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Abstract

For a field F' of characteristic different from 2, containing a square root of -1, endowed with an
F*2_compatible valuation v such that the residue field has at most two square classes, we use a
combinatorial analogue of the Witt ring of F' to prove that an anisotropic quadratic form over F' with
even dimension d, trivial discriminant and Hasse-Witt invariant can be written in the Witt ring as
the sum of at most (d?)/8 3-fold Pfister forms.

Introduction

Let F be a field of characteristic different from 2 which contains a square root of —1. Let W (F') be
the Witt ring of F, I(F) the fundamental ideal of W (F') and I™(F) the m-th power of I(F). Since
—1 is a square in F, the Witt ring W (F') is an algebra over the field Fo with two elements.

The quadratic form a1 X7 +...+aqsX3 with a; € F* is denoted by (a1, ..., aq). Each [¢] € I™(F)
is the sum of Witt classes of m-fold Pfister forms, i.e. quadratic forms of the type

{at,...;am) = (1,a1) @ ... ® (1, am).

Brosnan, Reichstein and Vistoli [2010] define the m-Pfister number Pf,,(q) of a quadratic form [¢] €
I'"™(F) to be the least number of terms needed to write the Witt class of g as a sum of Witt classes of
m-fold Pfister forms. They prove the existence of quadratic forms whose 3-Pfister number increases
exponentially with their dimension. In general, no upper bound is known for the 3-Pfister number.

In this paper, we shall prove that for a valued field (F,v) such that 1 4+ m, C F*? and (f: :
F:Q) < 2, the 3-Pfister number of a quadratic form in 13(F) of dimension d is less than or equal to
(d?)/8. This result on 3-Pfister numbers extends those on the 1- and 2-Pfister numbers in [Parimala
et al., 2009]. Indeed, our proof technique is similar: we use the group algebra Fo[F*/F*?] as a
combinatorial analogue of the Witt ring of F', allowing us to make explicit computations.

However, our result does not hold for general fields: the combinatorial analogue — which works
for the computation of 1- and 2-Pfister numbers over general fields, see [Parimala et al., 2009] — is
not powerful enough to deal with 3-Pfister numbers in general. We shall indicate the obstruction.

I would like to thank Ido Efrat, Karim Becher and Jean-Pierre Tignol for their helpful comments.

1. A combinatorial analogue of the Witt ring

For F' a field of characteristic different from 2 which contains a square root of —1, we set V¢ :=
F* /F*2; it is a vector space over 2, so let Fo[Vr] denote its group algebra. This algebra can be seen
as a combinatorial analogue of the Witt ring for the following reason: it is a discrete object which
only depends on the square classes of F' such that the map

U Fo[Ve] = W(F): (a1 F*?) + ... + (aaF*?) = [{a1, . . ., aq)]
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is a well-defined surjective Fa-algebra homomorphism. Moreover, in the case where F' is the field of
iterated Laurent series C((z1)) ... ((zn)), this homomorphism is in fact an isomorphism [Parimala et
al., 2009, p. 333].

It is natural to study a more general situation: the group algebra F2[V] with V' any vector space
over Fo. Since the addition in V induces the multiplication in F2[V], we write X* for the image of
v € V in F[V], so that

Fa[V] = { Z v X" | oy € F2 and {v € V | oy # 0} is finite}
veV
where X° =1 and X* - X" = X"
We now define an ideal of F2[V], which is an analogue of the fundamental ideal of W (F'). Let
€o: F2[V] — F2 be the Fs-algebra homomorphism defined by

EO(Z a, X') = Z Qo

veV veV

and let I[V] be its kernel. It has the property that for all £ € F2[Vr],
EelVp) <= ¥ (§) € I(F).

For m > 1, let I"™[V] denote the m-th power of I[V]; it is generated as a group by elements of the
type

[vi,..som] = A+ X)) (14 X)),
which we call m-fold Pfister elements. The m-Pfister number Pf,(£) of an element & € I™[V] is the
least number of terms needed to write £ as a sum of m-fold Pfister elements. It is related to the
m-Pfister number of a quadratic form in the following way: for all £ € I [VF],

P (¥(£)) < Pl (8).

This is so because ¥ carries m-fold Pfister elements in F2[VF] to m-fold Pfister forms in W (F).
Furthermore, we define the m-scaled Pfister number of an element ¢ € I"™[V], and we write GPf,, (),
as the least number of terms needed to write £ as a sum of scaled m-fold Pfister elements, i.e. elements
of the form X[b1,...,bm]. Clearly GPf, (&) < Pfm(€) and since X*(14+X°) = (14+X*)+(14+X*+?),
we have Pf,,(£) < 2GPf,,(&).

In this section, we shall first study the structure of I*[V] and, by way of example, compute the
3-Pfister number of certain of its elements. Next we exhibit an algorithm which allows us to classify
the elements in IS[V]. Finally, we use the scaled Pfister numbers to find an upper bound for the
3-Pfister number of an element in I*[V].

1.1. Structure of I*[V]

We shall prove that I3[V] is the kernel of some group homomorphism. By [Parimala et al., 2009,
Corollary 1.2],
PV={gelV]]a() =0},

where e1: F2[V] — V is the group homomorphism defined by e1(3, oy X”) = > oy awv. We
define e2: F2[V] - V AV by

Xt +.. .+ X)) = Z v A vj.

1<i<j<r

To prove that ez is well-defined it is sufficient to check the obvious fact that if v, = v,_1, then

Z v Nvj = Z Vi A\ vj.

1<i<j<r-—2 1<i<j<r

Even though the map €2 is not a group homomorphism, the following property holds:



Lemma 1.1 Let &1,&2 € Fo[V] be such that either €1(&1+&2) =0 or €1(£1) =0 or €1(&2) = 0. Then
e2(&1 + &2) = e2(&1) + €2(&2). In particular, €2|12[V] is a group homomorphism.

Proof : Write §&1 = X"t 4+ ...+ X" and & = X! + ...+ X¥*. Then

e +&) = Z vi/\vj—&-ZZvi/\wj—&— Z w; A w;
1<i<j<r i=1 j=1 1<i<j<s
= &) +a(é)Aea(ée) +e(l)
By assumption, €1(€1) A €1(€2) = 0, hence e2(&1 + &2) = e2(&1) + €2(€2). O

Observe that the image of a 3-fold Pfister element by €2 is zero, hence
Plvic{¢e IP[V] | e(€) = 0}.

We shall prove that the inclusion is in fact an equality. First we define the support of an element
&= ZUEV a, X" as the set
D) ={veV]|a, =1}

Let & € I*[V] be a nonzero element such that e2(€) = 0. Let a € V \ {0} and W a subspace of V be
such that spang, (D(£)) = W @ F2 - a (where spang, (D(£)) is the subspace of V' spanned by D(£)).
Then there exist unique 71,72 € Fo[W] such that £ =1 + X - ne.

Lemma 1.2 We have nz2,m + 12 € I*[W] and ex(m +n2) = 0.
Proof : Since £ € I*[W], we have €o(£) = 0 and €1(€) = 0. The map € is a ring homomorphism, so
0 =e€o(§) = €o(m) + €o(12)
and thus €o(m1) = €o(n2). Because €; is a group homomorphism, we have
0=e1(§) =ex(m) +er(X* 1)
Observe that

a(X* )= Y atv=[D(m)la+e(n)=cp)atelnp)

vED(n2)

hence €1(n1) + €1(n2) + €o(n2)a = 0 where €1(n1) + e1(n2) € W. It implies that e1(n1) + e1(n2) = 0
and ¢ (n2) = 0. Therefore m + n2 € I*[W] and 72 € I[W]. Write

771:XU1+“4+XUT and 772:Xw1+...+Xw54

By Lemma 1.1, e2(§) = e2(m1) + €2(X® - 12). But

(X m) = 3 (atw)Alatw)
1<i<j<s
s s—1
= 7—DaAnw;+ wi A (s —1)a+ w; N\ w;
Jj Jj
j=2 i=1 1<i<j<s

S

= Z(s —1DaAw; + ea(n2)

i=1

= anea(n)+elp)

Thus e2(§) = 0 implies e2(n1) +e2(n2) +aNei(n2) = 0 where e2(m) +e2(n2) € WAW and e1(n2) € W.
Hence e2(n1) +€2(n2) = 0 and aAei(n2) = 0. It implies that e2(n1+n2) = 0 and €1(n2) = 0. Therefore
N2, + m2 € I’[W] and ex(m1 + n2) = 0. o



Corollary 1.3 We have I*[V] = {€ € I?[V] | e2(¢) = 0}.

Proof : Let € € I*[V] be such that e2(¢) = 0. We shall prove that & € I*[V] by induction on
m := dimspang, (D(£)), the dimension of spang, (D(€)). If m = 0, then £ = 0 (by [Parimala et al.,
2009, Lemma 1.1], ¢ € I*[V]\ {0} implies |D(¢)| > 4). Suppose that m > 0, then m > 2 because
[D()| > 4. Let a € V'\ {0} and W be a subspace of V such that spang (D(§)) = W @ Fa2 - a. Let
m,n2 € Fo[W] be such that £ =1 + X® -n2. Then & = (m1 +n2) + (1 + X?) - 2 and by Lemma 1.2,
ne,m +m2 € I*[W] and ea(m + n2) = 0. Since dim(D(n1 + 72)) < dimW < m, by induction
assumption, 71 + 72 € I3[W]. But (14 X*) - 12 € I*[V] because 12 € I*[W], so & € I*[V]. O

1.2. Computation of 3-Pfister numbers

Let e = (e1,...,en) be a family of linearly independent vectors of V with n > 3. Set eg :=e1+...+en
and
Met=m—+ X + ..+ X +nXO 4 XO0F 4 4 xeoten,

Then |D(n)| = 2n if n is even and |D(n.)| = 2(n + 1) otherwise. Set
5 — n+X€1 +...+Xen71 +Xel+~~~+en717

then ¢ € I*[V] and e = (14 X) - €, hence 5. € I3[V]. By [Parimala et al., 2009, Proposition 1.4],
Pf2(€) = n — 2, thus Pfs(n.) < n — 2. The following proposition proves that we have in fact an
equality.

Proposition 1.4 Pfz(n.) =n — 2.

Proof : We prove the equality by induction on n. Suppose that n = 3, then n. = [e1, e2,e3] and
Pfs(ne) = 1. Suppose now that n > 3. Let W be a subspace of V containing e1,...,en—1 such
that V.= W @ Fz - e,. Let ¢: V. — V be the linear map defined by ¢(z) = =z for all x € W
and ¢(e,) = 0. Let ¢s: Fo[V] — F3[V] be the Fs-algebra homomorphism induced by ¢. Then
@x(ne) = mMer, where ¢’ = (e1,...,en—1). Suppose that . = w1 + ... + 7, where the m;’s are 3-
fold Pfister elements and p = Pfs(n.). Renumbering if necessary, we may assume that e, € D(mp)
and thus 7, = [en,a,b] for some a,b € V. Observe that ¢.(m;) is a 3-fold Pfister element, for
all i € {1,...,p} and p.(ne) = p«(m) + ... + @«(mp—1). Therefore Pfs(n.,) < p— 1. By induction
assumption, Pf3(n./) = n—3, hence p > n—2. Since the other inequality holds, the proof is complete.

O

1.3. Algorithm and classification

We shall give an algorithm to classify elements in I*[V] which is based on the following lemma.

Lemma 1.5 Let £ € I?[V] be nonzero and let a € D(€) \ {0} and W be a subspace of V such
that spang, (D(£)) = W @ Fa - a. Then there exist unique & € I°[W] and & € I*[W] such that
=&+ (1 + X%)&. Moreover, the elements &1 and & satisfy the following properties:

1. 0 € D(gg),

2. |D(E)] = D) = 2[D(&1 + &2) N D(&2)];

3.0€D(¢) < 0eD&+&) < 0¢€D(&).
In particular, |D(&1)| < |D(§)| if 0 € D(§).

Proof : By Lemma 1.2, the elements 11,72 € F2[W] such that & = 91 + X -1 satisfy m +n2 € I3[W]
and 72 € I?[W]. Hence £ = & + (1 + X*)& with & =m 4+ 12 € IP[W] and & = 2 € I*[W]. ]



These properties are the key to the construction of an algorithm to classify the elements in I*[V],
which goes as follows. Assuming we have already classified all the elements € € I®[V] such that
|D(&)| < d, where d > 0, we classify first all the £ € I*[V] such that |D(€)| = d and 0 € D(¢). To
do so, we fix a nonzero a € V and a vector space W such that V. = W @ F3 - a. Then we choose
& € I*[W] such that |D(¢&1)| < d and 0 € D(&1), and we set

e 1D

(r € N because d and |D(&1)| are even). We construct now an element & € I?[W] such that

|D(&1 + &2) N D(&2)| = r + 1. Thereto, we pick distinct nonzero as,...,ar € W\ D(&1) and distinct
bi,...,bs € D(&1) such that r + sisodd and a1 + ...+ ar + b1 + ...+ bs = 0. Set

Cor= X0+ XU A XX X
and £ := &1 + (1 4+ X*)&. Then & € I*[W), so &€ € I3[V] and
ID(©)] = [D(&1 + &)| + |D(&2) = (ID(E)] = s +7+1) + (r +1+5) = [D(&)] +2(r +1) = d.

Moreover all the & € I3[V] such that |D(£)| = d and 0 € D(¢&) are constructed in this way. The second
step is to classify all the elements ¢ € I3[V] such that |D(£)| = d and 0 ¢ D(¢). We fix a nonzero
a € V and a vector space W such that V =W @F3-a. Choose & € I*[W] such that |D(¢1)| < d and
0 € D(&), and set

| d-ID&)

2

To construct an element & € T2[W] such that |[D(& + &) N D(&2)| = r, we pick distinct nonzero
ai,...,ar € W\ D(&) and distinct nonzero by, . ..,bs € D(&1) such that r + s is odd and a1 + ... +
ar+b1+...+bs=0. Set

Eo=X"+ X" 4 4 X4 X 4 4 X
and £ := &1 + (1 4+ X*)&. Then & € I*[W], so &€ € I*[V] and
ID(&)] = |D(&1 + &)| + [D(&2) = (ID(E)] — (s + 1) +7) + (r+ s +1) = [D(&)| + 2r = d.

Again, all the & € I*[V] such that |D(¢)| = d and 0 & D(¢) are constructed in this way.

Below we shall classify the elements & € I*[V] with |D(¢)| < 14. (As |D(¢)| grows, the number
of different types of elements ¢ € I*[V] becomes huge.) Observe first that |D(€)| is even for all
€ € I*[V] because I3[V] C I[V]. In the next proposition, we start with the elements & € I3[V] such
that |[D(€)| < 12. Here we do not need our algorithm to classify those elements (even if it works
perfectly) because we can use well-known results on quadratic forms.

Proposition 1.6 Let ¢ € I3[V].
1. If|D(€)] < 8, then € = 0.
2. If |ID(&)| = 8, then & = X%[e1,ez,e3] for some vectors e1,ez,es,a € V where e1, ez, es are

linearly independent. In particular,

1 if0e D(),

GPf3(§) =1 and Pf3(§) = { 9 if0¢ D(E).

3. There is non € 13[V] such that |D(n)| = 10.

4. If ID(&)| = 12, then & = & - & for some &1,&2 € Fo[V] such that & € I?[V], |D(&1)| = 2 and
|D(&2)| = 6. In particular,

3 if 0 € D(§),

GPfs(§) =2 and  Pfs() = { 2 0r4 if 0 ¢ D(E).



Proof : Replacing V' by spang, (D(§)) if necessary, we may assume that V' is finite dimensional.
By the proof of Theorem 2.2 in [Parimala et al., 2009], the vector space V may be identified with
Vi = E*/E*? for some field E of iterated Laurent series so that the map W: Fa[Vg] — W(E) is an
isomorphism. Let ¢ be a quadratic form over F such that ¥(¢) = [¢] € I*(E) and the dimension of ¢
is equal to |D(§)].

(1) If |D(&)| < 8, then q is isotropic by [Lam, 2005, Hauptsatz 5.1, page 352], hence £ = 0.

(2) If |D(&)| = 8, then g is a scalar multiple of a 3-fold Pfister form (see [Lam, 2005, Theorem 5.6,
page 355]), hence £ = X [e1, ez, es] for some e1, ez, e3,a € V and GPf3(§) = 1. The vectors e1, ez, e3 €
V are linearly independent because otherwise £ = 0. If 0 € D(&), then & = [e1, ez, e3] and Pf3(¢) = 1;
otherwise £ = n. where e = (a,a+ e1,a+ e2,a+ e3) is a family of 4 linearly independent vectors and
in particular Pf3(§) = 2.

(3) There is no n € I*[V] such that |D(n)| = 10, because if |D(¢)| = 10, then q is isotropic (see
[Pfister, 1966, page 123]); hence & = 0 which leads to a contradiction.

(4) Suppose that |D(§)| = 12, then by [Pfister, 1966, page 123-124], ¢ can be written as ¢1 L
¢2 L ¢3 where the ¢;’s are 4-dimensional, [¢;] € IQ(E) and the product of the Clifford invariants
C(¢1)C(¢2)C(¢3) is trivial in the Brauer group of E. Hence there exists a quadratic extension E(1/3)
of E which splits all C(¢;). Then ¢ = 1 ® g2 where ¢ = (1, —¢) and for some 6-dimensional form
g2 such that [g2] € T*(E). Hence £ = &1 - & for some &1, & € Fo[V] with & € T2[V], |D(&1)| = 2 and
|D(&2)| = 6. We may assume that & = X%+ X for some a € V. Let e1,...,es € V be such that

fr=X 4.+ X g XA T,

Then § = X' [a, e1+ez,e1+e3]+X[a,es+es,e1+ez+ez+es] and GPf3(€) # 1 because |D(E)| # 8;
hence GPf3(§) = 2. If 0 € D(§), then we may assume that es = 0. Since |[D(£)| = 12, the vectors
e1,...,e4,a are linearly independent. Then £ = n. where e = (e1,e2,e3,€4,e1 + €2 + €3+ e4 + a) is
a family of 5 linearly independent vectors and in particular Pfs(¢) = 3. If 0 ¢ D(§) and e1,...,e5,a
are linearly independent, then ¢ = 7. where e = (e1,...,es,e1 + ...+ e5 + a) is a family of 6
linearly independent vectors, so Pf3(§) = 4. Suppose that 0 ¢ D(§) and es,...,es,a are linearly
dependent. If e1,...,es5 are linearly independent, then there exists a permutation o of {1,...,5}
such that e, (s) = €,(1) + €o(2) because |D(§)| = 12. Renumbering the ey, ..., es5 if necessary, we may
assume that es = e1 + e2. Then

é-: (XO +Xa)(Xe1 +Xez +Xe1+ez +Xes +Xe4 +X€3+e4) — |Ia7 61,62]] + Ha,€3764]]

where e1, ..., e4,a are linearly independent. If a € spang, (e1,...,es), then there exists a permutation
o of {1,...,5} such that a = e,(1) + €5(2) + €(3). Renumbering the ei, ..., es if necessary, we may
assume that a = e; + es + e3. Then

€= (XO +X61+62+63)(X€1 4 X2 4 Xerte2 4 x4 4 X5 +X€4+65)

and we are in the situation of the previous case. Hence, if 0 € D(§) and ex,...,es,a are linearly
dependent, then Pf3(§) = 2. m]

In the next proposition, we use the above algorithm to classify the elements & € I*[V] such that
|D(&)] = 14.

Proposition 1.7 Suppose that & € T3[V] is such that |D(§)| = 14. Then there exist e1,...,e7 € V
such that

& =le1, ez, e3] + [ea,es,es] + [e1, e2,e6] + [ea,e5,e7] = X© ([[el, ea, e3 + eg] + [ea, es, e + 67]])

and in particular, GPf3(§) = 2. More precisely:

1. If0 € D(§), then £ = [e1, e2, e3] + [ea, €5, es] + [e1, €2, es] for some linearly independent vectors
e1,...,e6 €V and Pf3(¢) = 3.



2.

If 0 & D(&), then there exist linearly independent vectors e1,...,es € V such that
o either £ = [e1, e2, e3] + [es, €5, e6] and Pf3(§) = 2;
o or & =[e1, ez, es3] + [es, es,ec] + [e1, ez, es] + [e1, es, e5] and Pf3(§) = 4;

o orf = [e1,ez2,e3]+[es, es, es] +[e1, €2, e6] +[ea, €5, e7] for some ez € V\spang,(e1, ..., eq),
and Pf3(§) = 4.

Proof : Let a, W,&1,&2 be as in Lemma 1.5.

(1) Suppose that 0 € D(&). Then |D(&1)] < 14 and 0 ¢ D(&1). Observe that &1 # 0 because otherwise
|D(&2)] = 7 which is impossible. Hence |D(&1)] is equal to 8 or 12.

a)

If |D(&1)] = 12, then D(&1 + &2) N D(&) = {0}. Suppose that & = n. where e is a family of 6
linearly independent vectors, then & = X%+ Xt 4. .. 4+ X" where r is odd, v1, ..., v, € D(ne)
are distinct pairwise and v1 + ...+ v» = 0; but such vectors v1,...,v, do not exist in D(7e).
Hence, by the proof of Proposition 1.6, there exist linearly independent vectors e1,...,es € V'
such that & = [e1, e2, es] + [es, es, e5]. Then

& = X4+ X4 4+X",
& = XU 44X
€ = XO4 XU 4 XU XOUXO 4 XU 44X
for some vectors v1,...,v. € D(&). Replacing W by spang, (e1, ez, €3, €4, a) if necessary, we

may assume that |[D(£2)| = 4. Choosing another basis of spang, (D(£1)) if necessary, we may
assume that & = X% + X + X2 4+ X°1%¢2 and then

£ = [e1, e2,a] + [ea, es,e3] + [e1, ez, e3].

If |ID(&1)| = 8, then D(&1 + &2) N D(&2) = {0, b, ¢} and & = ne where e is a family of 4 linearly
independent vectors. Therefore

H=X"4+ X"+ X+ X" ... X

for some pairwise distinct vectors vi,...,v, € D(&1) such that r is odd and vi + ... + v, =
b+ c. Observe that b+ ¢ € D(ne). Since b,c ¢ D(n.) and there do not exist vectors u,v €
spang, (D(ne)) \ D(ne) such that u +v € D(ne), we have b, c & spang, (D(7e)). Replacing W by
spang, (€1, €2, €3, €4, a) if necessary, we may assume that |D(€2)| = 4 and choosing another basis
of spang, (D(ne)) we may assume that {2 = X4 xer 4 x4 Xe1+® Then

& = [eo,e1 + e2,e3] + [a, b, e1] + [eo, e1 + ez, e1]

where eg :=e1 + ...+ e4.

In both the cases,

f = IIf17f27f3]] + Hf47f57f5]] + Hf17f27f5]] + IIf47f57f7]]

for some linearly independent vectors fi,..., f6 € V and with fr = 0. Since 0 € D(§), the 3-Pfister
number of £ is odd. Hence Pf3(§) = 3 because if Pf3(§) = 1, then |D(§)| = 8.

(2) Suppose that 0 € D(€). Then 0 € D(&1) and |D(&1)] € {8,12, 14}.

a)

If |[D(&1)| = 14, then & = [e1, ez, e3] + [ea, es, es] + [e1, ez, es] for some linearly independent
vectors ei1,...,es € V and D(&2) C D(&1). Replacing W by spang, (e2, ..., es,a) and choosing
another basis of spang, (D(&1)), we may assume that {2 = X0 4 X® 4 X 4 X7 Hence

§ = [e1,e2,e3] + [ea, 5, e6] + [e1, €2, es] + [ea, €5, a]

where e1,...,es,a are linearly independent. Since 0 ¢ D(&), the 3-Pfister number of £ is even.
If Pf3(§) = 2, then the dimension of spang, (D()) is less than or equal to 6 and we get a
contradiction; so Pf3(§) = 4.



b) If |D(&1)| = 12, then D(&1 + &2) N D(&) = {b} and & = 7. for some family e of 5 linearly
independent vectors. Since b € spang, (D(£1)) \ D(&1), there exists a permutation o of {1,...,5}
such that either b = e, (1) + e5(2) Or b = ey(1) + €5(2) + €5(3). Renumbering the e;’s, we may
assume that b = e1 +e2 or b = e1+e2+es. Then replacing W by spang, (e1+e2, e3, 4, €5, a) and
choosing another basis of spang, (D(£1)), we may assume that > = X0 4 Xxer 4 xe2 4 xertes,
Thus

& =leo,e1 + e2 + e3,ea] + [er + ez, e1,e0] + [eo, e1 + e2 + e3,e1 + e2] + [e1 + e2, e1,d]

where ep :=e1 + ... +es5. So £ can be written as

IIf17f27f3]] + Hf47f57f5]] + Hf17f27f6]] + IIf47f57f7]]

for some linearly independent vectors fi,...,fs, fr € V with f¢ = fi + f4. We know that
Pf3(€) is even and Pf3(€) < 4. To prove that Pf3(§) = 4, we consider a linear map ¢: V — V
such that ¢|w is the identity and ¢(a) = 0. The map ¢ induces an algebra homomorphism
s : F2[V] = F2[V] such that ¢ (&) = ne. Then 3 = Pfs(n.) < Pf3(€), so Pf3(§) = 4.

c) If |ID(&)] = 8, then D(&1 + &) N D(&) = {b,c,d} and & = [e1, e, es] for some linearly
independent vectors e1, ez,es € W. Therefore

So=X""4 .+ X"+ X0 X4 X

for some vectors vy, ...,v, € D(&1) such that v1 + ...+ v, = b+ ¢+ d. The vectors e1, ez, e3,b
are linearly independent because b € D(&1). Observe that e1, e2, e3, b, ¢ are linearly independent
because otherwise either ¢ € D(&1) or d € D(&1) and we get a contradiction. Replacing W by
spang, (e1, €2, €3, a, b) if necessary, we may assume that |D(£)| = 4. Then & = X° + XX+
)(I)-Fc7

6 = |I617 €2, 63]] + [[a7 b7 C]]
and Pf3(&) = 2. O

Remark 1.8 Proposition 1.7 shows that, already for 14-dimensional quadratic forms, the combina-
torial analogue F2[V] diverges from the Witt ring of a general field. Indeed, Hoffmann and Tignol
[1998, Example 6.3] constructed a field over which there exist 14-dimensional quadratic forms in the
third power of the fundamental ideal which are not a scalar multiple of a sum of two 3-fold Pfister
forms. However, Proposition 1.7 shows that, in the combinatorial analogue, all the elements ¢ € I°[V]
such that |D(§)| = 14 can be written as a scaled sum of two 3-fold Pfister elements.

1.4. Bounds for the 3-Pfister number

We shall compute an upper bound for the 3-Pfister number of £ € I3[V], which only depends on
|D(&)|- We first prove some preliminary results.

Lemma 1.9 Let ¢ € I’[V]\ {0}, then GPfy(£) < (|D(¢)| —2)/2.
Proof : We use an induction on d := |D(&)|. If d = 4, then
§=Xa+Xb+XC+Xa+b+c =Xa[[a+b,a+c]]

for some a,b,c € V, so GPf2(§) = 1. Now suppose that d > 4, then let a,b,c € D(§) be distinct
pairwise. Set ¢ := X® + X + X+ XT0F¢ 4 ¢ Then ¢ € I*[V] and |D(¢')| < d — 2. By induction,
GPf2(¢") < (d —4)/2. It implies that

GPfy(¢) = GPfo(X%[a+b,a+c] +¢') <1+ GPfo(¢) <14 (d—4)/2 < (d—2)/2

as wanted. O



Lemma 1.10 Let e = (e1,...,exn) be a family of linearly independent vectors of V. where n > 3.
Then
(n—2)/2 if n is even;

Pfs(ne) =
GPf3(ne) {(n_l)/Q otherwise.

Proof: Set eo := e1+...+epand £ ;= n+ X +.. .+ X =1 4 X0 Then ¢ € I°[V], |D(€)| < n+1

and 7. = (14 X°0)¢. Hence GPf3(n.) < GPf2(£) < (|D(€)|—2)/2 < (n—1)/2. Since Pf3(ne) = n—2,
we have n — 2 < 2GPf3(n.). We obtain that

(n—2)/2 < GPfs(ne) < (n—1)/2.
Therefore GPf3(ne) = (n — 2)/2 if n is even and GPf3(n.) = (n — 1)/2 otherwise. O

Lemma 1.11 Let € € I3[V]\ {0}. Then there exist linearly independent e1, ..., e, € D(E) such that
er+...+en_1€D(E) and n > 3.

Proof : Let m be the dimension of spang, (D(§)). Then m > 3 because |D(§)| > 8. Let e1,...,em €
D(¢) be linearly independent vectors, then there exist vi,...,v, € spang, (e1,...,em) such that

E=X 4+ X X X

Since €1(§) = 0, we have r > 1. If r = 1, then v1 = e1 + ... + emn because €1(§) = 0; it implies that
€2(8) =2 1cicjem €i N ej # 0 (because m > 3) which is impossible. Hence r > 2. Renumbering the
vectors e1, ..., em and v1,. .., v, if necessary, we may assume that v, = e1+...+en—1 for some n € N,
3<n<m.Soei,...,en,e1+...+en—1 € D(§) with n > 3 and ey,...,e, linearly independent. O

In the next proposition we establish an upper bound for the dimension of the space spanned by
the support of a ¢ € I*[V]. (Originally, our proof of this proposition was given by induction on |D(€)];
the shorter proof included here was pointed out to us by Karim Becher.)

Proposition 1.12 Let £ € I*[V]. Set d := |D(€)| and m := dimspang, (D(€)). Then m < d/2; if
moreover 0 € D(§), then m < (d/2) — 1.

Proof : Let e: Fo[V] = AV be the map defined by
X"+ + X)) =04v1) ... (1 +va),

where - is the multiplication in the exterior algebra A"V (Compare with the definition of the Stiefel-
Whitney invariant in [Milnor, 1970]). It is easy to check that e(&1 + £2) = €(&1) - €(&2) for all &1,&2 €
Fo[V] and €(§) = 1 for all £ € I’[V]. Let £ € I°[V], set d := |D(£)| and m := dimspang, (D()).
Suppose that m > d/2. Write

E=X"" 4. X" X X
where v1,...,v, € V are linearly independent and d = 2n. Since ¢ € I*[V], we have
X"+ X)) =€e(Oe(X ...+ X)) = (X + . 4 X)),
We obtain in particular that,
WA AWy =V1IA...Avy, Z0E NV

This implies that spang, (v1,...,vn) = spang, (w1, ..., wn) and m = d/2. Now assume that 0 € D(§),
then one of the w;’s is equal to zero and w1 A ... A w, = 0 which leads to a contradiction. Hence
m<d/2and m <d/2—1if 0€ D(§). O

From the previous results we can now deduce our upper bound for the 3-Pfister number of elements
in I3[V].



Theorem 1.13 Let £ € I*[V], then GPf3(&) < |D(€)|?/16, hence Pf3(€) < |D(€)]?/8.

Proof : We use an induction on d. If d = 0, then £ = 0 and GPf3(§) = 0. Suppose that d > 0.
Observe that GPf3(¢) = GPf3(X?%¢) for all b € V. Hence, replacing & by X°¢ for some b € D(£),
we may assume that 0 € D(). Let e1,...,en € D(§) be linearly independent such that n > 3 and
e1+...+en1 €D(E). Set e:=(e1,...,en) and eg := €1 + ...+ e,. Then

E=X"4 X 4. 4 X 4 X0 L XU 4 4 XY

for some v1,...,v, € V and we have

€ tn = X0 4 Xxeoter 4 4 Xe0ten—1 4 XU 4 4+ X" if nis even,
e =0 Xeo 4 xeoter 4 4 Xeoten—1 L XU 4 4 XY ifnis odd.

So €4+ ne € I*[V] and |D(€ + n.)| < |D(€)|. By induction, GPf3(€ + n.) < (d — 2)?/16. Since
n < dim spang, (D(€)) and 0 € D(§), by Proposition 1.12, we have n < d/2 — 1. Therefore

GPf3(&) < GPf3(ne) + GPf3(€ + 1) < (n—1)/24 (d —2)%/16 < d/4 — 1+ (d — 2)*/16 < d*/16

which ends the proof. O

2. The 3-Pfister number of quadratic forms

In this section, we shall apply the results in the previous section to quadratic forms over a field F' of
characteristic different from 2 which contains a square root of —1.
Recall that Vr := F*/F*? and that

U Fo[Ve] = W(F): (a1 F*?) + ... + (aaF*?) = [{a1, . . ., aq)]

is a surjective F2-algebra homomorphism. For all m € N, m > 1, the map ¥ carries m-fold Pfister
elements in F2[Vr] to m-fold Pfister forms in W (F'). Hence \I’(Im [VF]) = I™(F) for all m > 1 but,
for [g] € I™(F'), the number of elements in D(§) may be strictly greater than the dimension of ¢ for
all £ € I"™[VF] such that ¥(¢) = [q].

For m € {1,2}, every field F' satisfies the property

Yai,...,aq € F*, [lar,...,aa)] € I"(F) = (a1F**)+ ...+ (aaF*?) € I"[VF], (1)

meaning in particular that for m € {1,2} and for all [¢] € I"™(F), there exists £ € I"[VF] such that
W (&) = [¢] and |D(&)] is less than or equal to the dimension of g. However, for m = 3 this is no longer
true for every field F. Theorem 1.1 in [Brosnan et al., 2010] gives counterexamples: for any field k
of characteristic different from 2 and for all even integer d > 2, there exist a field extension F/k and
[q] € I3(F) with ¢ of dimension d, such that
old+4)/4 _ g _ 9
—
If we take in particular a field & which contains a square root of —1 and a d € N such that

+D/4 _ g 2

7

then we have an example of a [q] € I*(F) with ¢ of dimension d such that Pfs(q) > (d®)/8. Write
q={a1,...,aq) and set £ = (a1 F*?) + ... + (aaF*?) then & ¢ I3[Vr] because otherwise

Pfs(g) = Pfs(T(€)) < Pfs(€) < (d°)/8

which leads to a contradiction. Thus, the combinatorial analogue of the Witt ring is less powerful to

Pfs(q) >

> (d%)/8,

compute 3-Pfister numbers than it is to compute the 1- and 2-Pfister numbers.

Below we shall first characterize those fields for which property (1) holds for m = 3; for these
particular fields, we thus find an upper bound for the 3-Pfister number using the combinatorial
analogue. Thereafter we shall discuss the general case.
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2.1. Case where we deduce an upper bound from the combinatorial analogue

The homomorphism ¥ induces a map
U: IP[Vp]/IP[VF] = IP(F)/I*(F): €4+ IP[VE] > W (&) + IP(F)

which is a surjective group homomorphism. Observe that the property (1) holds for m = 3 if and
only if ¥ is an isomorphism. In fact, we shall prove that this is further equivalent to ¥ being an
isomorphism. Before we give other equivalent conditions to the assertion that W is an isomorphism,
we need some definitions. In [1981], Ware says that a € F* is F*2-rigid if F*? +aF*? C F**UaF*?
and that F is F*2-rigid (or rigid) if a is F**-rigid for all a € F*\ F*? (here Ware’s original definition
of rigidity for a field F' is simplified by the assumption that —1 is a square in F'). Following [Ware,
1981], we say that a valuation v on F is FXQ—compatible if 1 +m, C F*? where m, is the maximal
ideal of the valuation ring of F'.

Proposition 2.1 The following conditions are equivalent:
1. U is an isomorphism;
2. foralla € F*\ F*?, X2 4 aF*? C F*2UaF*? (i.e., F is F*?-rigid);

3. There exists an F*2-compatible valuation v on F such that (F: : 752) < 2, where F,, is the
residue field of F'.

4. ¥ is an isomorphism;

Proof : (4)=-(1) Trivial.
()=>(2) Let a € F*\ F*? and z,y € F*. Set b := 2® + ay?, then b # 0 because a ¢ F*? and the
quadratic form (1, a,b, ab) is isotropic. Since it is a Pfister form, we have [(1, a,b,ab)] = 0 € W(F).
Hence (F*?) 4 (aF*?)+(bF*?)+(abF*?) € I*[Vr] because ¥ is an isomorphism. By Proposition 1.6,
the element (F*?) 4+ (aF*?) 4+ (bF*?) + (abF*?) is equal to zero. Since a ¢ F*?, we obtain that
be F*?UaF™.
(2)=(3) By [Ware, 1981, Theorem 3.3], there exists an F*-compatible valuation v on F such that
FLF <2
(3)=(2) Let v be an F*?-compatible valuation on F such that (F, : F:Q) < 2. Let O, denote the
valuation ring of F and for a € O,, let @ denote the residue class of a in F,. By [Arason et al., 1987,
Proposition 1.5 (1)], all elements a € F* such that a € O - F*? are F*%-rigid. Now let a € O - F*?
be such that a ¢ F*? and let &,y € F*. Then there exist b € O and z € F* such that a = bz? and
bg F*2. Since 1 +m, C F*? and b ¢ F*?, we have b ¢ F:QA Observe that F, is F:Q-rigid because
(F: : F;d) <2 s0bis F:Q—rigid. By [Arason et al., 1987, Proposition 1.5 (2)], we deduce that b is
F*2_rigid. Hence

2® +ay® =2 +b(zy)? € F*PUbF*? = F*? UaF™.
Thus F is F*?-rigid.
(2)=(4) It is easy to prove that for all a1 F*?,... aqsF*? € F*/F*? distinct pairwise,

{azi + .. +ag@ie F*|z1,...,zg € FY=a1F*?U...UagF*°.

Let & be in the kernel of ¥. Let a1 F*2,...,aqF*? € F*/F*? be pairwise distinct elements such that
€= (a1 F**) 4 ...+ (aaF*?) and assume that d > 1. Since ¥(€) = 0, the quadratic form (a1, ..., aq)
is isotropic. So agq € aF*?uU...U ad_lFX2, leading to a contradiction. Hence £ = 0 and V is an

isomorphism. O

By [Wadsworth, 1983, Proposition 1.2]), if v is an F*?-compatible valuation on F and the residue

characteristic is different from 2, then (F,v) is a 2-Henselian valued field. Any valued field with

residue characteristic different from 2 is contained in a Henselian (hence 2-Henselian) valued field
X

(F,v) such that (F: : sz) < 2. Indeed, let (k,w) be a valued field with residue characteristic
different from 2. Let (K, v) be a Henselization of (k,w) (see [Efrat, 2006, Theorem 15.3.5]). Assume
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that (?: : ?:2) > 2 and choose a € ?: \?:2 Now we take a maximal field extension M of K, in a
separable closure of K, such that a ¢ M*?, then M* = M*?UaM*? so (M* : M*?) = 2. By [Efrat,
2006, Corollary 16.1.4], there exists an algebraic field extension F over K such that F, = M. Then
(F, - 752) = 2 and (F,v) is Henselian since (K, v) is Henselian and F' is an algebraic extension of K.
Similarly, taking for M a quadratic closure of K, we can also find an F such that (F: : F:Q) =1.
Now we can give an upper bound for the 3-Pfister number:

Theorem 2.2 Let (F,v) be a valued field such that 1+ w, C F*? and (F, : F:2) < 2, and let
[q] € I3(F) be such that q is of dimension d. Then Pfs(q) < (d?)/8.

Proof : Write ¢ = (a1,...,aq). By Proposition 2.1, ¥ is an isomorphism. Hence the element
€:= (a1 F**) 4 ...+ (agF*?) is in I*[VF]. Since |D(€)| < d, one has

Pfs(g) = Pfs(T(€)) < Pfs(€) < (d°)/8

and we are done. O

2.2. General case

Now we study the case where ¥ may not be an isomorphism. Let [q] € I*(F) with ¢ = {(a1,...,aq).
Set £ := (alFXQ) 4+ ..+ (adFXQ). Then E(f + IS[VF]) =[q] + IS(F) =0, hence £ + IS(F) is in the
kernel of W. That is why we shall investigate the structure of the kernel of .

First we introduce some notations. For e = (xlFX2, .. ,:vTFXQ) a family of linearly independent
vectors of Vi, we set & := (r + 1)(F*?) 4+ (x1F*?) 4+ ... + (- F*?) + (z1 ... 2. F*?) € I*[VF].

Lemma 2.3 Let £ € I?[Vr] and set d := |D(€)|. Suppose that d > 0, then we have one of the
following situations:

1. & =& for some family e of linearly independent vectors of Vr;
2. there exist an integer n, 3 < n < d—2, and a1 F*?,.. . anF*? € D(&) linearly independent
such that a1 ...an—1F*% € D(£).

Proof : Let a1 F*?,... aqF*? € D(£) be distinct pairwise such that (a1 F*?,... amF*?) is a basis
of spang, (D(€)), where m < d. Because d > 0 and £ € I?[VF], we have d > 4. Suppose that £ # &
for all e. Then m < d—2 and m > 3 because otherwise & = (a1F*?) 4 (a2 F*?) + (F*?) + (a1a2F*?)
with a1 F*?, a2 F*? linearly independent. Since the elements a; F*?,... aqF*? are distinct pairwise,
there exists ¢ € {m + 1,...,d} such that a; F*? = Ao (1) - ..aa(n_l)FX2 for some permutation o of
{1,...,m} and for some integer n, 3 < n < m. Hence the situation (2) occurs. O

‘We recall a notation introduced in Subsection 1.2: for e := (:vlFX2, ey xTFXQ) a family of linearly
independent vectors of V& with r > 3, we write 7. for the element

r(F?) + (21 F?) + 4 (2, F ) + (20 F ") + (zox1 F?) ... + (zoz, F )

of F2[Vr], where 2o F*? = 1 ...2,.F*2. We have n. € I*[Vr] and Pf3(n.) = r — 2.

Lemma 2.4 Let r be an odd integer, r > 3 and let e = (x1F*2 ... 2. F*?) be a family of linearly

independent vectors of Ve. Then & = € + ne, where ¢ 1= (xox1F*?,... xoxr—1F*?) and zo =
X1 ...Tqp.
Proof : It is an easy computation. O

The next proposition describes the elements in the kernel of .
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Proposition 2.5 Let £+ I*[Vr| be in the kernel of U and set d := |D(€)|. Then either € € I*[Vr] or
there exist n € I°[Vr] and a family e of r linearly independent vectors of Ve such that Pf3(n) < d?,
riseven, 2<r <d—2and £ =& + .

Proof : We use an induction on d. Suppose that d = 0, then & =0 € I*[Vx].

From now on, we assume that d > 0 and ¢ ¢ I*[Vx]. Since ¢ € I?[Vr] and ¢ # 0, we have
d > 4. By Lemma 2.3, either £ = &, for some family e = (z1F*?,..., 2, F*?) of linearly independent
vectors of Ve, where r € {d — 2,d — 1}, or £ = (a1 F*?) 4+ ... + (aaF*?), with ant1 = a1...an-1,
where the vectors a1 F*2, ..., a,F*? are linearly independent and 3 < n < d—2. If £ = ¢ and
r =d — 2, then we choose n:= 0. If £ =& and r = d — 1, then by Lemma 2.4, £ = £./ + 1., where

e = (xoxlFXQ, .. .,,CE(),CEd_QFX2) and zo := x1...24-1. One can choose 1 := 7. since 7. € 13[VF]
and Pfz(n.) = d — 3 < d*. Hence, we may assume that £ = (a1 F*?) + ... + (agF*?), with ani1 =
ai...an_1, where the vectors a1 F*?, ..., a,F*? are linearly independent and 3 < n < d — 2. Set
e:= (alFXQ7 e anFXQ) and ao := a1 ...an.

1. Suppose that n is even. Then
£+ ne = (a0a1 F*?) + ... + (a0an—1F*?) + (ant2F" %) + ... + (aaF*?),

hence &+ne+I*[Vr] = £+ I*[Vr] # 0 with |D(é+7.)| < d—2. By induction, there exist a family
f of r linearly independent vectors of V& and n € I3[Vr] such that r is even, 2 < r < d — 4,
Pfs(n) < (d—2)* and &€ +ne = &5 +n. Then € = &; + 1+ ne with n +ne € I*[Vr] and

Pla(n+7n.) < (d—2)+n—-2<(d—2)°+d-2<d’
as wanted.
2. Suppose that n is odd, then
E+ne = (FX2) + (a0a1F><2) + ...+ (aoanleX2) + (aOFXQ) + (an+2FX2) NI (ade2).

If |ID(€ + ne)| < d then we can proceed as in the case where n is even. Hence we may assume
that |D(€ + ne)| = d. Suppose that & +n. = & where f = (11 F*?,...,y-F*?) is a family of
linearly independent vectors of Vi; if 7 = d — 2 then & = &; 4 e with Pf3(n.) <n —2 < d* and
if r=d— 1, then & = & +ny +ne where f' := (yoy1 F*?, ..., yoya—2F"?), yo = y1 ... ya—1 and
Pfs(ny +ne) <d—3+n—2<2(d—2) <d? Now suppose that £ 4+ 1. # & for all family f,
then by Lemma 2.3,
E4me = (LF"?) + .o+ (ba—1 F*?) + (F*?)

with bpy1 = b1...bm_1,3<m <d—2and b1 F*?,..., b, F*? linearly independent, because
F*2 ¢ D(€+1ne). Set f:= (b1F*%,..., by F*?) and by := by ...by. If m is even, then

E+me +np = (bob1 F*?) + ...+ (bobm—1F*?) + (bmi2F*?) + ...+ (ba—1 F*?) + (F*?)
and if m is odd then
E4+ne +mr = (b1 F*?) + ...+ (bobm-1F*?) 4+ (boF*?) + (bm42F*?) + ... + (ba—1 F*?).

In both cases, £ +1e +n; + [*[Vr] = €+ I3[VF] # 0 with |D(€ +ne +n5)| < d—2. By induction,
&+ ne +n5 = & + n where g is a family of r linearly independent vectors of Vg, r is even,
2 <7 <d—4and Pfs(n) < (d—2)% Then £ =&, +n + ne + s with

Pla(n+ne+nf) <(d—2°+n—24+m—-2<(d—2)>+2(d—-2) <d’
and we are done. O

We deduce two corollaries. First the existence of quadratic forms ¢ = (1,z1,...,%r,21...zr) such
that [¢] € I*(F) and 21 F*?, ... 2, F*? are linearly independent is precisely the obstruction for ¥ to
be an isomorphism.
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Corollary 2.6 The equivalent conditions in Proposition 2.1 are also equivalent to the following con-

dition: there do not exist linearly independent vectors :vlFX2, .. ,:;t?TFX2 € Vg such that r > 2 is
even and [(1,21,...,%r,21...2,.)] € I3(F).
Proof : If there exist linearly independent vectors xlFXQ, .. ,:ETFX2 € Vr such that r > 2 is even and

[(1,z1,...,%r, @1 ...2)] € I3(F), then (F*) 4 (21 F**) +.. .4+ (2, F*H) 4 (z1... 2. F*?) + I3[VF] is a
non-trivial element in the kernel of ¥, hence ¥ is not an isomorphism. Conversely, assume that U is
not an isomorphism, then there exists a non-trivial £ + I*[V] in the kernel of ¥. By Proposition 2.5,
there exists a family e = (xlFX2, .. ,:vTFXQ) of linearly independent vectors of Vr such that r > 2
is even and & + I*[Vp] = & + I3[VF]. Then [(1,21,...,%r21...2:)] € I*(F). i

Next we relate the 3-Pfister number of a given quadratic form to the one of some particular quadratic
form.

Corollary 2.7 Let [q] € I3(F) with ¢ = (a1, ...,a4). Then we have one of the following situations:
1. (@i F*®) + ... 4 (aaF*?) € I*[VF] and Pfs(q) < (d*)/8;
2. there exist an even integer 2 < r < d — 2 and linearly independent vectors z1F*% ...z, F*? €
Ve such that [(1,z1,...,&m21...2,.)] € I*(F) and
Pfs(q) < d® + Pfa((1,1,. .., Zr, 21 ... 20)).

Proof : Set & := (a1 F*?) 4+ ...+ (aqF'*?), then U(£+ I3[Vp]) = [q] + I*(F) = 0, hence & + I*[VF] is in
the kernel of W. Suppose that & € I°[VF], then |[D(€)| < d and Pfs(q) = Pf3(¥(£)) < Pf3(€) < (d*)/8.
Suppose that & ¢ I*[Vr], then by Proposition 2.5, there exist a family e = (z1F*?, ..., 2.F*?) of
linearly independent vectors of Ve and 1 € I*[Vr] such that £ =&, + 7, ris even, 2 < r < d — 2 and
Pf(n) < d*. Since & + I*[Vr] = € + I3[VF] is in the kernel of ¥ we have [(1,21,...,%r, 21...%.)] €
I*(F). Moreover [q] = U(£) = (&) 4+ U(n), so

Pf3(q) < Pfs3 (\I/(fe)) + Pfs (‘If(n)) < Pfs3 (‘If(ge)) —+ Pf3(77) < Pf3(<1,:v1, ey Ty T l'r>) —+ d2

and the proof is complete. a
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