(ii)
in characteristic 0 yields another proof of Theorem 1.2 in arbitrary characteristic.
In §5 we give an entirely different proof of Theorem 1.1 under the assumption that
char(K) 6= 2, using the triality-defined correspondence between 8-dimensional qua-
dratic forms of trivial discriminant and hermitian forms over the simple components
of their even Clifford algebra.

For a survey of what is known about the Kneser-Tits conjecture; see [9]. We call
attention especially to §6 of that paper, where the Kneser-Tits conjecture over an
arbitrary field is discussed. By [17], [9, 6.1] and Theorem 1.2, the only exceptional
groups of relative rank at least 2 for which the Kneser-Tits conjecture remains to
be verified over arbitrary fields are those whose Tits index is� � � � �� � �
(called E78

8,2 in [19]). Groups with this Tits index are classified by isotopy classes of
Albert division algebras, and the corresponding spherical buildings are the Moufang
hexagons defined in [22, 16.8] for “hexagonal systems” of dimension 27. See also
[9, 8.6] and [22, 37.41].

Acknowledgement. The proof in §4 that the R-triviality in characteristic 0 of
PGO+(q) for q as in Theorem 1.1(ii) implies Theorem 1.2 in arbitrary characteristic
is due to Skip Garibaldi. We would like to thank him for allowing us to reproduce
his proof here.

2. Similitudes of quadratic forms

Our main background reference for quadratic forms is [6], although we mostly use
the notation of [23]. Let (K,L, q) be a quadratic space. Thus K is a field, L is a
K-vector space and q : L→ K is a quadratic form on L. We let f = ∂q denote the
polar bilinear form of q. Thus

f(x, y) = q(x+ y)− q(x)− q(y) for x, y ∈ L.

The quadratic space (K,L, q) is nondegenerate if dimK rad f ≤ 1; see [6, 7.17].
If dimK L is even and (K,L, q) is nondegenerate, then f is nondegenerate, the
discriminant disc(q) is the isomorphism class of the center of the even Clifford
algebra C0(q) and the Clifford invariant clif(q) is the Brauer class of the full Clifford
algebra C(q); see [6, §§13, 14]. As in [6, §§8, 9], we let IqK denote the quadratic
Witt group of K and let Inq K = In−1K · IqK for all n > 0, where In−1K is
the (n− 1)st power of the fundamental ideal IK of even-dimensional forms in the
bilinear Witt ring WK.

The following definitions are taken from [22, 21.31].
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Definition 2.1. A quadratic space (K,L, q) is of type E7 if it is anisotropic
and there exists a separable quadratic extension E/K with norm N and scalars
α1, . . . , α4 such that

(K,L, q) ∼= (K,E4, α1N ⊥ α2N ⊥ α3N ⊥ α4N)

and

α1α2α3α4 6∈ N(E).

In other words, q is anisotropic,

q ∼= 〈α1, α2, α3, α4〉 ·N,

and the quaternion algebra (E/K,α1α2α3α4), which represents clif(q), is not split.

Definition 2.2. A quadratic space (K,L, q) is of type E8 if it is anisotropic
and there exists a separable quadratic extension E/K with norm N and scalars
α1, . . . , α6 such that

(K,L, q) ∼= (K,E6, α1N ⊥ α2N ⊥ · · · ⊥ α6N)

and

−α1α2 · · ·α6 ∈ N(E).

In other words, q is anisotropic,

q ∼= 〈α1, . . . , α6〉 ·N,

and clif(q) is split.

Proposition 2.3. Suppose that (K,L, q) is an anisotropic quadratic space. Then
the following hold:

(i) (K,L, q) is of type E7 if and only if dim q = 8, disc(q) is trivial and clif(q)
is of index 2.

(ii) (K,L, q) is of type E8 if and only if dim q = 12, disc(q) is trivial and clif(q)
is split. These conditions are also equivalent to dim q = 12 and q ∈ I3qK.

Proof. If char(K) 6= 2, (i) is in [11, Ex. 9.12] and (ii) in [16, p. 123]. In arbi-
trary characteristic, see [5, 4.12] and (for the second part of (ii)) [6, Thm. 16.3] if
char(K) = 2. �

Remark 2.4. Suppose that (K,L, q) is a quadratic space of type E7 and that
q(1) = 1 for a distinguished element 1 of L. Let E and α1, . . . , α4 be as in 2.1. By
[23, 2.24],

(2.5) C(q, 1) ∼=M(4, D)⊕M(4, D),

where C(q, 1) is the Clifford algebra with base point as defined in [22, 12.47] and
D is the quaternion division algebra (E/K,α1α2α3α4). By [22, 12.51], C(q, 1) is
isomorphic to the even Clifford algebra C0(q). Since D represents clif(q), it is
independent of the choice of the orthogonal decomposition of q in 2.1.

Our goal in this section is to prove the equality G(q) = Hyp(q) for q of type E7

or E8. We start with some general observations. The following is essentially [23,
2.18].
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Proposition 2.6. Suppose that the polynomial p(x) = x2 − αx + β ∈ K[x] is
separable and irreducible over K. Let E be the splitting field of p(x) over K and
let N denote the norm of the extension E/K, so that (K,E,N) is a nondegenerate
anisotropic 2-dimensional quadratic space. Let (K,L, q) be a finite-dimensional
quadratic space. Then the following assertions are equivalent:

(i) The K-vector space structure on L extends to an E-vector space structure
such that q(u · v) = N(u)q(v) for all u ∈ E, v ∈ L;

(ii) There exists a similitude T of q such that q(T (v)) = βq(v) and f(v, T (v)) =
α for all non-zero v ∈ L and p(T ) = 0;

(iii) For each v1 ∈ L there exists a decomposition L = V1 ⊕ · · · ⊕ Vd for some
d ∈ N such that v1 ∈ V1, the restriction qi of q to Vi is similar to N for
each i ∈ [1, d] and q = q1 ⊥ · · · ⊥ qd;

(iv) for some d ∈ N and some α1, α2, . . . , αd ∈ K×,

(K,L, q) ∼= (K,Ed, α1N ⊥ α2N ⊥ · · · ⊥ αdN);

(v) qE is hyperbolic.

Proof. Suppose that (i) holds, choose a root γ ∈ E of p(x) and let T (v) = γ · v for
all v ∈ L. Then T is a similitude of q as in (ii). If T is a similitude of q as in (ii),
then for each nonzero v ∈ L the restriction of q to 〈v, T (v)〉 is similar to N (and, in
particular, is nondegenerate). Therefore (iii) holds, and (iii) of course implies (iv).
Fixing an isomorphism as in (iv), we may transfer to L the natural E-vector space
structure on Ed to obtain (i). The equivalence of (iv) and (v) follows readily from
[6, Prop. 34.8]. �

Definition 2.7. A similitude ϕ of a quadratic space (K,L, q) is called inseparable
if char(K) = 2, the multiplier of ϕ is not in K×2 and

f(v, ϕ(v)) = 0 for all v ∈ L,

where f = ∂q. We call a similitude of q separable if it is not inseparable. Thus, if
char(K) 6= 2 all similitudes are separable.

Proposition 2.8. Let (K,L, q) be a finite-dimensional quadratic space such that
f = ∂q is nondegenerate. If (K,L, q) admits an inseparable similitude with multi-
plier γ, then

q ≃ 〈1, γ〉 · q0
for some non-degenerate quadratic form q0. In particular, dimL ≡ 0 mod 4 and
qK(

√
γ) is hyperbolic.

Proof. Let E = K(
√
γ) be a purely inseparable quadratic extension of K, and let ϕ

be an inseparable similitude of (K,L, q) with multiplier γ. Linearizing the condition
f
(
v, ϕ(v)

)
= 0, we obtain

f
(
v, ϕ(w)

)
= f(ϕ(v), w) for all v, w ∈ L.

Since f
(
ϕ(v), ϕ(w)

)
= γf(v, w) for all v, w ∈ L, it follows that

f
(
v, ϕ2(w)

)
= f

(
ϕ(v), ϕ(w)

)
= γf(v, w) for all v, w ∈ L,

hence ϕ2(w) = γw for all w ∈ L. We then define on L an E-vector space structure
by

(λ+ µ
√
γ) · v = λv + µϕ(v) for λ, µ ∈ K and v ∈ L,
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and we define a map f ′ : L× L→ E by

f ′(v, w) = f(v, w) +
√
γ−1f

(
v, ϕ(w)

)
for v, w ∈ L.

A straightforward computation shows that f ′ is a bilinear alternating form on L. It
is nondegenerate since f is nondegenerate. Therefore, the dimension of L over E is
even, hence its dimension over K is a multiple of 4. Let (ei, e

′
i)

d
i=1 be a symplectic

E-base of L for f ′. If L0 ⊂ L is the K-span of (ei, e
′
i)

d
i=1 and q0 is the restriction

of q to L0, we have L = L0 ⊥ ϕ(L0) and q = q0 ⊥ 〈γ〉q0. �

Corollary 2.9. Let (K,L, q) be a finite-dimensional quadratic space such that ∂q
is non-degenerate. Then the multiplier of every inseparable similitude of q is in
Hyp2(q).

Proof. Let γ be the multiplier of an inseparable similitude of q. Clearly, γ ∈
N
(
K(

√
γ)
)
, and Proposition 2.8 shows that q is hyperbolic over K(

√
γ). �

We now consider quadratic forms of low dimension. The following result is
presumably well-known:

Proposition 2.10. Every 10-dimensional quadratic form in I3q (K) is isotropic.

Proof. This was proved by Pfister [16, p. 123] under the hypothesis that char(K) 6=
2. The arguments also apply when char(K) = 2; see [5, Thm. 4.10]. �

We now consider quadratic spaces of type E7. For the next statement, we do
not require the form to be anisotropic.

Lemma 2.11. Let (K,L, q) be a nondegenerate quadratic space of dimension 8.
If disc(q) is trivial and clif(q) is represented by a quaternion algebra Q with norm
form NQ, then q is Witt-equivalent to the sum of a multiple of NQ and a multiple
of some 3-fold Pfister quadratic form π: there exist α, β ∈ K× such that

(2.12) q = 〈α〉 ·NQ + 〈β〉 · π in IqK.

Moreover, G(q) = G(NQ) ∩G(π).
Proof. Let α ∈ K× be a value represented by q. Consider the form

q′ = q ⊥ 〈−α〉 ·NQ.

This 12-dimensional form is isotropic and has trivial discriminant and Clifford in-
variant, hence it is in I3qK and is Witt-equivalent to a 10-dimensional form. By
Proposition 2.10, it is actually equivalent to an 8-dimensional form. By the Arason–
Pfister Hauptsatz [6, Thm. 23.7], this 8-dimensional quadratic form becomes hy-
perbolic over the function field of the corresponding quadric, hence it is a multiple
of some 3-fold Pfister quadratic form π by [6, Cor. 23.4]. Letting q′ = 〈β〉 · π in
IqK, we have (2.12).

Now, for γ ∈ G(q) we have 〈1,−γ〉 · q = 0 in IqK, hence

〈1,−γ〉 · 〈α〉 ·NQ = −〈1,−γ〉 · 〈β〉 · π in IqK.

Since the left side is a form of dimension 8 and the right side is a form of dimen-
sion 16, the right side must be isotropic. It is then hyperbolic by [6, Cor. 9.10],
since it is a multiple of a Pfister form. The left side is then also hyperbolic, which
means that γ is in G(π) and in G(NQ). We have thus proved G(q) ⊂ G(NQ)∩G(π).
Since the reverse inclusion is clear, the proof is complete. �
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Lemmas 2.13 and 2.14 are well-known when char(K) 6= 2; see [7, 2.13] for
Lemma 2.13. The proofs we give below do not require any separability hypoth-
esis.

Lemma 2.13. Let E1, E2 be linearly disjoint quadratic extensions of a field K,
and let M = E1 ⊗K E2. The norm groups of E1, E2, and M are related as follows:

N(E1/K) ∩N(E2/K) = K×2 ·N(M/K).

Proof. Since K×2 ⊂ N(Ei/K) and N(M/K) ⊂ N(Ei/K) for i = 1, 2, the inclusion
N(E1/K)∩N(E2/K) ⊃ K×2 ·N(M/K) is clear, and it suffices to prove the reverse
inclusion. We identify E1 and E2 with subfields ofM and consider α ∈ N(E1/K)∩
N(E2/K). Let x1 ∈ E×

1 , x2 ∈ E×
2 be such that

α = NE1/K(x1) = NE2/K(x2).

Let TEi/K : Ei → K be the trace map, for i = 1, 2. Computation shows that

x1NM/E1
(1 + x−1

1 x2) = TE1/K(x1) + TE2/K(x2).

If x1 6= −x2, the left side is nonzero. Taking the norm from E1 to K of each side
yields

αNM/K(1 + x−1
1 x2) =

(
TE1/K(x1) + TE2/K(x2)

)2 ∈ K×2,

hence α ∈ K×2 ·N(M/K). If x1 = −x2, then x1 ∈ E1 ∩ E2 = K, hence α ∈ K×2.
�

Lemma 2.14. Any multiplier of similitude of an anisotropic quadratic Pfister space
(K,L, π) is a square in K or is the norm of a quadratic extension over which π is
hyperbolic.

Proof. By [6, Cor. 9.9], the multipliers of π are the represented values of π, so any
γ ∈ G(π) has the form γ = π(v) for some v ∈ L. Let e ∈ L be such that π(e) = 1.
If e and v are not linearly independent, then γ ∈ K×2. Otherwise, let V be the
K-span of e and v. The restriction of π to V is the norm form of a quadratic
extension of K over which π is isotropic, hence hyperbolic by [6, Cor. 9.10]. By
construction, this norm form represents γ. �

Proposition 2.15. For any nondegenerate quadratic space (K,L, q) of dimension 8
such that disc(q) is trivial and clif(q) has index 1 or 2, we have G(q) = Hyp(q).

Proof. It suffices to show G(q) ⊂ Hyp(q), since the reverse inclusion follows from
the similarity norm principle [6, Thm. 20.14]. Let γ ∈ G(q), and consider a de-
composition of q as in (2.12). We may assume q is not hyperbolic, otherwise
Hyp(q) = K× = G(q) and there is nothing to prove. If NQ or π is isotropic,
hence hyperbolic, the proposition readily follows from Lemma 2.14. For the rest of
the proof, we may thus assume NQ and π are anisotropic. By Lemma 2.11 we have
γ ∈ G(NQ)∩G(π), hence Lemma 2.14 yields quadratic extensions E1, E2 of K that
split NQ and π respectively, such that γ ∈ N(E1/K)∩N(E2/K). If E1

∼= E2, then
E1 splits NQ and π, hence also q. Since γ ∈ N(E1/K), it follows that γ ∈ Hyp(q).
If E1 6∼= E2, then E1 and E2 are linearly disjoint over K, and the tensor product
M = E1⊗KE2 is a field that splits NQ and π, hence also q. Since γ is a norm from
E1 and from E2, Lemma 2.13 shows that γ ∈ K×2 · N(M/K), hence γ ∈ Hyp(q).
�
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Proposition 2.15 applies in particular to quadratic spaces of type E7. We now
turn to spaces of type E8.

Proposition 2.16. Suppose that (K,L, q) is of type E8, that γ is the multiplier of
a separable similitude of q and that γ 6∈ K×2. Then there exists a decomposition

(K,L, q) = (K,L1, q1) ⊥ (K,L2, q2)

such that q2 is of type E7, q1 is similar to the reduced norm of the quaternion
division algebra representing clif(q2) and γ is a multiplier of similitudes of both q1
and q2.

Proof. Let ϕ be a separable similitude of q with multiplier γ. If char(K) = 2, we
choose v ∈ L such that f(v, ϕ(v)) 6= 0; if char(K) 6= 2, we let v be an arbitrary
non-zero vector in L. Next we set W = 〈v, ϕ(v)〉. Since γ 6∈ K×2, we have
dimK W = 2. Let q̂1 denote the restriction of q to W and let q̂2 denote the
restriction of q to W⊥. The form q̂1 is similar to the norm N of a quadratic
extension E/K such that γ ∈ N(E). Since q̂1 is nondegenerate, the extension
E/K is separable and q = q̂1 ⊥ q̂2. Since qE and (q̂1)E have trivial discriminant
and split Clifford invariant, also (q̂2)E has trivial discriminant and split Clifford
invariant. By Proposition 2.10, it follows that (q̂2)E is isotropic. Hence we can
choose a 2-dimensional subspace U of W⊥ such that the restriction of q̂2 to U is
hyperbolic over E. By Proposition 2.6, the restriction of q̂2 to U is similar to N .
Let L1 =W ⊕ U , let L2 = L⊥

1 and let qi denote the restriction of q to Li for i = 1
and 2. Then q1 is similar to the reduced norm of a quaternion division algebra D,
γ is a multiplier of q1 and

(K,L, q) = (K,L1, q1) ⊥ (K,L2, q2).

Since γ is a multiplier of both q and q1, both 〈1,−γ〉·q and 〈1,−γ〉·q1 are hyperbolic.
Since

〈1,−γ〉 · q = 〈1,−γ〉 · q1 ⊥ 〈1,−γ〉 · q2,
it follows by Witt’s Cancellation Theorem that the product 〈1,−γ〉 · q2 is also
hyperbolic. Hence q2 = 〈γ〉 · q2 in IqK. By [6, 8.17], therefore, there is a similitude
of q2 with multiplier γ. Since disc(q) and disc(q1) are both trivial, so is disc(q2).
Furthermore, clif(q2) = clif(q1) since clif(q) is split. Since the quaternion division
algebra D represents clif(q1), it also represents clif(q2). We conclude, in particular,
that q2 is of type E7. �

Corollary 2.17. For any nondegenerate quadratic space (K,L, q) of dimension 12
such that disc(q) and clif(q) are trivial, we have G(q) = Hyp(q).

Proof. As in Proposition 2.15, it suffices to prove G(q) ⊂ Hyp(q). If q is isotropic,
then Proposition 2.10 shows that q is Witt-equivalent to a multiple of a 3-fold
Pfister form, hence the inclusion follows from Lemma 2.14. For the rest of the
proof, we may thus assume q is anisotropic, i.e., q is of type E8.

Let γ ∈ G(q). If γ is the multiplier of an inseparable similitude, then we have
γ ∈ Hyp(q) by Corollary 2.9. If γ is the multiplier of a separable similitude, we
fix a decomposition q = q1 ⊥ q2 as in Proposition 2.16, so γ ∈ G(q1) ∩ G(q2).
By Proposition 2.15 we have G(q2) = Hyp(q2). Now, if E/K is a finite extension
such that (q2)E is hyperbolic, then E splits clif(q2). Hence (q1)E is hyperbolic, and
therefore qE is hyperbolic. This shows Hyp(q2) ⊂ Hyp(q). Since γ ∈ Hyp(q2), it
follows that γ ∈ Hyp(q). �
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Remark 2.18. Restricting to quadratic extensions that split q2 in the last part of
the proof above, we see that Hyp2(q2) ⊂ Hyp2(q). This observation will be used in
§5.

When char(K) 6= 2, Proposition 2.15 and Corollary 2.17 yield information on the
connected component of the identity PGO+(q) in the group of projective similitudes
of (K,L, q), which is the group of algebra automorphisms of End(L) that commute
with the adjoint involution of q. The property of R-triviality used in the following
statement refers to Manin’s R-equivalence; see [14, §1] for details.
Corollary 2.19. Assume char(K) 6= 2. For q a quadratic form of type E7 or E8

over K, the group PGO+(q) is R-trivial.

Proof. By [14, Thm. 1], it suffices to prove that G(qE) = Hyp(qE) for every field E
containingK. If q is of type E7, this property readily follows from Proposition 2.15.
If it is of type E8, it follows from Corollary 2.17. �

Remark 2.20. Skip Garibaldi has observed that if q is of type E7, then it follows
from Lemma 2.11 and [8, Prop. 6.1] that the group PGO+(q) is actually stably
rational.

3. Quadrangular algebras and proofs of Theorems 1.1 and 1.2

Most of this section is devoted to results about quadrangular algebras. At the very
end of this section, we use these results to prove Theorems 1.1 and 1.2.

The notion of a quadrangular algebra arose in the course of the classification
of Moufang polygons; see, in particular, Chapters 12–13 and 27 in [22]. For the
definition, see [23, 1.17].

Proposition 3.1. Let (K,L, q) be a quadratic space of type E7 or E8 as defined
in 2.1 and 2.2 and suppose that q(1) = 1 for a distinguished element 1 of L. Then
there exists a unique quadrangular algebra

Ξ = (K,L, q, 1, X, ·, h, θ)
as defined in [23, 1.17].

Proof. Existence holds by [23, Thm. 10.1] and uniqueness (up to equivalence as
defined in [23, Thm. 1.22]) holds by [23, 6.42]. �

Notation 3.2. For the rest of this section, we let

Ξ = (K,L, q, 1, X, ·, h, θ)
be as in 3.1 and f = ∂q. By [23, Prop. 4.2], we can assume that Ξ is δ-standard for
some δ ∈ L as defined in [23, 4.1]. (This allows us to use the identities in Chapter 4
of [23].) In addition, we let σ be as [23, 1.2], we let u−1 for all non-zero u ∈ L be
as in [23, 1.3] and we let π be as in [23, 1.17(D1)].

Remark 3.3. Suppose that (K,L, q) is of type E7 and let C(q, 1) and D be as in
2.4. By (2.5) and [23, 1.17(A1)-(A3) and Prop. 2.22], there exists a unique map ∗
from D×X to X with respect to which X is a left vector space over D, ta = t ∗ a
for all (a, t) ∈ X ×K and w ∗ (a · v) = (w ∗ a) · v for all w ∈ D, a ∈ X and v ∈ L.
This map is given explicitly in [24, 3.6].
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Proposition 3.4. Suppose that (K,L, q) is of type E7, let D and ∗ be as in 3.3,
let ϕ1 be a similitude of q, let u = ϕ1(1) and let

a ·̂ v = (a · v) · u−1

for all (a, v) ∈ X×L, where u−1 is as in 3.2. Then there exists a similitude ϕ with
the same multiplier as ϕ1 such that u = ϕ(1), an element ω ∈ K× and a D-linear
automorphism ψ of X such that the following hold:

(i) ψ(a · v) = ψ(a) ·̂ ϕ(v) for all a ∈ X and all v ∈ L.
(ii) ϕ(h(a, b)) = ωh(ψ(a), ψ(b)u) for all a, b ∈ X.
(iii) ϕ(θ(a, v)) ≡ ωθ(ψ(a), ϕ(v)) (mod 〈ϕ(v)〉) for all a ∈ X and all v ∈ L.

Proof. The map ϕ1 is an isomorphism of pointed quadratic spaces from (K,L, q, 1)
to (K,L, q/q(u), u). It therefore induces an isomorphism of Clifford algebras with

base point from C(q, 1) to C(q/q(u), u). Let Ξ̂, ĥ and θ̂ be as in [23, Prop. 8.1];

thus, Ξ̂ = (K,L, q/q(u), u,X, ·̂ , ĥ, θ̂) is the isotope of Ξ at u as defined in [23, 8.7].

By [23, 1.17(A1)–(A3) and Prop. 2.22] applied to both Ξ and to Ξ̂, X is a right
C(q, 1)-module with respect to · and a right C(q/q(u), u)-module with respect to
·̂. By [22, 12.55] (where the base point 1 is called ǫ), exactly one of the two
direct summands in (2.5) acts nontrivially on X , and by [22, 12.54], there exists an
isometry ρ of q fixing 1 that extends to an automorphism of C(q, 1) interchanging
the two direct summands. Thus for j = 0 or 1, the composition ϕ1 ◦ ρj maps the
direct summand A of C(q, 1) acting nontrivially on X to the direct summand Au

of C(q/q(u), u) acting nontrivially on X . Let ϕ = ϕ1 ◦ ρj . Choosing a basis for X
as a left vector space over D, we can identify both A and Au with EndD(X). It
follows that there exists a D-linear automorphism ψ of X such that (i) holds. By
[23, 1.25 and Prop. 6.38], there exists ω ∈ K× such that also (ii) and (iii) hold. �

Notation 3.5. Let g and φ be the maps that appear in [23, 1.17(C3)-(C4)], let

(U+, U1, U2, U3, U4)

be the root group sequence and x4 the isomorphism from L to U4 obtained by
applying the recipe in [22, 16.6] to Ξ, g and φ, let Γ be the corresponding Moufang
quadrangle (see [22, 8.11]), let G† be the subgroup of Aut(Γ) generated by the root
groups of Γ, let H0 be the subgroup of Aut(Γ) defined in [24, 1.4] (or [23, 11.20]), let
G = H0 ·G† and let H† = H0 ∩G†. By [22, 35.11], the similarity class of (K,L, q)
is an invariant of Γ.

Proposition 3.6. G/G† ∼= H0/H
† and if (K,L, q) is of type E8, then G is the

group of K-rational points of an absolutely simple algebraic group with Tits index
E66

8,2, and every such group arises in this way starting with some quadratic space of
type E8 defined over K.

Proof. For the isomorphism G/G† ∼= H0/H
†, see the top of page 193 of [24] (where

G is called G0), The remaining assertions hold by [22, 42.6]. �

Proposition 3.7. Suppose that (K,L, q) is of type E7 and that ϕ1 is a similitude
of q. Let H0 and x4 be as in 3.5. Then there exist an element h of H0 and a
similitude ϕ of q with the same multiplier as ϕ1 such that

x4(v)
h = x4(ϕ(v))

for all v ∈ L.



10 R. PARIMALA, J.-P. TIGNOL, AND R. M. WEISS

Proof. Let ϕ and ψ be the maps obtained by applying Proposition 3.4 to ϕ1. By
Proposition 3.4 and [23, Prop. 12.5], the pair (ϕ, ψ) is contained in the structure
group of Ξ (as defined in [23, 12.4]). The claim follows now by [23, Thm. 12.11]
and the first few lines of its proof (as well as [23, 11.22]). �

From now on we identify K with its image under the map t 7→ t · 1 from K to L.
Thus when we write π(a) + t for (a, t) ∈ X ×K, for example, we mean π(a) + t · 1
(where π is as in 3.2).

Proposition 3.8. Let a be a non-zero element of X, let

p(x) = x2 − f(1, π(a))x+ q(π(a)) ∈ K[x],

let E be the splitting field of p(x) over K and let N be the norm of the extension
E/K. Let T (v) = θ(a, v) for all v ∈ L and let I be the identity automorphism of L.
Then N(E×) = K×2 · {q(π(a) + t) | t ∈ K}, qE is hyperbolic and for each t ∈ K,
T + tI is a similitude of q with multiplier q(π(a) + t).

Proof. By [23, 1.17(D2)], p(t) = q(π(a) − t) 6= 0 for each t ∈ K. Thus p(x) is
irreducible over K. It follows that N(E×) = K×2 · {q(π(a) + t) | t ∈ K}. By [23,
Props. 4.9(i) and 4.22], T +tI is a similitude of q with multiplier q(π(a)+t) for each
t ∈ K and f(T (v), v) = f(π(a), 1)q(v) for each non-zero v ∈ L. By [23, Prop. 4.21],
p(T ) = 0. Thus if p(x) is separable, then qE is hyperbolic by Propositions 2.6. If
p(x) is inseparable, then f(π(a), 1) = 0, hence T is inseparable and again qE is
hyperbolic, this time by Proposition 2.8. �

Definition 3.9. For each non-zero a ∈ X , the map v 7→ θ(a, v) is a similitude
of q by Proposition 3.8. We call an element a ∈ X separable if a 6= 0 and the
similitude v 7→ θ(a, v) of q is separable as defined in 2.7. We let Xsep denote the
set of separable elements of X . Thus if char(K) 6= 2, then Xsep = X\{0}, but if
char(K) = 2, then by [23, Prop. 4.9(i)],

Xsep = {a ∈ X | f(π(a), 1) 6= 0}.
If char(K) = 2, then by [22, 13.42–13.43], a 7→ f(π(a), 1) is a nondegenerate
quadratic form on X . In particular, the set Xsep is non-empty also if char(K) = 2.

Proposition 3.10. Every inseparable similitude of q (as defined in 2.7) is the
product of two separable similitudes.

Proof. Let ϕ be an inseparable similitude of q, so char(K) = 2. It suffices to show
that

f
(
θ(a, ϕ(v)), v

)
6= 0

for some v ∈ L and some a ∈ Xsep, where Xsep is as in 3.9. Suppose this is false
and let w = ϕ(1). Then

(3.11) f
(
θ(a, w), 1

)
= 0

for all a ∈ Xsep. Furthermore,

(3.12) f(w, 1) = 0

but w 6∈ 〈1〉 since ϕ is inseparable. Choose a ∈ Xsep. Since f is nondegenerate, we
can choose v ∈ 〈w〉⊥\〈1〉⊥. Replacing v by v + w if necessary, we can assume in
addition (by [23, Prop. 4.9(i)] again) that

(3.13) f(θ(a, w), v) 6= 0.



THE KNESER-TITS CONJECTURE FOR E66

8,2 11

By [23, Prop. 3.21], av ∈ Xsep, so f
(
θ(av, w), 1)

)
= 0 by (3.11). By [23, 1.17(C4)]

and (3.12), it follows that

f(θ(a, wσ)σ, 1)q(v) = f(w, vσ)f(θ(a, v)σ, 1) + f(θ(a, v), wσ)f(vσ, 1),

where σ is as in 3.2. By [23, 1.4] and (3.12), we have xσ = x for x = 1 and x = w
and f(xσ, y) = f(x, yσ) for all x, y ∈ L. Therefore

f(θ(a, wσ)σ, 1) = f(θ(a, w), 1) = 0

by (3.11) and

f(w, vσ) = f(wσ, v) = f(w, v) = 0

by the choice of v and hence

f(θ(a, v), w)f(v, 1) = f(θ(a, v), wσ)f(vσ, 1) = 0.

Since f(v, 1) 6= 0 by the choice of v, we conclude that f(θ(a, v), w) = 0. By [23,
Prop. 4.22], therefore, f

(
θ(a, θ(a, v)), θ(a, w)

)
= 0. By [23, Prop. 4.21], it follows

that

f(π(a), 1)f
(
θ(a, v), θ(a, w)

)
= q(π(a))f

(
v, θ(a, w)

)
.

By (3.13), therefore, f
(
θ(a, v), θ(a, w)

)
6= 0. By one more application of [23,

Prop. 4.22], however, f
(
θ(a, v), θ(a, w)

)
= q(π(a))f(v, w) = 0. �

Proposition 3.14. Let E/K be a separable quadratic extension such that qE is
hyperbolic and let Vi and qi for i ∈ [1, d] be as in Proposition 2.6(iii) with v1 = 1.
Then there exists e ∈ Xsep such that θ(e, Vi) = Vi for each i ∈ [1, d].

Proof. Let p(x) = x2 −αx+ β ∈ K[x] be an irreducible polynomial that splits over
E. We can choose p(x) so that α = 0 if and only if char(K) 6= 2. Let γ, γ1 ∈ E
be the two roots of p(x). There exists an E-vector space structure on L as in
Proposition 2.6(i) such that Vi is a 1-dimensional subspace for each i ∈ [1, d]. Let
T (v) = γ · v for each v ∈ L and let T ǫ be the unique automorphism of L such that
T ǫ(v) = γ1 · v for all v ∈ V1 and T ǫ(v) = T (v) for all v ∈ V ⊥

1 . Both T and T ǫ

are norm splitting maps of q as defined in [22, 12.14] and both map Vi to itself for
each i ∈ [1, d]. By [22, 12.20 and 13.13(ii)], therefore, we can choose R ∈ {T, T ǫ}
such that R is linked to the map (a, v) 7→ a · v at some point e ∈ X as defined in
[22, 13.2]. By [22, 13.61], e ∈ Xsep and there exists r ∈ K× and s ∈ K such that
R(v) = rθ(e, v) + sv for all v ∈ L. �

Proposition 3.15. Suppose that (K,L, q) is of type E8 and that

(K,L, q) = (K,L1, q1) ⊥ (K,L2, q2)

with q2 of type E7, q1 similar to the reduced norm of the quaternion division algebra
representing clif(q2) and 1 ∈ L2. Then the following hold:

(i) There exists e ∈ Xsep such that θ(e, Li) = Li for i = 1 and 2.
(ii) Let e ∈ X be as in (i), let Xe be the subspace of X generated by elements

of the form ev1v2 · · · vj, where vi ∈ L2 for i ∈ [1, j] and j ≥ 1 is arbitrary,
let ·e, he, respectively, θe denote the restriction of ·, h, respectively, θ to
Xe × L2, Xe ×Xe, respectively, Xe × L2 and let

Ξe = (K,L2, q2, 1, Xe, ·e, he, θe).
Then Ξe is a quadrangular algebra.
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Proof. By 2.2, 2.4 and Proposition 2.6, both (q1)E and (q2)E are hyperbolic. We
can thus choose Vi and qi for i ∈ [1, d] as in Proposition 2.6(iii) with v1 = 1, Vi ⊂ L2

for i ∈ [1, 4] and Vi ⊂ L1 for i ∈ [5, 6]. By Proposition 3.14, therefore, there exists
e ∈ Xsep such that θ(e, Li) = Li for i = 1 and 2. Thus (i) holds.

Let Ξe be as described in (ii). To show that Ξe is a quadrangular algebra, it
therefore suffices to show that Xe · L2 ⊂ Xe, θ(Xe, L2) ⊂ L2 and h(Xe, Xe) ⊂ L2.
The first of these inclusions holds by the definition of Xe. To show the other
two inclusions, we first choose non-zero elements vi ∈ Vi for i ∈ [2, 5]. We can
assume that e is the element of X chosen in [23, 6.4]. Thus the set 1, v2, . . . , v5 is
e-orthogonal as defined in [23, 6.6]. By [23, 1.17(A3) and Prop. 6.16], there exists
a non-zero v6 ∈ L such that 1, v2, . . . , v5, v6 is e-orthogonal and ev2v3v4v5v6 = e.
(We are not claiming that v6 ∈ V6 or even v6 ∈ L1.) Let I2 be as in [23, 6.32], let J
denote subset of I2 containing all the elements of I2 that are subsets of {v2, v3, v4}
together with the element {v5, v6} ∈ I2 (so |J | = 8), let J2 be the elements of J of
cardinality 2 (so |J2| = 4), let Xx for each x ∈ J be as in [23, 6.35], let M be the
subspace of X spanned by {Xm | m ∈ J} and let N be the subspace of M spanned
by {Xm | m ∈ J2}. By [23, Prop. 6.34], dimK M = 16 and M = eL2 ⊕ N . By
[23, 6.37], we have M = Xe, by [23, Prop. 6.13], we have h(e,N) = 0 and by [23,
Props. 3.15 and 4.5(i)], h(e, eL2) ⊂ L2 (since θ(e, L2) ⊂ L2). Hence h(e,Xe) ⊂ L2.
By repeated application of [23, 1.17(B1)–(B2)], it follows that h(Xe, Xe) ⊂ L2.
Since 1 ∈ L2, we have Lσ

2 ⊂ L2, where σ is as in 3.2. By repeated application of
[23, 1.17(C3)–(C4)], it follows from θ(e, L2) ⊂ L2 first that θ(eL2, L2) ⊂ L2 and
then that θ(Xe, L2) ⊂ L2. Thus (ii) holds. �

Definition 3.16. For each non-zero u in L, let πu be the reflection of q given by

πu(v) = f(u, v)u/q(u)− v

for all v ∈ L. Thus π1 = σ, where σ is as in 3.2.

Proposition 3.17. Let H† and x4 be as in 3.5. Suppose that ϕ is a product of an
even number of reflections of q as defined in 3.16. Then there exists an element
h ∈ H† such that

x4(v)
h = x4(ϕ(v))

for all v.

Proof. Let u be a non-zero element of L. By [24, eq. (6)–(14)], there are elements
w1(0, q(u)) and w4(u) in H

† such that

x4(v)
w1(0,q(u))w4(u) = x4(v/q(u))

w4(u) = x4(πuπ1(v))

for each v ∈ L. �

Notation 3.18. Let M denote the subgroup of K× generated by the non-zero
elements in the set {q(π(a) + t) | (a, t) ∈ X ×K}.

Thus

(3.19) M ⊂ G(q) ∩ Hyp2(q)

by Proposition 3.8 and K×2 = {q(π(a) + t) | (a, t) ∈ {0} ×K×} ⊂M .

Proposition 3.20. Let H† and x4 be as in 3.5. For each h ∈ H†, there exists a
unique similitude ϕh of q such that

x4(v)
h = x4(ϕh(v))
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for all v ∈ L. Furthermore, the map h 7→ γh is a surjective homomorphism from
H† to M , where γh is the multiplier of ϕh.

Proof. Let w1(a, t) for non-zero (a, t) ∈ X ×K and w4(u) for non-zero u ∈ L be as
in [24, eqs. (6)–(7)]. Then

x4(v)
w4(u) = x4

(
uf(u, vσ)− q(u)vσ

)

and

x4(v)
w4(a,t) = x4

(
(θ(a, v) + tv)/q(π(a) + t)

)

for all v ∈ L and all non-zero (a, t) ∈ X ×K by [24, eqs. (13)–(14)]. We have

q
(
(θ(a, v) + tv)/q(π(a) + t)

)
= q(v)/q(π(a) + t)

for all v ∈ L and all non-zero (a, t) ∈ X ×K (by 3.8) and

q
(
uf(u, vσ)− q(u)vσ

)
= q(v)q(u)2

for all u, v ∈ L since q(vσ) = q(v). The claim holds, therefore, by [24, Thm. 2.1].
�

Proposition 3.21. If (K,L, q) is of type E7, then G(q) =M .

Proof. By (3.19), it suffices to show that G(q) ⊂ M . Let ϕ1 be a similitude of q,
let x4, U4, H0 and H† ⊂ H0 be as in 3.5 and let h and ϕ be as in Proposition 3.7.
Thus

x4(v)
h = x4(ϕ(v))

for each v ∈ L and ϕ is a similitude of q with the same multiplier as ϕ1. Let H1 and
H2 be the subgroups of H0 defined in [24, 3.12 and 3.14]. By [24, Thm. 3.15(ii)],
H0 = H1H2 and by [24, Thm. 5.19], H2 ⊂ H1H

†. We conclude that H0 = H1H
†.

By [24, Prop. 3.11], H1 centralizes U4. There thus exists g ∈ H† such x4(v)
g =

x4(ϕ(v)) for each v ∈ L. The claim holds, therefore, by Proposition 3.20. �

Proposition 3.22. If (K,L, q) is of type E8, then G(q) =M .

Proof. By (3.19), it suffices to show that G(q) ⊂ M . Let ϕ be a similitude of q
whose multiplier is not in K×2. By Proposition 3.10, it suffices to assume that ϕ
is separable. Let

(K,L, q) = (K,L1, q1) ⊥ (K,L2, q2)

be the decomposition of q obtained by applying Proposition 2.16 to ϕ. Replacing
Ξ by an isotope as defined in [23, 8.7], we can assume that the base point 1 lies in
L2 (without changing the subgroup generated by the set of non-zero elements in
{q(π(a) + t) | (a, t) ∈ X ×K}). We can thus let e and

Ξe = (K,L2, q2, 1, Xe, ·e, he, θe)
with Xe ⊂ X be as in Proposition 3.15. By Proposition 3.21 (and the uniqueness
assertion in Proposition 3.1), we conclude that γ is the product of elements in
{q(π(a) + t) | (a, t) ∈ Xe ×K}. �

We can now prove Theorems 1.1 and 1.2. By Proposition 2.3, a quadratic form
satisfying the hypotheses of Theorem 1.1 is of type E7 or E8. By the existence
assertion in Proposition 3.1, we can apply all the results in this section. Hence
G(q) ⊂ Hyp2(q) by (3.19) and Propositions 3.21 and 3.22. By [6, Thm. 20.14], we
have Hyp2(q) ⊂ G(q). This concludes the proof of Theorem 1.1.
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Suppose that (K,L, q) is of type E8 and that x4, H0 and H† are as in 3.5. To
prove Theorem 1.2, it suffices by Proposition 3.6 (and the existence assertion in
Proposition 3.1) to show that every element in H0 lies in H†. Let h ∈ H0. By [24,
eq. (19)], there is a similitude ϕ of q such that

x4(v)
h = x4(ϕ(v))

for all v ∈ L. Replacing h by a suitable element in hH†, we can assume, by
Propositions 3.20 and 3.22, that ϕ is an isometry of q and hence a product of
reflections of q. Again replacing h by a suitable element of hH†, we can assume,
by Proposition 3.17 and [24, Prop. 3.16], that ϕ is the identity. By [24, Thm. 3.12],
h = αu for some u ∈ C×, where C = K by [24, 3.6] and αu is as defined in [24,
Prop. 3.11]. By [24, Prop. 3.13], it follows that h ∈ H†. This concludes the proof
of Theorem 1.2.

4. R-equivalence and an alternative proof of Theorem 1.2

In this section, we give an alternative proof of Theorem 1.2 based on Corollary 2.19
and various other results about R-equivalence. This proof is due to Skip Garibaldi.
The methods employed in this section are completely different from those employed
in the previous section; in particular, we make no further reference to the Moufang
quadrangle Γ of §3.

Let G denote a reductive algebraic group of absolute type E8 whose Tits index
over a field K is E66

8,2. Our goal is to show that the group of K-rational points of G
is generated by its root groups. By [9, 7.3], it suffices to assume that char(K) = 0.
This will allow us to apply Corollary 2.19. By [9, 7.2], it suffices to show that G is
R-trivial.

Now fix a maximal K-torus T containing a maximal K-split torus S in G and
fix a pinning for G with respect to T over an algebraic closure of K. Number the
simple roots αj as in [3, Chapter 6, Plate VII] and let ω∨

i be the corresponding
fundamental dominant co-weights, so 〈αj , ω

∨
i 〉 = δij . The fundamental co-weights

ω∨
1 and ω∨

8 belong to the co-root lattice and so define cocharacters, in other words,
homomorphisms from Gm to T . Their images generate a subtorus S in T which
is the connected component of the intersection (in T ) of the kernels of the roots
α2, . . . , α7. There is a canonical isomorphism

(4.1) Φ : K̄× ⊗Z T∗
∼−→ T (K̄),

where T∗ is the lattice of cocharacters of T and where K̄ is an algebraic closure of
K; see [18, 3.2.11]. Since the group G is of adjoint type, the ω∨

i form a Z-basis for
T∗. Thus we may view Φ as an isomorphism

8∏

i=1

K̄× ⊗Z Zω∨
i

∼−→ T (K̄).

This shows that the intersection of the kernels of the roots α2 . . . , α7 is connected
and that Φ restricts to an isomorphism

(4.2)
(
K̄× ⊗Z Zω∨

1

)
×
(
K̄× ⊗Z Zω∨

8

) ∼−→ S(K̄).

The cocharacters ω∨
1 and ω∨

8 are defined over K by [2, Cor. 6.9], so (4.2) implies
that S is K-isomorphic to the direct product of the images of the cocharacters ω∨

1

and ω∨
8 .
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We next fix a parabolic P of G whose Levi subgroup is the connected reductive
group ZG(S); see [18, §13.4 and Lemma 15.1.2]. Let U be the unipotent radical
of P and let U− be the unipotent radical of the opposite parabolic. The product
U− × U is isomorphic as a variety to an affine space. By [1, Proof of Thm. 21.20],
the natural map from G to G/P restricts to an isomorphism from U− to an open
subset of G/P . Hence the product map from U− ×P to G defines an isomorphism
from U−×P to an open subset of G. It follows that G is birationally equivalent to

U− × ZG(S)× U.

(This subvariety is the analog of the big cell for the Bruhat decomposition of G
over K; see [2, Prop. 4.10(d)].) We conclude that G is birationally equivalent to
the product of ZG(S) and an affine space.

Let H denote the derived subgroup of ZG(S). The sequence

1 → S → ZG(S) → H/(H ∩ S) → 1

is exact on L-points for every extension L/K because S is split. Hence ZG(S) is
birationally equivalent to the product of S with H/(H ∩ S).

The absolute Dynkin diagram of H is of type D6. By [20, p. 211], the group H
is Spin(q) for q a quadratic form over K with dim q = 12, disc q = 1 and clif(q)
split. As S centralizes H , the intersection H ∩ S is contained in the center µ2 × µ2

of Spin(q). We show that H ∩ S is equal to the center of Spin(q).
Since G is simply connected as well as adjoint, the co-roots α∨

j provide also a
Z-basis for the cocharacter lattice T∗. Thus we may view the isomorphism Φ in
(4.1) as an isomorphism

K̄× ⊗Z T∗ =

8∏

i=1

K̄× ⊗Z Zα∨
i

∼−→ T (K̄).

Then it follows from [18, 8.1.8] that Φ restricts to an isomorphism

(4.3)

7∏

i=2

K̄× ⊗Z Zα∨
i

∼−→ (H ∩ T )0(K̄).

The expressions for the fundamental dominant weights ωi in terms of the roots
αj in [3, Chapter 6, Plate VII] imply expressions for the fundamental dominant
co-weights ω∨

i in terms of the co-roots α∨
j . These expressions yield

ω∨
1 (−1) = α∨

2 (−1)α∨
3 (−1) and ω∨

8 (−1) = α∨
3 (−1)α∨

5 (−1)α∨
7 (−1).

From (4.2) and (4.3), we see that these two elements both lie in S(K̄) and in
(H ∩ T )◦(K̄) and are nontrivial and distinct. We have thus produced two distinct
nontrivial elements in (H ∩ S)(K̄). Hence H ∩ S is, in fact, the entire center of
Spin(q).

Therefore H/(H∩S) is PGO+(q). It follows by 2.19 that H/(H∩S) is R-trivial.
Therefore G is birationally equivalent to the product of PGO+(q) times an affine
space. Thus G itself is R-trivial by [4, p. 197, Cor.]. This concludes our second
proof of Theorem 1.2.

We observe that this proof goes through verbatim for every group G of absolute
type E8 in whose Tits index the roots α1 and α8 are circled. We conclude that for
such groups, G is R-trivial and the group of K-rational points of G is generated by
its root groups. With only minor modifications, the proof also shows that if G is
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adjoint of absolute type E7 with trivial Tits algebras and the root α1 is circled in
the Tits index of G, then G is R-trivial.

5. Theorem 1.1 and triality

In this section, we assume that char(K) 6= 2. We give an alternative proof of
Theorem 1.1, based on completely different methods. We actually show:

Proposition 5.1. Suppose the characteristic of the base field K is different from 2.
If q is a quadratic form with trivial discriminant, then Hyp2(q) = Hyp(q) in the
following cases:

(i) dim q = 8 and the index of clif(q) is 1 or 2;
(ii) dim q = 12 and clif(q) is split.

Since in each case G(q) = Hyp(q) by Proposition 2.15 and Corollary 2.17, Theo-
rem 1.1 follows from Proposition 5.1.

We start with the case of 8-dimensional quadratic forms. If clif(q) is split, then
q is a multiple of a 3-fold Pfister form, and the result follows from Lemma 2.14.
Similarly, if q is isotropic, then q is Witt-equivalent to a multiple of a 2-fold Pfister
form, and the result follows from Lemma 2.14. We may thus assume that (K,L, q)
is of type E7 and let D be the quaternion division algebra over K that repre-
sents clif(q). We show next that the Clifford algebra construction associates to
q a skew-hermitian form h of rank 4 over D, and we shall complete the proof of
Proposition 5.1(i) by proving that

Hyp(q) = Sn(h) = Hyp2(q);

see Proposition 5.9.

Let (A, σ) be a central simple K-algebra of degree 8 with an orthogonal involu-
tion of trivial discriminant. The Clifford algebra C(A, σ) decomposes into a direct
product of two central simple K-algebras of degree 8:

C(A, σ) = C+(A, σ) × C−(A, σ).

Recall that C(A, σ) carries a canonical involution σ, which induces orthogonal in-
volutions σ+ and σ− on C+(A, σ) and C−(A, σ) respectively. By triality (see [12,
(42.3)]), the Clifford algebras of (C+(A, σ), σ+) and (C−(A, σ), σ−) satisfy

(C(C+(A, σ), σ+), σ+) = (C−(A, σ), σ−)× (A, σ),

(C(C−(A, σ), σ−), σ−) = (A, σ) × (C+(A, σ), σ+).

Proposition 5.2. The following hold:

(1) If A is split, then (C+(A, σ), σ+) and (C−(A, σ), σ−) are isomorphic.
(2) If (A, σ) is split and isotropic, then (C+(A, σ), σ+) and (C−(A, σ), σ−) are

hyperbolic.
(3) If (A, σ) is split and hyperbolic, then (C+(A, σ), σ+) and (C−(A, σ), σ−) are

split and hyperbolic.

Proof. (1) is well-known, (2) is in [12, (8.5)], and (3) follows from (2) and the fact
that the Clifford invariant of a hyperbolic quadratic form is trivial. �

We apply this proposition in the following context: let (K,L, q) be an 8-dimen-
sional quadratic space with disc q = 1, and assume clif(q) is represented by a quater-
nion division algebra D. Let adq : EndK L → EndK L be the adjoint involution of
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q. We apply the discussion above with (A, σ) = (EndK L, adq). Then C(A, σ) =
C0(L, q) and (C+(A, σ), σ+), (C−(A, σ), σ−) are isomorphic to (EndDW, adh) for
some 4-dimensional skew-hermitian space (W,h) over D (with its conjugation in-
volution).

Proposition 5.3. For an arbitrary extension E/K, the following statements are
equivalent:

(a) qE is hyperbolic;
(b) DE is split and (EndDW, adh)E is hyperbolic;
(c) DE is split and (EndDW, adh)E is isotropic.

Proof. (a) ⇒ (b): This readily follows from Proposition 5.2(3).
(b) ⇒ (c): Clear.
(c) ⇒ (a): This follows from Proposition 5.2(2) with (EndDW, adh)E for (A, σ);

then by triality (C+(A, σ), σ+) or (C−(A, σ), σ−) is isomorphic to (EndK L, adq)E).
�

The next results 5.4–5.6 hold for skew-hermitian forms of arbitrary dimension.

Lemma 5.4. Let (W,h) be a skew-hermitian space over a quaternion division al-
gebra D over K and let E be a quadratic extension of K. If h is anisotropic, the
following conditions are equivalent:

(i) E ∼= K
(
h(v, v)

)
for some v ∈ W ;

(ii) DE is split and hE is isotropic.

Proof. If (i) holds, then E is isomorphic to a maximal subfield of D, hence DE is
split. Let h(v, v)2 = a ∈ K×, so E ∼= K(

√
a). Then v · (h(v, v) + √

a) ∈ WE is
isotropic for hE . Thus, (ii) holds.

Conversely, if (ii) holds, then E is isomorphic to a maximal subfield of D. Let
E = K(

√
a) for some a ∈ K, and let λ ∈ D be a pure quaternion such that

λ2 = a. Suppose x+ y
√
a ∈ WE is hE-isotropic for some x, y ∈W . The condition

hE(x+ y
√
a, x+ y

√
a) = 0 yields

h(x, x) + h(y, y)a = 0 and h(x, y) + h(y, x) = 0.

Since h is skew-hermitian, the second equation shows that h(x, y) ∈ K. Then

h(x+ yλ, x+ yλ) = 2h(x, y)λ− h(y, y)a− λh(y, y)λ

and the right side commutes with λ. Therefore, h(x + yλ, x + yλ) = λb for some
b ∈ K×, and we have E ∼= K

(
h(v, v)

)
with v = x+ yλ. �

For any skew-hermitian space (W,h) over a quaternion division algebra D over
K, we let Sn(h) denote the group of spinor norms of h, which is the image of
the Clifford group Γ(EndDW, adh) = Γ(W,h) under the multiplier map; see [12,
(13.30)].

Proposition 5.5. If h is anisotropic, then Sn(h) =
∏

E N(E/K), where E runs
over the quadratic extensions of K satisfying the equivalent conditions (i) and (ii)
of Lemma 5.4.

Proof. The multiplier map Γ(W,h) → K× factors through the vector representation
Γ(W,h) → O+(W,h), where O+(W,h) is the group of direct isometries of the space
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(W,h). By [10, Thm. 6.2.17], this group is generated by transformations of the
form

τv,r : W →W, x 7→ x− vh(vr, x)

where v ∈ W is an anisotropic vector and r ∈ D× satisfies r − r = rh(v, v)r. To
compute the spinor norm of that transformation, observe that τv,r is the identity
on v⊥, hence the spinor norm of τv,r is the spinor norm of its restriction to the
1-dimensional subspace vD. Let ν = h(v, v) ∈ D× and let hv denote the restriction
of h to vD, so

hv(vλ, vµ) = λνµ for λ, µ ∈ D.

We have

O+(vD, hv) = {θ ∈ K(ν)× | θθ = 1} and Γ(vD, hv) = K(ν)×

(where θ ∈ K(ν)× is identified with the map vλ 7→ vθλ for λ ∈ D). The vector
representation Γ(vD, hv) → O+(vD, hv) carries u ∈ K(ν)× to uu−1, hence the
spinor norm of that isometry is uuK×2; see [12, (13.17)]. This shows that Sn(hv)
consists of norms from the quadratic extension K(ν)/K. Since Sn(h) is generated
by the groups Sn(hv) for the anisotropic vectors v ∈ W , the proposition follows. �

Corollary 5.6. Let (W,h) be a skew-hermitian space over a quaternion division

algebra D over K, and let p = char(K) > 2. For K̃ = K−p−∞

the perfect closure
of K, we have Sn(hK̃) ∩K = Sn(h).

Proof. The inclusion Sn(h) ⊂ Sn(hK̃)∩K is clear, so it suffices to prove the reverse

inclusion. Let x ∈ Sn(hK̃) ∩K. If x ∈ K̃×2, then x ∈ K×2 ⊂ Sn(h). We may thus

assume x /∈ K̃×2. By Proposition 5.5, there exist quadratic extensions Ẽ1/K̃, . . . ,

Ẽr/K̃ such that DẼi
is split and hẼi

is isotropic for each i ∈ [1, r], and elements

yi ∈ Ẽi \ K̃ for i ∈ [1, r] such that

(5.7) x = NẼ1/K̃
(y1) · . . . ·NẼr/K̃

(yr).

Let K ′ ⊂ K̃ be the subfield generated by NẼ1/K̃
(y1), . . . , NẼr/K̃

(yr) and, for

i ∈ [1, r], let E′
i = K ′(yi). Thus, K ′/K is a purely inseparable extension of finite

degree, (5.7) yields

(5.8) x = NE′

1
/K′(y1) · . . . ·NE′

r/K
′(yr),

and each E′
i/K

′ is a quadratic extension. For i ∈ [1, r], let E′′
i be the separable

closure of K in E′
i; it is a quadratic extension of K and we have

E′
i
∼= E′′

i ⊗K K ′ and Ẽi
∼= E′′

i ⊗K K̃.

Since quaternion division algebras do not split over extensions of odd degree,
the condition that DẼi

is split shows that DE′′

i
is split. Likewise, anisotropic

skew-hermitian forms do not become isotropic over odd-degree extensions by [15,
Thm. 3.5], hence hE′′

i
is isotropic. Now, let [K ′ : K] = pd; taking the norm from

K ′ to K of each side of (5.8), we obtain

xp
d

= NE′

1
/K(y1)·. . . ·NE′

r/K
(yr) = NE′′

1
/K

(
NE′

1
/E′′

1
(y1)

)
·. . . ·NE′′

r /K

(
NE′

r/E
′′

r
(yr)

)
.

Since xp
d ≡ x mod K×2, this equation shows that x is a product of norms from

quadratic extensions over which D is split and h is isotropic, hence x ∈ Sn(h) by
Proposition 5.5. �
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We now return to the context of Proposition 5.3. The following proposition
completes the proof of Proposition 5.1(i):

Proposition 5.9. For q an anisotropic 8-dimensional quadratic form and h the
corresponding 4-dimensional skew-hermitian form as in Proposition 5.3, we have

Hyp(q) = Sn(h) = Hyp2(q).

Proof. Proposition 5.3 shows that the quadratic extensions E/K such that DE is
split and hE is isotropic are exactly those such that qE is hyperbolic, hence by
Proposition 5.5 we have

Sn(h) = Hyp2(q) ⊂ Hyp(q).

To complete the proof, we show Hyp(q) ⊂ Sn(h). Let E/K be a finite-degree

extension such that qE is hyperbolic, let K̃ be the perfect closure of K in some
algebraic closure of E, and let K1 be the purely inseparable closure of K in E. The

compositum E · K̃ of E and K̃ satisfies E · K̃ ∼= E ⊗K1
K̃. Since qE is hyperbolic,

q is also hyperbolic over E · K̃, hence DE·K̃ is split and hE·K̃ is isotropic, by

Proposition 5.3. Therefore, Sn(hE·K̃) = (E · K̃)×. Since K̃ is perfect, we may
apply the norm principle for spinor norms (see [13, (6.2)]), which is a twisted

analogue of Knebusch’s norm theorem, to see that N(E · K̃/K̃) ⊂ Sn(hK̃). Since

N(E/K1) ⊂ N(E · K̃/K̃), it follows that N(E/K1) ⊂ Sn(hK̃). Let p = char(K) if

char(K) > 2 and p = 1 if char(K) = 0, so [K1 : K] = pd for some d ≥ 0. For all

x ∈ K1, we have NK1/K(x) = xp
d

, hence

N(E/K) = NK1/K

(
N(E/K1)

)
= N(E/K1)

pd ⊂ Sn(hK̃).

But N(E/K) ⊂ K, hence Corollary 5.6 shows that N(E/K) ⊂ Sn(h). Of course,
we also have K×2 ⊂ Sn(h), hence Hyp(q) ⊂ Sn(h). �

Part (ii) of Proposition 5.1 follows from part (i) by the same arguments as in the
proof of Corollary 2.17: let q be a 12-dimensional nondegenerate form with trivial
discriminant and Clifford invariant. If q is isotropic, then it is Witt-equivalent
to a 3-fold Pfister form and G(q) = Hyp2(q) by Lemma 2.14. For the rest of
the proof, suppose q is anisotropic, i.e., q is of type E8. Let γ ∈ G(q). Since
char(K) 6= 2, all similitudes of q are separable. We can thus fix a decomposition
q = q1 ⊥ q2 as in Proposition 2.16. Since γ ∈ G(q2), part (i) of Proposition 5.1
shows that γ ∈ Hyp2(q2). Since Hyp2(q2) ⊂ Hyp2(q) by Remark 2.18, it follows
that γ ∈ Hyp2(q). This proves Proposition 5.1(ii).
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baki, 1976-77, no 505, Springer Lecture Notes in Mathematics 677, Springer, Berlin, 1977.
[22] J. Tits and R. M. Weiss, Moufang Polygons, Springer, Berlin, 2002.
[23] R. M. Weiss, Quadrangular Algebras, Mathematical Notes 46, Princeton University Press,

Princeton 2004.
[24] R. M. Weiss, Moufang quadrangles of type E6 and E7, J. Reine Angew. Math. 590 (2006),

189-226.

Department of Mathematics and Computer Science, Emory University, MSC W401

400 Dowman Drive, Atlanta, GA 30322, USA

E-mail address: parimala@mathcs.emory.edu

Institute for Information and Communication Technologies, Electronics and Ap-
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