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Abstract. In this paper, we prove a result of Rost, which describes the co-
homological invariants of central simple algebras of degree 4 with values in µ2

when the base field contains a square root of −1.

Introduction

In [5], Rost, Serre and Tignol defined a cohomological invariant of central simple
algebras of degree 4 with values in µ2 when the base field contains a square root of
−1. On the other hand, taking the Brauer class of the tensor square of a central
simple algebra of degree 4 yields a cohomological invariant of degree 2 with values
in µ2. In this paper, we prove a result of Rost (unpublished), which asserts that
these two invariants are essentially the only ones (see Section 4 for a more precise
statement).

This paper is organized as follows. After proving some preliminary results in Section
1, we determine the cohomological invariants of cyclic and bicyclic algebras in
Section 2. Section 3 is devoted to the construction of a generic central simple algebra
of degree 4. Finally, in Section 4, we prove that a cohomological invariant which
vanishes on cyclic algebras and biquaternion algebras is identically zero (which
another result due to Rost). As a corollary, we obtain a complete description of
cohomological invariants of central simple algebras of degree 4.

The proofs of all the results of this paper rely heavily on the use of valuations and
residue maps. We let the reader refer to [2] for the basic definitions and results on
these topics.

We are grateful to Markus Rost for permitting us to publish his results and to
Alexander Merkurjev for providing us his private lecture notes on Rost’s theorem,
and for pointing us a mistake in an earlier version of this paper.

1. Preliminaries

Let F be a field of characteristic different from 2. We will denote by Sets the
category of sets, by Rings the category of commutative rings, by FieldsF the
category of fields extensions of F and by AlgF the category of commutative F -
algebras.

For any field extension K/F , we will denote by H∗(K) the cohomology ring of K
with coefficients in µ2. We then get a functor H∗ : FieldsF −→ Rings.
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If K/F is a field extension, then H∗(K) carries a natural structure of a H∗(F )-
module, given by the external law

H∗(F )×H∗(K) −→ H∗(K)

(a, ξ) 7−→ a·ξ = ResK/F (a) ∪ ξ.

We start with some results on the cohomology of rational extensions.

Let n ≥ 1 be an integer, let t1, . . . , tn be algebraically independent indeterminates
over k, and let Kn = k(t1, . . . , tn). Let us denote by Pn the set of subsets of
{1, . . . , n}. If I = {i1, . . . , ir} ∈ Pn, we set

(tI) = (ti1) ∪ · · · ∪ (tir ).

Notice that this definition does not depend on the numbering of the elements of I,
since the cup-product in H∗(K) is commutative.

If I = ∅, then (tI) = 1 (and thus a·(tI) = ResK/k(a) in this case).

Lemma 1.1. The cohomology classes (tI), I ∈ Pn are linearly independent over

H∗(F ).

Proof. We proceed by induction on n. Assume that n = 1, and let a0, a1 ∈ H∗(F )
such that a0·1+a1·(t1) = 0. Taking residues with respect to the valuation υt1 shows
that a1 = 0. Then multiplying by (−t1) and taking residues shows that a0 = 0.

Assume now that the result is proved for n ≥ 1, and let us prove it for n + 1

indeterminates. Let aI ∈ H∗(F ), I ∈ Pn+1 such that
∑

I

aI ·(tI) = 0. Then we

have
∑

J

aJ ·(tJ) +
∑

J

aJ∪{n+1}·(tJ ) ∪ (tn+1) = 0,

where J describes Pn. Reasoning as in the case n = 1, we get
∑

J

aJ ·(tJ ) =
∑

J

aJ∪{n+1}·(tJ ) = 0,

and by induction we have aJ = aJ∪{n+1} = 0 for all J ∈ Pn, that is aI = 0 for all
I ∈ Pn+1. This concludes the proof. �

Proposition 1.2. Let ξ ∈ H∗(Kn) be a cohomology class which is unramified at

every discrete k-valuation υ 6= υti , i = 1, . . . , n. Then there exist unique cohomology

classes aI ∈ H∗(F ) such that ξ =
∑

I

aI ·(tI).

Proof. We prove it by induction on n. Assume first that n = 1, and let a1 ∈ H∗(F )
be the residue of ξ with respect to the t1-adic valuation. Then ξ−ResK/F (a1)∪(t1)
is unramified at every discrete F -valuation υ 6= υt1 by assumption on ξ and because
a1 is constant. By choice of a1, it is also unramified at υt1 , so ξ−ResK1/F (a1)∪(t1)
is a constant class, and we may finally write

ξ = ResK1/F (a0) + ResK1/F (a1) ∪ (t1) = a0·1 + a1·(t1).

Now assume that the result is proved for n ≥ 1, and let ξ ∈ H∗(Kn+1) be a
cohomology class which is unramified at every discrete F -valuation υ 6= υti , i =
1, . . . , n + 1. In particular, it is unramified at every discrete Kn-valuation υ 6=
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υtn+1
. By the case n = 1, there exist b0, b1 ∈ H∗(Kn) such that ξ = b0·1 +

b1·(tn+1). Let υ be a discrete F -valuation on Kn, υ 6= υti , i = 1, . . . , n, and let w
the unique F -valuation on Kn+1 extending υ such that w(tn+1) = 0. Notice that
the corresponding ramification index is equal to 1. Since ξ is unramified at w, taking
residues shows that Resκ(w)/κ(υ)(rυ(b1))∪(tn+1) = 0. Now κ(w) = κ(υ)(tn+1). The
previous equality rewrites rυ(b1)·(tn+1) = 0, and by the case n = 1 (applied to the
base field κ(υ)), we get rυ(b1) = 0. Moreover, ξ ∪ (−tn+1) = b0·(−1) + b0·(tn+1) is
also unramified at w, and reasoning as before shows that rυ(b0) = 0. Hence b0 and
b1 are unramified at any discrete F -valuation υ on Kn, υ 6= υti , i = 1, . . . , n. Now

use the induction hypothesis to conclude that ξ =
∑

I

aI ·(tI) for some aI ∈ H∗(F ).

The uniqueness of the classes aI comes from the previous lemma. This completes
the proof. �

Definition 1.3. Let F : FieldsF −→ Sets be a covariant functor. A cohomological

invariant of F over F is a natural transformation F −→ H∗ of functors FieldsF
from Sets.

Cohomological invariants of F form an H∗(F )-module, that we will denote by
Inv(F, H∗).

We will need in the sequel the notion of a classifying pair for a functor F.

Definition 1.4. Let F : AlgF −→ Sets be a covariant functor. Let R be an
F -algebra, and let a ∈ F(R). We say that the pair (R, a) is classifying for F, if the
following conditions hold:

(1) The ring R is a noetherian domain;
(2) For every field extension L/F , and every a′ ∈ F(L), there exists a maximal

ideal m of R and a morphism of F -algebras f : R −→ L such that ker(f) ⊃
m and F(f) maps a onto a′.

The Specialization Theorem (cf. [2, Theorem 12.2]) then immediately gives:

Lemma 1.5. Let F : AlgF −→ Sets be a subfunctor of H1(−, G), where G is

an algebraic group over F . Assume that (R, a) is classifying for F, and let α, β ∈
Inv(F, H∗). Let K be the quotient field of R. If α(aK) = β(aK), then α = β.

2. Invariants of cyclic and bicyclic algebras

For n ≥ 1, we will denote by CSAn : AlgF −→ Sets the functor of isomorphism
classes of Azumaya algebras of rank n.

Let R be a commutative ring. Assume that n ∤ char(R) and that R contains a
primitive n-th root of 1, that we will denote by ζn. For all u, v ∈ R×, the R-algebra
{u, v}n,R generated by two elements e and f subject to the relations

en = u, fn = v, fe = ζnef

is an Azumaya R-algebra of rank n, called a symbol algebra.

For r ≥ 1, we will denote by MSn,r the subfunctor of CSAnr of isomorphism
classes of tensor products of r symbols algebras of degree n.
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We will denote by 1 the constant cohomological invariant of CSAn (where CSAn

is now viewed as a functor from FieldsF to Sets). If n = 2m, then for every field
extension K/F and every central simple K-algebra A of exponent dividing n, the
class m[A] is killed by 2, and therefore defines a cohomology class of H2(K) via the
usual isomorphism. This defines a cohomological invariant of CSAn, as well as a
cohomological invariant of MSn,r for all r ≥ 1, that we will denote by fm in both
cases. In particular, we have

fm({a1, b1}n,K ⊗F · · · ⊗F {ar, br}n,K) = (a1) ∪ (b1) + . . .+ (ar) ∪ (br)

for every field extension K/F and all ai, bi ∈ K×.

If A is a central simple F -algebra, the trace form of A is the quadratic form

qA :
A −→ F

a 7−→ TrdA(a
2).

Lemma 2.1. Assume that n ∤ char(F ) and that µn ∈ F . Assume also that n = 2m.

For all u, v ∈ F×, the trace form of {u, v}n,F is Witt-equivalent to

〈n, nu, nv, (−1)mnuv〉.

Proof. One may check that TrdA(e
if j) = 0 if (i, j) 6= (0, 0). It easily follows that

the subspaces

F ·1, F ·em, F ·fm, F ·emfm and F ·eif j ⊕ F ·en−ifm−j,

where 0 ≤ i ≤ j ≤ m, (i, j) 6= (0, 0), (0,m), (m, 0), (m,m) are mutually orthogonal.
Moreover, the 2m2 − 2 planes above are hyperbolic since eif j is isotropic. The
result then follows from the fact that the reduced traces of 1, em, fm and emfm are
respectively n, nu, nv and (−1)mnuv. This concludes the proof. �

Assume that n ∤ char(F ) and that µn ⊂ F . Moreover, assume that −1 ∈ F×2 (this
condition is automatically satisfied if n ≡ 0[4]).

If A = {u1, v1}n,F ⊗F · · · ⊗F {ur, vr}n,F , it follows from the previous lemma that
qA is Witt-equivalent to 〈nr〉〈〈u1, v1, . . . , ur, vr〉〉. Therefore, qA ∈ I2rF , and we
have

e2r(qA) = (u1) ∪ (v1) ∪ · · · ∪ (ur) ∪ (vr).

This defines an element of Inv(MSn,r, H
∗) that we denote by e2r.

Proposition 2.2. Let F be a field of characteristic different from 2, and let n =
2m.

(1) Assume that n ∤ char(F ), and that ζn ∈ F, where ζn is a primitive nth-root

of 1. Then Inv(MSn,1, H
∗) is a free H∗(F )-module with basis 1, fm.

(2) Assume moreover that −1 ∈ F×2. Then Inv(MSn,2, H
∗) is a free H∗(F )-

module with basis 1, fm, e4.

Proof. We first prove (1). Let α ∈ Inv(MSn,1, H
∗). Let t1, t2 be two indetermi-

nates over F , and let K = F (t1, t2). Set A = {t1, t2}n,K , and let υ 6= υti , i = 1, 2
be a discrete F -valuation. By assumption on υ, t1, t2 ∈ O×

υ , and we have A ≃
{t1, t2}n,Oυ

⊗Oυ
K. It follows from [2, Theorem 11.7] that the class αK({t1, t2}n,K)

is unramified at υ. By Proposition 1.2, there exist a0, a1, a2, a3 ∈ H∗(F ) such that
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αK({t1, t2}n,K) = a0·1 + a1·(t1) + a2·(t2) + a3·(t1) ∪ (t2).

Now let υ be the (t1 − 1)-adic valuation on F (t2). Applying [2, Theorem 11.7]
shows by specialization that

αK({1, t2}n,F (t2)) = a0·1 + a2·(t2),
that is

αK(Mn(F (t2))) = a0·1 + a2·(t2).

Now Mn(F (t2)) is unramified at υt2 , and therefore, so is αK(Mn(F (t2))). Taking
residues then yields a2 = 0. Similar arguments show that a1 = 0, and thus

αK({t1, t2}n,K) = a0·1 + a3·(t1) ∪ (t2).

Let R = F [t1, t
−1
1 , t2, t

−1
2 ]. It is clear that the pair (R, {t1, t2}n,R) is classifying for

MSn,1. The previous equality shows that the invariants α and a0·1+a3·fm coincide
on a classifying pair, hence they are equal by Lemma 1.5. Moreover, if a0·1+a3·fm =
0, then applying this equality to {t1, t2}n,K shows that a0·1 + a3·(t1) ∪ (t2) = 0.
Lemma 1.1 then yields a0 = a3 = 0. This proves (1).

Assume now that −1 ∈ F×2. The fact that 1, fm, e4 are linearly independent over
H∗(F ) easily comes from Lemma 1.1. Let α ∈ Inv(MSn,2, H

∗), let K/F be a field
extension, and let A be a symbol algebra over K. Any field extension L/K yields
a field extension L/F , and the maps

βL :
MSn,r(L) −→ H∗(L)

B 7−→ αL(B ⊗L AL)

fit together into a cohomological invariant β ∈ Inv(MSn,1, H
∗). By (1), there exists

αi,K(A) ∈ H∗(K) such that

β = α0,K(A)·1 + α1,K(A)·fm.

By linear independence of 1, fm (over the base field K), these classes are unique.
It easily follows that αi,K(A) only depends on the isomorphism class of A. More-
over, it follows from the uniqueness of αi,K(A) and the fact that α is a coho-
mological invariant that the maps αi,K fit together into a cohomological invari-
ant αi ∈ Inv(MSn,1, H

∗). By (1), we may write αi = ai·1 + bi·fm, for some
ai, bi ∈ H∗(F ).

Taking K = F (u1, v1, u2, v2), where ui, vi are indeterminates, B = {u1, v1}n,K and
A = {u2, v2}n,K , we get

αK({u1, v1}n,K ⊗K {u2, v2}n,K) = a0·1 + b0·(u2) ∪ (v2)
+(a1·1 + b1·(u2) ∪ (v2)) ∪ (u1) ∪ (v1).

The F -automorphism of K which exchanges u1 and u2, and exchanges v1 and v2,
induces maps MSn,2(K) −→ MSn,2(K) and H∗(K) −→ H∗(K). Notice that the
first one maps the isomorphism class of {u1, v1}n,K⊗K {u2, v2}n,K onto itself. Since
α commutes with induced maps, we then get

αK({u1, v1}n,K ⊗K {u2, v2}n,K) = a0·1 + b0·(u1) ∪ (v1)
+(a1·1 + b1·(u1) ∪ (v1)) ∪ (u2) ∪ (v2).

Comparing with the previous equality and using Lemma 1.1, we get that b0 = a1.
Therefore, {u1, v1}n,K ⊗K {u2, v2}n,K has same image by α and by a0·1 + a1·fm +
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b1·e4. Now let R = F [ui, u
−1
i , vi, v

−1
i , i = 1, 2]. Since the pair (R, {u1, v1}n,R ⊗R

{u2, v2}n,R) is classifying for MSn,2, it follows from the previous considerations
that the invariants α and a0·1 + a1·fm + b2·e4 are equal. This concludes the proof.

�

3. Central simple algebras of degree 4

We start this section with a parametrization of central simple algebras of degree 4.

Let R be a commutative ring such that 2 ∈ R×. If a ∈ R×, we will denote by
R[

√
a] the étale quadratic R-algebra R[X ]/(X2 − a).

Let L be a biquadratic étale R-algebra, that is an R-algebra L generated by two
elements α, β subject to the relations

α2 = d, β2 = d′, αβ = βα,

for some d, d′ ∈ R×. Such an algebra will be denoted by F [
√
d,
√
d′].

The group G of automorphisms of the R-algebra L = F [
√
d,
√
d′] is isomorphic

to Z/2Z × Z/2Z, generated by the automorphisms σ and τ which are uniquely
determined by the following relations:

σ(α) = α, σ(β) = −β, τ(α) = −α, τ(β) = β.

Let a ∈ R[
√
d]×, b ∈ R[

√
d′]×, c ∈ R[

√
dd′]×, and set

na = NR[
√
d]/R(a), nb = NR[

√
d′]/R(b), nc = NR[

√
dd′]/R(c).

Notice that na, nb, nc ∈ R× and that we have

na = aτ(a), nb = bσ(b), nc = cσ(c) = cτ(c).

Assume that nc = nanb, and let 1, eσ, eτ , eστ be the canonical basis of the L-vector
space Map(G,L). We define a product law on Map(G,L) by imposing the relations

e2σ = a, e2τ = b, e2στ = c, eσeτ = eστ ,

eσλ = σ(λ)eσ , eτλ = τ(λ)eτ , for all λ ∈ L,

and extending by distributivity.

By definition, the elements eρ, ρ ∈ G are invertible with respect to this product
law. Notice that the missing products eρeρ′ , ρ, ρ′ ∈ G may be obtained using the
relations above, so that the product law on Map(G,L) is completely determined.
For example, we have

eτeστ = e−1
σ eσeτeστ = e−1

σ (eστ )
2 = a−1eσc = a−1σ(c)eσ.

One can check that we obtain an Azumaya R-algebra of rank 4, that we will de-
note by (a, b, c, L/R). Notice that if we set e = eσ and f = eτ , then we have
(a, b, c, L/R) = L⊕ Le⊕ Lf ⊕ Lef , and

e2 = a, f2 = b, (ef)2 = c, eλ = σ(λ)e, fλ = τ(λ)f, for all λ ∈ L.

Notice also for later use that we have fe = a−1σ(cb−1)ef , since

fe = e−1(ef)2f−1 = a−1ecb−1f = a−1σ(cb−1)ef.



COHOMOLOGICAL INVARIANTS OF CENTRAL SIMPLE ALGEBRAS OF DEGREE 4 7

Lemma 3.1. Let F be a field of characteristic different from 2. Then every central

simple F -algebra of degree 4 is isomorphic to some (a, b, c, L/F ). Moreover, one

may assume that a, b, c /∈ F×.

Proof. Assume first that A is a division F -algebra. By a theorem of Albert
(see [1, Theorem 11.9] for example), A contains a biquadratic étale F -algebra L.
By Skolem-Noether’s theorem, σ and τ extend to inner automorphisms Int(e) and
Int(f) of A, for some e, f ∈ A×. This rewrites

eλ = σ(λ)e, fλ = τ(λ)f, for all λ ∈ L.

Since Int(e)|L = σ, we have

Int(e2)|L = (Int(e)|L)
2 = σ2 = IdL,

so a = e2 ∈ CA(L) = L (since L is a maximal subfield of A) . Since e ∈ A×, we
have a ∈ L×. Similarly, b = f2 ∈ L× and c = (ef)2 ∈ L×.

Associativity of the product law of A implies that

σ(a) = a, τ(b) = b, στ(c) = c, nc = nanb.

Indeed, we have

e3 = ee2 = ea = σ(a)e = e2e = ae,

and since e is invertible, we get σ(a) = a. Similar arguments show that τ(b) = b
and στ(c) = c. We also have

be = f2e
= f(fe)
= fa−1σ(cb−1)ef
= τ(a−1σ(cb−1))f(ef)
= cτ(a)−1σ(b)−1(fe)f
= cτ(a)−1σ(b)−1a−1σ(cb−1)(ef)f
= cτ(a)−1σ(b)−1a−1σ(c)σ(b)−1eb
= cτ(a)−1σ(b)−1σ(c)a−1σ(b)−1σ(b)e
= ncn

−1
a σ(b)−1e.

Since e is invertible, we get b = ncn
−1
a σ(b)−1, that is nc = nanb. The proof

of the linear independence of 1, e, f, ef over L is straightforward and left to the
reader. Hence A contains a subalgebra isomorphic to (a, b, c, L/F ), and therefore
A ≃ (a, b, c, L/F ) since they have same dimension over F .

Assume now that A is not a division algebra. Then A ≃ M2(Q), where Q = (d, d′)
is a (not necessarily division) quaternion F -algebra.

Let L = F [
√
d,
√
d′] be a biquadratic extension with generators α and β, and let us

consider the F -algebra (d, 1, d, L/F ). We then have

e2 = d, f2 = 1, (ef)2 = d, eα = αe, eβ = −βe, fα = −αf, fβ = βf.

Notice that we also have fe = dσ(d−1)ef = ef .

Set i = e, j = βf, i′ = f, j′ = αe. It is straightforward to check that the F -algebra
B generated by i and j is isomorphic to Q, and that the F -algebra B′ generated
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by i′ and j′ is isomorphic to (1, d2) ≃ M2(F ). Moreover one may check that B′ is
the centralizer of B. Since B′ is a central simple F -algebra, we get

(d, 1, d, L/F ) ≃ B ⊗F B′ ≃ Q⊗F M2(F ) ≃ M2(Q) ≃ A.

We now prove the last part. Write A ≃ (a, b, c, L/F ), for some biquadratic étale

F -algebra L = F [
√
d,
√
d′]. Replacing f by (1 + α + β)f , one may assume that

b /∈ F×. Indeed, if b ∈ F×, we then have

[(1 + α+ β)f ]2 = (1 + α+ β)(1 − α+ β)f2 = b(1 + d′ − d+ 2β) /∈ F×.

Write a = a0 + a1α. Notice that, for all s ∈ F×, we have

[(s+ α+ β)e]2 = (s2 + d− d′ + 2sα)(a0 + a1α)
= (a0(s

2 + d′ − d) + 2sa1d) + (a1(s
2 + d− d′) + 2a0s)α,

and

[(s+ α+ β)ef ]2 = (s+ α+ β)(s− α− β)c = c(s2 − d− d′ − 2αβ).

Thus, after replacing e by (s+α+ β)e for a suitable s ∈ F×, one may also assume
that a, c /∈ F×. This concludes the proof. �

Remark 3.2. For any biquadratic F -algebra L, we have M4(F ) ≃ (1, 1, 1, L/F ).

Indeed, the subalgebra B generated by e and β is isomorphic to (1, d′) ≃ M2(F ),
and its centralizer C is the subalgebra generated by f and αe, which is isomorphic
to (1, d2) ≃ M2(F ). Since B is a central simple F -algebra, we have

(1, 1, 1, L/F ) ≃ B ⊗F C ≃ M2(F )⊗F M2(F ) ≃ M4(F ).

Proposition 3.3. Let F be a field of characteristic different from 2, and let A =
(a, b, c, L/F ). Then

2[A] = [(d, nc)] ∈ Br(F ).

Proof. Recall from [4] that for every central simple F -algebra of degree n, we have

det(qA) = det(qMn(F )), w2(qA) = w2(qMn(F )) +
n(n− 1)

2
[A].

Since qA and qMn(F ) have same dimension and determinant, the quadratic form

qA ⊥ −qMn(F ) lies in I2(F ), and the second equality may be rewritten as

c(qA ⊥ −qMn(F )) =
n(n− 1)

2
[A],

where c denotes the Clifford invariant. In particular, if n = 4, we have

c(qA ⊥ −qMn(F )) = 6[A] = 2[A].

Let us introduce some notation. Let E be an F -algebra. For u ∈ E×, we denote
by qE,u the quadratic form

qE,u :
E −→ F

x 7−→ TrE/F (ux
2).

If u = 1, we denote it by qE .
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Let ρ be an F -automorphism of L satisfying ρ2 = IdE . If u ∈ E×, ρ(u) = u, we
denote by qE,ρ,u the quadratic form

qE,ρ,u :
E −→ F

x 7−→ TrE/F (uxρ(x))

If u = 1, we denote it by qE,ρ.

Now assume that A = (a, b, u, L/F ). It is easy to check that we have

TrdA(x+ ye+ zf + tef) = TrL/F (x), for all x, y, z, t,∈ L.

This implies that the subspaces L,Le, Lf and Lef are mutually orthogonal. It
follows from the previous observation that we have

qA ≃ qL ⊥ qL,σ,a ⊥ qL,τ,b ⊥ qL,στ,c.

Let ρ be an F -automorphism of L, and assume that ρ 6= IdL, so we may write
L〈ρ〉 = F [

√
∆], and L = L〈ρ〉[

√
∆′]. Notice that uxρ(x) ∈ L〈ρ〉, so that we have

TrL/F (uxρ(x)) = 2TrL〈ρ〉/F (uxρ(x)).

Now if x = x0 + x1α
′ where α′2 = ∆′ and xi ∈ L〈ρ〉, we have xρ(x) = x2

0 −∆′x2
1,

and therefore

qL,ρ,u ≃ 〈2,−2∆′〉 ⊗ qL〈ρ〉,u.

Write u = u0 + u1

√
∆, ui ∈ F , and set nu = u2

0 −∆u2
1. The representative matrix

of the previous quadratic form in the basis 1,
√
∆ is

(

2u0 2u1∆
2u1∆ 2u0∆

)

.

If u0 = 0, this 2-dimensional quadratic form is isotropic, hence hyperbolic. If
u0 6= 0, this form then represents 2u0 and has determinant 4nu∆, so it is isomorphic
to 〈2u0〉 ⊗ 〈1, nu∆〉. We then get

qL,ρ,u ≃ 〈u0〉 ⊗ 〈〈−nu∆,∆′〉〉,
where this form has to be understood as the hyperbolic form of dimension 4 if
u0 = 0. Taking u = 1, we get

qL,ρ ≃ 〈〈−∆,∆′〉〉,
and thus

qL,ρ,u ⊥ −qL,ρ ≃ 〈1,−∆′〉 ⊗ 〈u0, u0nu∆, 1,∆〉.
Since c(ϕ ⊗ ϕ′) = [(disc(ϕ), disc(ϕ′))] for every even-dimensional forms ϕ, ϕ′, we
get

c(qL,ρ,u ⊥ −qL,ρ) = [(∆′, nu)].

Remark 3.2 implies that qA ⊥ −qM4(F ) is Witt-equivalent to

(qL,σ,a ⊥ −qL,σ) ⊥ (qL,τ,b ⊥ −qL,τ) ⊥ (qL,στ,c ⊥ −qL,στ ).

We then finally get

c(qA ⊥ −qM4(F )) = [(d′, na)] + [(d, nb)] + [(d, nc)].
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Since the quaternion algebras (d, na), (d
′, nb) and (dd′, nc) are split, we get

c(qA ⊥ −qM4(F )) = [(dd′, na)] + [(dd′, nb)] + [(d, nc)]
= [(dd′, nanb)] + [(d, nc)]
= [(dd′, nc)] + [(d, nc)]
= [(d, nc)].

This concludes the proof. �

We now define a classifying pair forCSA4. Let us consider the affine variety V ⊂ A6

defined by the equation

x2 − uy2 − vz2 + uvt2 + uv = 0.

This is a rational variety, with coordinate ring

F [V ] = F [X,Y, Z, T, U, V ]/(X2 − UY 2 − V Z2 + UV T 2 + UV ).

Let us denote by x,y, z, t,u,v the images of X,Y, Z, T, U, V in F [V ] respectively.
Notice that u and v are algebraically independent over F . Indeed, we have a
surjective F -algebra morphism

F [V ] −→ F [V, Z]

P (x,y, z, t,u,v) 7−→ P (0, i, Z, i, V Z2, V )

which maps u and v onto V Z2 and V respectively. Since V Z2 and V are alge-
braically independent over F , so are u and v.

Now let us consider the open subset U of V defined by the equations

u 6= 0, v 6= 0, t 6= 0, y2 − vt2 6= 0, z2 − u 6= 0.

Then U is also a rational variety, whose coordinate ring F [U ] is the localization
of F [V ] at u,v, t,y2 − vt2 and z2 − u. Set R0 = F [U ]. Then R0 is a noetherian
ring, whose quotient field F0 is a rational extension of F . Moreover, u,v ∈ R0 are
algebraically independent over F . In particular, there exists a transcendence basis
of F0/F containing u and v.

Set w = u(y2 − vt2) ∈ R×
0 and let L0 = R0[

√
u,

√
uw]. We now define three

elements a0,b0, c0 ∈ L×
0 by

a0 = z+
√
u ∈ R0[

√
u]×,b0 =

y

t
+

√
uw

tu
∈ R0[

√
uw]×, c0 = x+

√
w ∈ R0[

√
w]×.

Let us check that na0
nb0

= nc0 . We have

na0
nb0

=
(z2 − u)(y2u2 − uw)

t2u2
=

(z2 − u)(y2u−w)

t2u
.

Since y2u−w = uvt2, we get na0
nb0

= (z2 − u)v. Now z2v − uv = x2 − uy2 +
uvt2 = x2 − w = nc0 , and we are done. Hence we may consider the Azumaya
algebra

A0 = (a0,b0, c0, L0/R0).

Lemma 3.4. The pair (R0,A0) is classifying for CSA4.
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Proof. Let E/F be a field extension, and let A be a central simple E-algebra
of degree 4. By Lemma 3.1, we have A ≃ (a, b, c, L/E), with a, b, c /∈ E×. Write

L = E[
√
d,
√
d′], with generators α, β. Write

a = λ0 + λ1α, b = µ0 + µ1β, c = γ0 + γ1αβ.

We set

x = γ0, y =
µ0γ1
λ1µ1

, z = λ0, t =
γ1

λ1µ1
, u = λ2

1d, v = µ2
0 − µ2

1d
′.

Using the equality

(λ2
0 − λ2

1d)(µ
2
0 − µ2

1d) = (γ2
0 − γ2

1dd
′),

and the fact that λ1, µ1, γ1 ∈ F×, one may check that p = (x, y, z, t, u, v) ∈ U(E).
Then evaluation at p yields an F -algebra morphism f : R0 −→ E such that

A0 ⊗R0
E ≃ A.

Now it suffices to notice that ker(f) = (x − x,y − y, z − z, t− t,u− u,v − v) is a
maximal ideal to conclude. �

4. Cohomological invariants of CSA4

We now prove the following theorem, due to Rost (unpublished):

Theorem 4.1 (Rost). Let F be a field of characteristic different from 2. Assume

that −1 ∈ F×2. Then the map

Inv(CSA4, H
∗) −→ Inv(MS2,2, H

∗)× Inv(MS4,1, H
∗)

is injective. In other words, a cohomological invariant which is zero on biquaternion

algebras and cyclic algebras is identically zero.

Proof. Let α ∈ Inv(CSA4, H
∗). Let (R0, A0) be the classifying pair of CSA4

defined in the previous section, and let F0 be the quotient field of R0. Finally, set

A0 = A0 ⊗R0
F0 = (z+

√
u,

y

t
+

√
uw

tu
,x+

√
w, F0[

√
u,

√
uw]/F0).

Notice that we have 2[A0] = [(u,v)] in Br(F0). Indeed, by Proposition 3.3, we have

2[A0] = [(u,x2 −w)]
= [(u,x2 − uy2 + uvt2)]
= [(u,vz2)]
= [(u,v)].

Let υ be a discrete F -valuation on F0. If υ 6= υπ, with π = u,v, t,y2 −vt2, z2 −u,

then u,v,w, t ∈ O×
υ and z +

√
u,

y

t
+

√
uw

tu
,x +

√
w ∈ Oυ[

√
u,

√
uw]×. We then

get that

A0 ≃ (z+
√
u,

y

t
+

√
uw

tu
,x+

√
w,Oυ[

√
u,

√
uw]/Oυ)⊗Oυ

F0,

and therefore αF0
(A0) is unramified at υ by [2, Theorem 11.7] .

Assume now that υ = υπ, with π = t, z2 − u or y2 − tv2. Then u,v ∈ O×
υ , and

thus we have
(u) ∪ (v) = jυ((u) ∪ (v)),
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where jυ : H2(κ(υ)) →֒ H2((F0)υ) is the canonical injection. Now in all three cases,
the quadratic form 〈1,−u,−v,uv〉 is isotropic over κ(υ). It is clear if π = z2 − u

or y2 − vt2, and it follows from the equalities

0 = x2 − uy2 − vz2 + uvt2 + uv = x2 − uy2 − vz2 + uv mod t,

if π = t. Thus (u) ∪ (v) = 0, and therefore (u) ∪ (v) = 0 as well. Hence the
quaternion algebra (u,v) splits over (F0)υ, and thus 2[A0] splits over (F0)υ. By a
theorem of Albert, A0 ⊗F0

(F0)υ is a biquaternion algebra. By assumption, we get

Res(F0)υ/F0
(αF0

(A0)) = α(F0)υ (A0 ⊗F0
(F0)υ) = 0.

Consequently, rυ(αF0
(A0)) = 0 and αF0

(A0) is once again unramified at υ.

Finally, αF0
(A0) is unramified at every discrete F -valuation υ 6= υu, υv. In par-

ticular, it is unramified at every F1-valuation, where F1 = F (u,v). Since there
exists a transcendence basis of F0/F containing u and v, the field extension F0/F1

is rational, and we deduce that αF0
(A0) = ResF0/F1

(β), for some β ∈ H∗(F1). Let
υ1 be a discrete F -valuation on F0, which different from the u-adic and the v-adic
valuations. Let us show that β is unramified at υ1.

Let u,v, t1, t2, t3 be a transcendence basis of F0/F , and let us extend υ1 to a discrete
F -valuation υ on F0 by setting

υF1
= υ1, υ(ti) = 0, i = 1, 2, 3.

Then the corresponding ramification index is 1 and κ(υ1) = κ(υ)(t1, t2, t3), so that
κ(υ)/κ(υ1) is a rational extension. Since αF0

(A0) is unramified at υ, we get

0 = rυ(αF0
(A0)) = Resκ(υ)/κ(υ1)(rυ1

(β)).

Since κ(υ)/κ(υ1) is rational, the map Resκ(υ)/κ(υ1) is injective, and we get that β
is unramified at υ1. By Proposition 1.2, we have

β = a0·1 + a1·(u) + a2·(v) + a3·(u) ∪ (v), ai ∈ H∗(F ).

Hence we get

αF0
(A0) = a0·1 + a1·ResF0/F1

((u)) + a2·ResF0/F1
((v)) + a3·ResF0/F1

((u) ∪ (v)).

Let us consider the (v− 1)-adic valuation on F0, and let F2 its residue field. Since
A0 is unramified at this valuation, one may specialize A0 to a central simple F2-
algebra B. Then 2[A0] specializes to 2[B]. But 2[A0] = [(u,v)] specializes to 0,
and therefore B is a biquaternion algebra. Then αF2

(B) = 0 by assumption, and
therefore

a0·1 + a1·ResF2/F1
((u)) = 0.

In other words, ResF2/F1
(a0·1 + a1·(u)) = 0. Since F1 ⊂ F2 ⊂ F0, and F0/F1 is

rational, the map ResF2/F1
is injective and thus

a0·1 + a1·(u) = 0 in H∗(F1).

By Lemma 1.1, we get a0 = a1 = 0. Considering the (u − 1)-adic valuation yields
that a2 = 0 in a similar way, so that

αF0
(A0) = a3·ResF0/F1

((u) ∪ (v)).

Since ResF0/F1
((u) ∪ (v)) corresponds to [(u,v)] = 2[A0] in Br2(F0) via the usual

isomorphism, the previous equality rewrites

αF0
(A0) = a3·f2,F0

(A0).
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By Lemma 1.5, we get α = a3·f2. By assumption on α, we then have

0 = αF1
({u,v}4,F1

) = a3·(u) ∪ (v) ∈ H∗(F1).

By Lemma 1.1, we get a3 = 0, and thus α = 0. This concludes the proof. �

We now describe the cohomological invariants of CSA4. Let F be a field of charac-
teristic different from 2. Assume that −1 ∈ F×2, and let K/F be a field extension.
By [5], for every central simple K-algebra A of degree 4, there exists a unique 2-fold
Pfister form q2 and a unique 4-fold Pfister form q4 such that

qA ∼ q2 + q4 ∈ W (K).

Taking the cohomology class e4(q4) ∈ H4(K) yields a cohomological invariant of
Inv(CSA4, H

∗). This invariant restricts to zero on cyclic algebras, and its re-
striction to MS2,2 obviously coincide with the invariant e4 defined in Section 2.
Therefore, we still denote this invariant by e4.

Corollary 4.2. Let F be a field of characteristic different from 2. Assume that

−1 ∈ F×2. Then Inv(CSA4, H
∗) is a free H∗(F )-module with basis 1, f2, e4.

Proof. We first prove that 1, f2, e4 are linearly independent. Assume that we have

a0·1 + a1·f2 + a2·e4 = 0 for some ai ∈ H∗(F ).

Since the restriction of e4 to MS4,1 is zero, it follows that a0 + a1·f2 = 0 ∈
Inv(MS4,1, H

∗). By Proposition 2.2 (1), we get a0 = a1 = 0. Thus, we get
a2·e4 = 0 ∈ Inv(CSA4, H

∗). In particular, a2·e4 = 0 ∈ Inv(MS2,2, H
∗). By

Proposition 2.2 (2), we get a2 = 0.

We now prove that 1, f2, e4 span Inv(CSA4, H
∗) as an H∗(F )-module. Let α ∈

Inv(CSA4, H
∗). By Proposition 2.2, we have

α|MS2,2
= a0·1 + a1·f2 + a2·e4,

for some ai ∈ H∗(F ), and also

α|MS4,1
= b0·1 + b1·f2,

for some bi ∈ H∗(F ). Since M4(F ) ≃ {1, 1}4,F ≃ (1, 1) ⊗F (1, 1), we may apply
M4(F ) to both equalities to get a0 = b0.

Let u, v be two independent indeterminates over F . We have

M2((u, v)) ≃ (1, 1)⊗F (u,v) (u, v) ≃ {u2, v2}4,F (u,v),

and applying M2((u, v)) to both equalities yields

a1·(u) ∪ (v) = b1·(u) ∪ (v) ∈ H∗(F (u, v)).

It follows from Lemma 1.1 that a1 = b1. Since e4 is zero on MS4,1, we conclude
that α and a0·1 + a1·f2 + a2·e4 coincide on MS4,1 and MS2,2. By the previous
theorem, we get α = a0·1 + a1·f2 + a2·e4, and this concludes the proof. �
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