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Abstract. We use theorems of N. Karpenko about the incompressibility of
Severi Brauer varieties and quadratic Weil transfers of Severi Brauer varieties
to compute the minimal number of parameters needed to define conjugacy
classes of involutions of given type on division algebras of 2-primary index.
Similarly we compute the minimal number of parameters needed to define
conjugacy classes of étale subalgebras of given type and central simple subal-
gebras of given degree in division algebras of p-primary index.
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1. Introduction

Essential dimension is a certain numerical invariant of algebraic objects measur-
ing their complexity. Roughly, it is defined as the minimal number of independent
parameters needed to define algebraic objects of a given type, e.g. degree n central
simple algebras, n-dimensional quadratic forms, torsors of an algebraic group etc.

Essential dimension was introduced by J. Buhler and Z. Reichstein around 1995
when studying Tschirnhaus transformations of polynomials in one variable. They
defined the essential dimension of a finite group G (relative to a base field F ) in
invariant theoretic terms and showed that the essential dimension of the symmetric
group G = Sn can be understood as the minimal number of algebraically inde-
pendent parameters in a polynomial p(x) = xn + a1x

n−1 + . . . + an obtained by
means of Tschirnhaus transformations from the generic degree n polynomial (where
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a1, . . . , an are algebraically independent over F ). Later Reichstein extended this no-
tion to algebraic groups G and showed, that this concept can be used to measure
the complexity of algebraic objects like quadratic forms (when G = On), central
simple algebras (when G = PGLn), octonion algebras (when G = G2) etc.

The most general definition of essential dimension, due to A. Merkurjev, assigns
to each (covariant) functor F : Fields/F → Sets a non-negative integer, called es-
sential dimension of F . We refer to [BF03] and [Me09] for its definition. Briefly,
the essential dimension edF of the functor F is less or equal to n ∈ N if and only
if every element a ∈ F(L) (where L ∈ Fields/F ) can be defined over a subfield
L0 ∈ Fields/F of transcendence degree at most n.

To each functor F : Fields/F → Sets we can associate its detection functor
DF : Fields/F → Sets, defined by

DF(L) =

{

∅ if F(L) = ∅

{L} otherwise.
.

The essential dimension of DF is called canonical dimension of F , denoted cdimF .
The concept of canonical dimension was introduced by G. Berhuy and Z. Reichstein
[BR05]. See also [Me09]. It is easy to see that cdimF ≤ edF . The fields L ∈
Fields/F with F(L) 6= ∅ are called splitting fields of F . The functor F has canonical
dimension ≤ n if and only if every splitting field L of F contains a subfield L0 ∈
Fields/F of transcendence degree ≤ n that splits F as well.

There is a variant of essential (and canonical) dimension relative to a prime
number p, called essential p-dimension (resp. canonical p-dimension). Essential p-
dimension measures the complexity of algebraic objects up to prime to p extensions.
We refer to [Me09] for its definition.

If G is a group scheme (always assumed of finite type) over F the essential
dimension (resp. p-dimension) of G is defined as

edG = edH1(−, G), resp. edp G = edp H
1(−, G),

where H1(−, G) is the flat cohomology functor, which takes a field extension L/F
to the set of isomorphism classes of G-torsors over L (in the finitely presented
faithfully flat topology).

A variety X over F can be viewed as functor of points

X : Fields/F → Sets, L 7→ X(L) = Mor(SpecL,X).

The essential dimension and p-dimension of X are easy to compute: They are equal
to the dimension of X , see [BF03, Proposition 1.17], [Me09, Proposition 1.2]. On
the other hand, the canonical dimension (or p-dimension) of X is an interesting
invariant of X in case that X does not have F -rational points. Interesting examples
include quadrics, Severi-Brauer varieties and torsors of an algebraic group G.

In this paper we are going to make use of the following results due to N.
Karpenko:

Theorem 1.1 ([Ka00, Ka09]). Let D be a central division K-algebra of degree pr

for some r ≥ 0 and a prime p. Then

cdimSB(D) = cdimp SB(D) = dimD = pr − 1.
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Moreover if K/F is a quadratic separable field extension, p = 2, and the norm
algebra NK/F (D) is split, then

cdimRK/F (SB(D)) = cdim2 RK/F (SB(D)) = dimRK/F (SB(D)) = 2 · (2r − 1).

We will adopt and freely use the notations and conventions of [KMRT98] with
just a few exceptions, that will be made explicit. Most significantly H1(−, G) (and,
when G is abelian, H2(−, G)) will denote flat cohomology rather than Galois co-
homology. We refer to [Wa79, §17, 18] for basics on flat cohomology. The difference
only shows up for non-smooth group schemes G. For example the flat cohomology
set H1(F,GO(Mn(F ), τ)) (where τ is transposition of matrices) stands in bijec-
tion with the set of (all) conjugacy classes of orthogonal involutions σ on Mn(F ),
whereas the Galois cohomology set H1

Gal(F,GO(Mn(F ), τ)) consists only of those
classes, for which σ and τ become conjugate over Fsep. If Fsep is not quadratically
closed, this is a non-trivial restriction.

The rest of this paper is organized as follows: In section 2 we describe our strategy
of applying Karpenko’s incompressibility results to the computation of the exact
values of the essential dimension (and p-dimension) of certain group schemes. In
section 3 we apply this strategy to the essential dimension of conjugacy classes
of involutions on central simple algebras. In section 4 we consider the essential
dimension of conjugacy classes of certain subalgebras of a central simple algebra.
We do this in two particular cases. In the first case we consider étale subalgebras
of a given type and in the second case we consider central simple subalgebras of
given degree. Our main results are given in Theorems 3.1, 4.1 and 4.2.

In section 5 we give close (in certain cases exact) estimates of the essential
dimension of group schemes which are related to the previously considered ones.

2. A general strategy

Let E/F be an étale F -algebra and A be an Azumaya E-algebra. We have an
exact sequence

1 → RE/F (Gm) → RE/F (GL1(A))
Int
→ AutE(A) → 1

of group schemes over F , where Int takes an element a of (A ⊗F L)× (for a field
extension L/F ) to the E⊗F L-algebra automorphism of AL := A⊗F L sending x to
axa−1. Let H be an arbitrary (closed) subgroup ofAutE(A) and set G = Int−1(H).
Then we have a commutative diagram

1 // RE/F (Gm) // G //

��

H //

��

1

1 // RE/F (Gm) // RE/F (GL1(A))
Int

// AutE(A) // 1

of group schemes over F with exact rows, where the vertical arrows are closed
embeddings.

Let L/F be a field extension. The setH1(L,AutE(A)) stands in natural bijection
with the set of isomorphism classes of Azumaya E ⊗F L-algebras B which become
isomorphic to AL over a seperable closure Lsep. Its distinguished element is the
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class of AL. The group H2(L,RE/F (Gm)) is naturally isomorphic to the Brauer
group of E ⊗F L. The connection map

δ1 : H1(L,AutE(A)) → H2(L,RE/F (Gm)) = Br(E ⊗F L)

takes the isomorphism class of an Azumaya algebra B to the Brauer class of
B⊗E⊗FLA

op
L = B⊗EAop. Take anH-torsor T over some field extension L of F . Let

B be an Azumaya L⊗F E-algebra representing the image of T in H1(L,AutE(A)).
Let

X = RE⊗FL/L(SB(B ⊗E Aop)).

The following result will be our main tool for computing essential and canonical
dimensions of algebraic groups.

Proposition 2.1.

cdimX − dimH ≤ edG ≤ dimF A− dimG

and
cdimp X − dimH ≤ edp G ≤ edG

for every prime p. In particular if X is incompressible (resp. p-incompressible) then
edG = dimF A− dimG (resp. edp G = edG = dimF A− dimG).

Proof. We will first show the inequality cdimX−dimH ≤ edG, by adapting [Me09,
Theorem 4.8] (cf. [BRV08, Corollary 4.2]) to our situation.

The splitting fields of X are precisely the field extensions M of L for which
TM lifts to a G-torsor. Let M be a splitting field and let E be a G-torsor lifting
TM , i.e., such that E ∗G H ≃ TM . Let E0 be a G-torsor over an intermediate
field L ⊆ M0 ⊆ M such that tdegLM0 ≤ edGL ≤ edG and E0 ×M0

M ≃ E. The
induced H-torsor T0 = E0∗GH and the H-torsor TM0

do not need to be isomorphic.
However they become isomorphic over an intermediate field M0 ⊆ M1 ⊆ M of
transcendence degree tdegM0

M1 ≤ dimH . The field M1 is a splitting field of X .
Since tdegLM1 ≤ edG+dimH this proves the inequality cdimX − dimH ≤ edG.
The inequality cdimp X − dimH ≤ edp G is obtained with standard modifications
of the above argument.

The inequality edG ≤ dimF A − dimG follows from [Me09, Corollary 4.3] and
the fact that G embeds in the special group scheme RE/F (GL1(A)) of dimension
dimF A. The inequalites edp G ≤ edG and cdimp H ≤ cdimH ≤ dimH are clear.
For the last claim note that dimX − dimH = dimF A− dimG. �

Interesting subgroups of AutE(A) are actually easy to find: Just endow A with
some additional structure (an involution, a quadratic pair, an étale or central simple
subalgebra in our examples) and take the subgroup of AutE(A) consisting of E-
algebra automorphisms preserving that additional structure.

Our goal now is to find interesting examples whereX = RE⊗FL/L(SB(B⊗EA
op))

is in fact p-incompressible. We will do this in case that E/F is either a separable
quadratic field extension (and p = 2) or E = F (and p is arbitrary). We assume
that degA is a power of p. Note that in these cases in view of Theorem 1.1 all we
need for p-incompressibility of X is that D = B ⊗E Aop is a division algebra and
that NE⊗FL/L(D) splits when [E : F ] = 2.

We fix a prime p and use the following notation (which slightly differs from the
notation used in [KMRT98]):
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Definition 2.1. Let L be a field.

Case charL 6= p: Let ζ be a primitive pth root of unity in L (we assume its
existence) and let a, b ∈ L×. We denote by (a, b)L the cyclic L-algebra
generated by symbols u and v with relations up = a, vp = b and vu = ζuv.

Case charL = p: Let a, b ∈ L with b invertible. We denote by (a, b)L the cyclic
L-algebra generated by symbols u and v with relations up − u = a, vp = b
and vu = uv + u.

Note that the definition of (a, b)L in the first case depends on the choice of ζ. For
us this choice will not matter, hence we do not include it in the notation. Different
choices of ζ for different algebras (a, b)L will be fine for us, too. The following lemma
will help us to produce examples where D = B ⊗E Aop is a division algebra:

Lemma 2.1. Let a1, b1, . . . , ar, br be algebraically independent variables over F and
let L = F ′(a1, b1, . . . , ar, br), where F ′ is F adjoined a primitive pth root of unity
if charF 6= p resp. F ′ = F if charF = p. Let

B0 = (a1, b1)L ⊗L (a2, b2)L ⊗L · · · ⊗L (ar, br)L.

Let E/F be a (finite) separable field extension which is linearly disjoint from F ′

and let A be a central simple E-algebra of p-power degree. Set M = E ⊗F L =
(E ⊗F F ′)(a1, b1, . . . , ar, br). Then B0 ⊗F Aop is a central simple M -algebra with

indB0 ⊗F Aop = pr indA.

Proof. First of all note that indA ⊗F F ′ = indA since F ′/F has degree prime to
p. Hence we may replace F ′ by F , A by A ⊗F F ′ and E by the field E ⊗F F ′ and
hence assume F ′ = F . Using induction on r ≥ 0 one easily reduces to the case
r = 1. The claim then follows from the index formula given in [Me10, (11) §4.1] (cf.
[JW90, Prop. 1.15(a)] and [Ti78, Prop. 2.4]). �

We summarize this section in a corollary, which will later be invoked for various
choices of group schemes H .

Corollary 2.1.

Let either E = F or E/F be a separable quadratic field extension and let A be a
division E-algebra of degree pr. If [E : F ] = 2 assume that p = 2 and that NE/F (A)
splits. Let L/F and B0 be as in Lemma 2.1 and set B = B0 ⊗F E.

Assume that the class of B lies in the image of H1(L,H) → H1(L,AutE(A))
for a subgroup H of AutE(A). Then

edG = edp G = dimF A− dimG,

where G is the inverse image of H under Int : RE/F (GL1(A)) → AutE(A).

Proof. Lemma 2.1 implies that B⊗EAop = B0⊗F Aop is a division algebra. In case
[E : F ] = 2 note that NE⊗FL/L(B⊗E Aop) splits since NE/F (A) and NE⊗FL/L(B)
split. Theorem 1.1 shows that X = RE⊗FL/L(SB(B ⊗E Aop)) is p-incompressible.
Hence the claim follows from Proposition 2.1. �

3. Involutions

Let A be a central simple E-algebra admitting an involution σ. Let F = Eσ ⊆ E
be the fixed field of central elements under σ. We call (A, σ) a central simple F -
algebra with involution. For unitary involutions we include the case E = F × F in
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this definition by allowing A to be a direct product A = A1 × A2 with A1 and A2

central simple F -algebras of the same degree.
Two involutions σ′ and σ on A are said to be conjugate if there exists a ∈ A

such that σ′ = Int(a) ◦ σ ◦ Int(a)−1. Equivalently (A, σ) and (A, σ′) are isomorphic
as F -algebras with involution.

Conjugate involutions are necessarily of the same type (unitary, symplectic or
orthogonal). When F is algebraically closed there are precisely 3 conjugacy classes
of involutions on A = Mn(E), one for each type.

For the case of characteristic 2 we will also use the notion of quadratic pair which
extends the distinction between quadratic forms and symmetric bilinear forms to
non-split central simple algebras. A quadratic pair on a central simple F -algebra A
is given by a couple (σ, f) where σ is a symplectic involution (we assume charF = 2)
and f : Sym(A, σ) → F is an F -linear map subject to the condition f(x+ σ(x)) =
TrdA(x) for all x ∈ A.

We want to compute the essential dimension of (conjugacy classes) of involu-
tions and of quadratic pairs. These are the essential dimensions of the functors
UInvA,OInvA,SInvA,QPairsA : Fields/F → Sets which takes a field extension
L/F to the set of conjugacy classes of unitary L-linear involutions, resp. orthogonal
involutions, symplectic involutions and quadratic pairs on AL = A⊗F L.

Example 3.1. Let Q = (a, b)L be a quaternion algebra and denote by γ the canon-
ical involution on Q. Let L/F be a field extension. The only symplectic involution
on QL is γL. Hence edSInvQ = 0.

Every orthogonal involution σ on QL is of the form σ = Int(s) ◦ γL for some
s ∈ Skew(QL, γL) \ L. The conjugacy class of σ is determined uniquely by the
discriminant of σ [KMRT98, Example 7.4], given by discσ = s2 ·(L×)2 ∈ L×/(L×)2.
When Q is split every element of L× is the square of some s ∈ Skew(QL, γL) \ L,
hence OInvQ is isomorphic to the functor H1(−, µ2) : L 7→ L×/(L×)2. This implies
that ed2 OInvQ = edOInvQ = 1 for a split quaternion algebra Q. We will see that
if Q is non-split then ed2 OInvQ = edOInvQ = 2.

Theorem 3.1. Let n be a power of 2 and A be a division algebra of degree n over
its center. Then:

(a) Assume that the center K of A is a quadratic separable field extension of F
and NK/F (A) is split (i.e., there exist F -linear unitary involutions on A).
Then

edUInvA = ed2 UInvA = n2 − 1.

(b) Assume that Z(A) = F and A ⊗F A is split (i.e., there exist orthogonal
involutions on A). Then

edOInvA = ed2 OInvA =
n(n+ 1)

2
− 1.

(c) Assume that Z(A) = F , A ⊗F A is split and n > 1 (i.e., there exist sym-
plectic involutions on A). Then

edSInvA = ed2 SInvA =
n(n− 1)

2
− 1.
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(d) Assume that charF = 2, Z(A) = F , A⊗F A is split and n > 1 (i.e., there
exist quadratic pairs on A). Then

edQPairsA = ed2 QPairsA =
n(n+ 1)

2
− 1.

Proof. The functors UInvA,OInvA and SInvA when σ is a unitary F -linear, or-
thogonal, resp. symplectic involution are isomorphic to the functors

H1(−,Sim(A, σ)) : Fields/F → Sets,

where Sim(A, σ) is the group scheme of similitudes of (A, σ), see [KMRT98, §29.D].
Similarly the functor QPairsA is isomorphic to the functor H1(−,Sim(A, σ, f))
when (σ, f) is a quadratic pair on A. Notice that

dimSim(A, σ) =











n2 + 1 if σ is unitary,
n(n−1)

2 + 1 if σ is orthogonal,
n(n+1)

2 + 1 if σ is symplectic.

and

dimSim(A, σ, f) =
n(n− 1)

2
+ 1.

So in fact we need to show that

edSim(A, σ) = ed2 Sim(A, σ) = dimF A− dimSim(A, σ)

for an involution σ (of arbitrary type) on A, and similarly we must show that

edSim(A, σ, f) = ed2 Sim(A, σ, f) = dimF A− dimSim(A, σ, f).

The group AutK(A, σ) naturally embeds in AutK(A) and Sim(A, σ) is the inverse
image of AutK(A, σ) under Int: RK/F (GL1(A)) → AutK(A). The image of the
map

H1(L,AutK(A, σ)) → H1(L,AutK(A))

consists of those isomorphism classes of Azumaya K ⊗F L-algebras which admit
an L-linear involution of the same type as σ. Similarly the image of the map
H1(L,AutF (A, σ, f)) → H1(L,AutF (A)) consists of those isomorphism classes
of central simple L-algebras that admit a quadratic pair. In view of Corollary 2.1
it suffices to show that the algebra B = (a1, b1)L ⊗L · · · ⊗L (ar, br)L ⊗F K from
Corollary 2.1 admits an involution of the same type as σ, resp. a quadratic pair.
This is easy to see directly, and can also be proven by looking at B ⊗F B (when
K = F ), resp. NK/F (B) (when [K : F ] = 2). Hence the claim follows. �

4. Subalgebras

Let A be a central simple F -algebra and E be a subalgebra of A. We call (A,E) a
couple of F -algebras. If (A′, E′) is another couple of F -algebras we say that (A,E)

and (A′, E′) are isomorphic if there exists an isomorphism ϕ : A
∼
→ A′ of F -algebras

which restricts to an isomorphism E
∼
→ E′. We call two subalgebras E and E′ of

A conjugate if (A,E) and (A,E′) are isomorphic. Equivalently there exists a ∈ A×

such that E′ = aEa−1.
Let G be the inverse image ofH = AutF (A,E) under Int: GL1(A) → AutF (A).

It is the normalizer of GL1(E) in GL1(A). We will compute the essential dimension
of G in some examples. For this section we use [KMRT98, §29.C] as a reference for
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cohomological statements. We start with an additional result, which gives us an
interpretation of the functor H1(−, G):

Lemma 4.1. The set H1(L,G) is naturally (in L/F ) isomorphic to the set of
conjugacy classes of L-subalgebras E′ of AL such that E ⊗F Lalg and E′ ⊗L Lalg

are conjugate subalgebras of A⊗F Lalg = AL ⊗L Lalg.

Proof. Let L/F be a field extension. The set H1(L,AutF (A,E)) is in one-to-
one correspondence with the set of F -isomorphism classes of couples of L-algebras
(A′, E′) such that (A′, E′)alg ≃ (AL, EL)alg.

We have an exact sequence 1 → Gm → G → AutF (A,E) → 1. The map
H1(L,G) → H1(L,AutF (A,E)) is injective, since H1(L,Gm) is trivial and Gm

lies in the center of G. Hence H1(L,G) is naturally (in L/F ) bijective to the kernel
of the connecting map H1(L,AutF (A,E)) → H2(L,Gm) = Br(L), which takes
a couple (A′, E′) to the Brauer class of A′ ⊗F Aop. Thus H1(L,G) ist the set
of isomorphism classes of couples of L-algebras (A′, E′) such that A′ ≃ AL and
(A′, E′)alg ≃ (AL, EL)alg. The map which associates to the conjugacy class of an L-

subalgebra E′ on AL the isomorphism class of the couple (AL, E
′) then establishes

a (well defined and in L/F natural) bijection between the set of conjugacy classes
of L-subalgebras E′ of AL such that E′ ⊗L Lalg is conjugate to E ⊗F Lalg and the
set H1(L,G). �

4.1. Étale subalgebras. In this subsection we try to compute the essential di-
mension of the functor Fields/F → Sets taking a field L to the set of conjugacy
classes of étale subalgebras E of a given type of AL, where A is a fixed central
simple F -algebra.

The type of an étale subalgebra E of a central simple algebra B is defined as
follows. Denote by L the center of B and let e1, . . . , ed be the minimal non-zero
idempotents of E ⊗F Lsep, where d = dimE. Write Bsep = B ⊗L Lsep. Let ri =

rdim eiBsep =
dim eiBsep

degB ∈ N be the reduced dimension of the right ideal eiBsep.

Then the multiset tE = [r1, . . . , rd] is uniquely determined by E and is invariant
under conjugation (of étale subalgebras) and scalar extension. The invariant tE is a

partition of degB, i.e.,
∑d

i=1 rd = degB. It was introduced by D. Krashen [Kr04],
who called it the type of the étale subalgebra E of B.

In case A = Mn(F ) there exists for every partition t = [r1, . . . , rd] of degA = n
an étale subalgebra E of A of type tE = t. Moreover over a separably closed field
F every étale subalgebra of A = Mn(F ) of given type t = [r1, . . . , rd] is conjugate

to the étale subalgebra E =
⊕d

i=1 Fdi where di is the diagonal matrix with ones

from place si + 1 :=
∑i−1

j=1 rj + 1 up to place si+1 and zeros on the other places.
This follows from the fact that commuting idempotent matrices are simultaneously
diagonalizable.

Consider the functor Ét
(t)

A : Fields/F → Sets, which takes a field extension L/F
to the set of conjugacy classes of étale subalgebras of AL of type t.

Example 4.1. Let A be a central simple algebra of degree n and let t = [1, . . . , 1]

(with n ones). Then the functors Ét
(t)

A is isomorphic to the functor taking a field
L ∈ Fields/F to the set of isomorphism classes of n-dimensional étale L-algebras
that embed in AL. In fact two n-dimensional étale subalgebras of AL are conjugate
if and only if they are isomorphic.
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We will consider the case when A is a division algebra. Every étale subalgebra E
of a division algebra is a field and d = dimF E divides n = degA. Moreover every
(étale) subfield of dimension d has type [nd , . . . ,

n
d ], since the absolute Galois group

of F permutes the idempotents in Esep =
⊕d

i=1 Fsepei transitively.

Theorem 4.1. Let A be a division F -algebra of degree n = degA = pr a power
of p. Let d = ps divide n and set t = [nd , . . . ,

n
d ] (the multiset with d identical

elements). Assume that A admits an étale subalgebra of type t. Then

ed Ét
(t)

A = edp Ét
(t)

A = n2 −
n2

d
= p2r − p2r−s.

Proof. Let E be an étale subalgebra of A of type t. Let H = AutF (A,E) and G =
Int−1(H) its inverse image under Int: GL1(A) → AutF (A). It is the normalizer of

the torus RE/F (Gm) in GL1(A). By Lemma 4.1 the functors H1(−, G) and Ét
(t)

A

are isomorphic.
We can pass to an algebraic closure in order to compute the dimension ofG. Then

G is the normalizer of RE/F (Gm) in GLn and G0 is the centralizer of RE/F (Gm) in
GLn. We may replace E by the conjugate subalgebra E′ =

∑

i Fdi, where di is the
diagonal matrix with ones from position (i−1)pr−s+1 to ipr−s and zeros otherwise.
Then G0 = GLpr−s × · · · ×GLpr−s ⊆ GLn has dimension ps · p2(r−s) = p2r−s. It
follows that dimG = p2r−s.

The image of H1(L,AutF (A,E)) → H1(L,AutF (A)) consists of those iso-
morphism classes of central simple L-algebras that admit an étale subalgebra of
type t. In view of Corollary 2.1 it suffices to show that the division F -algebra
B = (a1, b1)L ⊗L · · · ⊗L (ar, br)L from Corollary 2.1 admits an étale subalgebra of
type t. This is true, since we can take for E the tensor product E1 ⊗L · · · ⊗L Es

where E1, . . . , Es are maximal subfields of (a1, b1)L, . . . , (as, bs)L respectively. �

Remark 4.1. In the extreme cases t = [1, . . . , 1] and t = [n] we can also compute the

essential p-dimension of Ét
(t)

A for a split algebra A = Mn(F ) of degree n assuming

charF 6= p: We have edp Ét
[n]

Mn(F ) = 0 and

edp Ét
[1,...,1]

Mn(F ) = edp Sn =
⌊n

p

⌋

The first statement is trivial since the only 1-dimensional étale subalgebra of A is F .

The functors Ét
[1,...,1]

Mn(F ) and H1(−, Sn) are isomorphic by Example 4.1, since every

n-dimensional étale algebra embeds in Mn(F ). This shows edp Ét
[1,...,1]

Mn(F ) = edp Sn.

The equality edp Sn =
⌊

n
p

⌋

(when charF 6= p) was first noticed by J.-P. Serre, see

[MR08, Corollary 4.2].

In contrast the (absolute) essential dimension of Ét
[1,...,1]

Mn(F ), being equal to the
essential dimension of Sn, is unknown for n ≥ 8.

4.2. Central simple subalgebras. Let A be a central simple F -algebra and let d

be a divisor of degA. Consider the functor Sub
(d)
A : Fields/F → Sets, which takes a

field extension L/F to the set of isomorphism classes of central simple L-subalgebras
of AL of degree d.
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Example 4.2. When degA is divisible by d2 and indA divides degA
d2 the functor

Sub
(d)
A is isomorphic to the functor CSAd, taking a field extension L/F to the set

of isomorphism classes of central simple L-algebras of degree d. In fact every central
simple algebra B over L of degree d is a subalgebra of B ⊗L Bop ≃ Md2(L), hence
of AL.

Theorem 4.2. Let n = pr for some r ≥ 0 and let A be a division algebra of degree
n. Let d = ps be a divisor of n and assume that A admits a central simple subalgebra
of degree d. Then

edSub
(d)
A = edp Sub

(d)
A = n2 − d2 −

n2

d2
+ 1 = p2r − p2s − p2(r−s) + 1.

Proof. Let B be a central simple subalgebra of A of degree d. Set H = AutF (A,B)
and G = Int−1(H) the inverse image of H under Int : GL1(A) → AutF (A). It is
the normalizer of GL1(B) in GL1(A).

I claim that Sub
(d)
A is isomorphic to H1(−, G). In fact by Lemma 4.1 the set

H1(L,G) is in natural one-to-one correspondence with the set of conjugacy classes
of central simple subalgebras B′ of AL such that B′ ⊗L Lsep and B ⊗F Lsep are
conjugate subalgebras of A ⊗F Lsep. By the Skolem Noether theorem two central
simple subalgebras of a central simple algebra are conjugate if and only if they are
isomorphic. Hence the claim follows.

Since the division F -algebra B = (a1, b1)L⊗L · · ·⊗L (ar, br)L from Corollary 2.1
admits a central simple subalgebra of degree d we obtain

edG = edp G = n2 − dimG

as in the proof of Theorem 4.1.
Let C denote the centralizer of B in A. Then G fits into an exact sequence

1 → GL1(C) → G → AutF (B) → 1.

It follows, that G has dimension

dimG =
n2

d2
+ d2 − 1.

This concludes the proof. �

5. Essential dimension of related group schemes

In section 3 we have computed the essential dimension of the group scheme
Sim(A, σ) for certain algebras with involution (A, σ). The essential dimension of
the group scheme Iso(A, σ) of isometries of (A, σ) is closely related:

Proposition 5.1. Let (A, σ) be a central simple F -algebra with involution. Then
ed Iso(A, σ) ≤ edSim(A, σ) + 1. Moreover if σ is unitary or charF 6= 2 then
ed Iso(A, σ) is either equal to edSim(A, σ) or edSim(A, σ) + 1.

Furthermore the analogous statements hold for essential p-dimension for every
prime p.

Proof. The first inequality follows from [Me09, Corollary 4.3] and the fact that
Iso(A, σ) has codimension 1 in Sim(A, σ).

If σ is unitary or if charF 6= 2 there is a surjection of functors

H1(−, Iso(A, σ)) ։ H1(−,Sim(A, σ))
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(cf. [KMRT98, §29.D and Propositions 2.7 and 2.18]). Hence edSim(A, σ) ≤ ed Iso(A, σ)
by [BF03, Lemma 1.9] and similarly edp Sim(A, σ) ≤ edp Iso(A, σ). �

For division algebras of degree a power of 2 we can say more:

Proposition 5.2. Let n = 2r for some r ≥ 0 and let (A, σ) be a central simple
F -algebra with involution, where A is a division algebra of degree n. Then

• If σ is unitary then n2 − 1 ≤ ed2 U(A, σ) ≤ edU(A, σ) ≤ n2.

• If σ is orthogonal then edO(A, σ) = ed2 O(A, σ) = n(n+1)
2 .

• If σ is symplectic then edSp(A, σ) = ed2 Sp(A, σ) =
n(n−1)

2 .

• If (σ, f) is a quadratic pair then edO(A, σ, f) = ed2 O(A, σ, f) = n(n+1)
2 .

Moreover in case r ≥ 2 (and charF = 2): edO+(A, σ, f) = ed2 O
+(A, σ, f) =

n(n+1)
2 and edGO+(A, σ, f) = ed2 GO+(A, σ, f) = n(n+1)

2 − 1.

Remark 5.1. The assumption r ≥ 2 in the statements about GO+(A, σ, f) and
O+(A, σ, f) is needed. When r = 1 the algebra A is a quaternion division alge-
bra, A = (a, b)F , σ its canonical involution, and I claim that edGO+(A, σ, f) =
0 < 2 and edO+(A, σ, f) = 1 < 3. In fact GO+(A, σ, f) = RF (u)/F (Gm) and

O+(A, σ, f) = R
(1)
F (u)/F (Gm) are tori. Their essential dimension and 2-dimension

were computed in [LMMR10] (cf. [BF03, Theorem 2.5]).

Proof. The statements about U(A, σ) follow from Theorem 3.1 and Proposition
5.1.

For orthogonal and symplectic involutions the inequalities ed2 O(A, σ) ≤ edO(A, σ) ≤
n(n+1)

2 and ed2 Sp(A, σ) ≤ edSp(A, σ) ≤ n(n−1)
2 are clear. In order to show the

reverse inequalities we slightly refine the approach given in section 2. We have a
commutative diagram

1 // µ2 //

��

Iso(A, σ) //

��

Aut(A, σ) // 1

1 // Gm
// Sim(A, σ) // Aut(A, σ) // 1

with exact rows, where the columns are closed embeddings. By [Me09, Example 3.6
and Theorem 4.8] (cf. [BRV08, Corollary 4.2])

ed2 Iso(A, σ) ≥ ind(Iso(A, σ), µ2)− dim Iso(A, σ),

where ind(Iso(A, σ), µ2) is the maximal index of the image inH2(L, µ2) = Br2(L) of
an H-torsor, taken over all H-torsors over L and all field extensions L/F . From the
above diagram it is clear that ind(Iso(A, σ, µ2) = ind(Sim(A, σ),Gm). As shown in
the proof of Theorem 3.1 the latter equals dimF A. Since dimF A− dimO(A, σ) =
n(n+1)

2 and dimF A− dimSp(A, σ) = n(n−1)
2 the claim follows.

With a similar argument one gets edO(A, σ, f) = ed2 O(A, σ, f) = n(n+1)
2 for a

quadratic pair (σ, f). The groups O+(A, σ, f) and GO+(A, σ, f) have finite index

in O(A, σ, f) and GO(A, σ, f), respectively. Hence edO+(A, σ, f) ≤ n(n+1)
2 and

edGO+(A, σ, f) ≤ n(n+1)
2 − 1. In order to show the reverse inequalities for r ≥ 2
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we look at the diagram

1 // µ2 //

��

O+(A, σ, f) //

��

PGO+(A, σ, f) // 1

1 // Gm
// GO+(A, σ, f) //

��

PGO+(A, σ, f) //

��

1

1 // Gm
// GL1(A)

Int
// AutF (A) // 1

with exact rows. The image of the map H1(L,PGO+(A, σ, f)) → H1(L,AutF (A))
consists of the classes of central simple L-algebras A′ of degree degA′ = degA
which admit a quadratic pair (σ′, f ′) such that disc(σL, fL) = disc(σ′, f ′). By
[Be05, Theorem 2] (note that charL = 2) every central simple L-algebra A′ which
is not a quaternion division algebra, and which has a symplectic involution, ad-
mits quadratic pairs of arbitrary discriminant. In particular the algebra B =
(a1, b1)⊗L · · ·⊗L (an, bn) from Corollary 2.1 (with p = 2) admits quadratic pairs of

arbitrary discriminant. Therefore the inequality ed2 GO+(A, σ, f) ≥ n(n+1)
2 − 1 is

a consequence of Corollary 2.1 and the inequality ed2 O
+(A, σ, f) ≥ n(n+1)

2 follows
from [Me09, Example 3.6 and Theorem 4.8]. �

Remark 5.2. Suppose the following statement holds true: The essential dimension

edχ of every gerbe χ banded by R
(1)
K/F (Gm) is equal to cdimχ+ 1 (for the notion

of gerbes and their essential dimension see [BRV08]). Then one can show that
edU(A, σ) = n2 for a central division K-algebra A of degree n a power of 2 and a
unitary F -linear involution σ on A.
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