Admissibility of groups over function fields of p-adic curves

B. Surendranath Reddy and V. Suresh

Abstract

Let K be a field and G a finite group. The question of 'admissibility' of G over K was originally posed by Schacher, who gave partial results in the case $K=\mathbb{Q}$. In this paper, we give necessary conditions for admissibility of a finite group G over function fields of curves over complete discretely valued fields. Using this criterion, we give an example of a finite group which is not admissible over $\mathbb{Q}_{p}(t)$. We also prove a certain Hasse principle for division algebras over such fields.

Introduction

Let K be a field and G a finite group. We say that G is admissible over K if there exists a division ring D central over K and a maximal subfield L of D which is Galois over K with Galois group G. Schacher asked, given a field K, which finite groups are admissible over K and proved that if a finite group G is admissible over \mathbb{Q}, then every Sylow subgroup of G is metacyclic ([Sc], 4.1). This led to the conjecture that a finite group G is admissible over \mathbb{Q} if and only if every Sylow subgroup of G is meta-cyclic. This conjecture has been proved for all solvable groups ([So]) and for certain non-solvable groups of small order ([CS], [FS], [Fe1], [Fe2], [Fe3]).

Recently Harbater, Hartman and Krashen ([HHK2], 4.5) gave a characterization of admissible groups over function fields of curves over complete discretely valued fields with algebraically closed residue fields. In this paper, we consider the function fields of curves over complete discretely valued fields without any assumptions on the residue fields and prove the following

Theorem 1. Let K be a complete discretely valued field with residue field k and $F=K(X)$ be the function field of a curve X over K. Let G be a finite
group. Suppose that the order of G is coprime to $\operatorname{char}(k)$. If G is admissible over F then every Sylow subgroup P of G has a normal series $P \supseteq P_{1} \supseteq P_{2}$ such that
(1) P / P_{1} and P_{2} are cyclic
(2) P_{1} / P_{2} is admissible over a finite extension of the residue field of a discrete valuation of F.

A main ingredient for the proof of the above theorem is the following Hasse principle for central simple algebras, which has independent interest.

Theorem 2. Let K be a complete discretely valued field with residue field k and $F=K(X)$ be the function field of a curve X over K. Let A be a central simple algebra over F of degree $n=\ell^{r}$ for some prime ℓ and $r \geq 1$. Assume that ℓ is not equal to $\operatorname{char}(k)$ and K contains a primitive $n^{\text {th }}$ root of unity. Then $\operatorname{index}(A)=\operatorname{index}\left(A \otimes F_{v}\right)$ for some discrete valuation v of F.

For the proof of the above theorem, we use the patching techniques of ([HHK1]). A similar Hasse principle is proved for quadratic forms over such fields in ([CTPS], 3.1). In ([HHK3], 9.12), it is proved that if a central simple algebra A over F (F as above), is split over F_{ν} for all discrete valuations on F, then A is split over F.

There are some examples of classes of finite groups which are admissible over the rational function fields. However there was no example, in the literature, of a finite group which is not admissible over $\mathbb{Q}_{p}(t)$. Using Theorem 1 , we give an example of a finite group which is not admissible over $\mathbb{Q}_{p}(t)$. We also prove admissibility of a certain class of groups over $\mathbb{Q}_{p}(t)$ using patching techniques.

Theorem 3. Let K be a p-adic field and F the function field of a curve over F. Let G be a finite group with order coprime to $\operatorname{char}(k)$. If every Sylow subgroup of G is a quotient of \mathbb{Z}^{4}, then G is admissible over F.

In [FSS], it was proved that every abelian group on three or less generators is admissible over $\mathbb{Q}(t)$. We conclude by showing that every abelian group of order n with four or less generators is admissible over $\mathbb{Q}(\zeta)(t)$, where ζ is a primitive $n^{\text {th }}$ root of unity.

1. Some Preliminaries

In this section we recall a few basic definitions and facts about division algebras and patching techniques ([GS], [HH], [HHK1], [P], [S2], [Sc], [Sch],
[Ser]).
Let K be a field and $\operatorname{Br}(K)$ be the Brauer group of central simple algebras over K. For an integer $n \geq 2$, let ${ }_{n} \operatorname{Br}(K)$ denote the n-torsion subgroup of $\operatorname{Br}(K)$. If A and B are two central simple algebras over K, we write $A \simeq B$ if A and B are isomorphic as K-algebras and we write $A=B$ if they represent the same element in $\operatorname{Br}(K)$. Let n be an integer coprime to $\operatorname{char}(K)$. Suppose E / K is a cyclic extension of degree n and σ a generator of $\operatorname{Gal}(E / K)$. For $b \in K^{*}$, let $(E / K, \sigma, b)$ (or simply (E, σ, b)) be the K algebra generated by E and y with $y^{n}=b$ and $\lambda y=y \sigma(\lambda)$ for all $\lambda \in E$. Then (E, σ, b) is a central simple algebra over K and represents an element in ${ }_{n} \operatorname{Br}(K)$. Suppose that K contains a primitive $n^{\text {th }}$ root of unity. Then $E=K(\sqrt[n]{a})$ for some $a \in K^{*}$ and $\sigma(\sqrt[n]{a})=\zeta \sqrt[n]{a}$ for a primitive $n^{t h}$ root of unity $\zeta \in K^{*}$. The algebra (E, σ, b) is generated by x, y with $x^{n}=a, y^{n}=b$ and $x y=\zeta y x$ and we denote the algebra (E, σ, b) by $(a, b)_{n}$.

Suppose that ν is a discrete valuation of K with residue field k. Let n be a natural number which is coprime to $\operatorname{char}(k)$. Then we have a residue homomorphism $\partial_{\nu}:{ }_{n} \operatorname{Br}(K) \rightarrow H^{1}(k, \mathbb{Z} / n \mathbb{Z})$, where $H^{1}(k, \mathbb{Z} / n \mathbb{Z})$ denotes the first Galois cohomology group. Suppose k contains a primitive $n^{\text {th }}$ root of unity. By fixing a primitive $n^{\text {th }}$ root of unity, we identify $H^{1}(k, \mathbb{Z} / n \mathbb{Z})$ with $k^{*} / k^{* n}$. With this identification we have $\partial_{\nu}\left((a, b)_{n}\right)=\overline{\frac{a^{\nu(b)}}{b^{\nu(a)}}} \in k^{*} / k^{* n}$, where for any $c \in K^{*}$ which is a unit at ν, \bar{c} denotes its image in k^{*}. More generally, let E / K be a cyclic unramified inert extension of K and $\sigma \in \operatorname{Gal}(E / K)$ be a generator. Let $\pi \in K^{*}$ be a parameter at ν. Then the residue of $(E / K, \sigma, \pi)$ is $\left(E_{0} / k, \sigma_{0}\right)$, where k is the residue field of K at ν, E_{0} is the residue field of E at the unique extension of ν to E and σ_{0} is the image of σ.

Let K be a field and n an integer. Then $H^{1}(K, \mathbb{Z} / n \mathbb{Z})$ classifies the equivalence classes of pairs (E, σ), where E is a cyclic Galois field extension of K of degree a divisor of n and σ a generator of the Galois group $G(E / K)$ of E / K. Let (E, σ) be a pair representing an element in $H^{1}(K, \mathbb{Z} / n \mathbb{Z})$. Let $m \geq 1$ be an integer. We now describe $m(E, \sigma)$ in the group $H^{1}(K, \mathbb{Z} / n \mathbb{Z})$. Let d be the greatest common divisor of m and $[E: K]$. Let $E(m)$ be the subfield of E fixed by $\sigma^{[E: K] / d}$ and $\sigma(m)$ be the restriction of $\sigma^{m / d}$ to $E(m)$. Then $m(E, \sigma)=\left(E(m), \sigma^{m / d}\right)$. The order of (E, σ) in $H^{1}(K, \mathbb{Z} / n \mathbb{Z})$ is equal to $[E: K]$. Since the identity element of $H^{1}(K, \mathbb{Z} / n \mathbb{Z})$ is $(K, i d)$, we have $m(E, \sigma)$ is trivial in $H^{1}(K, \mathbb{Z} / n \mathbb{Z})$ if and only if $E(m)=K$ if and only if $[E: K]$ divides m.

Let K be a complete discretely valued field with residue field k. Let L / K be a finite extension of K. Since K is complete, the discrete valuation of K extends uniquely to a discrete valuation of L and L is complete with respect to this discrete valuation. Let n be a natural number which is coprime to
the characteristic of k. Let L / K be a Galois extension of degree n. Let L_{1} be the maximal unramified extension of K. Since n is coprime to $\operatorname{char}(k)$, the residue field L_{0} of L is same as the residue field of L_{1}. Since L / K is Galois, L_{1} / K and L_{0} / k are also Galois and there is a natural isomorphism $\operatorname{Gal}(L / K) \rightarrow \operatorname{Gal}\left(L_{0} / k\right)$. Let E_{0} / k be a cyclic extension of degree n. Then there exists a unique (up to isomorphism) unramified cyclic extension E of K with residue field E_{0} and a natural isomorphism $\operatorname{Gal}(E / K) \rightarrow \operatorname{Gal}\left(E_{0} / k\right)$. Let $\left(E_{0}, \sigma_{0}\right) \in H^{1}(k, \mathbb{Z} / n \mathbb{Z})$. Then we have a unique $(E, \sigma) \in H^{1}(K, \mathbb{Z} / n \mathbb{Z})$ with $[E: K]=\left[E_{0}: k\right], E_{0}$ as the residue field of E and the image of σ equal to $\sigma_{0} ;(E, \sigma)$ is called the lift of $\left(E_{0}, \sigma_{0}\right)$.

Let \mathcal{X} be a regular integral scheme with function field F. Let n be an integer which is a unit on \mathcal{X}. Let $f \in F$ and $P \in \mathcal{X}$ be a point. If f is regular at P, then we denote its image in the residue field $\kappa(P)$ at P by $f(P)$. Let \mathcal{X}^{1} denote the set of codimension one points of \mathcal{X}. For each codimension one point x of \mathcal{X}, we have discrete valuation ν_{x} on F. Let $\kappa(x)$ denote the residue field at x. Since n is a unit on \mathcal{X}, n is coprime to $\operatorname{char}(\kappa(x))$ and we have the residue homomorphism $\partial_{x}:{ }_{n} \operatorname{Br}(F) \rightarrow H^{1}(\kappa(x), \mathbb{Z} / n \mathbb{Z})$. Let $\alpha \in{ }_{n} \operatorname{Br}(F)$. We say that α is unramified at x if $\partial_{x}(\alpha)=0$. We say that α is unramified on \mathcal{X} if it is unramified at every codimension one point of \mathcal{X}. Let A be a central simple algebra over F. We say tat A is unramified if its class in $\operatorname{Br}(F)$ is unramified. If $\mathcal{X}=\operatorname{Spec}(B)$, then we say that α is unramified on B if it is unramified on \mathcal{X}.

Let F be a field and A a central simple algebra over F. Then $A \simeq M_{m}(D)$ for some central division algebra D over F. The degree of A is defined as $\sqrt{\operatorname{dim}_{F} A}$ and the index of A is defined as the degree of D. If L / K is a field extension, then $\operatorname{index}\left(A \otimes_{F} L\right)$ divides index (A). Let B be an integral domain and F its field of fractions. Let \mathcal{A} be an Azumaya algebra over B, then we define the index of \mathcal{A} to be the index of $\mathcal{A} \otimes_{B} F$.

Let B be a regular integral domain of dimension at most 2 which is complete with respect to a prime ideal P. Assume that B / P is a regular integral domain of dimension at most 1 (for example P is a maximal ideal). Let $\kappa(P)$ be the field of fractions of B / P. Let A be a central simple algebra over the field of fractions F of B which is unramified on B. Then there exists an Azumaya algebra \mathcal{A} over B such that $\left.\mathcal{A} \otimes_{B} F \simeq A([\mathrm{CTS}], 6.13)\right)$. For an ideal I of B, we denote the algebra $\mathcal{A} \otimes_{B} B / I$ by $A(I)$.

Lemma 1.1 Let A, B, \mathcal{A} and P be as above. Then index $(A)=$ index $\left(\mathcal{A} \otimes_{B / P} \kappa(P)\right)$.

Proof. Suppose $A \simeq M_{n}(D)$ for some division algebra D over F. Since A is unramified on B, D is also unramified on B. Since B is a regular domain of dimension 2, there exists an Azumaya algebra \mathcal{D} over B such that $\left.\mathcal{D} \otimes_{B} K \simeq D([\mathrm{CTS}], 6.13)\right)$. Since $\operatorname{Br}(B) \rightarrow \operatorname{Br}(F)$ is injective ([AG], 7.2), $\mathcal{A}=\mathcal{D}$ in $\operatorname{Br}(B)$. In particular $\mathcal{A} \otimes_{B / P} \kappa(P)=\mathcal{D} \otimes_{B / P} \kappa(P)$ in $\operatorname{Br}(\kappa(P))$. Hence index $(A)=\operatorname{degree}(D)=\sqrt{\operatorname{dim}_{F}(D)}=\sqrt{\operatorname{rank}_{B}(\mathcal{D})}=$ $\sqrt{\operatorname{rank}_{B / P}\left(\mathcal{D} \otimes_{B} B / P\right)}=\sqrt{\operatorname{dim}_{\kappa(P)}\left(\mathcal{D} \otimes_{B / P} \kappa(P)\right)} \geq \operatorname{index}\left(\mathcal{A} \otimes_{B / P} \kappa(P)\right)$.

Suppose $\mathcal{A} \otimes_{B / P} \kappa(P) \simeq M_{m}\left(D_{0}\right)$ for some central division algebra D_{0} over $\kappa(P)$. Since B / P is regular integral domain of dimension 1 , there exists an Azumaya algebra \mathcal{D}_{0} over B / P such that $\mathcal{D}_{0} \otimes_{B / P} \kappa(P) \simeq D_{0}$. Since B is P-adically complete, there exists an Azumaya algebra $\tilde{\mathcal{D}}_{0}$ over B such that $\tilde{\mathcal{D}}_{0} \otimes_{B} B / P \simeq \mathcal{D}_{0}$ and $\mathcal{A}=\tilde{\mathcal{D}}_{0}$ in $\operatorname{Br}(B)([\mathrm{C}],[\mathrm{KOS}])$. In particular $A=\tilde{\mathcal{D}}_{0} \otimes_{B} F$ in $\operatorname{Br}(F)$. Hence index $\left(\mathcal{A} \otimes_{B / P} \kappa(P)\right)=\operatorname{degree}\left(D_{0}\right)=$ $\sqrt{\operatorname{dim}_{\kappa(P)}\left(D_{0}\right)}=\sqrt{\operatorname{rank}_{B / P}\left(\mathcal{D}_{0}\right)}=\sqrt{\operatorname{rank}_{B}\left(\tilde{\mathcal{D}}_{0}\right)}=\sqrt{\operatorname{dim}_{F}\left(\tilde{\mathcal{D}}_{0} \otimes F\right)} \geq$ $\operatorname{index}(A)$. Thus index $(A)=\operatorname{index}\left(\mathcal{A} \otimes_{B / P} \kappa(P)\right)$.

Let K be a field and L a finite extension of K. Then L is called K adequate if there is a division ring D central over K containing L as a maximal subfield. A finite group G is called K-admissible if there is a Galois extension L of K with G as the Galois group of L over K, and L is K-adequate.

A finite group G is called metacyclic if G has a normal subgroup H such that H is cyclic and G / H is cyclic.

2. A local-global principle for central simple algebras

Let K be a complete discretely valued field with residue field k. Let F be the function field of a curve over K. Let n be an integer which is coprime to the characteristic of k. Assume that K contains a primitive $n^{t h}$ root of unity. In this section we prove a certain Hasse principle for central simple algebras over F of index n. We begin with the following

Lemma 2.1. (cf. [FS], Proposition 1(3) and [JW], 5.15) Let R be a complete discrete valuated ring and K its field of fractions. Let A be a central simple algebra over K of index n which is unramified at R. Let E be an unramified cyclic extension of K of degree m and σ a generator of the Galois group of E / K. Let π be a parameter in R. Assume that $m n$ is invertible in R. Then $\operatorname{index}(A \otimes(E, \sigma, \pi))=\operatorname{index}(A \otimes E) \cdot[E: K]$.

The following two lemmas $(2.2,2.3)$ are well known.

Lemma 2.2. Let R be a regular ring of dimension 2 with field of fractions F. Let n be an integer which is a unit in R. Assume that F contains a primitive $n^{\text {th }}$ root of unity. Suppose A is a central simple algebra over F which is unramified on R. Let $x \in R$ be a regular prime and ν be the discrete valuation on F given by x. Suppose that R is complete with respect to (x)-adic topology. Let $u \in R$ be a unit. Then $\operatorname{index}\left(A \otimes F_{\nu}(\sqrt[n]{u})\right)=$ $\operatorname{index}(A \otimes F(\sqrt[n]{u}))$.

Proof. Let S be the integral closure of R in $F(\sqrt[n]{u})$. Since R is a regular ring and n, u are units in R, S is also a regular ring. Let x be a regular prime in R, then x is also a regular prime in S. Thus by replacing R by S, it is enough to show that index $\left(A \otimes F_{\nu}\right)=\operatorname{index}(A)$.

Since R is a two-dimensional regular ring, there is an Azumaya algebra \mathcal{A} over R with $\mathcal{A} \otimes F \simeq A([\mathrm{CTS}], 6.13))$. Since R is complete with respect to (x)-adic topology, $\operatorname{index}(A)=\operatorname{index}(\mathcal{A} \otimes \kappa(x))$ (cf. 1.1), where $\kappa(x)$ is the field of fractions of $R /(x)$. Let R_{ν} be the ring of integers in F_{ν}. Since A is unramified on R, A is also unramified on R_{ν}. Since F_{ν} is complete, $\operatorname{index}\left(A \otimes F_{\nu}\right)=\operatorname{index}(\mathcal{A} \otimes \kappa(\nu))(\operatorname{cf.} 1.1)$. Since $\kappa(\nu)=\kappa(x), \operatorname{index}(A)=$ $\operatorname{index}\left(A \otimes F_{\nu}\right)$.

Lemma 2.3. Let R be a complete regular local ring with field of fractions F and residue field k. Let n be an integer which is a unit in R. Let $u_{1}, \cdots, u_{r} \in$ R be units. Suppose $x \in R$ is a regular prime. Let ν be the discrete valuation on F given by x. Then $\left[F_{\nu}\left(\sqrt[n]{u_{1}}, \cdots, \sqrt[n]{u_{r}}\right): F_{\nu}\right]=\left[F\left(\sqrt[n]{u_{1}}, \cdots, \sqrt[n]{u_{r}}\right): F\right]$.

Proof. Since F_{ν} is a complete discretely valued field and n, u_{1}, \cdots, u_{r} are units in the ring of integers, $\left[F_{\nu}\left(\sqrt[n]{u_{1}}, \cdots, \sqrt[n]{u_{r}}\right): F_{\nu}\right]=\left[\kappa(\nu)\left(\sqrt[n]{\bar{u}_{1}}, \cdots, \sqrt[n]{\bar{u}_{r}}\right):\right.$ $\kappa(\nu)$]. Since $\kappa(\nu)$ is the field of fractions of the complete local ring $R /(x)$ and the the residue field of $R /(x)$ is k, we have $\left[\kappa(\nu)\left(\sqrt[n]{\bar{u}_{1}}, \cdots, \sqrt[n]{\bar{u}_{r}}\right)\right.$: $\kappa(\nu)]=\left[k\left(\sqrt[n]{\overline{u_{1}}}, \cdots, \sqrt[n]{\overline{u_{r}}}\right): k\right]$. Since R is complete and u_{1}, \cdots, u_{r} are units, we also have $\left[F\left(\sqrt[n]{u_{1}}, \cdots, \sqrt[n]{u_{r}}\right): F\right]=\left[k\left(\sqrt[n]{\bar{u}_{1}}, \cdots, \sqrt[n]{\bar{u}_{r}}\right): k\right]$. Hence $\left[F_{\nu}\left(\sqrt[n]{u_{1}}, \cdots, \sqrt[n]{u_{r}}\right): F_{\nu}\right]=\left[F\left(\sqrt[n]{u_{1}}, \cdots, \sqrt[n]{u_{r}}\right): F\right]$.

Proposition 2.4. Let R be a 2-dimensional complete regular local ring with maximal ideal $m=(x, y)$. Let F be the field of fraction of R and k the residue field of R. Let n be an integer coprime to $\operatorname{char}(k)$. Assume that F contains a primitive $n^{\text {th }}$ root of unity. Let A be a central simple algebra over F of degree n. Suppose that A is unramified on R except possibly at x and
y. Then $\operatorname{index}(A)=\operatorname{index}\left(A \otimes F_{\nu}\right)$ for the discrete valuation ν of F given by the prime ideals either (x) or (y) of R.

Proof. Suppose that A is unramified on R. Let ν be the discrete valuation of F given by x. Since A is unramified on R, by (2.2), we have index $\left(A \otimes F_{\nu}\right)=$ index (A).

Suppose that A is ramified on R only at the prime ideal (x). Let ν be the discrete valuation on F given by the prime ideal (x) of R. By ([S1]), we have $A=A^{\prime} \otimes(u, x)$ for some unit u in R and a central simple algebra A^{\prime} over F which is unramified on R. Since F_{ν} is complete and u is a unit at ν, there is a unique extension of ν to $F_{\nu}(\sqrt[n]{u})$ such that $F_{\nu}(\sqrt[n]{u})$ is complete with the residue field $\kappa(\nu)(\sqrt[n]{\bar{u}})$, where \bar{u} is the image of u in $\kappa(\nu)$. Since A^{\prime} is unramified on R, we have

$$
\begin{array}{rlrl}
\operatorname{index}\left(A \otimes F_{\nu}\right) & =\operatorname{index}\left(A^{\prime} \otimes(u, x) \otimes F_{\nu}\right) & \\
& =\operatorname{index}\left(A^{\prime} \otimes F_{\nu}(\sqrt[n]{u})\right) \cdot\left[F_{\nu}(\sqrt[n]{u}): F_{\nu}\right] \quad(\text { by }(2.1)) \\
& =\operatorname{index}\left(A^{\prime} \otimes F(\sqrt[n]{u})\right) \cdot\left[F_{\nu}(\sqrt[n]{u}): F_{\nu}\right] & (\text { by }(2.2)) \\
& =\operatorname{index}\left(A^{\prime} \otimes F(\sqrt[n]{u})\right) \cdot[F(\sqrt[n]{u}): F] & (\text { by }(2.3)) .
\end{array}
$$

Since $A=A^{\prime} \otimes(u, x)$, the index of A divides index $\left(A^{\prime} \otimes F(\sqrt[n]{u})\right) \cdot[F(\sqrt[n]{u})$: $F]=\operatorname{index}\left(A \otimes F_{\nu}\right)$. Thus index $(A)=\operatorname{index}\left(A \otimes F_{\nu}\right)$.

Assume that A is ramified on R at both the primes (x) and (y). Then by $([\mathrm{S} 1])$, either $A=A^{\prime} \otimes\left(u_{1}, x\right) \otimes\left(u_{2}, y\right)$ or $A=A^{\prime} \otimes\left(u y^{r}, x\right)$ where u_{1}, u_{2}, u are units in R, r coprime with n and A^{\prime} unramified on R.

Suppose that $A=A^{\prime} \otimes\left(u_{1}, x\right) \otimes\left(u_{2}, y\right)$ for some units $u_{1}, u_{2} \in R$ and A^{\prime} unramified on R. Let ν be the discrete valuation on F given by y. Then by (2.1), we have index $\left(A \otimes F_{\nu}\right)=\operatorname{index}\left(A^{\prime} \otimes\left(u_{1}, x\right) \otimes F_{\nu}\left(\sqrt[n]{u_{2}}\right)\right) \cdot\left[F_{\nu}\left(\sqrt[n]{u_{2}}\right):\right.$ $\left.F_{\nu}\right]$. By (2.2), we have $\left[F_{\nu}\left(\sqrt[n]{u_{2}}\right): F_{\nu}\right]=\left[F\left(\sqrt[n]{u_{2}}\right): F\right]$. We now compute $\operatorname{index}\left(A^{\prime} \otimes\left(u_{1}, x\right) \otimes F_{\nu}\left(\sqrt[n]{u_{2}}\right)\right)$.

Since $A^{\prime} \otimes\left(u_{1}, x\right)$ is unramified at ν and u_{2} is a unit at $\nu, \operatorname{index}\left(A^{\prime} \otimes\right.$ $\left.\left(u_{1}, x\right) \otimes F_{\nu}\left(\sqrt[n]{u_{2}}\right)\right)=\operatorname{index}\left(A^{\prime} \otimes\left(u_{1}, x\right) \otimes \kappa(\nu)\left(\sqrt[n]{\overline{u_{2}}}\right)\right)($ cf. 1.1 $)$, where $\overline{u_{2}}$ is the image of u_{2} in $\kappa(\nu)$. Since $\kappa(\nu)$ is the field of fractions of $R /(y)$, the image of x in $\kappa(\nu)$ gives a discrete valuation μ on the residue field $\kappa(\nu)$ with $\kappa(\mu)=k$ and $\kappa(\nu)$ is complete with respect to μ. Since $\overline{u_{2}}$ is a unit at $\mu, \kappa(\nu)\left(\sqrt[n]{\overline{u_{2}}}\right)$ is a complete discrete valuated field with \bar{x} as parameter and residue field $k\left(\sqrt[n]{\overline{u_{2}}}\right)$. Thus, we have

$$
\begin{aligned}
& \operatorname{index}\left(A^{\prime} \otimes\left(u_{1}, x\right) \otimes F_{\nu}\left(\sqrt[n]{u_{2}}\right)\right)=\operatorname{index}\left(A^{\prime} \otimes\left(u_{1}, x\right) \otimes \kappa(\nu)\left(\sqrt[n]{\overline{u_{2}}}\right)\right)(\text { by }(1.1)) \\
& =\operatorname{index}\left(A^{\prime} \otimes \kappa(\nu)\left(\sqrt[n]{\overline{u_{2}}}, \sqrt[n]{\overline{u_{1}}}\right)\right) \cdot\left[\kappa(\nu)\left(\sqrt[n]{u_{2}}, \sqrt[n]{\overline{u_{1}}}\right): \kappa(\nu)\left(\sqrt[n]{\overline{u_{2}}}\right)\right] \quad \text { (by (2.1)) } \\
& =\operatorname{index}\left(A^{\prime} \otimes F_{\nu}\left(\sqrt[n]{u_{2}}, \sqrt[n]{u_{1}}\right)\right) \cdot\left[F_{\nu}\left(\sqrt[n]{u_{2}}, \sqrt[n]{u_{1}}\right): F_{\nu}\left(\sqrt[n]{u_{2}}\right)\right] \quad \text { (by (1.1)) } \\
& \left.=\operatorname{index}\left(A^{\prime} \otimes F\left(\sqrt[n]{u_{2}}, \sqrt[n]{u_{1}}\right)\right) \cdot\left[F\left(\sqrt[n]{u_{2}}, \sqrt[n]{u_{1}}\right): F\left(\sqrt[n]{u_{2}}\right)\right] \quad \text { (by }(2.2),(2.3)\right) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \operatorname{index}\left(A \otimes F_{\nu}\right)=\operatorname{index}\left(A^{\prime} \otimes\left(u_{1}, x\right) \otimes F_{\nu}\left(\sqrt[n]{u_{2}}\right)\right) \cdot\left[F_{\nu}\left(\sqrt[n]{u_{2}}\right): F_{\nu}\right](b y(2.1)) \\
& =\operatorname{index}\left(A^{\prime} \otimes F\left(\sqrt[n]{u_{2}}, \sqrt[n]{u_{1}}\right)\right) \cdot\left[F\left(\sqrt[n]{u_{2}}, \sqrt[n]{u_{1}}\right): F\left(\sqrt[n]{u_{2}}\right)\right] \cdot\left[F\left(\sqrt[n]{u_{2}}\right): F\right] \\
& =\operatorname{index}\left(A^{\prime} \otimes F\left(\sqrt[n]{u_{2}}, \sqrt[n]{u_{1}}\right)\right) \cdot\left[F\left(\sqrt[n]{u_{2}}, \sqrt[n]{u_{1}}\right): F\right] .
\end{aligned}
$$

On the other hand we have index $(A)=\operatorname{index}\left(A^{\prime} \otimes\left(u_{1}, x\right) \otimes\left(u_{2}, y\right)\right)$ divides index $\left(A^{\prime} \otimes F\left(\sqrt[n]{u_{1}}, \sqrt[n]{u_{2}}\right)\right) \cdot\left[F\left(\sqrt[n]{u_{1}}, \sqrt[n]{u_{2}}\right): F\right]$. In particular index $\left(A \otimes F_{\nu}\right)=$ index (A).

Assume that $A=A^{\prime} \otimes\left(u y^{r}, x\right)$ for some unit $u \in R, r$ coprime to n and A^{\prime} unramified on R. Let ν be the discrete valuation on F given by the prime ideal (x) of R. By (2.1), we have index $\left(A \otimes F_{\nu}\right)=\operatorname{index}\left(A^{\prime} \otimes F_{\nu}\left(\sqrt[n]{u y^{r}}\right)\right)$. $\left[F_{\nu}\left(\sqrt[n]{u y^{r}}\right): F_{\nu}\right]$. Since y is a regular prime in R and r is coprime to n, it follows that $\left[F\left(\sqrt[n]{u y^{r}}\right): F\right]=\left[F_{\nu}\left(\sqrt[n]{u y^{r}}\right): F_{\nu}\right]=n$. Since F_{ν} is a complete discrete valuated field and A^{\prime} is unramified, we have index $\left(A^{\prime} \otimes F_{\nu}\left(\sqrt[n]{u y^{r}}\right)\right)=$ index $\left(A^{\prime} \otimes \kappa(\nu)\left(\sqrt[n]{\overline{u y^{r}}}\right)\right)$ (cf. 1.1). Since $\kappa(\nu)$ is a complete discrete valuated field with \bar{y} as a parameter and residue field $k, \kappa(\nu)\left(\sqrt[n]{\overline{u y^{r}}}\right)$ is also a complete discrete valuated field with residue field k. Since A^{\prime} is unramified on R, we have index $\left(A^{\prime} \otimes \kappa(\nu)\left(\sqrt[n]{\overline{u y^{r}}}\right)\right)=\operatorname{index}\left(A^{\prime} \otimes k\right)($ cf. (1.1) $)$. Since R is complete, by (1.1), we have index $\left(A^{\prime}\right)=\operatorname{index}\left(A^{\prime} \otimes k\right)=\operatorname{index}\left(A^{\prime} \otimes \kappa(\nu)\left(\sqrt[n]{\overline{u y^{r}}}\right)\right)=$ index $\left(A^{\prime} \otimes F_{\nu}\left(\sqrt[n]{u y^{r}}\right)\right)$. Therefore, we have

$$
\begin{aligned}
\operatorname{index}\left(A \otimes F_{\nu}\right) & =\operatorname{index}\left(A^{\prime} \otimes\left(u y^{r}, x\right) \otimes F_{\nu}\right) \\
& =\operatorname{index}\left(A^{\prime} \otimes F_{\nu}\left(\sqrt[n]{u y^{r}}\right)\right) \cdot\left[F_{\nu}\left(\sqrt[n]{u y^{r}}\right): F_{\nu}\right] \\
& =\operatorname{index}\left(A^{\prime}\right) \cdot n
\end{aligned}
$$

Since $A=A^{\prime} \otimes\left(u y^{r}, x\right)$, index $(A) \leq \operatorname{index}\left(A^{\prime}\right) \cdot n=\operatorname{index}\left(A \otimes F_{\nu}\right)$. Thus $\operatorname{index}(A)=\operatorname{index}\left(A \otimes F_{\nu}\right)$.

Proposition 2.5. Let R be a 2 -dimensional regular ring with field of fraction F and n an integer which is a unit in R. Assume that F contains a primitive $n^{\text {th }}$ root of unity. Suppose that R is complete with respect to (s)adic topology for some prime element $s \in R$ with $R /(s)$ a Dedekind domain. Let ν be the discrete valuation on F given by s. Let A be a central simple algebra over F of degree n which is unramified on R except at ν. Further assume that the residue of A at (s) is given by a unit a in $R /(s)$. Then $\operatorname{index}(A)=\operatorname{index}\left(A \otimes F_{\nu}\right)$.

Proof. Suppose that A is unramified on R. Since R is (s)-adically complete and $R /(s)$ is a regular domain of dimension 1 with field of fractions $\kappa(\nu)$, $\operatorname{index}(A)=\operatorname{index}\left(A \otimes_{R /(s)} \kappa(\nu)\right)=\operatorname{index}\left(A \otimes F_{\nu}\right)(\operatorname{cf.}(1.1))$.

Suppose that A is ramified on R. Then by the assumption on A, A is ramified on R only at the prime ideal (s) of R and the residue of A at (s) is given by a unit a in $R /(s)$. Let $u \in R$ with image $a \in R /(s)$. Since R is (s)-adically complete and the image a of u modulo (s) is a unit, u is a unit in R. The cyclic algebra (u, s) is ramified on R only at (s) and the residue of (u, s) at (s) is (a). Since A is ramified only at the prime ideal (s) of R, and (a) is the residue of A at s, we have $A=A^{\prime} \otimes(u, s)$ for some central simple algebra A^{\prime} over F which is unramified on R. By (2.1), we have $\operatorname{index}\left(A \otimes F_{\nu}\right)=\operatorname{index}\left(A^{\prime} \otimes F_{\nu}(\sqrt[n]{u})\right) \cdot\left[F_{\nu}(\sqrt[n]{u}): F_{\nu}\right]$. Since R is $(s)-$ adically complete and $R /(s)$ is integrally closed domain with u a unit, we have $[F(\sqrt[n]{u}): F]=\left[F_{\nu}(\sqrt[n]{u}): F_{\nu}\right]$. Since A^{\prime} is unramified on R and R is (s)-adically complete, by (2.2), we have index $\left(A^{\prime} \otimes F_{\nu}(\sqrt[n]{u})\right)=\operatorname{index}\left(A^{\prime} \otimes\right.$ $F(\sqrt[n]{u}))$. Hence we have index $\left(A \otimes F_{\nu}\right)=\operatorname{index}\left(A^{\prime} \otimes F(\sqrt[n]{u})\right) \cdot[F(\sqrt[n]{u}): F]$. In particular index $\left(A \otimes F_{\nu}\right)=\operatorname{index}(A)$.

Theorem 2.6. Let T be a complete discrete valuation ring with fraction field K and residue field k. Let X be a regular, projective, geometrically integral curve over K and $F=K(X)$ the function field of X. Let l be prime not equal to $\operatorname{char}(k)$ and A a central simple algebra over F of index $n=l^{d}$ for some $d \geq 1$. Assume that K contains a primitive $n^{\text {th }}$ root of unity. Then $\operatorname{index}(A)=\operatorname{index}\left(A \otimes F_{\nu}\right)$ for some discrete valuation ν of F.

Proof. Let A be a central simple algebra over F. We choose a regular proper model \mathcal{X} / T of X / K such that the support of the ramification divisor A and the components of the special fibre of \mathcal{X} / T are a union of regular curves with normal crossings. Let $Y=\mathcal{X} \times_{T} k$ denote the special fibre.

For each irreducible curve C in the support of ramification divisor of A, let $a_{C} \in \kappa(C)^{*}$ be such that the residue of A at C is $\left(a_{C}\right) \in H^{1}\left(\kappa(C)^{*}, \mathbb{Z} / n \mathbb{Z}\right)$.

Let S be a finite set of closed points of the special fibre containing all singular points of Y and all those points of irreducible curves C where a_{C} is not a unit.

For each $P \in S$, let F_{P} be the field of fractions of the completion \hat{R}_{P} of the local ring R_{P} of \mathcal{X} at P. Let t be a uniformizing parameter for T. For each irreducible component U of $Y \backslash S$, let R_{U} be the ring of elements in F which are regular on U. It is a regular ring. Let \hat{R}_{U} be the completion of R_{U} at (t) and F_{U} the field of fractions of \hat{R}_{U}. As in ([CTPS], proof of 3.1), we choose S such that for every irreducible component U of $Y \backslash S, t=u . s^{r}$ for some integer $r \geq 1$, a unit $u \in R_{U}$ and $R_{U} / s=\hat{R}_{U} / s$ is a Dedekind domain with field of fractions $k(U)$. In particular, the t-adic completion \hat{R}_{U} coincides with the s-adic completion of R_{U}.

Let \mathcal{U} be the set of irreducible components of $X \backslash S$. By ([HHK1], 5.1), we have $\operatorname{index}(A)=\operatorname{lcm}$ of $\operatorname{index}\left(A \otimes F_{\zeta}\right), \zeta \in \mathcal{U} \cup S$. Since index $\left(A \otimes F_{\zeta}\right)$ is a power of the prime l for all $\zeta \in \mathcal{P} \cup P$, we have $\operatorname{index}(A)=\operatorname{index}\left(A \otimes F_{\zeta}\right)$ for some $\zeta \in \mathcal{U} \cup S$. In particular index (A) equal to either $\operatorname{index}\left(A \otimes F_{U}\right)$ for some irreducible components U of $Y \backslash S$ or $\operatorname{index}\left(A \otimes F_{P}\right)$ for some $P \in S$.

Suppose that $\operatorname{index}(A)=\operatorname{index}\left(A \otimes F_{P}\right)$ for some $P \in S$. The local ring \hat{R}_{P} is a complete regular local ring of dimension 2 with maximal ideal (x, y) such that A is ramified on \hat{R}_{P} at most at x and y. By (2.4), we have $\operatorname{index}(A)=\operatorname{index}\left(A \otimes F_{P \nu}\right)$ for the discrete valuation of F_{P} given by either (x) or (y). Since the restriction ν_{0} of ν to F is non-trivial, ν_{0} is a discrete valuation on F and $\operatorname{index}(A)=\operatorname{index}\left(A \otimes F_{\nu_{0}}\right)$.

Suppose that index $(A)=\operatorname{index}\left(A \otimes F_{U}\right)$ for some irreducible component U of $X \backslash S$. Then, by the choice of U, A is unramified on \hat{R}_{U} except at (s) and the residue at (s) is given by a unit in $R_{U} /(s)$. Let ν be the discrete valuation on F_{U} given by (s). Since \hat{R}_{U} is (s)-adically complete, by (2.5), $\operatorname{index}(A)=\operatorname{index}\left(A \otimes F_{U \nu}\right)$. Since the restriction of ν to F is also given by the ideal (s) in R_{U}, ν is non-trivial on F. In particular $F_{\nu} \subset F_{U \nu}$ and $\operatorname{index}(A)=\operatorname{index}\left(A \otimes F_{\nu}\right)$.

Remark 2.7. Let F and A be as in the above theorem. Then by (2.6), it follows that there exists a discrete valuation ν of F such that index $(A)=$ index $\left(A \otimes F_{\nu}\right)$. From the proof of (2.6) it follows that this discrete valuation comes from a codimension one point of a regular proper model of F. In particular, the residue field $\kappa(\nu)$ is either a finite extension of K or a function field of a curve over a finite extension of k.

3. Necessary conditions for Admissibility

In this section, we give a necessary condition for a finite group to be admissible over function fields of curves over complete discretely valued fields.

Let K be a complete discretely valued field with residue field k and π a parameter. Let D be a central division algebra over K of degree n and L a maximal subfield of D. Suppose that n is coprime to $\operatorname{char}(k)$. Let $\left(E_{0}, \sigma_{0}\right) \in H^{1}(k, \mathbb{Z} / n \mathbb{Z})$ be the residue of D and $(E, \sigma) \in H^{1}(K, \mathbb{Z} / n \mathbb{Z})$ the lift of $\left(E_{0}, \sigma_{0}\right)$ (cf. §1). We fix an algebraic closure \bar{K} of K and also an algebraic closure \bar{k} of k. All the finite extensions of K and k are considered as subfields of \bar{K} and \bar{k} respectively. Let $F=L \cap E$. Let L_{1} be the maximal unramified extension of F contained in L. Since E / K is unramified, $L \cap E=$ $L_{1} \cap E=F$.

Lemma 3.1. Let $K, D, L, L_{1},\left(E_{0}, \sigma_{0}\right),(E, \sigma)$, and F be as above. Then $D \otimes_{K} F \otimes_{F}\left(E / F, \sigma^{[F: K]}, \pi\right)^{o p}$ is unramified at the discrete valuation of F.

Proof. Since the residue of D is $\left(E_{0}, \sigma_{0}\right), D \otimes(E, \sigma, \pi)^{o p}$ is unramified at the discrete valuation of K. In particular, $D \otimes_{K}(E, \sigma, \pi) \otimes F$ is unramified at the discrete valuation of F. Since $F \subset E$, we have $(E, \sigma, \pi) \otimes_{K} F=$ $\left(E / F, \sigma^{[F: K]}, \pi\right)$ in $\operatorname{Br}(F)$. Thus $\left(D \otimes_{K} F\right) \otimes_{F}\left(E / F, \sigma^{[F: K]}, \pi\right)^{o p}$ is unramified at the discrete valuation of F.

Lemma 3.2. Let $K, D, L, L_{1},\left(E_{0}, \sigma_{0}\right),(E, \sigma)$ and F be as above. Then $[E: F]$ divides $\left[L: L_{1}\right]$.

Proof. We have the following commutative diagram (cf., [S1], 10.4)

where L_{0} is the residue field of L and e the ramification index of L / K. From the above commutative diagram, the residue of $D \otimes L$ is the restriction of $e\left(E_{0}, \sigma_{0}\right)$ to L_{0}. Since L is a maximal subfield of $D, D \otimes L$ is a split algebra. In particular, the residue of $D \otimes L$ is trivial. Hence the restriction of $e\left(E_{0}, \sigma_{0}\right)$ to L_{0} is trivial and $[E: F]$ divides e (cf. $\S 1$). Since $[E: F]=\left[E_{0}: F_{0}\right]$ and $e=\left[L: L_{1}\right],[E: F]$ divides $\left[L: L_{1}\right]$.

Lemma 3.3. Let $K, D, L, L_{1},\left(E_{0}, \sigma_{0}\right),(E, \sigma)$ and F be as above. Then $\operatorname{index}\left(D \otimes_{K} E\right)=\left[L_{1} E: E\right]$.

Proof. Since $\left(E / F, \sigma^{[F: K]}, \pi\right)^{o p} \otimes E$ is split, we have $D \otimes_{K} E=D \otimes_{K} F \otimes_{F}$ $\left(E / F, \sigma^{[F: K]}, \pi\right)^{o p} \otimes_{F} E$. By (3.1), $D \otimes_{K} F \otimes_{F}\left(E / F, \sigma^{[F: K]}, \pi\right)^{o p}$ is unramified at the discrete valuation of F. Hence $D \otimes_{K} E$ is unramified at the discrete valuation of E. Since L is a maximal subfield of $D, D \otimes_{K} L$ is split. Since L / L_{1} is totally ramified, $L E / L_{1} E$ is totally ramified. In particular, the residue field of $L E$ and $L_{1} E$ are equal. Since $D \otimes_{K} E$ is unramified and $\left(D \otimes_{K} E\right) \otimes_{E} L E$ is plit, $\left(D \otimes_{K} E\right) \otimes_{E} L_{1} E$ is split (cf. 1.1). In particular $\operatorname{index}\left(D \otimes_{K} E\right) \leq\left[L_{1} E: E\right]$.

Since $\left(D \otimes_{K} F\right) \otimes_{F}\left(E / F, \sigma^{[F: K]}, \pi\right)^{o p}$ is unramified and π is a parameter in E, by (2.1), we have

$$
\begin{aligned}
& \operatorname{index}\left(D \otimes_{K} F\right)=\operatorname{index}\left(\left(D \otimes_{K} F\right) \otimes_{F}\left(E / F, \sigma^{[F: K]}, \pi\right)^{o p} \otimes_{F}\left(E / F, \sigma^{[F: K]}, \pi\right)\right) \\
& =\operatorname{index}\left(\left(D \otimes_{K} F\right) \otimes_{F}\left(E / F, \sigma^{[F: K]}, \pi\right)^{o p} \otimes_{F} E\right) \cdot[E: F] \\
& =\operatorname{index}\left(D \otimes_{K} E\right) \cdot[E: F]
\end{aligned}
$$

On the other hand, since $F \subset L$ and L is a maximal subfield of D, index $\left(D \otimes_{K}\right.$ $F)=[L: F]$. Hence index $\left(D \otimes_{K} E\right) \cdot[E: F]=[L: F]=\left[L: L_{1}\right] \cdot\left[L_{1}: F\right]$. By (3.2), we have $[E: F]$ divides $\left[L: L_{1}\right]$. Hence index $\left(D \otimes_{K} E\right) \geq\left[L_{1}\right.$: $F] \geq\left[L_{1} E: E\right]$. Therefore index $\left(D \otimes_{K} E\right)=\left[L_{1} E: E\right]$.

Lemma 3.4. Let K be a complete discretely valued field with residue field k and P a p-group, p a prime. Suppose that p is coprime to $\operatorname{char}(k)$. If P is admissible over K, then P has a normal series $P \supseteq P_{1} \supseteq P_{2}$ such that
(1) P / P_{1} and P_{2} are cyclic
(2) P_{1} / P_{2} is admissible over some finite extension of k.

Proof Suppose that P is admissible over K. Then there exists a Galois extension L / K and a division ring D central over K which contains L as maximal subfield such that $P=G(L / K)$. Let L_{0} be the residue field of L. Let $\partial(D)=\left(E_{0}, \sigma_{0}\right) \in H^{1}(k, \mathbb{Z} / n \mathbb{Z})$ be the residue of D and $(E, \sigma) \in$ $H^{1}(K, \mathbb{Z} / n \mathbb{Z})$ be the lift of $\left(E_{0}, \sigma_{0}\right)$. Let L_{1} be the maximal unramified extension of K contained in L. Since E is unramified extension of K, we have $L \cap E=L_{1} \cap E$. Let $F=L \cap E$. Since E / K is cyclic, F / K is also cyclic.

Let P_{1} be the Galois group of L / F. Since F / K is cyclic, P_{1} is a normal subgroup of P and P / P_{1} is cyclic.

Let P_{2} be the Galois group of L / L_{1}. Then P_{2} is a subgroup of P_{1}. Since L / L_{1} is a totally ramified Galois extension of degree coprime to char $(k), P_{2}$ is cyclic ([Se], Cor. 2 and Cor. 4 of Ch.IV, $\S 2$). Since L_{1} / F is a Galois extension (cf. $\S 1$), P_{2} is a normal subgroup of P_{1}. The residue field F_{0} of F is the same as the intersection of L_{0} and E_{0}. We now show that P_{1} / P_{2} is admissible over E_{0}.

Let D^{\prime} be the division algebra with center E which is Brauer equivalent to $D \otimes_{K} E$. Since $D^{\prime} \otimes_{E} L_{1} E=\left(D \otimes_{K} E\right) \otimes_{E} L_{1} E$ and $\left(D \otimes_{K} E\right) \otimes_{E} L_{1} E$ is split (cf. proof of (3.3)), $D^{\prime} \otimes_{E} L_{1} E$ is also split. Since, by (3.3) degree $\left(D^{\prime}\right)=$ $\left[L_{1} E: E\right], L_{1} E$ is a maximal subfield of D^{\prime}. By (3.1), $D^{\prime}=D \otimes_{K} E$ is unramified at the discrete valuation of E. Let $\overline{D^{\prime}}$ be the image of D^{\prime} over the residue field E_{0} of E. Since E is complete, $\overline{D^{\prime}}$ is central division algebra over E_{0} and $L_{0} E_{0}$ is a maximal subfield of $\overline{D^{\prime}}$. Hence $\operatorname{Gal}\left(L_{0} E_{0} / E_{0}\right)$ is admissible
over E_{0}. Since the residue field of $L_{1} E$ is $L_{0} E_{0}$ and $L_{1} E / E$ is an unramified Galois extension, we have $\operatorname{Gal}\left(L_{0} E_{0} / E_{0}\right) \simeq \operatorname{Gal}\left(L_{1} E / E\right)$. Since L_{1} / K and E / K are Galois and $F=L_{1} \cap E$, we have $\operatorname{Gal}\left(L_{1} E / E\right) \simeq \operatorname{Gal}\left(L_{1} / F\right)$. Since $P_{1} / P_{2} \simeq \operatorname{Gal}\left(L_{1} / F\right) \simeq \operatorname{Gal}\left(L_{0} E_{0} / E_{0}\right), P_{1} / P_{2}$ is admissible over E_{0}.

The above lemma immediately gives the following

Proposition 3.5. Let K be a complete discretely valued field with residue filed k and G be a finite group. Suppose that the order of G is coprime to $\operatorname{char}(k)$. If G is admissible over K then every Sylow subgroup P of G has a normal sereis $P \supseteq P_{1} \supseteq P_{2}$ such that
(1) P / P_{1} and P_{2} are cyclic
(2) P_{1} / P_{2} is admissible over some finite extension of the residue field of K.

Proof. Let G be an admissible group over K. Then there is a field extension L / K and a division algebra D central over K containing L as a maximal subfield with $\operatorname{Gal}(L / K)=G$. Let P be a Sylow subgroup of G. Let L^{P} be the fixed of P. Then L^{P} is a complete discretely valued field. Let D^{\prime} be the commutant of L^{P} in D. Then D^{\prime} is a central division algebra over L^{P} and $G\left(L / L^{P}\right)=P$ is admissible over L^{P}. Since L^{P} is also a complete discrete valued field, the result follows by (3.4).

Corollary 3.6. Let K be a complete discretely valued field with residue filed k either a local field or a global field. Let G be a finite group such that $\operatorname{char}(k)$ coprime to the order of G. If G is admissible over K then every Sylow subgroup P of G has a normal series $P \supseteq P_{1} \supseteq P_{2}$ such that
(1) P / P_{1} and P_{2} are cyclic
(2) P_{1} / P_{2} is metacyclic.

Proof. Every finite extension of the residue field is either a local field or a global field. The corollary follows from (3.5) and ([Sc]).

Theorem 3.7. Let K be a complete discretely valued field with residue field k. Let F be the function field of a curve over K. Let G be a finite group with order coprime to $\operatorname{char}(k)$. If G is admissible over F then every Sylow subgroup P of G has a normal series $P \supseteq P_{1} \supseteq P_{2}$ such that
(1) P / P_{1} and P_{2} are cyclic
(2) P_{1} / P_{2} is admissible over some finite extension of the residue field at a discrete valuation of F.

Proof First we reduce to a Sylow subgroup as in (3.5). Let G be an admissible group over F. Then there is a field extension L / F and a division algebra D central over F containing L as a maximal subfield with $\operatorname{Gal}(L / F)=G$. Let P be a Sylow subgroup of G. Let L^{P} be the fixed of P. Then L^{P} is a complete discretely valued field. Let D^{\prime} be the commutant of L^{P} in D. Then D^{\prime} is a central division algebra over L^{P} and $G\left(L / L^{P}\right)=P$ is admissible over L^{P}. Since L^{P} is a finte extension of F, L^{P} is also a function field of a curve over a finite extension of K. Since the degree of D^{\prime} is a power of prime and coprime to the $\operatorname{char}(k)$, by (2.6), there exists a discrete valuation ν of L^{P} such that $D^{\prime} \otimes_{L^{P}} L_{\nu}^{P}$ is division. Since $L \otimes_{L^{P}} L_{\nu}^{P}$ is a maximal subfield of $D^{\prime} \otimes_{L^{P}} L_{\nu}^{P}$ and $P=\operatorname{Gal}\left(L \otimes_{L^{P}} L_{\nu}^{P} / L_{\nu}^{P}\right)$, the result follows from (3.5).

The following is immediate from (3.7) and (3.6).
Corollary 3.8. Let K be a local adic field and F the function field of a curve over K. Let n be a natural number which is coprime to the characteristic of the residue field of K and G a finite group of order n. If G is admissible over F then every Sylow subgroup P of G has a normal series $P \supseteq P_{1} \supseteq P_{2}$ such that
(1) P / P_{1} and P_{2} are cyclic
(2) P_{1} / P_{2} metacyclic.

The following is proved in ([HHK2], 4.5).
Corollary 3.9. Let K be a complete discretely valued field with residue field algebraically closed. Let F be the function field of a curve over K. Let G be a finite group of order n such that the characteristic of the residue field of K is coprime to n. If G is admissible over F then every Sylow subgroup P of G is metacyclic.

Proof. By (3.7), every Sylow subgroup P of G has a normal series $P \supseteq$ $P_{1} \supseteq P_{2}$ such that
(1) P / P_{1} and P_{2} are cyclic
(2) P_{1} / P_{2} is admissible over some finite extension of the residue field of K.

Let k be the residue field of K. By (2.7) and the proof of (3.7), the residue field at the discrete valuation given in (2) is either a finite extension K or the function field of a curve over k. Since k is algebraically closed, these residue fields have cohomological dimension at most one and there are no non-trivial division algebras over such fields. Hence $P_{1}=P_{2}$.

We now give an example of a finite group which is not $\mathbb{Q}_{p}(t)$-admissible.
Example 3.10. Let ℓ and p be two distinct primes. Let $P=(\mathbb{Z} / l \mathbb{Z})^{5}$. We claim that this group is not admissible over $\mathbb{Q}_{p}(t)$. Suppose that P is admissible over $\mathbb{Q}_{p}(t)$. Then by (3.8), there is a normal series $P \supseteq P_{1} \supseteq P_{2}$ such that
(1) P / P_{1} and P_{2} are cyclic
(2) P_{1} / P_{2} is metacyclic

Since P_{2} and P / P_{1} are cyclic their orders will be at most l. This implies that $\left|P_{1} / P_{2}\right| \geq l^{3}$. Since every element of P_{1} / P_{2} has order at most l and $\left|P_{1} / P_{2}\right| \geq l^{3}, P_{1} / P_{2}$ cannot be metacyclic.

Remark 3.11. Let F be a field and p a prime. Suppose that for every finite extension E of F there is a set Ω_{E} of discrete valuations of E such that given a central division algebra D over E of degree a power of p, there exists a discrete valuation $\nu \in \Omega_{E}$ such that $D \otimes E_{\nu}$ is division. Let G be a finite group. The proof of (3.7) gives us the following: If G is admissible over F, then every p-Sylow subgroup of G has filtration as in (3.7).

Remark 3.12. Let G be a finite group satisfying the conditions of (3.5). Then every homomorphic image of G also satisfy the same conditions. However there is an example of a group G with a homomorphic image H such that G is admissible over the complet discrete valuation field $\mathbb{Q}((t))$ but H is not admissible ([FS]). Hence the conditions given in (3.5) for a group to be admissible are not sufficient.

4. A class of Admissible groups over $\mathbb{Q}_{p}(t)$

Let K be a discretely valued field with residue field k. Let F be the function field of a curve over K. Let n be an integer which is coprime to the characteristic of k. Suppose that K contains a primitive $n^{t h}$ root of unity. Then in ([HHK2], 4.4) it is proved that every finite group of order n with every Sylow subgroup product of at most two cyclic groups is admissible over F. They used the patching techniques to prove this result. In this section we prove a similar result for groups with every Sylow subgroup is a product of at most 4 cyclic groups, with an additional assumption on the residue field k. We begin with the following

Lemma 4.1. Let R be a regular local ring of dimension two with residue field k and field of fraction F. Let n_{1} and n_{2} be natural numbers which are coprime to the char (k). Assume that F contains a primitive $\left(n_{1} n_{2}\right)^{t h}$ root of unity and there is an element in $k^{*} / k^{* n_{2}}$ of order n_{2}. Then there is a central division algebra D over F of degree $n_{1} n_{2}$.

Proof. Let m be the maximal ideal of R. Since R is a regular local ring of dimension two, we have $m=(t, s)$. By the assumption on k, there is an element $\lambda_{0} \in k^{*}$ such that its order in $k^{*} / k^{* n_{2}}$ is n_{2}. Let $\lambda \in R$ which maps to λ_{0}. Let $a \in R$ be a unit with $a^{n_{1}} \neq 1$. Let ξ_{1} be a primitive $n_{1}^{\text {th }}$ root of unity and ξ_{2} a primitive $n_{2}^{\text {th }}$ root of unity.

Let

$$
D_{1}=\left(\frac{s}{s-t}, \frac{s-t^{2}}{s-a^{n_{1}} t^{2}}\right)_{n_{1}}
$$

and

$$
D_{2}=\left(\frac{s}{s-t^{2}}, \frac{s-\lambda t^{2}}{s-t^{2}}\right)_{n_{2}} .
$$

Let $D=D_{1} \otimes_{F} D_{2}$. Then the degree of D is $n_{1} n_{2}$. We now show that D is a division algebra.

Let $S=R[x] /\left(s-t^{2} x\right)$. Then the field of fractions of S is isomorphic to F. We have

$$
D_{1}=\left(\frac{t x}{t x-1}, \frac{x-1}{x-a^{n_{1}}}\right)_{n_{1}}
$$

and

$$
D_{2}=\left(\frac{x}{x-1}, \frac{x-\lambda}{x-1}\right)_{n_{2}} .
$$

The ideal (t) of S is a prime ideal and gives a discrete valuation ν on F. Let F_{ν} be the completion of F at ν. To show that $D_{1} \otimes_{F} D_{2}$ is a division algebra, it is enough to show that $D_{1} \otimes_{F} D_{2} \otimes_{F} F_{\nu}$ is a division algebra. Since $t x / t x-1$ is a parameter at ν, by (2.1), we have
$\operatorname{index}\left(D_{1} \otimes_{F} D_{2} \otimes_{F} F_{\nu}\right)=\operatorname{index}\left(D_{2} \otimes_{F} F_{\nu}\left(\sqrt[n_{1}]{\frac{x-1}{x-a^{n_{1}}}}\right)\right) \cdot\left[F_{\nu}\left(\sqrt[n_{1}]{\frac{x-1}{x-a^{n_{1}}}}\right): F_{\nu}\right]$.
Since $\frac{x-1}{x-a^{n_{1}}}$ is a unit at ν and the residue field $\kappa(\nu)$ at ν is $k(x)$, by the assumption on a, we have $\left[F_{\nu}\left(\sqrt[n_{1}]{\frac{x-1}{x-a^{n_{1}}}}\right): F_{\nu}\right]=n_{1}$. Since D_{2} is unramified at ν, the index of $D_{2} \otimes_{F} F_{\nu}\left(\sqrt[n_{1}]{\frac{x-1}{x-a^{n_{1}}}}\right)$ is equal to the index of its image $\left(\frac{x}{x-1}, \frac{x-\lambda}{x-1}\right)_{n_{2}}$ over the residue field $k(x)\left(\sqrt[n_{1}]{\frac{x-1}{x-a^{n_{1}}}}\right)$. Let θ be the discrete valuation on $k(x)$ given by (x). Let v be the extension of θ to $k(x)\left(\sqrt[n_{1}]{\frac{x-1}{x-a^{n_{1}}}}\right)$.

Then the residue field of v is k. The residue of $\left(\frac{x}{x-1}, \frac{x-\lambda}{x-1}\right)_{n_{2}}$ at v is the class of λ_{0}. Since the order of λ_{0} in $k^{*} / k^{* n_{2}}$ is n_{2}, the index of D_{2} is n_{2}. Hence the index of $D_{1} \otimes_{F} D_{2} \otimes F_{\nu}$ is $n_{1} n_{2}$. Since the degree of $D_{1} \otimes_{F} D_{2}$ is $n_{1} n_{2}$, $D_{1} \otimes_{F} D_{2}$ is a division algebra.

Theorem 4.2. Let K be a discretely valued field with residue field k and F the function field of a curve over K. Let n be an integer which is coprime to the characteristic of k. Suppose that K contains a primitive $n^{\text {th }}$ root of unity. Assume that for every finite extension L of k, there is an element in $L^{*} / L^{* n}$ of order n. If G is a finite group of order n with every Sylow subgroup is a quotient of \mathbb{Z}^{4}, then G is admissible over F.

Proof. Let R be the ring of integers in K. Let \mathcal{X} be a regular proper two dimensional scheme over R with function field F and the reduced special fibre is a union of regular curves with normal crossings. Let p_{1}, \cdots, p_{r} be the prime factors of n. Let Q_{1}, \cdots, Q_{r} be regular closed points on the special fibre of \mathcal{X}. Let $R_{Q_{i}}$ be the regular local ring at $Q_{i}, \hat{R}_{Q_{i}}$ be the completion of $R_{Q_{i}}$ at the maximal ideal and $F_{Q_{i}}$ the field of fractions of $\hat{R}_{Q_{i}}$. Let $t_{i} \in R_{Q_{i}}$ be a prime defining the irreducible component of the special fibre of \mathcal{X} containing Q_{i}. Let P_{i} be a p_{i}-Sylow subgroup of G. By ([HHK2], 4.2), it is enough to show that there exists a central division algebra D_{i} over $F_{Q_{i}}$ and maximal subfield L_{i} of D_{i} with $\operatorname{Gal}\left(L_{i} / F_{Q_{i}}\right) \simeq P_{i}$ and $L_{i} \otimes \hat{F}_{Q_{i}}$ a split algebra.

For a given $i, 1 \leq i \leq r$, let $Q=Q_{i}, t=t_{i}$ and $P=P_{i}$. Since the residue field $\kappa(Q)$ of \hat{R}_{Q} is a finite extension of k, by the assumption on k, there is an element in $\kappa(Q)^{*} / \kappa(Q)^{* n}$ of order m for any m dividing n. Since P is a quotient of $\mathbb{Z}^{4}, P \simeq C_{n_{1}} \times C_{n_{2}} \times C_{n_{3}} \times C_{n_{4}}$. Since \hat{R}_{Q} is regular local ring of dimension 2 and t is a regular prime, we have $m_{Q}=(t, s)$. Let ξ_{1} be a primitive $n_{1} n_{2}{ }^{\text {th }}$ root of unity and ξ_{2} a primitive $n_{3} n_{4}{ }^{\text {th }}$ root of unity.

Let

$$
D_{1}=\left(\frac{s}{s-t}, \frac{s-t^{2}}{s-a^{n_{1} n_{1}} t^{2}}\right)_{n_{1} n_{2}}
$$

and

$$
D_{2}=\left(\frac{s}{s-t^{2}}, \frac{s-\lambda t^{2}}{s-t^{2}}\right)_{n_{3} n_{4}} .
$$

for suitable a and λ as in (4.1). Let $D=D_{1} \otimes_{F} D_{2}$. Then, by (4.1), D is a division algebra over F_{Q}.

In particular D_{1} and D_{2} are division algebras over F_{Q}. The cyclic algebra D_{1} is generated by x_{1} and y_{1} with relations

$$
x_{1}^{n_{1} n_{2}}=\frac{s}{s-t}, y_{1}^{n_{1} n_{2}}=\frac{s-t^{2}}{s-a^{n_{1} n_{2}} t^{2}} \text { and } x_{1} y_{1}=\xi_{1} y_{1} x_{1} .
$$

Similarly D_{2} is generated by x_{2} and y_{2} with relations

$$
x_{2}^{n_{3} n_{4}}=\frac{s}{s-t^{2}}, y_{2}^{n_{3} n_{4}}=\frac{s-\lambda t^{2}}{s-t^{2}} \text { and } x_{2} y_{2}=\xi_{2} y_{2} x_{2} .
$$

Let L_{1} be the subalgebra of D_{1} generated by $x_{1}^{n_{1}}$ and $y_{1}^{n_{2}}$. Let L_{2} be the subalgebra of D_{2} generated by $x_{2}^{n_{3}}$ and $y_{2}^{n_{4}}$. Then $L=L_{1} \otimes L_{2}$ is a maximal subfield of $D_{1} \otimes D_{2}, \operatorname{Gal}(L / F)=C_{n_{1}} \times C_{n_{2}} \times C_{n_{3}} \times C_{n_{4}}$ and $L \otimes \hat{F}$ is a split algebra (cf., ([HHK2]) proof of 4.4,).

Corollary 4.3. Let K be a local field and k its residue field. Let F be the function field of a curve over K. Let n be an integer which is coprime to the characteristic of k. Suppose that K contains a primitive $n^{\text {th }}$ root of unity. If G is a group of order n with every Sylow subgroup a quotient of \mathbb{Z}^{4}, then G is admissible over F.

Proof. Since k is a finite field, for any finite extension L of k and for any natural number n coprime to the characteristic of L, we have $L^{*} / L^{* n}$ is cyclic group of order n. Hence k satisfies the condition of (4.2).

Let K be a complete discretely valued field with residue field k. Let G be a finite abelian group of order n which is a product of at most four cyclic groups. Suppose that n is coprime to $\operatorname{char}(k)$ and the order of $k^{*} / k^{* n}$ is at least n. If K contains a primitive $n^{\text {th }}$ root of unity, then by (4.3), G is admissible over $K(t)$. We now prove that a similar result without the completeness assumption on K.

We begin with the following

Lemma 4.4. Let R be a discrete valuation ring and $\pi \in R$ a parameter. Let K be the field of fractions of R and k the residue filed of R. Let $F=K(t)$ be the rational function field in one variable over K. Let n be a natural number which is coprime to char (k). Assume that K contains a primitive $n^{t h}$ root of unity and there exists a $\lambda_{0} \in k^{*}$ such that $\left[k\left(\sqrt[n]{\lambda_{0}}\right): k\right]=n$. Then $(t, \pi-\lambda t)_{n} \otimes_{F}(t+1, \pi)_{m}$ is division over F for any $\lambda \in R$ which maps to λ_{0}.

Proof Since π is a parameter in R, the localisation $R[t]_{(\pi)}$ of $R[t]$ at the prime ideal (π) is a discrete valuation ring. Let ν be the discrete valuation on F given the discrete valuation ring $R[t]_{(\pi)}$ and F_{ν} be the completion of F at ν. Since the residue field at ν is $k(t)$, we have $\left[F_{\nu}(\sqrt[m]{t+1}): F_{\nu}\right]=m$. Let w be the extension of ν to $F_{\nu}(\sqrt[m]{t+1})$. To show that $(t, \pi-\lambda t)_{n} \otimes_{F}(t+1, \pi)_{m}$ is division, it is enough to show that $(t, \pi-\lambda t)_{n} \otimes_{F}(t+1, \pi)_{m} \otimes_{F} F_{\nu}$ is
division. Since F_{ν} is complete and $\left[F_{\nu}(\sqrt[m]{t+1}): F_{\nu}\right]=m$, by (2.1), it is enough to show that $(t, \pi-\lambda t)_{n} \otimes F_{\nu}(\sqrt[m]{t+1})$ is division. Since t and $\pi-\lambda t$ are units at ν, the algebra $(t, \pi-\lambda t)_{n} \otimes F_{\nu}(\sqrt[m]{t+1})$ is unramified at w. Thus it is enough to show that its image $\left(t,-\lambda_{0} t\right)_{n}=\left(t, \lambda_{0}\right)_{n}$ is division over the residue filed $k(t)(\sqrt[m]{t+1})$. Let γ be the discrete valuation on $k(t)$ given by t and $\tilde{\gamma}$ be the extension of γ to $k(t)(\sqrt[m]{t+1})$. Since $t+1$ is an $m^{t h}$ power in the completion of $k(t)$ at γ, the completion of $k(t)(\sqrt[m]{t+1})$ at $\tilde{\gamma}$ is $k((t))$. It is enough show that $\left(t, \lambda_{0}\right)_{n}$ is division over $k((t))$. Since $\lambda_{0} \in k^{*}$ is an element of order $n,\left(t, \lambda_{0}\right)_{n}$ is division over $k((t))$.

Theorem 4.5. Let K be a field with a discrete valuation (not necessarily complete) and k its residue field. Let $G=\mathbb{Z} / l_{1} \mathbb{Z} \times \mathbb{Z} / l_{2} \mathbb{Z} \times \mathbb{Z} / l_{3} \mathbb{Z} \times \mathbb{Z} / l_{4} \mathbb{Z}$. Suppose that the $n=l_{1} l_{2} l_{3} l_{4}$ is coprime to $\operatorname{char}(k), K$ contains a primitive $n^{\text {th }}$ root of unity and there is a $\lambda_{0} \in k$ such that $\left[k\left(\sqrt[l_{1} l_{2}]{\lambda_{0}}: k\right]=l_{1} l_{2}\right.$. Then G is admissible over $K(t)$.

Proof. Let R be the ring of integers in K and $\lambda \in R$ mapping to λ_{0} in k. Let $\pi \in R$ be a parameter. Let $D_{1}=(t, \pi-\lambda t)_{l_{1} l_{2}}$ and $D_{2}=(t+1, \pi)_{l_{3} l_{4}}$. Then, by (4.4), $D_{1} \otimes D_{2}$ is a division algebra over $K(t)$. Let $L_{1}=K(t)(y, z)$ where $y^{l_{1}}=t, z^{l_{2}}=\pi-\lambda t$. Then L_{1} is a maximal subfield of D_{1}. Let $L_{2}=K(t)(r, s)$ where $y^{l_{3}}=t+1, z^{l_{4}}=\pi$. Then L_{2} is a maximal subfield of D_{2}. Therefore $L_{1} \otimes_{K(t)} L_{2}$ is a maximal subfield of $D_{1} \otimes D_{2}$. Since $\operatorname{Gal}\left(L_{1} \otimes_{K(t)} L_{2} / K(t)\right)=$ G, G is admissible over $K(t)$.

Corollary 4.6. Let p be a prim and $l_{1}, l_{2}, l_{3}, l_{4}$ be natural numbers which are coprime to p. Let $G=\mathbb{Z} / l_{1} \mathbb{Z} \times \mathbb{Z} / l_{2} \mathbb{Z} \times \mathbb{Z} / l_{3} \mathbb{Z} \times \mathbb{Z} / l_{4} \mathbb{Z}$. Let $n=l_{1} l_{2} l_{3} l_{4}$ and ζ a primitive $n^{\text {th }}$ root of unity. Then G is admisible over $\mathbb{Q}(\zeta)(t)$.

Remark 4.7. For $p, l_{1}, l_{2}, l_{3}, l_{4}, G$ as in (4.6), G is admissible over $\mathbb{Q}_{p}(t)$ by (4.3). However (4.5) gives an explicite constriction of a division algebra over $\mathbb{Q}_{p}(t)$ and a maximal subfield with Galois group G.

References

[A] Shreeram S. Abhyankar, Resolution of singularities of algebraic surfaces. Algebraic Geometry (Internat. Colloq., Tata Inst. Fund. Res., Bombay,1968), pp, 1-11, 1969, Oxford Univ. Press, London.
[AG] Auslander Maurice and Goldman Oscar, The Brauer group of a commutative ring, Trans. Amer. Math. Soc. 97 (1960) 367409.
[CS] David Chillag and Jack Sonn, Sylow-metacyclic groups and \mathbb{Q}-admissibility, Israel J. Math. 40 (1981), 307323.
[C] M. Cipolla, Remarks on the lifting of algebras over henselian pairs, Mathematische Zeitschrift, 152 (1977), 253257.
[CTPS] J.-L. Colliot-Thlne, R. Parimala, V. Suresh, Patching and local global principles for homogeneous spaces over function fields of p-adic curves, to appear in Comm.Math.Helv.
[CTS] J.-L. Colliot-Thélène et J.-J. Sansuc, Fibrés quadratiques et composantes connexes réelles, Math. Ann. 244 (1979), 105-134.
[FS] Burton Fein and Murray Schacher, $Q(t)$ and $Q((t))$-Admissibility of Groups of Odd Order, Proceedings of the AMS, 123 (1995), 1639-1645
[Fe1] Walter Feit, The K-admissibility of $2 A_{6}$ and $2 A_{7}$, Israel J. Math. 82 (1993), 141156.
[Fe2] Walter Feit, $S L(2,11)$ is \mathbb{Q}-admissible, J. Algebra 257 (2002), 244248.
[Fe3] Walter Feit $P S L_{2}(11)$ is admissible for all number fields, Algebra, arithmetic and geometry with applications (West Lafayette, IN, 2000), Springer, Berlin, 2004, pp. 295299.
[FF] Paul Feit and Walter Feit, The K-admissibility of $S L(2,5)$, Geom. Dedicata 36 (1990), 113.
[FV] Walter Feit and Paul Vojta, Examples of some \mathbb{Q}-admissible groups, J. Number Theory 26 (1987),n0.2, 210-226.
[G] Wulf Dieter Geyer, An example to Dan's talk, GTEM Summer School, Geometry and Arithmetic around Galois Theory, Galatasaray University, Istanbul, June 8-19, 2009.
[GS] Philippe Gille and Tammas Szamuely, Central simple algebras and Galois cohomology, Cambridge Studies in Advanced Mathematics, vol.101, Cambridge University Press, Cambridge, 2006.
[HH] David Harbater and Julia Hartmann, Patching over fields, Israel J. Math. 176 (2010), 61-107.
[HHK1] David Harbater, Julia Hartmann and Daniel Krashen, Applications of patching to quadratic forms and central simple algebras, Invent. Math. 178 (2009), 231-263.
[HHK2] David Harbater, Julia Hartmann and Daniel Krashen, Patching subfields of division algebras, Trans. A.M.S. 363 (2011), 3335-3349.
[HHK3] David Harbater, Julia Hartmann and Daniel Krashen, Local-global principles for torsors over arithmetic curves, arXiv:1108.3323v2
[JW] Bill Jacob and Adrian Wadsworth, Division algebras over Henselian fields, J. Algebra 128 (1990), 126-179.
[J] Nathan Jacobson, Finite-dimensional division algebras over fields, SpringerVerlag, Berlin, 1996
[KOS] M.-A. Knus, M. Ojanguren and D. J. Saltman, On Brauer groups in characteristic p, Brauer groups (Proc. Conf., Northwestern Univ., Evanston, Ill., 1975), pp. 2549. Lecture Notes in Math., 549, Springer, Berlin, 1976.
[L] Joseph Lipman, Introduction to resolution of singularities, in Algebraic geometry, pp, 187-230. Amer.Math.Soc., Providence,R.I,1975.
[P] Richard S.Pierce, Associative algebras, Springer-Verlag, New York, 1982. Studies in the History of Modern Science.9.
[S1] Davis J. Saltman Division algebras over p-adic curves, J. Ramanujan Math. Soc. 12, 2547 (1997)
[S2] David J.Saltman, Lectures on division algebras, CBMS Regional Conference Series,no.94, American Mathematical Society, Providence, RI, 1999.
[Sc] Murray M. Schacher, Subfields of division rings I, J. Algebra 9 (1968), 451-419.
[Sch] Scharlau, W, Quadratic and Hermitian Forms, Grundlehren der Math. Wiss., 270, Berlin, Heidelberg, New York 1985.
[Se] Jean-Pierre Serre, Local fields, Springer-Verlag, New York, 1979.
[So] Jack Sonn, \mathbb{Q}-admissibility of solvable groups, J. Algebra 84 (1983), 411419.
[W] Adrian R. Wadsworth, Valuation theory on finite dimensional division algebras, in valuation theory and its applications, vol I, Fields Inst.Commun., vol.32, Amer.Math.Soc., Providence, RI,2002, pp.385-449.

Department of Mathematics and Statistics
University of Hyderabad
Gahcibowli
Hyderabad - 500046
India
and
Department of Mathematics and Computer Science
Emory University
Atlanta, GA 30322
U.S.A.

