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Abstract

For a field F of characteristic different from 2, containing a square root of -1, endowed with an

F×2-compatible valuation v such that the residue field has at most two square classes, we use a

combinatorial analogue of the Witt ring of F to prove that an anisotropic quadratic form over F with

even dimension d, trivial discriminant and Hasse-Witt invariant can be written in the Witt ring as

the sum of at most (d2)/8 3-fold Pfister forms.

Introduction

Let F be a field of characteristic different from 2 which contains a square root of −1. Let W (F ) be

the Witt ring of F , I(F ) the fundamental ideal of W (F ) and Im(F ) the m-th power of I(F ). Since

−1 is a square in F , the Witt ring W (F ) is an algebra over the field F2 with two elements.

The quadratic form a1X
2
1 + . . .+adX

2
d with ai ∈ F× is denoted by 〈a1, . . . , ad〉. Each [q] ∈ Im(F )

is the sum of Witt classes of m-fold Pfister forms, i.e. quadratic forms of the type

〈〈a1, . . . , am〉〉 = 〈1, a1〉 ⊗ . . .⊗ 〈1, am〉.

Brosnan, Reichstein and Vistoli [2010] define the m-Pfister number Pfm(q) of a quadratic form [q] ∈
Im(F ) to be the least number of terms needed to write the Witt class of q as a sum of Witt classes of

m-fold Pfister forms. They prove the existence of quadratic forms whose 3-Pfister number increases

exponentially with their dimension. In general, no upper bound is known for the 3-Pfister number.

In this paper, we shall prove that for a valued field (F, v) such that 1 + mv ⊂ F×2 and (F
×

v :

F
×2
v ) ≤ 2, the 3-Pfister number of a quadratic form in I3(F ) of dimension d is less than or equal to

(d2)/8. This result on 3-Pfister numbers extends those on the 1- and 2-Pfister numbers in [Parimala

et al., 2009]. Indeed, our proof technique is similar: we use the group algebra F2[F
×/F×2] as a

combinatorial analogue of the Witt ring of F , allowing us to make explicit computations.

However, our result does not hold for general fields: the combinatorial analogue – which works

for the computation of 1- and 2-Pfister numbers over general fields, see [Parimala et al., 2009] – is

not powerful enough to deal with 3-Pfister numbers in general. We shall indicate the obstruction.

I would like to thank Ido Efrat, Karim Becher and Jean-Pierre Tignol for their helpful comments.

1. A combinatorial analogue of the Witt ring

For F a field of characteristic different from 2 which contains a square root of −1, we set VF :=

F×/F×2; it is a vector space over F2, so let F2[VF ] denote its group algebra. This algebra can be seen

as a combinatorial analogue of the Witt ring for the following reason: it is a discrete object which

only depends on the square classes of F such that the map

Ψ: F2[VF ] → W (F ) : (a1F
×2) + . . .+ (adF

×2) 7→ [〈a1, . . . , ad〉]
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is a well-defined surjective F2-algebra homomorphism. Moreover, in the case where F is the field of

iterated Laurent series C((x1)) . . . ((xn)), this homomorphism is in fact an isomorphism [Parimala et

al., 2009, p. 333].

It is natural to study a more general situation: the group algebra F2[V ] with V any vector space

over F2. Since the addition in V induces the multiplication in F2[V ], we write Xv for the image of

v ∈ V in F2[V ], so that

F2[V ] =
{

∑

v∈V

αvX
v | αv ∈ F2 and {v ∈ V | αv 6= 0} is finite

}

where X0 = 1 and Xu ·Xv = Xu+v.

We now define an ideal of F2[V ], which is an analogue of the fundamental ideal of W (F ). Let

ǫ0 : F2[V ] → F2 be the F2-algebra homomorphism defined by

ǫ0(
∑

v∈V

αvX
v) =

∑

v∈V

αv

and let I [V ] be its kernel. It has the property that for all ξ ∈ F2[VF ],

ξ ∈ I [VF ] ⇐⇒ Ψ(ξ) ∈ I(F ).

For m ≥ 1, let Im[V ] denote the m-th power of I [V ]; it is generated as a group by elements of the

type

[[v1, . . . , vm]] := (1 +Xv1) · · · (1 +Xvm ),

which we call m-fold Pfister elements. The m-Pfister number Pfm(ξ) of an element ξ ∈ Im[V ] is the

least number of terms needed to write ξ as a sum of m-fold Pfister elements. It is related to the

m-Pfister number of a quadratic form in the following way: for all ξ ∈ Im[VF ],

Pfm(Ψ(ξ)) ≤ Pfm(ξ).

This is so because Ψ carries m-fold Pfister elements in F2[VF ] to m-fold Pfister forms in W (F ).

Furthermore, we define the m-scaled Pfister number of an element ξ ∈ Im[V ], and we write GPfm(ξ),

as the least number of terms needed to write ξ as a sum of scaled m-fold Pfister elements, i.e. elements

of the form Xa[[b1, . . . , bm]]. Clearly GPfm(ξ) ≤ Pfm(ξ) and since Xa(1+Xb) = (1+Xa)+(1+Xa+b),

we have Pfm(ξ) ≤ 2GPfm(ξ).

In this section, we shall first study the structure of I3[V ] and, by way of example, compute the

3-Pfister number of certain of its elements. Next we exhibit an algorithm which allows us to classify

the elements in I3[V ]. Finally, we use the scaled Pfister numbers to find an upper bound for the

3-Pfister number of an element in I3[V ].

1.1. Structure of I3[V ]

We shall prove that I3[V ] is the kernel of some group homomorphism. By [Parimala et al., 2009,

Corollary 1.2],

I2[V ] = {ξ ∈ I [V ] | ǫ1(ξ) = 0},
where ǫ1 : F2[V ] → V is the group homomorphism defined by ǫ1(

∑

v∈V αvX
v) =

∑

v∈V αvv. We

define ǫ2 : F2[V ] → V ∧ V by

ǫ2(X
v1 + . . .+Xvr ) =

∑

1≤i<j≤r

vi ∧ vj .

To prove that ǫ2 is well-defined it is sufficient to check the obvious fact that if vr = vr−1, then

∑

1≤i<j≤r−2

vi ∧ vj =
∑

1≤i<j≤r

vi ∧ vj .

Even though the map ǫ2 is not a group homomorphism, the following property holds:
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Lemma 1.1 Let ξ1, ξ2 ∈ F2[V ] be such that either ǫ1(ξ1 + ξ2) = 0 or ǫ1(ξ1) = 0 or ǫ1(ξ2) = 0. Then

ǫ2(ξ1 + ξ2) = ǫ2(ξ1) + ǫ2(ξ2). In particular, ǫ2|I2[V ] is a group homomorphism.

Proof : Write ξ1 = Xv1 + . . .+Xvr and ξ2 = Xw1 + . . .+Xws . Then

ǫ2(ξ1 + ξ2) =
∑

1≤i<j≤r

vi ∧ vj +
r

∑

i=1

s
∑

j=1

vi ∧ wj +
∑

1≤i<j≤s

wi ∧ wj

= ǫ2(ξ1) + ǫ1(ξ1) ∧ ǫ1(ξ2) + ǫ2(ξ2).

By assumption, ǫ1(ξ1) ∧ ǫ1(ξ2) = 0, hence ǫ2(ξ1 + ξ2) = ǫ2(ξ1) + ǫ2(ξ2). 2

Observe that the image of a 3-fold Pfister element by ǫ2 is zero, hence

I3[V ] ⊂ {ξ ∈ I2[V ] | ǫ2(ξ) = 0}.

We shall prove that the inclusion is in fact an equality. First we define the support of an element

ξ =
∑

v∈V αvX
v as the set

D(ξ) := {v ∈ V | αv = 1}.
Let ξ ∈ I2[V ] be a nonzero element such that ǫ2(ξ) = 0. Let a ∈ V \ {0} and W a subspace of V be

such that span
F2
〈D(ξ)〉 = W ⊕ F2 · a (where span

F2
〈D(ξ)〉 is the subspace of V spanned by D(ξ)).

Then there exist unique η1, η2 ∈ F2[W ] such that ξ = η1 +Xa · η2.

Lemma 1.2 We have η2, η1 + η2 ∈ I2[W ] and ǫ2(η1 + η2) = 0.

Proof : Since ξ ∈ I2[W ], we have ǫ0(ξ) = 0 and ǫ1(ξ) = 0. The map ǫ0 is a ring homomorphism, so

0 = ǫ0(ξ) = ǫ0(η1) + ǫ0(η2)

and thus ǫ0(η1) = ǫ0(η2). Because ǫ1 is a group homomorphism, we have

0 = ǫ1(ξ) = ǫ1(η1) + ǫ1(X
a · η2).

Observe that

ǫ1(X
a · η2) =

∑

v∈D(η2)

a+ v = |D(η2)|a+ ǫ1(η2) = ǫ0(η2)a+ ǫ1(η2);

hence ǫ1(η1) + ǫ1(η2) + ǫ0(η2)a = 0 where ǫ1(η1) + ǫ1(η2) ∈ W . It implies that ǫ1(η1) + ǫ1(η2) = 0

and ǫ0(η2) = 0. Therefore η1 + η2 ∈ I2[W ] and η2 ∈ I [W ]. Write

η1 = Xv1 + . . .+Xvr and η2 = Xw1 + . . .+Xws .

By Lemma 1.1, ǫ2(ξ) = ǫ2(η1) + ǫ2(X
a · η2). But

ǫ2(X
a · η2) =

∑

1≤i<j≤s

(a+ wi) ∧ (a+ wj)

=

s
∑

j=2

(j − 1)a ∧ wj +

s−1
∑

i=1

wi ∧ (s− i)a+
∑

1≤i<j≤s

wi ∧ wj

=

s
∑

i=1

(s− 1)a ∧ wi + ǫ2(η2)

= a ∧ ǫ1(η2) + ǫ2(η2).

Thus ǫ2(ξ) = 0 implies ǫ2(η1)+ǫ2(η2)+a∧ǫ1(η2) = 0 where ǫ2(η1)+ǫ2(η2) ∈ W ∧W and ǫ1(η2) ∈ W .

Hence ǫ2(η1)+ǫ2(η2) = 0 and a∧ǫ1(η2) = 0. It implies that ǫ2(η1+η2) = 0 and ǫ1(η2) = 0. Therefore

η2, η1 + η2 ∈ I2[W ] and ǫ2(η1 + η2) = 0. 2
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Corollary 1.3 We have I3[V ] = {ξ ∈ I2[V ] | ǫ2(ξ) = 0}.

Proof : Let ξ ∈ I2[V ] be such that ǫ2(ξ) = 0. We shall prove that ξ ∈ I3[V ] by induction on

m := dim span
F2
〈D(ξ)〉, the dimension of span

F2
〈D(ξ)〉. If m = 0, then ξ = 0 (by [Parimala et al.,

2009, Lemma 1.1], ξ ∈ I2[V ] \ {0} implies |D(ξ)| ≥ 4). Suppose that m > 0, then m ≥ 2 because

|D(ξ)| ≥ 4. Let a ∈ V \ {0} and W be a subspace of V such that span
F2
〈D(ξ)〉 = W ⊕ F2 · a. Let

η1, η2 ∈ F2[W ] be such that ξ = η1 +Xa · η2. Then ξ = (η1 + η2) + (1 +Xa) · η2 and by Lemma 1.2,

η2, η1 + η2 ∈ I2[W ] and ǫ2(η1 + η2) = 0. Since dim〈D(η1 + η2)〉 ≤ dimW < m, by induction

assumption, η1 + η2 ∈ I3[W ]. But (1 +Xa) · η2 ∈ I3[V ] because η2 ∈ I2[W ], so ξ ∈ I3[V ]. 2

1.2. Computation of 3-Pfister numbers

Let e = (e1, . . . , en) be a family of linearly independent vectors of V with n ≥ 3. Set e0 := e1+. . .+en
and

ηe := n+Xe1 + . . .+Xen + nXe0 +Xe0+e1 + . . .+Xe0+en .

Then |D(ηe)| = 2n if n is even and |D(ηe)| = 2(n+ 1) otherwise. Set

ξ = n+Xe1 + . . .+Xen−1 +Xe1+...+en−1 ,

then ξ ∈ I2[V ] and ηe = (1 +Xe0) · ξ, hence ηe ∈ I3[V ]. By [Parimala et al., 2009, Proposition 1.4],

Pf2(ξ) = n − 2, thus Pf3(ηe) ≤ n − 2. The following proposition proves that we have in fact an

equality.

Proposition 1.4 Pf3(ηe) = n− 2.

Proof : We prove the equality by induction on n. Suppose that n = 3, then ηe = [[e1, e2, e3]] and

Pf3(ηe) = 1. Suppose now that n > 3. Let W be a subspace of V containing e1, . . . , en−1 such

that V = W ⊕ F2 · en. Let ϕ : V → V be the linear map defined by ϕ(x) = x for all x ∈ W

and ϕ(en) = 0. Let ϕ∗ : F2[V ] → F2[V ] be the F2-algebra homomorphism induced by ϕ. Then

ϕ∗(ηe) = ηe′ , where e′ = (e1, . . . , en−1). Suppose that ηe = π1 + . . . + πp where the πi’s are 3-

fold Pfister elements and p = Pf3(ηe). Renumbering if necessary, we may assume that en ∈ D(πp)

and thus πp = [[en, a, b]] for some a, b ∈ V . Observe that ϕ∗(πi) is a 3-fold Pfister element, for

all i ∈ {1, . . . , p} and ϕ∗(ηe) = ϕ∗(π1) + . . . + ϕ∗(πp−1). Therefore Pf3(ηe′) ≤ p − 1. By induction

assumption, Pf3(ηe′) = n−3, hence p ≥ n−2. Since the other inequality holds, the proof is complete.

2

1.3. Algorithm and classification

We shall give an algorithm to classify elements in I3[V ] which is based on the following lemma.

Lemma 1.5 Let ξ ∈ I3[V ] be nonzero and let a ∈ D(ξ) \ {0} and W be a subspace of V such

that span
F2
〈D(ξ)〉 = W ⊕ F2 · a. Then there exist unique ξ1 ∈ I3[W ] and ξ2 ∈ I2[W ] such that

ξ = ξ1 + (1 +Xa)ξ2. Moreover, the elements ξ1 and ξ2 satisfy the following properties:

1. 0 ∈ D(ξ2);

2. |D(ξ1)| = |D(ξ)| − 2|D(ξ1 + ξ2) ∩D(ξ2)|;
3. 0 ∈ D(ξ) ⇐⇒ 0 ∈ D(ξ1 + ξ2) ⇐⇒ 0 6∈ D(ξ1).

In particular, |D(ξ1)| < |D(ξ)| if 0 ∈ D(ξ).

Proof : By Lemma 1.2, the elements η1, η2 ∈ F2[W ] such that ξ = η1+Xa ·η2 satisfy η1+η2 ∈ I3[W ]

and η2 ∈ I2[W ]. Hence ξ = ξ1 + (1 +Xa)ξ2 with ξ1 = η1 + η2 ∈ I3[W ] and ξ2 = η2 ∈ I2[W ]. 2
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These properties are the key to the construction of an algorithm to classify the elements in I3[V ],

which goes as follows. Assuming we have already classified all the elements ξ ∈ I3[V ] such that

|D(ξ)| < d, where d > 0, we classify first all the ξ ∈ I3[V ] such that |D(ξ)| = d and 0 ∈ D(ξ). To

do so, we fix a nonzero a ∈ V and a vector space W such that V = W ⊕ F2 · a. Then we choose

ξ1 ∈ I3[W ] such that |D(ξ1)| < d and 0 6∈ D(ξ1), and we set

r :=
d− |D(ξ1)|

2
− 1

(r ∈ N because d and |D(ξ1)| are even). We construct now an element ξ2 ∈ I2[W ] such that

|D(ξ1 + ξ2) ∩D(ξ2)| = r + 1. Thereto, we pick distinct nonzero a1, . . . , ar ∈ W \D(ξ1) and distinct

b1, . . . , bs ∈ D(ξ1) such that r + s is odd and a1 + . . .+ ar + b1 + . . .+ bs = 0. Set

ξ2 := X0 +Xa1 + . . .+Xar +Xb1 + . . .+Xbs

and ξ := ξ1 + (1 +Xa)ξ2. Then ξ2 ∈ I2[W ], so ξ ∈ I3[V ] and

|D(ξ)| = |D(ξ1 + ξ2)|+ |D(ξ2)| =
(

|D(ξ1)| − s+ r + 1
)

+ (r + 1 + s) = |D(ξ1)|+ 2(r + 1) = d.

Moreover all the ξ ∈ I3[V ] such that |D(ξ)| = d and 0 ∈ D(ξ) are constructed in this way. The second

step is to classify all the elements ξ ∈ I3[V ] such that |D(ξ)| = d and 0 6∈ D(ξ). We fix a nonzero

a ∈ V and a vector space W such that V = W ⊕F2 ·a. Choose ξ1 ∈ I3[W ] such that |D(ξ1)| ≤ d and

0 ∈ D(ξ1), and set

r :=
d− |D(ξ1)|

2
.

To construct an element ξ2 ∈ I2[W ] such that |D(ξ1 + ξ2) ∩ D(ξ2)| = r, we pick distinct nonzero

a1, . . . , ar ∈ W \D(ξ1) and distinct nonzero b1, . . . , bs ∈ D(ξ1) such that r + s is odd and a1 + . . .+

ar + b1 + . . .+ bs = 0. Set

ξ2 := X0 +Xa1 + . . .+Xar +Xb1 + . . .+Xbs

and ξ := ξ1 + (1 +Xa)ξ2. Then ξ2 ∈ I2[W ], so ξ ∈ I3[V ] and

|D(ξ)| = |D(ξ1 + ξ2)|+ |D(ξ2)| =
(

|D(ξ1)| − (s+ 1) + r
)

+ (r + s+ 1) = |D(ξ1)|+ 2r = d.

Again, all the ξ ∈ I3[V ] such that |D(ξ)| = d and 0 6∈ D(ξ) are constructed in this way.

Below we shall classify the elements ξ ∈ I3[V ] with |D(ξ)| ≤ 14. (As |D(ξ)| grows, the number

of different types of elements ξ ∈ I3[V ] becomes huge.) Observe first that |D(ξ)| is even for all

ξ ∈ I3[V ] because I3[V ] ⊂ I [V ]. In the next proposition, we start with the elements ξ ∈ I3[V ] such

that |D(ξ)| ≤ 12. Here we do not need our algorithm to classify those elements (even if it works

perfectly) because we can use well-known results on quadratic forms.

Proposition 1.6 Let ξ ∈ I3[V ].

1. If |D(ξ)| < 8, then ξ = 0.

2. If |D(ξ)| = 8, then ξ = Xa[[e1, e2, e3]] for some vectors e1, e2, e3, a ∈ V where e1, e2, e3 are

linearly independent. In particular,

GPf3(ξ) = 1 and Pf3(ξ) =

{

1 if 0 ∈ D(ξ),

2 if 0 6∈ D(ξ).

3. There is no η ∈ I3[V ] such that |D(η)| = 10.

4. If |D(ξ)| = 12, then ξ = ξ1 · ξ2 for some ξ1, ξ2 ∈ F2[V ] such that ξ2 ∈ I2[V ], |D(ξ1)| = 2 and

|D(ξ2)| = 6. In particular,

GPf3(ξ) = 2 and Pf3(ξ) =

{

3 if 0 ∈ D(ξ),

2 or 4 if 0 6∈ D(ξ).
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Proof : Replacing V by span
F2
〈D(ξ)〉 if necessary, we may assume that V is finite dimensional.

By the proof of Theorem 2.2 in [Parimala et al., 2009], the vector space V may be identified with

VE = E×/E×2 for some field E of iterated Laurent series so that the map Ψ: F2[VE ] → W (E) is an

isomorphism. Let q be a quadratic form over E such that Ψ(ξ) = [q] ∈ I3(E) and the dimension of q

is equal to |D(ξ)|.
(1) If |D(ξ)| < 8, then q is isotropic by [Lam, 2005, Hauptsatz 5.1, page 352], hence ξ = 0.

(2) If |D(ξ)| = 8, then q is a scalar multiple of a 3-fold Pfister form (see [Lam, 2005, Theorem 5.6,

page 355]), hence ξ = Xa[[e1, e2, e3]] for some e1, e2, e3, a ∈ V and GPf3(ξ) = 1. The vectors e1, e2, e3 ∈
V are linearly independent because otherwise ξ = 0. If 0 ∈ D(ξ), then ξ = [[e1, e2, e3]] and Pf3(ξ) = 1;

otherwise ξ = ηe where e = (a, a+ e1, a+ e2, a+ e3) is a family of 4 linearly independent vectors and

in particular Pf3(ξ) = 2.

(3) There is no η ∈ I3[V ] such that |D(η)| = 10, because if |D(ξ)| = 10, then q is isotropic (see

[Pfister, 1966, page 123]); hence ξ = 0 which leads to a contradiction.

(4) Suppose that |D(ξ)| = 12, then by [Pfister, 1966, page 123-124], q can be written as φ1 ⊥
φ2 ⊥ φ3 where the φi’s are 4-dimensional, [φi] ∈ I2(E) and the product of the Clifford invariants

C(φ1)C(φ2)C(φ3) is trivial in the Brauer group of E. Hence there exists a quadratic extension E(
√
δ)

of E which splits all C(φi). Then q = q1 ⊗ q2 where q1 = 〈1,−δ〉 and for some 6-dimensional form

q2 such that [q2] ∈ I2(E). Hence ξ = ξ1 · ξ2 for some ξ1, ξ2 ∈ F2[V ] with ξ2 ∈ I2[V ], |D(ξ1)| = 2 and

|D(ξ2)| = 6. We may assume that ξ1 = X0 +Xa for some a ∈ V . Let e1, . . . , e5 ∈ V be such that

ξ2 = Xe1 + . . .+Xe5 +Xe1+...+e5 .

Then ξ = Xe1 [[a, e1+e2, e1+e3]]+Xe4 [[a, e4+e5, e1+e2+e3+e4]] and GPf3(ξ) 6= 1 because |D(ξ)| 6= 8;

hence GPf3(ξ) = 2. If 0 ∈ D(ξ), then we may assume that e5 = 0. Since |D(ξ)| = 12, the vectors

e1, . . . , e4, a are linearly independent. Then ξ = ηe where e = (e1, e2, e3, e4, e1 + e2 + e3 + e4 + a) is

a family of 5 linearly independent vectors and in particular Pf3(ξ) = 3. If 0 6∈ D(ξ) and e1, . . . , e5, a

are linearly independent, then ξ = ηe where e = (e1, . . . , e5, e1 + . . . + e5 + a) is a family of 6

linearly independent vectors, so Pf3(ξ) = 4. Suppose that 0 6∈ D(ξ) and e1, . . . , e5, a are linearly

dependent. If e1, . . . , e5 are linearly independent, then there exists a permutation σ of {1, . . . , 5}
such that eσ(5) = eσ(1) + eσ(2) because |D(ξ)| = 12. Renumbering the e1, . . . , e5 if necessary, we may

assume that e5 = e1 + e2. Then

ξ = (X0 +Xa)(Xe1 +Xe2 +Xe1+e2 +Xe3 +Xe4 +Xe3+e4) = [[a, e1, e2]] + [[a, e3, e4]]

where e1, . . . , e4, a are linearly independent. If a ∈ span
F2
〈e1, . . . , e5〉, then there exists a permutation

σ of {1, . . . , 5} such that a = eσ(1) + eσ(2) + eσ(3). Renumbering the e1, . . . , e5 if necessary, we may

assume that a = e1 + e2 + e3. Then

ξ = (X0 +Xe1+e2+e3)(Xe1 +Xe2 +Xe1+e2 +Xe4 +Xe5 +Xe4+e5)

and we are in the situation of the previous case. Hence, if 0 ∈ D(ξ) and e1, . . . , e5, a are linearly

dependent, then Pf3(ξ) = 2. 2

In the next proposition, we use the above algorithm to classify the elements ξ ∈ I3[V ] such that

|D(ξ)| = 14.

Proposition 1.7 Suppose that ξ ∈ I3[V ] is such that |D(ξ)| = 14. Then there exist e1, . . . , e7 ∈ V

such that

ξ = [[e1, e2, e3]] + [[e4, e5, e6]] + [[e1, e2, e6]] + [[e4, e5, e7]] = Xe6
(

[[e1, e2, e3 + e6]] + [[e4, e5, e6 + e7]]
)

and in particular, GPf3(ξ) = 2. More precisely:

1. If 0 ∈ D(ξ), then ξ = [[e1, e2, e3]] + [[e4, e5, e6]] + [[e1, e2, e6]] for some linearly independent vectors

e1, . . . , e6 ∈ V and Pf3(ξ) = 3.
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2. If 0 6∈ D(ξ), then there exist linearly independent vectors e1, . . . , e6 ∈ V such that

• either ξ = [[e1, e2, e3]] + [[e4, e5, e6]] and Pf3(ξ) = 2;

• or ξ = [[e1, e2, e3]] + [[e4, e5, e6]] + [[e1, e2, e4]] + [[e1, e4, e5]] and Pf3(ξ) = 4;

• or ξ = [[e1, e2, e3]]+[[e4, e5, e6]]+[[e1, e2, e6]]+[[e4, e5, e7]] for some e7 ∈ V \spanF2
〈e1, . . . , e6〉,

and Pf3(ξ) = 4.

Proof : Let a,W, ξ1, ξ2 be as in Lemma 1.5.

(1) Suppose that 0 ∈ D(ξ). Then |D(ξ1)| < 14 and 0 6∈ D(ξ1). Observe that ξ1 6= 0 because otherwise

|D(ξ2)| = 7 which is impossible. Hence |D(ξ1)| is equal to 8 or 12.

a) If |D(ξ1)| = 12, then D(ξ1 + ξ2) ∩ D(ξ2) = {0}. Suppose that ξ = ηe where e is a family of 6

linearly independent vectors, then ξ2 = X0+Xv1 + . . .+Xvr where r is odd, v1, . . . , vr ∈ D(ηe)

are distinct pairwise and v1 + . . . + vr = 0; but such vectors v1, . . . , vr do not exist in D(ηe).

Hence, by the proof of Proposition 1.6, there exist linearly independent vectors e1, . . . , e5 ∈ V

such that ξ1 = [[e1, e2, e3]] + [[e3, e4, e5]]. Then

ξ2 = X0 +Xv1 + . . .+Xvr ,

ξ1 = Xv1 + . . .+Xv12 ,

ξ = X0 +Xvr+1 + . . .+Xv12 +Xa(X0 +Xv1 + . . .+Xvr )

for some vectors v1, . . . , vr ∈ D(ξ1). Replacing W by span
F2
〈e1, e2, e3, e4, a〉 if necessary, we

may assume that |D(ξ2)| = 4. Choosing another basis of span
F2
〈D(ξ1)〉 if necessary, we may

assume that ξ2 = X0 +Xe1 +Xe2 +Xe1+e2 and then

ξ = [[e1, e2, a]] + [[e4, e5, e3]] + [[e1, e2, e3]].

b) If |D(ξ1)| = 8, then D(ξ1 + ξ2) ∩D(ξ2) = {0, b, c} and ξ1 = ηe where e is a family of 4 linearly

independent vectors. Therefore

ξ2 = X0 +Xb +Xc +Xv1 + . . .+Xvr

for some pairwise distinct vectors v1, . . . , vr ∈ D(ξ1) such that r is odd and v1 + . . . + vr =

b + c. Observe that b + c ∈ D(ηe). Since b, c 6∈ D(ηe) and there do not exist vectors u, v ∈
span

F2
〈D(ηe)〉 \D(ηe) such that u+ v ∈ D(ηe), we have b, c 6∈ span

F2
〈D(ηe)〉. Replacing W by

span
F2
〈e1, e2, e3, e4, a〉 if necessary, we may assume that |D(ξ2)| = 4 and choosing another basis

of span
F2
〈D(ηe)〉 we may assume that ξ2 = X0 +Xe1 +Xb +Xe1+b. Then

ξ = [[e0, e1 + e2, e3]] + [[a, b, e1]] + [[e0, e1 + e2, e1]]

where e0 := e1 + . . .+ e4.

In both the cases,

ξ = [[f1, f2, f3]] + [[f4, f5, f6]] + [[f1, f2, f6]] + [[f4, f5, f7]]

for some linearly independent vectors f1, . . . , f6 ∈ V and with f7 = 0. Since 0 ∈ D(ξ), the 3-Pfister

number of ξ is odd. Hence Pf3(ξ) = 3 because if Pf3(ξ) = 1, then |D(ξ)| = 8.

(2) Suppose that 0 6∈ D(ξ). Then 0 ∈ D(ξ1) and |D(ξ1)| ∈ {8, 12, 14}.
a) If |D(ξ1)| = 14, then ξ1 = [[e1, e2, e3]] + [[e4, e5, e6]] + [[e1, e2, e6]] for some linearly independent

vectors e1, . . . , e6 ∈ V and D(ξ2) ⊂ D(ξ1). Replacing W by span
F2
〈e2, . . . , e6, a〉 and choosing

another basis of span
F2
〈D(ξ1)〉, we may assume that ξ2 = X0 +Xe4 +Xe5 +Xe4+e5 . Hence

ξ = [[e1, e2, e3]] + [[e4, e5, e6]] + [[e1, e2, e6]] + [[e4, e5, a]]

where e1, . . . , e6, a are linearly independent. Since 0 6∈ D(ξ), the 3-Pfister number of ξ is even.

If Pf3(ξ) = 2, then the dimension of span
F2
〈D(ξ)〉 is less than or equal to 6 and we get a

contradiction; so Pf3(ξ) = 4.
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b) If |D(ξ1)| = 12, then D(ξ1 + ξ2) ∩ D(ξ2) = {b} and ξ1 = ηe for some family e of 5 linearly

independent vectors. Since b ∈ span
F2
〈D(ξ1)〉\D(ξ1), there exists a permutation σ of {1, . . . , 5}

such that either b = eσ(1) + eσ(2) or b = eσ(1) + eσ(2) + eσ(3). Renumbering the ei’s, we may

assume that b = e1+e2 or b = e1+e2+e3. Then replacing W by span
F2
〈e1+e2, e3, e4, e5, a〉 and

choosing another basis of span
F2
〈D(ξ1)〉, we may assume that ξ2 = X0 +Xe1 +Xe2 +Xe1+e2 .

Thus

ξ = [[e0, e1 + e2 + e3, e4]] + [[e1 + e2, e1, e0]] + [[e0, e1 + e2 + e3, e1 + e2]] + [[e1 + e2, e1, a]]

where e0 := e1 + . . .+ e5. So ξ can be written as

[[f1, f2, f3]] + [[f4, f5, f6]] + [[f1, f2, f6]] + [[f4, f5, f7]]

for some linearly independent vectors f1, . . . , f5, f7 ∈ V with f6 = f1 + f4. We know that

Pf3(ξ) is even and Pf3(ξ) ≤ 4. To prove that Pf3(ξ) = 4, we consider a linear map ϕ : V → V

such that ϕ|W is the identity and ϕ(a) = 0. The map ϕ induces an algebra homomorphism

ϕ∗ : F2[V ] → F2[V ] such that ϕ∗(ξ) = ηe. Then 3 = Pf3(ηe) ≤ Pf3(ξ), so Pf3(ξ) = 4.

c) If |D(ξ1)| = 8, then D(ξ1 + ξ2) ∩ D(ξ2) = {b, c, d} and ξ1 = [[e1, e2, e3]] for some linearly

independent vectors e1, e2, e3 ∈ W . Therefore

ξ2 = Xv1 + . . .+Xvr +Xb +Xc +Xd

for some vectors v1, . . . , vr ∈ D(ξ1) such that v1 + . . .+ vr = b + c+ d. The vectors e1, e2, e3, b

are linearly independent because b 6∈ D(ξ1). Observe that e1, e2, e3, b, c are linearly independent

because otherwise either c ∈ D(ξ1) or d ∈ D(ξ1) and we get a contradiction. Replacing W by

span
F2
〈e1, e2, e3, a, b〉 if necessary, we may assume that |D(ξ2)| = 4. Then ξ2 = X0+Xb +Xc +

Xb+c,

ξ = [[e1, e2, e3]] + [[a, b, c]]

and Pf3(ξ) = 2. 2

Remark 1.8 Proposition 1.7 shows that, already for 14-dimensional quadratic forms, the combina-

torial analogue F2[V ] diverges from the Witt ring of a general field. Indeed, Hoffmann and Tignol

[1998, Example 6.3] constructed a field over which there exist 14-dimensional quadratic forms in the

third power of the fundamental ideal which are not a scalar multiple of a sum of two 3-fold Pfister

forms. However, Proposition 1.7 shows that, in the combinatorial analogue, all the elements ξ ∈ I3[V ]

such that |D(ξ)| = 14 can be written as a scaled sum of two 3-fold Pfister elements.

1.4. Bounds for the 3-Pfister number

We shall compute an upper bound for the 3-Pfister number of ξ ∈ I3[V ], which only depends on

|D(ξ)|. We first prove some preliminary results.

Lemma 1.9 Let ξ ∈ I2[V ] \ {0}, then GPf2(ξ) ≤
(

|D(ξ)| − 2
)

/2.

Proof : We use an induction on d := |D(ξ)|. If d = 4, then

ξ = Xa +Xb +Xc +Xa+b+c = Xa[[a + b, a+ c]]

for some a, b, c ∈ V , so GPf2(ξ) = 1. Now suppose that d > 4, then let a, b, c ∈ D(ξ) be distinct

pairwise. Set ξ′ := Xa +Xb +Xc +Xa+b+c + ξ. Then ξ′ ∈ I2[V ] and |D(ξ′)| ≤ d− 2. By induction,

GPf2(ξ
′) ≤ (d− 4)/2. It implies that

GPf2(ξ) = GPf2(X
a[[a + b, a+ c]] + ξ′) ≤ 1 + GPf2(ξ

′) ≤ 1 + (d− 4)/2 ≤ (d− 2)/2

as wanted. 2
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Lemma 1.10 Let e = (e1, . . . , en) be a family of linearly independent vectors of V where n ≥ 3.

Then

GPf3(ηe) =

{

(n− 2)/2 if n is even;

(n− 1)/2 otherwise.

Proof : Set e0 := e1+. . .+en and ξ := n+Xe1+. . .+Xen−1+Xe0+en . Then ξ ∈ I2[V ], |D(ξ)| ≤ n+1

and ηe = (1+Xe0)ξ. Hence GPf3(ηe) ≤ GPf2(ξ) ≤
(

|D(ξ)|−2
)

/2 ≤ (n−1)/2. Since Pf3(ηe) = n−2,

we have n− 2 ≤ 2GPf3(ηe). We obtain that

(n− 2)/2 ≤ GPf3(ηe) ≤ (n− 1)/2.

Therefore GPf3(ηe) = (n− 2)/2 if n is even and GPf3(ηe) = (n− 1)/2 otherwise. 2

Lemma 1.11 Let ξ ∈ I3[V ] \ {0}. Then there exist linearly independent e1, . . . , en ∈ D(ξ) such that

e1 + . . .+ en−1 ∈ D(ξ) and n ≥ 3.

Proof : Let m be the dimension of span
F2
〈D(ξ)〉. Then m ≥ 3 because |D(ξ)| ≥ 8. Let e1, . . . , em ∈

D(ξ) be linearly independent vectors, then there exist v1, . . . , vr ∈ span
F2
〈e1, . . . , em〉 such that

ξ = Xe1 + . . .+Xem +Xv1 + . . .+Xvr .

Since ǫ1(ξ) = 0, we have r ≥ 1. If r = 1, then v1 = e1 + . . .+ em because ǫ1(ξ) = 0; it implies that

ǫ2(ξ) =
∑

1≤i<j≤m ei ∧ ej 6= 0 (because m ≥ 3) which is impossible. Hence r ≥ 2. Renumbering the

vectors e1, . . . , em and v1, . . . , vr if necessary, we may assume that vr = e1+. . .+en−1 for some n ∈ N,

3 ≤ n ≤ m. So e1, . . . , en, e1 + . . .+ en−1 ∈ D(ξ) with n ≥ 3 and e1, . . . , en linearly independent. 2

In the next proposition we establish an upper bound for the dimension of the space spanned by

the support of a ξ ∈ I3[V ]. (Originally, our proof of this proposition was given by induction on |D(ξ)|;
the shorter proof included here was pointed out to us by Karim Becher.)

Proposition 1.12 Let ξ ∈ I3[V ]. Set d := |D(ξ)| and m := dim span
F2
〈D(ξ)〉. Then m ≤ d/2; if

moreover 0 ∈ D(ξ), then m ≤ (d/2) − 1.

Proof : Let ǫ : F2[V ] → ∧∗ V be the map defined by

ǫ(Xv1 + . . .+Xvd) = (1 + v1) · . . . · (1 + vd),

where · is the multiplication in the exterior algebra
∧∗ V (Compare with the definition of the Stiefel-

Whitney invariant in [Milnor, 1970]). It is easy to check that ǫ(ξ1 + ξ2) = ǫ(ξ1) · ǫ(ξ2) for all ξ1, ξ2 ∈
F2[V ] and ǫ(ξ) = 1 for all ξ ∈ I3[V ]. Let ξ ∈ I3[V ], set d := |D(ξ)| and m := dim span

F2
〈D(ξ)〉.

Suppose that m ≥ d/2. Write

ξ = Xv1 + . . .+Xvn +Xw1 + . . .+Xwn

where v1, . . . , vn ∈ V are linearly independent and d = 2n. Since ξ ∈ I3[V ], we have

ǫ(Xv1 + . . .+Xvn ) = ǫ(ξ)ǫ(Xw1 + . . .+Xwn ) = ǫ(Xw1 + . . .+Xwn).

We obtain in particular that,

w1 ∧ . . . ∧ wn = v1 ∧ . . . ∧ vn 6= 0 ∈ ∧nV.

This implies that span
F2
〈v1, . . . , vn〉 = span

F2
〈w1, . . . , wn〉 and m = d/2. Now assume that 0 ∈ D(ξ),

then one of the wi’s is equal to zero and w1 ∧ . . . ∧ wn = 0 which leads to a contradiction. Hence

m ≤ d/2 and m ≤ d/2− 1 if 0 ∈ D(ξ). 2

From the previous results we can now deduce our upper bound for the 3-Pfister number of elements

in I3[V ].
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Theorem 1.13 Let ξ ∈ I3[V ], then GPf3(ξ) ≤ |D(ξ)|2/16, hence Pf3(ξ) ≤ |D(ξ)|2/8.

Proof : We use an induction on d. If d = 0, then ξ = 0 and GPf3(ξ) = 0. Suppose that d > 0.

Observe that GPf3(ξ) = GPf3(X
bξ) for all b ∈ V . Hence, replacing ξ by Xbξ for some b ∈ D(ξ),

we may assume that 0 ∈ D(ξ). Let e1, . . . , en ∈ D(ξ) be linearly independent such that n ≥ 3 and

e1 + . . .+ en−1 ∈ D(ξ). Set e := (e1, . . . , en) and e0 := e1 + . . .+ en. Then

ξ = X0 +Xe1 + . . .+Xen +Xe0+en +Xv1 + . . .+Xvr

for some v1, . . . , vr ∈ V and we have

ξ + ηe =

{

X0 +Xe0+e1 + . . .+Xe0+en−1 +Xv1 + . . .+Xvr if n is even,

Xe0 +Xe0+e1 + . . .+Xe0+en−1 +Xv1 + . . .+Xvr if n is odd.

So ξ + ηe ∈ I3[V ] and |D(ξ + ηe)| < |D(ξ)|. By induction, GPf3(ξ + ηe) ≤ (d − 2)2/16. Since

n ≤ dim span
F2
〈D(ξ)〉 and 0 ∈ D(ξ), by Proposition 1.12, we have n ≤ d/2− 1. Therefore

GPf3(ξ) ≤ GPf3(ηe) + GPf3(ξ + ηe) ≤ (n− 1)/2 + (d− 2)2/16 ≤ d/4− 1 + (d− 2)2/16 ≤ d2/16

which ends the proof. 2

2. The 3-Pfister number of quadratic forms

In this section, we shall apply the results in the previous section to quadratic forms over a field F of

characteristic different from 2 which contains a square root of −1.

Recall that VF := F×/F×2 and that

Ψ: F2[VF ] → W (F ) : (a1F
×2) + . . .+ (adF

×2) 7→ [〈a1, . . . , ad〉]

is a surjective F2-algebra homomorphism. For all m ∈ N, m ≥ 1, the map Ψ carries m-fold Pfister

elements in F2[VF ] to m-fold Pfister forms in W (F ). Hence Ψ
(

Im[VF ]
)

= Im(F ) for all m ≥ 1 but,

for [q] ∈ Im(F ), the number of elements in D(ξ) may be strictly greater than the dimension of q for

all ξ ∈ Im[VF ] such that Ψ(ξ) = [q].

For m ∈ {1, 2}, every field F satisfies the property

∀a1, . . . , ad ∈ F×, [〈a1, . . . , ad〉] ∈ Im(F ) =⇒ (a1F
×2) + . . .+ (adF

×2) ∈ Im[VF ], (1)

meaning in particular that for m ∈ {1, 2} and for all [q] ∈ Im(F ), there exists ξ ∈ Im[VF ] such that

Ψ(ξ) = [q] and |D(ξ)| is less than or equal to the dimension of q. However, for m = 3 this is no longer

true for every field F . Theorem 1.1 in [Brosnan et al., 2010] gives counterexamples: for any field k

of characteristic different from 2 and for all even integer d ≥ 2, there exist a field extension F/k and

[q] ∈ I3(F ) with q of dimension d, such that

Pf3(q) ≥ 2(d+4)/4 − d− 2

7
.

If we take in particular a field k which contains a square root of −1 and a d ∈ N such that

2(d+4)/4 − d− 2

7
> (d2)/8,

then we have an example of a [q] ∈ I3(F ) with q of dimension d such that Pf3(q) > (d2)/8. Write

q = 〈a1, . . . , ad〉 and set ξ = (a1F
×2) + . . .+ (adF

×2) then ξ 6∈ I3[VF ] because otherwise

Pf3(q) = Pf3
(

Ψ(ξ)
)

≤ Pf3(ξ) ≤ (d2)/8

which leads to a contradiction. Thus, the combinatorial analogue of the Witt ring is less powerful to

compute 3-Pfister numbers than it is to compute the 1- and 2-Pfister numbers.

Below we shall first characterize those fields for which property (1) holds for m = 3; for these

particular fields, we thus find an upper bound for the 3-Pfister number using the combinatorial

analogue. Thereafter we shall discuss the general case.
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2.1. Case where we deduce an upper bound from the combinatorial analogue

The homomorphism Ψ induces a map

Ψ: I2[VF ]/I
3[VF ] → I2(F )/I3(F ) : ξ + I3[VF ] 7→ Ψ(ξ) + I3(F )

which is a surjective group homomorphism. Observe that the property (1) holds for m = 3 if and

only if Ψ is an isomorphism. In fact, we shall prove that this is further equivalent to Ψ being an

isomorphism. Before we give other equivalent conditions to the assertion that Ψ is an isomorphism,

we need some definitions. In [1981], Ware says that a ∈ F× is F×2-rigid if F×2+aF×2 ⊂ F×2∪aF×2

and that F is F×2-rigid (or rigid) if a is F×2-rigid for all a ∈ F×\F×2 (here Ware’s original definition

of rigidity for a field F is simplified by the assumption that −1 is a square in F ). Following [Ware,

1981], we say that a valuation v on F is F×2-compatible if 1 + mv ⊂ F×2 where mv is the maximal

ideal of the valuation ring of F .

Proposition 2.1 The following conditions are equivalent:

1. Ψ is an isomorphism;

2. for all a ∈ F× \ F×2, F×2 + aF×2 ⊂ F×2 ∪ aF×2 (i.e., F is F×2-rigid);

3. There exists an F×2-compatible valuation v on F such that (F
×

v : F
×2
v ) ≤ 2, where F v is the

residue field of F .

4. Ψ is an isomorphism;

Proof : (4)⇒(1) Trivial.

(1)⇒(2) Let a ∈ F× \ F×2 and x, y ∈ F×. Set b := x2 + ay2, then b 6= 0 because a 6∈ F×2 and the

quadratic form 〈1, a, b, ab〉 is isotropic. Since it is a Pfister form, we have [〈1, a, b, ab〉] = 0 ∈ W (F ).

Hence (F×2)+(aF×2)+(bF×2)+(abF×2) ∈ I3[VF ] because Ψ is an isomorphism. By Proposition 1.6,

the element (F×2) + (aF×2) + (bF×2) + (abF×2) is equal to zero. Since a 6∈ F×2, we obtain that

b ∈ F×2 ∪ aF×2.

(2)⇒(3) By [Ware, 1981, Theorem 3.3], there exists an F×2-compatible valuation v on F such that

(F
×

v : F
×2
v ) ≤ 2.

(3)⇒(2) Let v be an F×2-compatible valuation on F such that (F
×

v : F
×2
v ) ≤ 2. Let Ov denote the

valuation ring of F and for a ∈ Ov, let a denote the residue class of a in F v. By [Arason et al., 1987,

Proposition 1.5 (1)], all elements a ∈ F× such that a 6∈ O×
v ·F×2 are F×2-rigid. Now let a ∈ O×

v ·F×2

be such that a 6∈ F×2 and let x, y ∈ F×. Then there exist b ∈ O×
v and z ∈ F× such that a = bz2 and

b 6∈ F×2. Since 1 +mv ⊂ F×2 and b 6∈ F×2, we have b 6∈ F
×2
v . Observe that F v is F

×2
v -rigid because

(F
×

v : F
×2
v ) ≤ 2, so b is F

×2
v -rigid. By [Arason et al., 1987, Proposition 1.5 (2)], we deduce that b is

F×2-rigid. Hence

x2 + ay2 = x2 + b(zy)2 ∈ F×2 ∪ bF×2 = F×2 ∪ aF×2.

Thus F is F×2-rigid.

(2)⇒(4) It is easy to prove that for all a1F
×2, . . . , adF

×2 ∈ F×/F×2 distinct pairwise,

{a1x
2
1 + . . .+ adx

2
d ∈ F× | x1, . . . , xd ∈ F} = a1F

×2 ∪ . . . ∪ adF
×2.

Let ξ be in the kernel of Ψ. Let a1F
×2, . . . , adF

×2 ∈ F×/F×2 be pairwise distinct elements such that

ξ = (a1F
×2)+ . . .+(adF

×2) and assume that d ≥ 1. Since Ψ(ξ) = 0, the quadratic form 〈a1, . . . , ad〉
is isotropic. So ad ∈ a1F

×2 ∪ . . . ∪ ad−1F
×2, leading to a contradiction. Hence ξ = 0 and Ψ is an

isomorphism. 2

By [Wadsworth, 1983, Proposition 1.2]), if v is an F×2-compatible valuation on F and the residue

characteristic is different from 2, then (F, v) is a 2-Henselian valued field. Any valued field with

residue characteristic different from 2 is contained in a Henselian (hence 2-Henselian) valued field

(F, v) such that (F
×

v : F
×2
v ) ≤ 2. Indeed, let (k,w) be a valued field with residue characteristic

different from 2. Let (K, v) be a Henselization of (k,w) (see [Efrat, 2006, Theorem 15.3.5]). Assume
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that (K
×

v : K
×2
v ) > 2 and choose α ∈ K

×

v \K×2
v . Now we take a maximal field extension M of Kv in a

separable closure ofKv such that α 6∈ M×2, thenM× = M×2∪αM×2, so (M× : M×2) = 2. By [Efrat,

2006, Corollary 16.1.4], there exists an algebraic field extension F over K such that F v = M . Then

(F
×

v : F
×2
v ) = 2 and (F, v) is Henselian since (K, v) is Henselian and F is an algebraic extension of K.

Similarly, taking for M a quadratic closure of Kv we can also find an F such that (F
×

v : F
×2
v ) = 1.

Now we can give an upper bound for the 3-Pfister number:

Theorem 2.2 Let (F, v) be a valued field such that 1 + mv ⊂ F×2 and (F
×

v : F
×2
v ) ≤ 2, and let

[q] ∈ I3(F ) be such that q is of dimension d. Then Pf3(q) ≤ (d2)/8.

Proof : Write q = 〈a1, . . . , ad〉. By Proposition 2.1, Ψ is an isomorphism. Hence the element

ξ := (a1F
×2) + . . .+ (adF

×2) is in I3[VF ]. Since |D(ξ)| ≤ d, one has

Pf3(q) = Pf3
(

Ψ(ξ)
)

≤ Pf3(ξ) ≤ (d2)/8

and we are done. 2

2.2. General case

Now we study the case where Ψ may not be an isomorphism. Let [q] ∈ I3(F ) with q = 〈a1, . . . , ad〉.
Set ξ := (a1F

×2) + . . .+ (adF
×2). Then Ψ(ξ + I3[VF ]) = [q] + I3(F ) = 0, hence ξ + I3(F ) is in the

kernel of Ψ. That is why we shall investigate the structure of the kernel of Ψ.

First we introduce some notations. For e = (x1F
×2, . . . , xrF

×2) a family of linearly independent

vectors of VF , we set ξe := (r + 1)(F×2) + (x1F
×2) + . . .+ (xrF

×2) + (x1 . . . xrF
×2) ∈ I2[VF ].

Lemma 2.3 Let ξ ∈ I2[VF ] and set d := |D(ξ)|. Suppose that d > 0, then we have one of the

following situations:

1. ξ = ξe for some family e of linearly independent vectors of VF ;

2. there exist an integer n, 3 ≤ n ≤ d − 2, and a1F
×2, . . . , anF

×2 ∈ D(ξ) linearly independent

such that a1 . . . an−1F
×2 ∈ D(ξ).

Proof : Let a1F
×2, . . . , adF

×2 ∈ D(ξ) be distinct pairwise such that (a1F
×2, . . . , amF×2) is a basis

of span
F2
〈D(ξ)〉, where m ≤ d. Because d > 0 and ξ ∈ I2[VF ], we have d ≥ 4. Suppose that ξ 6= ξe

for all e. Then m ≤ d− 2 and m ≥ 3 because otherwise ξ = (a1F
×2)+ (a2F

×2)+ (F×2)+ (a1a2F
×2)

with a1F
×2, a2F

×2 linearly independent. Since the elements a1F
×2, . . . , adF

×2 are distinct pairwise,

there exists i ∈ {m + 1, . . . , d} such that aiF
×2 = aσ(1) . . . aσ(n−1)F

×2 for some permutation σ of

{1, . . . , m} and for some integer n, 3 ≤ n ≤ m. Hence the situation (2) occurs. 2

We recall a notation introduced in Subsection 1.2: for e := (x1F
×2, . . . , xrF

×2) a family of linearly

independent vectors of VF with r ≥ 3, we write ηe for the element

r(F×2) + (x1F
×2) + . . .+ (xrF

×2) + r(x0F
×2) + (x0x1F

×2) . . .+ (x0xrF
×2)

of F2[VF ], where x0F
×2 = x1 . . . xrF

×2. We have ηe ∈ I3[VF ] and Pf3(ηe) = r − 2.

Lemma 2.4 Let r be an odd integer, r ≥ 3 and let e = (x1F
×2, . . . , xrF

×2) be a family of linearly

independent vectors of VF . Then ξe = ξe′ + ηe, where e′ := (x0x1F
×2, . . . , x0xr−1F

×2) and x0 =

x1 . . . xr.

Proof : It is an easy computation. 2

The next proposition describes the elements in the kernel of Ψ.
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Proposition 2.5 Let ξ+ I3[VF ] be in the kernel of Ψ and set d := |D(ξ)|. Then either ξ ∈ I3[VF ] or

there exist η ∈ I3[VF ] and a family e of r linearly independent vectors of VF such that Pf3(η) ≤ d2,

r is even, 2 ≤ r ≤ d− 2 and ξ = ξe + η.

Proof : We use an induction on d. Suppose that d = 0, then ξ = 0 ∈ I3[VF ].

From now on, we assume that d > 0 and ξ 6∈ I3[VF ]. Since ξ ∈ I2[VF ] and ξ 6= 0, we have

d ≥ 4. By Lemma 2.3, either ξ = ξe for some family e = (x1F
×2, . . . , xrF

×2) of linearly independent

vectors of VF , where r ∈ {d − 2, d − 1}, or ξ = (a1F
×2) + . . . + (adF

×2), with an+1 = a1 . . . an−1,

where the vectors a1F
×2, . . . , anF

×2 are linearly independent and 3 ≤ n ≤ d − 2. If ξ = ξe and

r = d − 2, then we choose η := 0. If ξ = ξe and r = d − 1, then by Lemma 2.4, ξ = ξe′ + ηe, where

e′ := (x0x1F
×2, . . . , x0xd−2F

×2) and x0 := x1 . . . xd−1. One can choose η := ηe since ηe ∈ I3[VF ]

and Pf3(ηe) = d − 3 ≤ d2. Hence, we may assume that ξ = (a1F
×2) + . . . + (adF

×2), with an+1 =

a1 . . . an−1, where the vectors a1F
×2, . . . , anF

×2 are linearly independent and 3 ≤ n ≤ d − 2. Set

e := (a1F
×2, . . . , anF

×2) and a0 := a1 . . . an.

1. Suppose that n is even. Then

ξ + ηe = (a0a1F
×2) + . . .+ (a0an−1F

×2) + (an+2F
×2) + . . .+ (adF

×2),

hence ξ+ηe+I3[VF ] = ξ+I3[VF ] 6= 0 with |D(ξ+ηe)| ≤ d−2. By induction, there exist a family

f of r linearly independent vectors of VF and η ∈ I3[VF ] such that r is even, 2 ≤ r ≤ d − 4,

Pf3(η) ≤ (d− 2)2 and ξ + ηe = ξf + η. Then ξ = ξf + η + ηe with η + ηe ∈ I3[VF ] and

Pf3(η + ηe) ≤ (d− 2)2 + n− 2 ≤ (d− 2)2 + d− 2 ≤ d2

as wanted.

2. Suppose that n is odd, then

ξ + ηe = (F×2) + (a0a1F
×2) + . . .+ (a0an−1F

×2) + (a0F
×2) + (an+2F

×2) + . . .+ (adF
×2).

If |D(ξ + ηe)| < d then we can proceed as in the case where n is even. Hence we may assume

that |D(ξ + ηe)| = d. Suppose that ξ + ηe = ξf where f = (y1F
×2, . . . , yrF

×2) is a family of

linearly independent vectors of VF ; if r = d− 2 then ξ = ξf + ηe with Pf3(ηe) ≤ n− 2 ≤ d2 and

if r = d− 1, then ξ = ξf ′ + ηf + ηe where f ′ := (y0y1F
×2, . . . , y0yd−2F

×2), y0 = y1 . . . yd−1 and

Pf3(ηf + ηe) ≤ d − 3 + n− 2 ≤ 2(d − 2) ≤ d2. Now suppose that ξ + ηe 6= ξf for all family f ,

then by Lemma 2.3,

ξ + ηe = (b1F
×2) + . . .+ (bd−1F

×2) + (F×2)

with bm+1 = b1 . . . bm−1, 3 ≤ m ≤ d − 2 and b1F
×2, . . . , bmF×2 linearly independent, because

F×2 ∈ D(ξ + ηe). Set f := (b1F
×2, . . . , bmF×2) and b0 := b1 . . . bm. If m is even, then

ξ + ηe + ηf = (b0b1F
×2) + . . .+ (b0bm−1F

×2) + (bm+2F
×2) + . . .+ (bd−1F

×2) + (F×2)

and if m is odd then

ξ + ηe + ηf = (b0b1F
×2) + . . .+ (b0bm−1F

×2) + (b0F
×2) + (bm+2F

×2) + . . .+ (bd−1F
×2).

In both cases, ξ+ηe+ηf + I3[VF ] = ξ+ I3[VF ] 6= 0 with |D(ξ+ηe+ηf )| ≤ d−2. By induction,

ξ + ηe + ηf = ξg + η where g is a family of r linearly independent vectors of VF , r is even,

2 ≤ r ≤ d− 4 and Pf3(η) ≤ (d− 2)2. Then ξ = ξg + η + ηe + ηf with

Pf3(η + ηe + ηf ) ≤ (d− 2)2 + n− 2 +m− 2 ≤ (d− 2)2 + 2(d − 2) ≤ d2

and we are done. 2

We deduce two corollaries. First the existence of quadratic forms q = 〈1, x1, . . . , xr, x1 . . . xr〉 such

that [q] ∈ I3(F ) and x1F
×2, . . . , xrF

×2 are linearly independent is precisely the obstruction for Ψ to

be an isomorphism.
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Corollary 2.6 The equivalent conditions in Proposition 2.1 are also equivalent to the following con-

dition: there do not exist linearly independent vectors x1F
×2, . . . , xrF

×2 ∈ VF such that r ≥ 2 is

even and [〈1, x1, . . . , xr, x1 . . . xr〉] ∈ I3(F ).

Proof : If there exist linearly independent vectors x1F
×2, . . . , xrF

×2 ∈ VF such that r ≥ 2 is even and

[〈1, x1, . . . , xr, x1 . . . xr〉] ∈ I3(F ), then (F×2)+(x1F
×2)+ . . .+(xrF

×2)+(x1 . . . xrF
×2)+I3[VF ] is a

non-trivial element in the kernel of Ψ, hence Ψ is not an isomorphism. Conversely, assume that Ψ is

not an isomorphism, then there exists a non-trivial ξ+ I3[VF ] in the kernel of Ψ. By Proposition 2.5,

there exists a family e = (x1F
×2, . . . , xrF

×2) of linearly independent vectors of VF such that r ≥ 2

is even and ξ + I3[VF ] = ξe + I3[VF ]. Then [〈1, x1, . . . , xr, x1 . . . xr〉] ∈ I3(F ). 2

Next we relate the 3-Pfister number of a given quadratic form to the one of some particular quadratic

form.

Corollary 2.7 Let [q] ∈ I3(F ) with q = 〈a1, . . . , ad〉. Then we have one of the following situations:

1. (a1F
×2) + . . .+ (adF

×2) ∈ I3[VF ] and Pf3(q) ≤ (d2)/8;

2. there exist an even integer 2 ≤ r ≤ d− 2 and linearly independent vectors x1F
×2, . . . , xrF

×2 ∈
VF such that [〈1, x1, . . . , xr, x1 . . . xr〉] ∈ I3(F ) and

Pf3(q) ≤ d2 + Pf3(〈1, x1, . . . , xr, x1 . . . xr〉).

Proof : Set ξ := (a1F
×2)+ . . .+(adF

×2), then Ψ(ξ+ I3[VF ]) = [q]+ I3(F ) = 0, hence ξ+ I3[VF ] is in

the kernel of Ψ. Suppose that ξ ∈ I3[VF ], then |D(ξ)| ≤ d and Pf3(q) = Pf3
(

Ψ(ξ)
)

≤ Pf3(ξ) ≤ (d2)/8.

Suppose that ξ 6∈ I3[VF ], then by Proposition 2.5, there exist a family e = (x1F
×2, . . . , xrF

×2) of

linearly independent vectors of VF and η ∈ I3[VF ] such that ξ = ξe + η, r is even, 2 ≤ r ≤ d− 2 and

Pf(η) ≤ d2. Since ξe + I3[VF ] = ξ + I3[VF ] is in the kernel of Ψ we have [〈1, x1, . . . , xr, x1 . . . xr〉] ∈
I3(F ). Moreover [q] = Ψ(ξ) = Ψ(ξe) + Ψ(η), so

Pf3(q) ≤ Pf3
(

Ψ(ξe)
)

+ Pf3
(

Ψ(η)
)

≤ Pf3
(

Ψ(ξe)
)

+ Pf3(η) ≤ Pf3(〈1, x1, . . . , xr, x1 . . . xr〉) + d2

and the proof is complete. 2
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