ON THE SECOND K-GROUP OF A RATIONAL FUNCTION FIELD

KARIM JOHANNES BECHER AND MÉLANIE RACZEK

Abstract

We give an optimal bound on the minimal length of a sum of symbols in the second Milnor K-group of a rational function field in terms of the degree of the ramification.

Keywords: Milnor K-theory, field extension, valuation, ramification
Classification (MSC 2010): 12E30, 12G05, 12Y05, 19D45

1. Introduction

Let E be an arbitrary field and F the function field of the projective line \mathbb{P}^{1} over E. For $m \in \mathbb{N}$, there is a well-known exact sequence

$$
\begin{equation*}
0 \longrightarrow K_{2}^{(m)} E \longrightarrow K_{2}^{(m)} F \xrightarrow{\partial} \bigoplus_{x \in \mathbb{P}_{0}^{1}} K_{1}^{(m)} E(x) \longrightarrow K_{1}^{(m)} E \longrightarrow 0 \tag{1.1}
\end{equation*}
$$

due to Milnor and Tate (cf. $[6,(2.3)])$. Here, $K_{1}^{(m)}$ and $K_{2}^{(m)}$ are the functors that associate to a field its first and second K-groups modulo m, respectively, and \mathbb{P}_{0}^{1} is the set of closed points of \mathbb{P}^{1}. The map ∂ is called the ramification map. By [3, (7.5.4)], for m prime to the characteristic of E, the sequence (1.1) translates into a sequence in Galois cohomology, and the proof of its exactness essentially goes back to Faddeev [2].

In this article we study how for a given element ρ in the image of ∂ one finds a $\operatorname{good} \xi \in K_{2}^{(m)} F$ with $\partial(\xi)=\rho$. Our main result (3.10) states that there is such a ξ that is a sum of r symbols (canonical generators of $K_{2}^{(m)} F$) where r is bounded by half the degree of the support of ρ. This generalizes results from [4], [7], and [8], where the problem has been studied in terms of Brauer groups in presence of a primitive m th root of unity in E for $m>0$. Developing further an idea in [8, Prop. 2], we provide examples (4.3) where the bound on r cannot be improved.

2. Milnor K-theory of a Rational function field

We recall the basic terminology of the K-theory for fields as introduced by Milnor [6], with slightly different notation. Let F be a field. For $m, n \in \mathbb{N}$, let

Date: February 21, 2012.
$K_{n}^{(m)} F$ denote the abelian group generated by elements called symbols, which are of the form $\left\{a_{1}, \ldots, a_{n}\right\}$ with $a_{1}, \ldots, a_{n} \in F^{\times}$, subject to the defining relations that $\{*, \ldots, *\}:\left(F^{\times}\right)^{n} \longrightarrow K_{n}^{(m)} F$ is a multilinear map, that $\left\{a_{1}, \ldots, a_{n}\right\}=0$ whenever $a_{i}+a_{i+1}=1$ in F for some $i<n$, and that $m \cdot\left\{a_{1}, \ldots, a_{n}\right\}=0$. For $a, b \in F^{\times}$we have $\{a b\}=\{a\}+\{b\}$ in $K_{1}^{(m)} F$. The second relation above is void when $n=1$, hence $K_{1}^{(m)} F$ is the same as $F^{\times} / F^{\times m}$, only with different notation for the elements and the group operation. As shown in $[6,(1.1)$ and (1.3)], it follows from the defining relations that, for $a_{1}, \ldots, a_{n} \in F^{\times}$, we have $\left\{a_{\sigma(1)}, \ldots, a_{\sigma(n)}\right\}=\varepsilon\left\{a_{1}, \ldots, a_{n}\right\}$ for any permutation σ of the numbers $1, \ldots, n$ with signature $\varepsilon= \pm 1$, and furthermore $\left\{a_{1}, \ldots, a_{n}\right\}=0$ whenever $a_{i}+a_{i+1}=0$ for some $i<n$.

With these notations, $K_{n}^{(0)} F$ is the full Milnor K-group $K_{n} F$ introduced in [6], and $K_{n}^{(m)} F$ is its quotient modulo m for $m \geq 1$.

By a \mathbb{Z}-valuation we mean a valuation with value group \mathbb{Z}. Given a \mathbb{Z}-valuation v on F we denote by \mathcal{O}_{v} its valuation ring and by κ_{v} its residue field. For $a \in \mathcal{O}_{v}$ let \bar{a} denote the natural image of a in κ_{v}. By $[6,(2.1)]$, for $n \geq 2$ and a \mathbb{Z} valuation v on F, there is a unique homomorphism $\partial_{v}: K_{n}^{(m)} F \longrightarrow K_{n-1}^{(m)} \kappa_{v}$ such that

$$
\partial_{v}\left(\left\{f, g_{2}, \ldots, g_{n}\right\}\right)=v(f) \cdot\left\{\bar{g}_{2}, \ldots, \overline{g_{n}}\right\}
$$

for $f \in F^{\times}$and $g_{2}, \ldots, g_{n} \in \mathcal{O}_{v}^{\times}$. When $n=2$, for $f, g \in F^{\times}$we have $f^{-v(g)} g^{v(f)} \in$ $\mathcal{O}_{v} \times$ and

$$
\partial_{v}(\{f, g\})=\left\{(-1)^{v(f) v(g)} \overline{f^{-v(g)} g^{v(f)}}\right\} \text { in } K_{1}^{(m)} \kappa_{v} .
$$

We turn to the situation where F is the function field of \mathbb{P}^{1} over E. By the choice of a generator, we identify F with the rational function field $E(t)$ in the variable t over E. Let \mathcal{P} denote the set of monic irreducible polynomials in $E[t]$. Any $p \in \mathcal{P}$ determines a \mathbb{Z}-valuation v_{p} on $E(t)$ that is trivial on E and such that $v_{p}(p)=1$. There is further a unique \mathbb{Z}-valuation v_{∞} on $E(t)$ such that $v_{\infty}(f)=-\operatorname{deg}(f)$ for any $f \in E[t] \backslash\{0\}$. We set $\mathcal{P}^{\prime}=\mathcal{P} \cup\{\infty\}$. For $p \in \mathcal{P}^{\prime}$ we write ∂_{p} for $\partial_{v_{p}}$ and we denote by E_{p} the residue field of v_{p}. Note that E_{p} is naturally isomorphic to $E[t] /(p)$ for $p \in \mathcal{P}$, and E_{∞} is naturally isomorphic to E.

It follows from [6, Sect. 2] that the sequence

$$
\begin{equation*}
0 \longrightarrow K_{n}^{(m)} E \longrightarrow K_{n}^{(m)} E(t) \stackrel{\oplus \partial_{p}}{\longrightarrow} \bigoplus_{p \in \mathcal{P}} K_{n-1}^{(m)} E_{p} \longrightarrow 0 \tag{2.1}
\end{equation*}
$$

is split exact. We are going to reformulate this fact for $n=2$ and to relate (2.1) to (1.1). We set

$$
\mathfrak{R}_{m}^{\prime}(E)=\bigoplus_{p \in \mathcal{P}^{\prime}} K_{1}^{(m)} E_{p}
$$

For $p \in \mathcal{P}^{\prime}$, the norm map of the finite extension E_{p} / E yields a group homomorphism $K_{1}^{(m)} E_{p} \longrightarrow K_{1}^{(m)} E$. Summation over these maps for all $p \in \mathcal{P}^{\prime}$ yields a homomorphism $\mathrm{N}: \mathfrak{R}_{m}^{\prime}(E) \longrightarrow K_{1}^{(m)} E$. Let $\mathfrak{R}_{m}(E)$ denote the kernel of N . We set $\partial=\bigoplus_{p \in \mathcal{P}^{\prime}} \partial_{p}$. By [3, (7.2.4) and (7.2.5)] we obtain an exact sequence

$$
\begin{equation*}
0 \longrightarrow K_{2}^{(m)} E \longrightarrow K_{2}^{(m)} E(t) \xrightarrow{\partial} \mathfrak{\Re}_{m}^{\prime}(E) \xrightarrow{\mathrm{N}} K_{1}^{(m)} E \longrightarrow 0 \tag{2.2}
\end{equation*}
$$

In particular, $\mathfrak{R}_{m}(E)$ is equal to the image of $\partial: K_{2}^{(m)} E(t) \longrightarrow \mathfrak{R}_{m}^{\prime}(E)$.
The choice of the generator of F over E fixes a bijection $\phi: \mathbb{P}_{0}^{1} \longrightarrow \mathcal{P}^{\prime}$ and for $x \in \mathbb{P}_{0}^{1}$ a natural isomorphism between $E(x)$ and $E_{\phi(x)}$. This identifies $\bigoplus_{x \in \mathbb{P}_{0}^{1}} K_{1}^{(m)} E(x)$ with $\mathfrak{R}_{m}^{\prime}(E)$, and further the sequence (1.1) with (2.2). We will work with (2.2) in the sequel.

For $\rho=\left(\rho_{p}\right)_{p \in \mathcal{P}^{\prime}} \in \mathfrak{R}_{m}^{\prime}(E)$ we denote $\operatorname{Supp}(\rho)=\left\{p \in \mathcal{P}^{\prime} \mid \rho_{p} \neq 0\right\}$ and $\operatorname{deg}(\rho)=\sum_{p \in \operatorname{Supp}(\rho)}\left[E_{p}: E\right]$, and call this the support and the degree of ρ. The degree of an element of $\mathfrak{R}_{m}^{\prime}(E)$ is invariant under automorphisms of $E(t) / E$.

3. Bound for representation by symbols in terms of the degree

In this section we study the relation between the degree of $\rho \in \mathfrak{R}_{m}(E)$ to the properties of elements $\xi \in K_{2}^{(m)} E(t)$ with $\partial(\xi)=\rho$. In (3.10) we will show that there always exists such ξ that is a sum of r symbols where r is the integral part of $\frac{\operatorname{deg}(\rho)}{2}$. In particular, any ramification of degree at most three is realized by a symbol. This settles a question in [4, (2.5)]. In some of the following statements, we consider elements of $\mathfrak{R}_{m}^{\prime}(E)$, rather than only of $\mathfrak{R}_{m}(E)$.

3.1. Proposition. If $\rho \in \mathfrak{R}_{m}(E)$ then $\operatorname{deg}(\rho) \neq 1$.

Proof. Consider an element $\rho \in \mathfrak{R}_{m}^{\prime}(E)$ with $\operatorname{deg}(\rho)=1$. The support of ρ consists of one rational point $p \in \mathcal{P}^{\prime}$. Hence $\mathrm{N}(\rho)=\rho_{p} \neq 0$ in $K_{1}^{(m)} E$. As $\mathrm{N} \circ \partial=0$ it follows that $\rho \notin \mathfrak{R}_{m}(E)$.

We say that $p \in \mathcal{P}^{\prime}$ is rational if $\left[E_{p}: E\right]=1$. We call a subset of \mathcal{P}^{\prime} rational if all its elements are rational. We give two examples showing how to realize a given ramification of small degree and with rational support by one symbol.
3.2. Examples. (1) Let $a, c \in E^{\times}$and $c \notin E^{\times m}$. The symbol $\sigma=\{t-a, c\}$ in $K_{2}^{(m)} E(t)$ satisfies $\operatorname{Supp}(\sigma)=\{t-a, \infty\}, \partial_{t-a}(\sigma)=\{c\}$ and $\partial_{\infty}(\sigma)=\left\{c^{-1}\right\}$.
(2) For $a_{1}, a_{2}, c_{1}, c_{2} \in E^{\times}$with $a_{1} \neq a_{2}$, we compute the ramification of the symbol $\sigma=\left\{\frac{t-a_{1}}{c_{2}\left(a_{2}-a_{1}\right)}, \frac{c_{1}\left(t-a_{2}\right)}{a_{1}-a_{2}}\right\}$ in $K_{2}^{(m)} E(t)$. It has $\operatorname{Supp}(\sigma) \subseteq\left\{t-a_{1}, t-a_{2}, \infty\right\}$, $\partial_{t-a_{i}}(\sigma)=\left\{c_{i}\right\}$ for $i=1,2$, and $\partial_{\infty}(\sigma)=\left\{\left(c_{1} c_{2}\right)^{-1}\right\}$.

A ramification of degree two can under some extra condition be realized by a symbol one of whose entries is a constant.
3.3. Proposition. Let $\rho \in \mathfrak{R}_{m}(E)$ be such that $\operatorname{deg}(\rho)=2$. If $\operatorname{Supp}(\rho)$ is rational or $\operatorname{char}(E) \neq m=2$, there exist $e \in E^{\times}$and $f \in E(t)^{\times}$such that $\rho=\partial(\{e, f\})$.

Proof. Suppose first that the support of ρ is rational. We choose $a, e \in E^{\times}$such that $t-a \in \operatorname{Supp}(\rho)$ and $\rho_{t-a}=\{e\}$ in $K_{1}^{(m)} E$. Then $\operatorname{Supp}(\rho)=\{t-a, p\}$ where $p \in \mathcal{P}^{\prime}$ is rational. As $N(\rho)=0$ we obtain that $\rho_{p}=\left\{e^{-1}\right\}$ in $K_{1}^{(m)} E_{p}$. If $p=\infty$, we set $f=\frac{1}{t-a}$. Otherwise $p=t-b$ for some for $b \in E$, and we set $f=\frac{t-b}{t-a}$. In either case we obtain that $\rho=\partial(\{e, f\})$.

It remains to consider the case where $\operatorname{char}(E) \neq m=2$ and $\operatorname{Supp}(\rho)=\{p\}$ for a quadratic polynomial $p \in \mathcal{P}$. Then E_{p} / E is a separable quadratic extension. Let $x \in E_{p}^{\times}$be such that $\rho_{p}=\{x\}$. As $\operatorname{Supp}(\rho)=\{p\}$ and $\mathrm{N}(\rho)=0$, we obtain that the norm of x with respect to the extension E_{p} / E lies in $E^{\times 2}$, and therefore $x E_{p}^{\times 2}=e E_{p}^{\times 2}$ for some $e \in E^{\times}$(cf. [5, Chap. VII, (3.9)]). Hence, $\rho_{p}=\{x\}=\{e\}$ in $K_{1}^{(2)} E_{p}$, and we obtain that $\rho=\partial(\{e, p\})$.

In (3.3) the rationality of the support when $m \neq 2$ is not a superfluous condition; the following example was pointed out to us by J.-P. Tignol.
3.4. Example. Let k be a field. We consider the rational function field in two variables u and v over k. Let τ denote the k-automorphism of $k(u, v)$ satisfying $\tau(u)=v$ and $\tau(v)=u$. Then τ^{2} is the identity map on $k(u, v)$, and $E=$ $\{x \in k(u, v) \mid \tau(x)=x\}$ is a subfield of $k(u, v)$ such that $[k(u, v): E]=2$. Consider the element $y=\frac{v}{u} \in k(u, v)$. Since $y \notin E$, the quadratic polynomial $p=(t-y)(t-\tau(y))=t^{2}-\frac{u^{2}+v^{2}}{u v} t+1$ is irreducible over E.

Let m be an odd positive integer. We consider the symbol $\sigma=\{p, t\}$ in $K_{2}^{(m)} E(t)$. Note that the support of $\partial(\sigma)$ is contained in $\{p\}$ and $\partial_{p}(\sigma)=\{\bar{t}\}$. Moreover, mapping t to y induces an E-isomorphism $E_{p} \longrightarrow k(u, v)$. Since y is not an m th power in $k(u, v)$, it follows that $\partial_{p}(\sigma) \neq 0$. Hence, $\operatorname{Supp}(\partial(\sigma))=\{p\}$ and $\operatorname{deg}(\partial(\sigma))=2$.

We claim that $\partial(\sigma) \neq \partial(\{e, f\})$ for any $e \in E^{\times}$and $f \in E(t)^{\times}$. Suppose on the contrary that there exist $e \in E^{\times}$and $f \in E(t)^{\times}$such that $\partial_{p}(\sigma)=\partial_{p}(\{e, f\})$. Then we obtain that $e^{v_{p}(f)} y$ is an m th power in $k(u, v)$, and taking norms with respect to the extension $k(u, v) / E$ yields that $e^{2 v_{p}(f)} \in E^{\times m}$. Since m is odd, it follows that $e^{v_{p}(f)} \in E^{\times m}$, and thus $\partial_{p}(\{e, f\})=0$, a contradiction.

The remainder of this section builds up to our main result (3.10).
3.5. Lemma. Let $\rho \in \mathfrak{R}_{m}^{\prime}(E)$ with $\operatorname{deg}(\rho) \geq 2$. There exists a symbol σ in $K_{2}^{(m)} E(t)$ such that $\operatorname{deg}(\rho-\partial(\sigma)) \leq \operatorname{deg}(\rho)-1$ and such that this inequality is strict except possibly when $\partial_{\infty}(\sigma) \neq 0=\rho_{\infty}$ or $\operatorname{deg}(\rho)=2$. More precisely, one may choose $\sigma=\{f h, g\}$ where f is the product of the polynomials in $\operatorname{Supp}(\rho)$
and $g, h \in E[t] \backslash\{0\}$ are such that $\operatorname{deg}(g)<\operatorname{deg}(f)$ and, either $\operatorname{deg}(h)<\operatorname{deg}(g)$, or $g h \in E^{\times}$.

Proof. Let f be the product of the polynomials in $\operatorname{Supp}(\rho)$. By the Chinese Remainder Theorem, we may choose $g \in E[t]$ prime to f with $\operatorname{deg}(g)<\operatorname{deg}(f)$ such that $\partial_{p}(\{f, g\})=\rho_{p}$ for all monic irreducible polynomials $p \in \operatorname{Supp}(\rho)$. If g is constant, let $h=1$. If g is not square-free, let h be the product of the different monic irreducible factors of g. If g is square-free and not constant, then using the Chinese Remainder Theorem we choose $h \in E[t]$ prime to g with $\operatorname{deg}(h)<\operatorname{deg}(g)$ such that $\partial_{p}(\{f, g\})-\rho_{p}=\{\bar{h}\}$ in $K_{1}^{(m)} E_{p}$ for every monic irreducible factor p of g. Then g, h and $\sigma=\{f h, g\}$ have the desired properties.
3.6. Lemma. Let $d \in \mathbb{N} \backslash\{0\}$ and $f \in E[t]$ non-constant and square-free such that $\operatorname{deg}(p) \geq d$ for every irreducible factor p of f. Let $F=E[t] /(f)$ and let ϑ denote the class of t in F. For any $a \in F^{\times}$there exist nonzero polynomials $g, h \in E[t]$ with $\operatorname{deg}(h) \leq d-1$ and $\operatorname{deg}(g) \leq \operatorname{deg}(f)-d$ such that $a=\frac{g(\vartheta)}{h(\vartheta)}$.
Proof. Let $V=\bigoplus_{i=0}^{d-1} E \vartheta^{i}$ and $W=\bigoplus_{i=0}^{e-d} E \vartheta^{i}$ where $e=\operatorname{deg}(f)$. By the choice of d and the Chinese Remainder Theorem, we have $V \backslash\{0\} \subseteq F^{\times}$, where F^{\times} denotes the group of invertible elements of F. As $a \in F^{\times}$we have $\operatorname{dim}_{E}(V a)=$ $\operatorname{dim}_{E}(V)=d$ and $\operatorname{dim}_{E}(V a)+\operatorname{dim}_{E}(W)=e+1>e=[F: E]$, so $V a \cap W \neq 0$. Therefore $h(\vartheta) a=g(\vartheta)$ for certain $h, g \in E[t] \backslash\{0\}$ with $\operatorname{deg}(h) \leq d-1$ and $\operatorname{deg}(g) \leq e-d$. Thus $h(\vartheta) \in V \backslash\{0\} \subseteq F^{\times}$and $a=\frac{g(\vartheta)}{h(\vartheta)}$.
3.7. Lemma. Let $\rho \in \mathfrak{R}_{m}^{\prime}(E)$ and $q \in \operatorname{Supp}(\rho)$ such that $\operatorname{deg}(q)=2 n+1$ with $n \geq 1$. There exists a symbol σ in $K_{2}^{(m)} E(t)$ such that $\operatorname{deg}(\rho-\partial(\sigma)) \leq \operatorname{deg}(\rho)-2$. More precisely, one may choose $\sigma=\left\{q h f^{-2} g^{-2}, g^{-1} f\right\}$ with $f, g, h \in E[t] \backslash\{0\}$ such that $\operatorname{deg}(f), \operatorname{deg}(g) \leq n$ and $\operatorname{deg}(h) \leq 2 n-1$.

Proof. Using (3.6) we choose $f, g \in E[t] \backslash\{0\}$ with $\operatorname{deg}(f), \operatorname{deg}(g) \leq n$ such that $\partial_{q}\left(\left\{q, g^{-1} f\right\}\right)=\rho_{q}$. Then q is prime to $f g$. If $f g$ is constant, let $h=1$. If $f g$ is not square-free, let h be the product of the different monic irreducible factors of $f g$. If $f g$ is square-free and not constant, we choose $h \in E[t]$ prime to $f g$ and with $\operatorname{deg}(h)<\operatorname{deg}(f g)$ such that $\partial_{p}\left(\left\{h, g^{-1} f\right\}\right)=\partial_{p}\left(\left\{q^{-1} f^{2} g^{2}, g^{-1} f\right\}\right)$ for every monic irreducible factor p of $f g$. In any case $\operatorname{deg}(h) \leq 2 n-1=\operatorname{deg}(q)-2$.

Let $\sigma=\left\{q h f^{-2} g^{-2}, g^{-1} f\right\}$. We have $\partial_{q}(\sigma)=\rho_{q}$ and $\partial_{p}(\sigma)=0$ for every monic irreducible polynomial $p \in E[t]$ prime to h and not contained in $\operatorname{Supp}(\rho)$. It follows that $q \in \operatorname{Supp}(\rho) \backslash \operatorname{Supp}(\rho-\partial(\sigma))$ and that every polynomial in $\operatorname{Supp}(\rho-$ $\partial(\sigma)) \backslash \operatorname{Supp}(\rho)$ divides h. Furthermore, if $\operatorname{deg}(h)=2 n-1$, then $\operatorname{deg}(f)=$ $\operatorname{deg}(g)=n$, so that $\operatorname{deg}(q h)=4 n=2 \operatorname{deg}(f g)$ and thus $\partial_{\infty}(\sigma)=0$. We conclude that $\operatorname{deg}(\rho-\partial(\sigma)) \leq \operatorname{deg}(\rho)-2$ in any case.
3.8. Proposition. Let $\rho \in \mathfrak{R}_{m}^{\prime}(E)$ with $\operatorname{deg}(\rho) \geq 2$. There exists a symbol σ in $K_{2}^{(m)} E(t)$ such that $\operatorname{deg}(\rho-\partial(\sigma)) \leq \operatorname{deg}(\rho)-1$. Moreover, if $\operatorname{deg}(\rho) \geq 3$ and $\operatorname{Supp}(\rho)$ contains an element of odd degree, then there exists a symbol σ in $K_{2}^{(m)} E(t)$ such that $\operatorname{deg}(\rho-\partial(\sigma)) \leq \operatorname{deg}(\rho)-2$.

Proof. In view of (3.5) only the second part of the statement remains to be proven. If $\operatorname{Supp}(\rho)$ contains a non-rational point of odd degree, the statement follows from (3.7). Suppose now that $\operatorname{Supp}(\rho)$ contains a rational point. Note that the statement is invariant under E-automorphisms of $E(t)$. Hence, we may assume that $\infty \in \operatorname{Supp}(\rho)$, in which case the statement follows from (3.5).
3.9. Question. Given $\rho \in \mathfrak{R}_{m}(E)$ with $\operatorname{deg}(\rho) \geq 3$, does there always exist a symbol σ in $K_{2}^{(m)} E(t)$ such that $\operatorname{deg}(\rho-\partial(\sigma)) \leq \operatorname{deg}(\rho)-2$?

For $x \in \mathbb{R}$, the unique $z \in \mathbb{Z}$ such that $z \leq x<z+1$ is denoted $\lfloor x\rfloor$.
3.10. Theorem. For $\rho \in \mathfrak{R}_{m}(E)$ and $n=\left\lfloor\frac{\operatorname{deg}(\rho)}{2}\right\rfloor$, there exist symbols $\sigma_{1}, \ldots, \sigma_{n}$ in $K_{2}^{(m)} E(t)$ such that $\rho=\partial\left(\sigma_{1}+\cdots+\sigma_{n}\right)$.

Proof. We proceed by induction on n. If $n=0$ then $\rho=0$ by (3.1) and the statement is trivial. Assume that $n>0$. We have either $\operatorname{deg}(\rho)=2 n+1$, in which case ρ contains a point of odd degree, or $\operatorname{deg}(\rho)=2 n$. Hence, by (3.8) there exists a symbol σ in $K_{2}^{(m)} E(t)$ with $\operatorname{deg}(\rho-\partial(\sigma)) \leq 2 n-1$. By the induction hypothesis there exist symbols $\sigma_{1}, \ldots, \sigma_{n-1}$ in $K_{2}^{(m)} E(t)$ with $\rho-\partial(\sigma)=\partial\left(\sigma_{1}+\cdots+\sigma_{n-1}\right)$. Then $\rho=\partial\left(\sigma_{1}+\cdots+\sigma_{n-1}+\sigma\right)$.

If we knew that for $m \geq 1$ every element of $\mathfrak{R}_{m}(E)$ had a lift to $\Re_{0}(E)$ of the same degree, it would be sufficient to formulate and prove (3.10) for $m=0$.

4. Example showing that the bound is sharp

In this section we show that the bound (3.10) is sharp for all m and in all degrees. In order to obtain an example in (4.3) where the bound of (3.10) is an equality, we adapt Sivatski's argument in [8, Prop. 2].

For any $a \in E$, there is a unique homomorphism $s_{a}: K_{n}^{(m)} E(t) \longrightarrow K_{n}^{(m)} E$ such that $s_{a}\left(\left\{f_{1}, \ldots, f_{n}\right\}\right)=\left\{f_{1}(a), \ldots, f_{n}(a)\right\}$ for any $f_{1}, \ldots, f_{n} \in E[t]$ prime to $t-a$ and such that $s_{a}(\{t-a, *, \ldots, *\})=0$ (cf. [3, (7.1.4)]).
4.1. Lemma. The homomorphism $s=s_{0}-s_{1}: K_{n}^{(m)} E(t) \longrightarrow K_{n}^{(m)} E$ has the following properties:
(a) $s\left(K_{n}^{(m)} E\right)=0$,
(b) $s\left(\left\{(1-a) t+a, b_{2}, \ldots, b_{n}\right\}\right)=\left\{a, b_{2}, \ldots, b_{n}\right\}$ for any $a, b_{2}, \ldots, b_{n} \in E^{\times}$,
(c) any symbol in $K_{n}^{(m)} E(t)$ is mapped under s to a sum of two symbols in $K_{n}^{(m)} E$.

Proof. Since s_{0} and s_{1} both restrict to the identity on $K_{n}^{(m)} E$, part (a) is clear. For $a, b_{2}, \ldots, b_{n} \in E^{\times}$and $\sigma=\left\{(1-a) t+a, b_{2}, \ldots, b_{n}\right\}$, we have $s_{1}(\sigma)=0$ and thus $s(\sigma)=s_{0}(\sigma)=\left\{a, b_{2}, \ldots, b_{n}\right\}$. This shows (b). Part (c) follows from the observation that both s_{0} and s_{1} map symbols to symbols.
4.2. Proposition. Let $d \in \mathbb{N}, a_{1}, \ldots, a_{d} \in E^{\times}$, and $\sigma_{1}, \ldots, \sigma_{d}$ symbols in $K_{n-1}^{(m)} E$. Assume that $\sum_{i=1}^{d}\left\{a_{i}\right\} \cdot \sigma_{i} \in K_{n}^{(m)} E$ is not equal to a sum of less than d symbols and let

$$
\xi=\sum_{i=1}^{d}\left\{\left(1-a_{i}\right) t+a_{i}\right\} \cdot \sigma_{i} \in K_{n}^{(m)} E(t)
$$

Then $\operatorname{deg}(\partial(\xi))=d+1$, and if $r \in \mathbb{N}$ is such that $\partial(\xi)=\partial\left(\tau_{1}+\cdots+\tau_{r}\right)$ for symbols $\tau_{1}, \ldots, \tau_{r}$ in $K_{n}^{(m)} E(t)$, then $r \geq\left\lfloor\frac{d+1}{2}\right\rfloor$.
Proof. The hypothesis that ξ cannot be written as a sum of less than d symbols has a few consequences. For $i=1, \ldots, d$, it follows that $\left\{a_{i}\right\} \cdot \sigma_{i} \neq 0$, so in particular $a_{i} \neq 1$, and with $p=t-\frac{a_{i}}{1-a_{i}}$ we get that $\partial_{p}(\xi)=\sigma_{i} \neq 0$ in $K_{n-1}^{(m)} E$. Furthermore, we obtain that $\partial_{\infty}(\xi)=-\sum_{i=1}^{d} \sigma_{i} \neq 0$ in $K_{n-1}^{(m)} E$. Therefore we have $\operatorname{Supp}(\partial(\xi))=\left\{\left.t-\frac{a_{i}}{1-a_{i}} \right\rvert\, 1 \leq i \leq d\right\} \cup\{\infty\}$ and thus $\operatorname{deg}(\partial(\xi))=d+1$.

Assume now that $r \in \mathbb{N}$ and $\partial(\xi)=\partial\left(\tau_{1}+\cdots+\tau_{r}\right)$ for symbols $\tau_{1}, \ldots, \tau_{r}$ in $K_{n}^{(m)} E(t)$. Then $\tau_{1}+\cdots+\tau_{r}-\xi$ is defined over E. Let s be the map from (4.1). By (4.1) we obtain that $s\left(\tau_{1}+\cdots+\tau_{r}-\xi\right)=0$ and thus

$$
\sum_{i=1}^{d}\left\{a_{i}\right\} \cdot \sigma_{i}=s(\xi)=s\left(\tau_{1}\right)+\ldots+s\left(\tau_{r}\right) \in K_{n}^{(m)} E
$$

which is a sum of $2 r$ symbols. Hence $2 r \geq d$, by the hypothesis on d.
4.3. Example. Let p be a prime dividing m. Let k be a field containing a primitive p th root of unity ω and $a_{1}, \ldots, a_{d} \in k^{\times}$such that the Kummer extension $k\left(\sqrt[p]{a_{1}}, \ldots, \sqrt[p]{a_{d}}\right)$ of k has degree p^{d}. Let b_{1}, \ldots, b_{d} be indeterminates over k and set $E=k\left(b_{1}, \ldots, b_{d}\right)$. Using [9, (2.10)] and [1, (2.1)], it follows that $\sum_{i=1}^{d}\left\{a_{i}, b_{i}\right\}$ is not equal to a sum of less than d symbols in $K_{2}^{(p)} E$. Since p divides m, it follows immediately that $\sum_{i=1}^{d}\left\{a_{i}, b_{i}\right\} \in K_{2}^{(m)} E$ is not a sum of less than d symbols in $K_{2}^{(m)} E$. Consider $\xi=\sum_{i=1}^{d}\left\{\left(1-a_{i}\right) t+a_{i}, b_{i}\right\}$ in $K_{2}^{(m)} E(t)$. By (4.2), for $\rho=\partial(\xi)$ we have that $\operatorname{deg}(\rho)=d+1$ and $\rho \neq \partial\left(\xi^{\prime}\right)$ for any $\xi^{\prime} \in K_{2}^{(m)} E(t)$ that is a sum of less than $r=\left\lfloor\frac{\operatorname{deg}(\rho)}{2}\right\rfloor$ symbols.
Acknowledgements. We wish to express our gratitude to Jean-Pierre Tignol for his interest in our work and all his support in its course. This work was done while the first named author was a Fellow of the Zukunftskolleg and the second named author was a Postdoctoral Fellow of the Fonds de la Recherche Scientifique

- FNRS. The project was further supported by the Deutsche Forschungsgemeinschaft (project Quadratic Forms and Invariants, BE 2614/3).

References

[1] K.J. Becher and D.W. Hoffmann. Symbol lengths in Milnor K-theory. Homology Homotopy Appl. 6 (2004): 17-31.
[2] D.K. Faddeev. Simple algebras over a function field in one variable. Trud. Math. Inst. Steklov 38 (1951): 321-344. Engl. Transl.: A.M.S. Transl. Series 2, 3: 15-38.
[3] P. Gille and T. Szamuely. Central simple algebras and Galois cohomology. Cambridge University Press (2006).
[4] B.È. Kunyavskiǐ, L.H. Rowen, S.V. Tikhonov, V.I. Yanchevskiǐ. Bicyclic algebras of prime exponent over function fields. Trans. Amer. Math. Soc. 358 (2006): 2579-2610.
[5] T.Y. Lam. Introduction to quadratic forms over fields. Graduate Studies in Mathematics, 67, American Mathematical Society, Providence, RI, 2005.
[6] J. Milnor. Algebraic K-theory and quadratic forms. Invent. Math. 9 (1970): 318-344.
[7] L.H. Rowen, A.S. Sivatski, and J.-P. Tignol. Division algebras over rational function fields in one variable. In: Algebra and Number Theory - Proceedings of the Silver Jubilee Conference, University of Hyderabad, Hindustan Book Agency (2005): 158-180.
[8] A. Sivatski. On the Faddeev index of an algebra over the function field of a curve. Linear Algebraic Groups and Related Structures Preprint Server, Preprint 255 (2007). http://www.math.uni-bielefeld.de/lag/man/255
[9] J.-P. Tignol. Algèbres indécomposables d'exposant premier. Adv. in Math. 65 (1987): 205228.

Universität Konstanz, Zukunftskolleg / FB Mathematik und Statistik, 78457 Konstanz, Germany.

E-mail address: becher@maths.ucd.ie
Université catholique de Louvain, ICTEAM, Chemin du Cyclotron 2, 1348 Louvain-La-Neuve, Belgium.

E-mail address: melanie.raczek@ulouvain.be

