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Abstract. Let G be an algebraic group over a field F . As defined by
Serre, a cohomological invariant of G of degree n with values in Q/Z(j) is a
functorial in K collection of maps of sets H1(K,G) −→ Hn

(
K,Q/Z(j)

)
for

all field extensions K/F . We study the group of degree 3 invariants of an
algebraic torus with values in Q/Z(2). In particular, we compute the group
H3

nr

(
F (S),Q/Z(2)

)
of unramified cohomology of an algebraic torus S.

1. Introduction

Let G be a (linear) algebraic group. The notion of an invariant of G was
defined in [16] as follows. Fix a field F (of arbitrary characteristic) and consider
the category FieldsF of field extensions of F . Consider the functor

TorsG : FieldsF −→ Sets

taking a field K to the set H1(K,G) of isomorphism classes of G-torsors over
SpecK. Let

H : FieldsF −→ Abelian Groups

be another functor. An H-invariant of G is then a morphism of functors

i : TorsG −→ H,

viewing H with values in Sets , i.e., a functorial in K collection of maps of sets
H1(K,G) −→ H(K) for all field extensions K/F . We denote the group of
H-invariants of G by Inv(G,H).

An invariant i ∈ Inv(G,H) is called normalized if i(I) = 0 for the triv-
ial G-torsor I. The normalized invariants form a subgroup Inv(G,H)norm of
Inv(G,H) and there is a natural isomorphism

Inv(G,H) ≃ H(F )⊕ Inv(G,H)norm,

so it is sufficient to study normalized invariants.
Typically, H is a cohomological functor given by Galois cohomology groups

with values in a fixed Galois module. Of particular interest to us is the functor
H which takes a field K/F to the Galois cohomology group Hn

(
K,Q/Z(j)

)
,

where the coefficients Q/Z(j) are defined as follows. For a prime integer p
different from char(F ), the p-component Qp/Zp(j) of Q/Z(j) is the colimit

over n of the étale sheaves µ⊗j
pn , where µm is the sheaf of mth roots of unity. In
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the case p = char(F ) > 0, Qp/Zp(j) is defined via logarithmic de Rham-Witt
differentials (see §3b).

We write Invn
(
G,Q/Z(j)

)
for the group of cohomological invariants of G of

degree n with values in Q/Z(j).
The second cohomology group H2

(
K,Q/Z(1)

)
is canonically isomorphic to

the Brauer group Br(K) of the field K. In §2c we prove (Theorem 2.4) that if
G is a connected group (reductive if F is not perfect), then Inv(G,Br)norm ≃
Pic(G). The group Inv3

(
G,Q/Z(2)

)
norm

for a semisimple simply connected
group G has been studied by Rost (see [16]).

An essential object in the study of cohomological invariants is the notion
of a classifying torsor : a G-torsor E −→ X for some variety X over F such
that every G-torsor over an infinite field K/F is isomorphic to the pull-back of
E −→ X along aK-point ofX . If V is generically free representation ofG with
a nonempty open subset U ⊂ V such that there is a G-torsor π : U −→ X , then
π is classifying. The generic fiber of π is the generic torsor over SpecF (X).
Evaluation at the generic torsor yields a homomorphism

Invn
(
G,Q/Z(j)

)
−→ Hn

(
F (X),Q/Z(j)

)
,

and in §3 we show that the image of this map is contained in the subgroup
H0

Zar

(
X,Hn(Q/Z(j))

)
ofHn

(
F (X),Q/Z(j)

)
, whereHn

(
Q/Z(j)

)
is the Zariski

sheaf associated to the presheaf W 7→ Hn
(
W,Q/Z(j)

)
of the étale cohomology

groups. In fact, the image is contained in the subgroupH0
Zar

(
X,Hn(Q/Z(j))

)
bal

of balanced elements, i.e., elements that have the same images under the pull-
back homomorphisms with respect to the two projections (U × U)/G −→ X .
Moreover, the balanced elements precisely describe the image and we prove
(Theorem 3.3):

Theorem. Let G be an algebraic group over a field F . We assume that
G is connected if F is a finite field. Then there is a natural isomorphism
Invn

(
G,Q/Z(j)

)
≃ H0

Zar

(
X,Hn(Q/Z(j))

)
bal
.

At this point it is convenient to make use of a construction due to Totaro
[33]: because the Chow groups are homotopy invariant, the groups CHn(X)
do not depend on the choice of the representation V and the open set U ⊂ V
provided the codimension of V \ U in V is large enough. This leads to the
notation CHn(BG), the Chow groups of the so-called classifying space BG,
although BG itself is not defined in this paper.

Unfortunately, the étale cohomology groups with values in Qp/Zp(j), where
p = char(F ) > 0, are not homotopy invariant. In particular, we cannot use
Rost’s theory of cycle modules of Rost [31].

The main result of this paper is the exact sequence in Theorem 4.4 describing

degree 3 cohomological invariants of an algebraic torus T . Writing T̂sep for the
character lattice of T over a separable closure of F and T ◦ for the dual torus,
we prove:



I COHOMOLOGICAL INVARIANTS OF ALGEBRAIC TORI 3

Theorem. Let T be an algebraic torus a field F . Then there is an exact
sequence

0 −→ CH2(BT )tors −→ H1(F, T 0)
α

−→

Inv3
(
T,Q/Z(2)

)
norm

−→ H0
(
F, S2(T̂sep)

)
/Dec −→ H2(F, T 0).

The homomorphism α is given by α(a)(b) = aK∪b for every a ∈ H1(F, T 0) and
b ∈ H1(K, T ) and every field extension K/F , where the cup-product is defined
in (4.5), and Dec is the subgroup of decomposable elements in the symmetric

square S2(T̂sep) defined in Appendix A-II.

We prove that the torsion group CH2(BT )tors is finite of exponent 2 and
the last homomorphism in the sequence is also of exponent 2. Moreover, if
p is an odd prime, the group Inv3

(
T,Qp/Zp(2)

)
norm

, which is the p-primary

component of Inv3
(
T,Q/Z(2)

)
norm

, splits canonically into the direct sum of
linear invariants (those that induce group homomorphisms from TorsT to
H3) and quadratic invariants, i.e., the invariants i such that the function
h(a, b) := i(a+b)−i(a)−i(b) is bilinear and h(a, a) = 2i(a) for all a and b. Fur-
thermore, the groups of linear and quadratic invariants with values in Qp/Zp(2)

are canonically isomorphic to H1(F, T ◦){p} and H0
(
F, S2(T̂sep)

)
/Dec

)
{p}, re-

spectively.
We also prove (Theorem 4.9) that the degree 3 invariants have control over

the structure of all invariants. In particular, the group Inv3(TK ,Q/Z(2))norm is
trivial for allK/F if and only if T is universally special, i.e., T has no nontrivial
torsors over any field K/F , which in particular means T has no nonconstant
H-invariants for every functor H .

Our motivation for considering invariants of tori comes from their connection
with unramified cohomology (defined in §5). Specifically, this work began as
an investigation of a problem posed by Colliot-Thélène in [5, p. 39]: for n
prime to char(F ) and i ≥ 0, determine the unramified cohomology group

H i
nr

(
F (S), µ

⊗(i−1)
n

)
, where F (S) is the function field of a torus S over F . The

connection is provided by Theorem 5.6 where we show that the unramified
cohomology of a torus S is calculated by the invariants of an auxiliary torus:

Theorem. Let S be a torus over F and let 1 −→ T −→ P −→ S −→ 1 be a
flasque resolution of S, i.e., T is flasque and P is quasi-split. Then there is a
natural isomorphism

Hn
nr

(
F (S),Q/Z(j)

)
≃ Invn

(
T,Q/Z(j)

)
.

In the present paper, F denotes a field of arbitrary characteristic, Fsep a
separable closure of F , and Γ the absolute Galois group Gal(Fsep/F ) of F .
The word “scheme” over a field F means a separated scheme over F and a
“variety” over F is an integral scheme of finite type over F . If X is a scheme
over F and L/F is a field extension then we write XL for X ×F SpecL. When
L = Fsep we write simply Xsep.
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2. Invariants of algebraic groups

2a. Definitions and basic properties. Let G be a (smooth linear) algebraic
group over a field F . Consider the functor

TorsG : FieldsF −→ Sets

from the category of field extensions of F to the category of sets taking a field
K to the set H1(K,G) := H1

(
Gal(Ksep/K), G(Ksep)

)
of isomorphism classes

of G-torsors over SpecK.
Let H : FieldsF −→ Abelian Groups be a functor. We also view H as a

functor with values in Sets . Following [16], we define an H-invariant of G as
a morphism of functors TorsG −→ H from the category FieldsF to Sets . All
the H-invariants of G form the abelian group of invariants Inv(G,H).

An invariant i ∈ Inv(G,H) is called constant if there is an element h ∈
H(F ) such that i(I) = hK for every G-torsor I −→ SpecK, where hK is the
image of h under natural map H(F ) −→ H(K). The constant invariants form
a subgroup Inv(G,H)const of Inv(G,H) isomorphic to H(F ). An invariant
i ∈ Inv(G,H) is called normalized, if i(I) = 0 for the trivial G-torsor I. The
normalized invariants form a subgroup Inv(G,H)norm of Inv(G,H) and we have
the decomposition

Inv(G,H) = Inv(G,H)const ⊕ Inv(G,H)norm ≃ H(F )⊕ Inv(G,H)norm,

so it suffices to determine the normalized invariants.

2b. Classifying torsors. Let G be an algebraic group over a field F . A G-
torsor E −→ X over a variety X over F is called classifying if for every field
extension K/F , with K infinite, and for every G-torsor I −→ SpecK, there is
a point x : SpecK −→ X such that the torsor I is isomorphic to the fiber E(x)
of E −→ X over x, i.e., I ≃ E(x) := x∗(E) = Spec(K) ×X E. The generic
fiber Egen −→ SpecF (X) of a classifying torsor is called a generic G-torsor
(see [16, Part 1, §5.3]).

If V is generically free representation of G with a nonempty open subset
U ⊂ V such that there is a G-torsor π : U −→ X , then π is classifying (see
[16, Part 1, §5.4]). We will write U/G forX and call π a standard classifying G-
torsor. Standard classifying G-torsors exist: we can embed G into U := GLn,F

for some n as a closed subgroup. Then U is an open subset in the affine space
Mn(F ) on which G acts linearly. Note that U(F ) 6= ∅.

We say that a G-variety Y is G-rational if there is an affine space V with
a linear G-action such that Y and V have G-isomorphic nonempty open G-
invariant subvarieties. Note that if U −→ U/G is a standard classifying G-
torsor, then U is a G-rational variety.
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Let E −→ X be a classifying G-torsor and letH : FieldsF −→ Abelian Groups

be a functor. Define the map

θ : Inv(G,H) −→ H
(
F (X)

)

i 7−→ i(Egen),
(2.1)

by sending an invariant to its value at the generic torsor Egen.
Consider the following property of the functor H :

Property 2.1. The map H(K) −→ H
(
K((t))

)
is injective for any field exten-

sion K/F .

The following theorem, due to M. Rost, was proved in [16, Part II, Th. 3.3].
For completeness, we give a slightly modified proof in Appendix A-I.

Theorem 2.2. Let G be an algebraic group over F . If a functor H : FieldsF −→
Abelian Groups has Property 2.1, then the map θ is injective, i.e., every H-
invariant of G is determined by its value at the generic G-torsor.

2c. The Brauer group invariants. Let G be a connected algebraic group
over F . Every cohomological invariant of G of degree 1 is constant by [24,
Prop. 31.15]. In this section we study (degree 2) Br-invariants for the Brauer
group functor K 7−→ Br(K). We assume that G is reductive if F is not perfect
as required by the auxiliary result [32, Prop. 6.10].

Lemma 2.3. For any field extension K/F such that F is algebraically closed
in K, the natural map Pic(G) −→ Pic(GK) is an isomorphism.

Proof. We may assume that G is reductive by factoring out the unipotent
radical in the case that F is perfect. There is an exact sequence (see [8, Th.
1.2])

1 −→ C −→ G′ −→ G −→ 1

with C a group of multiplicative type and G′ a reductive group with Pic(G′
L) =

0 for any field extension L/F . Let T be the factor group ofG′ by the semisimple
part. The result follows from the exact sequence [32, Prop. 6.10]

T̂ (L) −→ Ĉ(L) −→ Pic(GL) −→ Pic(G′
L) = 0

with L = F and K since the groups T̂ (F ) and Ĉ(F ) don’t change when F is
replaced by K. �

Since for any G-torsor E −→ Spec(K) over a field extension K/F one has
[32, Prop. 6.10] the exact sequence

(2.2) Pic(E) −→ Pic(GK)
δ

−→ Br(K) −→ Br(E),

we obtain the homomorphism

ν : Pic(G) −→ Inv(G,Br)norm

which takes an element α ∈ Pic(G) to the invariant that sends a G-torsor E
over a field extension K/F to δ(αK).
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Theorem 2.4. Let G be a connected algebraic group over F . Assume that G
is reductive if F is not perfect. Then the map ν : Pic(G) −→ Inv(G,Br)norm is
an isomorphism.

Proof. Choose a standard classifying G-torsor U −→ U/G. Write K for the
function field F (U/G) and let Ugen be the generic G-torsor over K. Consider
the commutative diagram

Pic(G)

j

��

ν // Inv(G,Br)norm

θ
��

Pic(Ugen) // Pic(GK)
δ // Br(K)

i // Br(K(Ugen)),

where the bottom sequence is (2.2) for the G-torsor Ugen −→ Spec(K) followed
by the injection Br(Ugen) −→ Br

(
K(Ugen)

)
(see [29, Ch. IV, Cor. 2.6]),

and the map θ is evaluation at the generic torsor Ugen given in (2.1) and
is injective by Theorem 2.2. Since the generic torsor is split over K(Ugen),
Im(θ) ⊂ Ker(i) = Im(δ). By Lemma 2.3, j is an isomorphism, hence ν is
surjective.

Note that Ugen is a localization of U , hence Pic(Ugen) = 0 as Pic(U) = 0. It
follows that ν is injective. �

An algebraic groupG over a field F is called universally special ifH1(K,G) =
{1} for every field extension K/F , i.e., all G-torsors over any field extension
of F are trivial.

Corollary 2.5. If the group G is universally special, then Pic(G) = 0.

3. Invariants with values in Q/Z(j)

In this section we find a description for the group of cohomological invariants
with values in Q/Z(j) by identifying the image of the embedding θ in (2.1).

3a. Balanced elements. Let G be an algebraic group over a field F . We
assume that G is connected if F is finite. Let E −→ X be a G-torsor such that
E(F ) 6= ∅. We write p1 and p2 for the two projections E2/G := (E×E)/G −→
X .

Lemma 3.1. Let K/F be a field extension and x1, x2 ∈ X(K). Then the G-
torsors E(x1) and E(x2) over K are isomorphic if and only if there is a point
y ∈ (E2/G)(K) such that p1(y) = x1 and p2(y) = x2.

Proof. “⇒”: By construction, we have G-equivariant morphisms fi : E(xi) −→
E for i = 1, 2. Choose an isomorphism h : E(x1)

∼
−→ E(x2) of G-torsors

over K. The morphism (f1, f2h) : E(x1) −→ E2 yields the required point
SpecK = E(x1)/G −→ E2/G.

“⇐”: The pull-back of E −→ X with respect to any projection E2/G −→ X
coincides with the G-torsor E2 −→ E2/G, hence

E(x1) = x∗
1(E) = y∗p∗1(E) ≃ y∗(E2) ≃ y∗p∗2(E) = x∗

2(E) = E(x2). �
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Let H be a (contravariant) functor from the category of integral schemes
over F and dominant morphisms to the category of abelian groups. We have
the two maps p∗i : H(X) −→ H(E2/G), i = 1, 2. An element h ∈ H(X)
is called balanced if p∗1(h) = p∗2(h). We write H(X)bal for the subgroup of
balanced elements in H(X). In other words, H(X)bal = h0

(
H(E•/G)

)
in the

notation of Appendix A-IV.
We can view H as a (covariant) functor FieldsF −→ Sets taking a field K

to H(K) := H
(
SpecK

)
.

Lemma 3.2. Let h ∈ H(X)bal be a balanced element, K/F a field extension
and I a G-torsor over Spec(K). Let x ∈ X(K) be a point such that E(x) ≃ I.
Then the element x∗(h) in H(K) does not depend on the choice of x.

Proof. Let x1, x2 ∈ X(K) be two points such that E(x1) ≃ E(x2). By Lemma
3.1, there is a point y ∈ (E2/G)(K) such that p1(y) = x1 and p2(y) = x2.
Therefore

x∗
1(h) = y∗

(
p∗1(h)

)
= y∗

(
p∗2(h)

)
= x∗

2(h). �

It follows from Lemma 3.2 that if the torsor E −→ X is classifying with
E(F ) 6= ∅, then every element h ∈ H(X)bal determines an H-invariant ih of
G as follows. Let I be a G-torsor over a field extension K/F . We claim that
there is a point x ∈ X(K) such that E(x) ≃ I. If K is infinite, this follows
from the definition of the classifying G-torsor. If K is finite then all G-torsors
over K are trivial by [25], as G is connected. Since E(K) 6= ∅, we can take for
x the image in X(K) of any point in E(K). Defining ih(E) = x∗(h) ∈ H(K),
we have a group homomorphism

H(X)bal −→ Inv(G,H), h 7→ ih.

3b. Cohomology with values in Q/Z(j). For every integer j ≥ 0, the
coefficients Q/Z(j) are defined as the direct sum over all prime integers p of
the objects Qp/Zp(j) in the derived category of sheaves of abelian groups on
the big étale site of SpecF , where

Qp/Zp(j) = colim
n

µ⊗j
pn

if p 6= charF , with µpn the sheaf of (pn)th roots of unity, and

Qp/Zp(j) = colim
n

WnΩ
j
log[−j]

if p = charF > 0, with WnΩ
j
log the sheaf of logarithmic de Rham-Witt differ-

entials (see [23]).
We write Hm

(
X,Q/Z(j)

)
for the étale cohomology of a scheme X with

values in Q/Z(j). Then

Hm
(
X,Q/Z(j)

)
{p} = colim

n
Hm

(
X, µ⊗j

pn

)

if p 6= charF and

Hm
(
X,Q/Z(j)

)
{p} = colim

n
Hm−j

(
X,WnΩ

j
log

)
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if p = charF > 0. In the latter case, the group WnΩ
j
log(F ) is canonically

isomorphic to KM
j (F )/pnKM

j (F ), where KM
j (F ) is Milnor’s K-group of F (see

[1, Cor. 2.8]), hence by [21] and [16, Part II, Appendix A], Hs
(
F,WnΩ

j
log

)
is

isomorphic to

Hs
(
F,KM

j (Fsep)/p
nKM

j (Fsep)
)
=





KM
j (F )/pnKM

j (F ), if s = 0;
H2

(
F,KM

j (Fsep)
)
pn
, if s = 1;

0, otherwise.

It follows that in the case p = charF > 0, we have

Hm
(
F,Q/Z(j)

)
{p} =





KM
j (F )⊗ (Qp/Zp), if m = j;

H2
(
F,KM

j (Fsep)
)
{p}, if m = j + 1;

0, otherwise.

The motivic complexes Z(j), for j = 0, 1, 2, of étale sheaves on a smooth
schemeX were defined in [26] and [27] by S. Lichtenbaum. We writeH∗

(
X,Z(j)

)

for the étale cohomology groups of X with values in Z(j).
The complex Z(0) is equal to the constant sheaf Z and Z(1) = Gm,X [−1],

thus Hn
(
X,Z(1)

)
= Hn−1(X,Gm,X). In particular, H3

(
X,Z(1)

)
= Br(X),

the cohomological Brauer group of X . The complex Z(2) is concentrated in
degrees 1 and 2 and there is a product map Z(1)⊗L Z(1) −→ Z(2).

The exact triangle in the derived category of étale sheaves

Z(j) −→ Q⊗ Z(j) −→ Q/Z(j) −→ Z(j)[1]

yields the connecting homomorphism

H i
(
X,Q/Z(j)

)
−→ H i+1

(
X,Z(j)

)
,

which is an isomorphism if X = Spec(F ) for a field F and i > j [22, Lemme
1.1].

Write Hn
(
Q/Z(j)

)
for the Zariski sheaf on a smooth scheme X associated

to the presheaf U 7→ Hn
(
U,Q/Z(j)

)
of étale cohomology groups.

Let G be an algebraic group over F . We assume that G is connected if F
is a finite field and write Invn

(
G,Q/Z(j)

)
for the group of degree n invariants

of G for the functor K 7→ Hn
(
K,Q/Z(j)

)
. Note that Property 2.1 holds for

this functor by [16, Part 2, Prop. A.9].
Choose a classifying G-torsor E −→ X with E a G-rational variety such

that E(F ) 6= ∅. Applying the construction given in §3a to the functor U 7→
H0

Zar

(
U,Hn(Q/Z(j))

)
, we get a homomorphism

ϕ : H0
Zar

(
X,Hn(Q/Z(j))

)
bal

−→ Invn
(
G,Q/Z(j)

)
.

Theorem 3.3. Let G be an algebraic group over a field F . We assume that G
is connected if F is a finite field. Let E −→ X be a classifying G-torsor with
E a G-rational variety such that E(F ) 6= ∅. Then the homomorphism ϕ is an
isomorphism.
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Proof. Let Egen −→ F (X) be the generic fiber of the classifying G-torsor
E −→ X . Note that since the pull-back of E −→ X with respect to any of
the two projections E2/G −→ X coincides with the G-torsor E2 −→ E2/G,
the pull-backs of the generic G-torsor Egen −→ SpecF (X) with respect to the
two morphisms SpecF (E2/G) −→ SpecF (X) induced by the projections are
isomorphic. It follows that for every invariant i ∈ Inv

(
G,H∗(Q/Z(j))

)
we

have
p∗1
(
i(Egen)

)
= i

(
p∗1(Egen)

)
= i

(
p∗2(Egen)

)
= p∗2

(
i(Egen)

)

in H∗
(
F (E2/G),Q/Z(j)

)
, i.e., i(Egen) ∈ H∗

(
F (X),Q/Z(j)

)
bal
. By Proposi-

tion A.9, ∂x(h) = 0 for every point x ∈ X of codimension 1, hence

θ(i) = i(Egen) ∈ H0
Zar

(
X,Hn(Q/Z(j))

)
bal

by Proposition A.10. By Theorem 2.2, θ is injective and by construction, the
composition θ ◦ ϕ is the identity. It follows that ϕ is an isomorphism. �

Write H
0

Zar

(
X,Hn(Q/Z(j))

)
for the factor group of H0

Zar

(
X,Hn(Q/Z(j))

)

by the natural image of Hn
(
F,Q/Z(j)

)
.

Corollary 3.4. The isomorphism ϕ yields an isomorphism

H
0

Zar

(
X,Hn(Q/Z(j))

)
bal

∼
−→ Invn

(
G,Q/Z(j)

)
norm

.

4. Degree 3 invariants of algebraic tori

In this section we prove the main theorem that describes degree 3 invariants
of an algebraic torus with values in Q/Z(2).

4a. Algebraic tori. Let F be a field and Γ = Gal(Fsep/F ) the absolute Galois
group of F . An algebraic torus of dimension n over F is an algebraic group
T such that Tsep is isomorphic to the product of n copies of the multiplicative
group Gm (see [11] or [35]). For an algebraic torus T over a field F , we write

T̂sep for the Γ-module of characters Hom(Tsep,Gm). The group T̂sep is a Γ-
lattice, i.e., a free abelian group of finite rank with a continuous Γ-action. The

contravariant functor T 7→ T̂sep is an anti-equivalence between the category of
algebraic tori and the category of Γ-lattices: the torus T and the group T (F )

can be reconstructed from the lattice T̂sep by the formulas

T = Spec
(
Fsep[T̂sep]

)Γ
,

T (F ) = HomΓ(T̂sep, F
×
sep) =

(
T̂ ◦
sep ⊗ F×

sep

)Γ
,

where T̂ ◦
sep = Hom(T̂sep,Z).

We write T̂ for the character group Hom(T,Gm) = (T̂sep)
Γ and T ◦ for the

dual torus having character lattice T̂ ◦
sep.

A torus T is called quasi-split if T is isomorphic to the group of invertible

elements of an étale F -algebra, or equivalently, the Γ-lattice T̂sep is permuta-

tion, i.e., T̂sep has a Γ-invariant Z-basis. An invertible torus is a direct factor
of a quasi-split torus.
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A torus T is called flasque (respectively, coflasque) if H1(L, T̂ ◦
sep) = 0 (re-

spectively, H1(L, T̂sep) = 0) for every finite field extension L/K. A flasque
resolution of a torus S is an exact sequence of tori 1 −→ T −→ P −→ S −→ 1
with T flasque and P quasi-split. By [11, §4], or [35, §4.7], the torus T in the
flasque resolution is invertible if and only if S is a direct factor of a rational
torus.

4b. Products. Let T be a torus over F and let T̂ (i) denote the complex

T̂sep ⊗ Z(i) of étale sheaves over F for i = 0, 1, 2. Thus, T̂ (0) = T̂sep and

T̂ (1) =
(
T̂sep ⊗ F×

sep

)
[−1] = T ◦(Fsep)[−1].

Let S and T be algebraic tori over F and let i and j be nonnegative integers
with i+ j ≤ 2. For any smooth variety X over F , we have the product map

(4.1) (Ŝsep ⊗ T̂sep)
Γ ⊗Hp

(
X, Ŝ◦(i)

)
⊗Hq

(
X, T̂ ◦(j)

)
−→ Hp+q

(
X,Z(i+ j)

)

taking a⊗ b⊗ c to a ∪ b ∪ c, via the canonical pairings between Ŝsep and Ŝ◦
sep,

T̂sep and T̂ ◦
sep, and the product map Z(i)⊗L Z(j) −→ Z(i+ j).

Recall that there is an isomorphism Hn
(
F,Z(k)

)
≃ Hn−1

(
F,Q/Z(k)

)
for

n > k. In particular, we have the cup-product map

(4.2) (Ŝsep ⊗ T̂sep)
Γ ⊗Hp(F, S)⊗Hq(F, T ) −→ H3

(
F,Q/Z(2)

)

if p+ q = 2.
If S = T ◦ is the dual torus, then (Ŝsep ⊗ T̂sep)

Γ = EndΓ(T̂sep) contains the
canonical element 1T . We then have the product map

(4.3) Hp
(
X, T̂ (i)

)
⊗Hq

(
X, T̂ ◦(j)

)
−→ Hp+q

(
X,Z(i+ j)

)

and in particular, the product maps

(4.4) H1(F, T̂sep)⊗H1(F, T ) −→ H2
(
F,Q/Z(1)

)
= Br(F ),

(4.5) H1(F, T ◦)⊗H1(F, T ) −→ H3
(
F,Q/Z(2)

)
,

(4.6) H2(F, T ◦)⊗H0(F, T ) −→ H3
(
F,Q/Z(2)

)
,

taking a⊗ b to 1T ∪ a ∪ b.

The Picard group of T is canonically isomorphic to H1(F, T̂sep) [35, §4.3].
The map ν in Theorem 2.4 is given by the cup-product (4.4) with the class of
the T -torsor Ugen −→ Spec(K) in H1(K, T ) (see [13, Prop. 2.9] or [3, Lemma
2.6]). Thus, we have proved the following corollary.

Corollary 4.1. Let T be a torus over F . Then the map

H1(F, T̂sep) −→ Inv(T,Br)norm,

taking an element a to the invariant b 7→ aK ∪ b for b ∈ H1(K, T ) and K/F is
an isomorphism.
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As T is a commutative group, the set H1(K, T ) is an abelian group. An
invariant i ∈ Inv(T,H) for a functor H is called linear if iK : H1(K, T ) −→
H(K) is a group homomorphism for every K/F . Clearly, every linear invariant
is normalized. By Corollary 4.1, every normalized Br-invariant of a torus is
linear. In the next section we will see that a normalized degree 3 invariant of
a torus need not be linear.

4c. Main theorem. Let T be a torus over F and choose a standard classifying
T -torsor U −→ U/T such that the codimension of V \ U in V is at least 3.
Such a torsor exits by [14, Lemma 9].

By [32, Prop. 6.10], there is an exact sequence

Fsep[U ]×/F×
sep −→ T̂sep −→ Pic

(
(U/T )sep

)
−→ Pic(Usep).

The codimension assumption implies that the side terms are trivial, hence the

map T̂sep −→ Pic
(
(U/T )sep

)
is an isomorphism. It follows that the classifying

T -torsor U −→ U/T is universal in the sense of [7] (see Proposition B.1).
Write K∗(F ) for the (Quillen) K-groups of F and K∗ for the Zariski sheaf

associated to the presheaf U 7→ K∗(U). Then the groups Hn
Zar

(
U/G,K2

)
are

independent of the choice of the classifying torsor (cf., [14]). So we write
Hn

Zar

(
BT,K2

)
for this group (see Appendix A-IV). As Tsep is a split torus, by

the Künneth formula (see Example A.5),

Hn
Zar

(
BTsep,K2

)
=





K2(Fsep), if n = 0;

Pic
(
(U/G)sep

)
⊗ F×

sep = T̂sep ⊗ F×
sep = T ◦(Fsep), if n = 1;

CH2
(
(U/G)sep

)
= S2(T̂sep), if n = 2.

Applying the calculation of the K-cohomology groups to the standard clas-
sifying T -torsor U i −→ U i/G for every i > 0 instead of U −→ U/T , by
Proposition B.3, we have the exact sequence
(4.7)

0 −→ H1(F, T ◦)
α

−→ H
4(
U i/G,Z(2)

)
−→ H

4(
(U i/G)sep,Z(2)

)Γ
−→ H2(F, T ◦),

where H
4(
U i/G,Z(2)

)
is the factor group of H4

(
U i/G,Z(2)

)
by H4

(
F,Z(2)

)
,

the map α is given by α(a) = q∗(a)∪ [U i] with q : U i/G −→ SpecF the struc-
ture morphism, [U i] the class of the T -torsor U i −→ U i/G in H1(U i/G, T ),
and the cup-product is taken for the pairing (B.6).

Taking the sequences (4.7) for all i, we get the exact sequence of cosimplicial
groups

0 −→ H1(F, T ◦)
α

−→ H
4(
U•/T,Z(2)

)
−→ H

4(
(U•/T )sep,Z(2))

Γ −→ H2(F, T ◦
)
.

The first and the last cosimplicial groups in the sequence are constant, hence
by Lemma A.2, the sequence

(4.8) 0 −→ H1(F, T ◦)
α

−→ H
4(
U/T,Z(2)

)
bal

−→

H
4(
(U/T )sep,Z(2)

)Γ
bal

−→ H2(F, T ◦)

is exact.
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The following theorem was proved in [23, Th. 1.1]:

Theorem 4.2. Let X be a smooth variety over F . Then there is an exact
sequence

0 −→ CH2(X) −→ H4
(
X,Z(2)

)
−→ H0

Zar

(
X,H3(Q/Z(2))

)
−→ 0.

By Theorem 4.2, there is an exact sequence of cosimplicial groups

0 −→ CH2(U•/T ) −→ H
4(
U•/T,Z(2)

)
−→ H

0

Zar

(
U•/T,H3(Q/Z(2))

)
−→ 0.

As the functor CH2 is homotopy invariant, by Lemma A.4, the first group in
the sequence is constant. In view of Lemma A.2, and following the notation
for the K-cohomology, the sequence
(4.9)

0 −→ CH2(BT ) −→ H
4(
U/T,Z(2)

)
bal

−→ H
0

Zar

(
U/T,H(Q/Z(2))

)
bal

−→ 0

is exact. By Corollary 3.4, the last group in the sequence is canonically iso-
morphic to Inv

(
T,H3(Q/Z(2))

)
norm

.
As the torus Tsep is split, all the invariants of Tsep are trivial hence the

sequence (4.9) over Fsep yields an isomorphism

(4.10) H
4(
(U/T )sep,Z(2)

)
bal

≃ CH2(BTsep) ≃ S2(T̂sep).

Combining (4.8), (4.9) and (4.10), we get the following diagram with an
exact row and column:

0

��

H1(F, T 0)

α
�� ))SSSSSSSSSSSSSSS

0 // CH2(BT ) //

''PPPPPPPPPPPPP
H

4(
U/T,Z(2)

)
bal

//

��

Inv3
(
T,Q/Z(2)

)
norm

// 0.

S2(T̂sep)
Γ

��

H2(F, T 0)

Write Dec = Dec(T̂sep) for the subgroup of decomposable elements in S2(T̂sep)
Γ

(see Appendix A-II).

Lemma 4.3. The image of the homomorphism CH2(BT ) −→ CH2(BTsep)
Γ =

S2(T̂sep)
Γ in the diagram coincides with Dec.
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Proof. Consider the Grothendieck ringK0(BT ) of the category of T -equivariant
vector bundles over Spec(F ), or equivalently, of the category of finite dimen-
sional representations of T . If T is split, every representation of T is a di-
rect sum of one-dimensional representations. Therefore, there is an isomor-

phism between the group ring Z[T̂ ] of all formal finite sums
∑

x∈T̂ axe
x and

K0(BT ), taking ex with x ∈ T̂ to the class of the 1-dimensional representation

given by x. In general, for every torus T , we have K0(BTsep) = Z[T̂sep] and

K0(BT ) = Z[T̂sep]
Γ = K0(BTsep)

Γ (see [28, §9]). The group Z[T̂sep]
Γ is gener-

ated by the sums
∑n

i=1 e
γix, where γ1, γ2, . . . , γn are representatives of the left

cosets of an arbitrary open subgroup Γ′ in Γ and x ∈ (T̂sep)
Γ′

.
The equivariant Chern classes were defined in [14, §2.4]. The first Chern

class c1 : K0(BTsep) −→ CH1(BTsep) = T̂sep takes ex to x. In the diagram

Z[T̂sep]
Γ

��

K0(BT )

��

c2 // CH2(BT )

��

Z[T̂sep] K0(BTsep)
c2 // CH2(BTsep) S2(T̂sep)

the second Chern class maps c2 are surjective by [15, Lemma C.3]. It follows
from the formula c2(a+ b) = c2(a) + c1(a)c1(b) + c2(b) that the composition

Z[T̂sep]
Γ = K0(BT ) −→ K0(BTsep)

c2−→ CH2(BTsep) = S2(T̂sep) −→ S2(T̂sep)/(T̂ )
2

is a homomorphism and its image is generated by the elements (see Appendix
A-II)

c2
( n∑

i=1

eγix
)
=

∑

i<j

(γix)(γjx) = Qtr(x). �

By the restriction-corestriction argument, the kernel of the homomorphism

CH2(BT ) −→ CH2(BTsep)
Γ = S2(T̂sep)

Γ coincides with the torsion subgroup
CH2(BT )tors in CH2(BT ).

The following theorem describes degree 3 invariants of an algebraic torus
with values in Q/Z(2):

Theorem 4.4. Let T be an algebraic torus a field F . Then there is an exact
sequence

0 −→ CH2(BT )tors −→ H1(F, T 0)
α

−→

Inv3
(
T,Q/Z(2)

)
norm

−→ S2(T̂sep)
Γ/Dec −→ H2(F, T 0).

The homomorphism α is given by α(a)(b) = aK ∪ b for every a ∈ H1(F, T 0)
and b ∈ H1(K, T ) and every field extension K/F , where the cup-product is
defined in (4.5).

Proof. The exactness of the sequence follows from the diagram before Lemma
4.3. It remains to describe the map α. Take an a ∈ H1(F, T 0) and consider
the invariant i defined by i(b) = aK ∪ b, where the cup-product is given by
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(4.5). We need to prove that i = α(a). Choose a standard classifying T -
torsor U −→ U/T and set K = F (U/T ). Let Ugen be the generic fiber of the
classifying torsor. By Theorem 2.2, it suffices to show that i(Ugen) = α(a)(Ugen)
over K. This follows from the description of the map α in the exact sequence
(4.7). �

4d. Torsion in CH2(BT ). We investigate the group CH2(BT )tors, the first
term of the exact sequence in Theorem 4.4.

Let S be an algebraic torus over F . Using the Gersten resolution, [30, Prop.
5.8] we identify the group H0(Ssep,K2) with a subgroup in K2

(
Fsep(S)

)
. Set

H
0
(Ssep,K2) := H0(Ssep,K2)/K2(Fsep). By [16, Part 2, §5.7], we have an exact

sequence

(4.11) 0 −→ Ŝsep ⊗ F×
sep −→ H

0
(Ssep,K2)

λ
−→ Λ2Ŝsep −→ 0

of Γ-modules, where λ
(
{ex, ey}

)
= x ∧ y for x, y ∈ Ŝsep.

Consider the Γ-homomorphism

γ : Λ2Ŝsep −→ H
0
(Ssep,K2)

x ∧ y 7−→ {ex, ey} − {ey, ex}.

We have λ ◦ γ = 2 · Id, hence the connecting homomorphism

(4.12) ∂ : H i(F,Λ2Ŝsep) −→ H i+1(F, Ŝsep ⊗ F×
sep)

satisfies 2∂ = 0.

Lemma 4.5. If S is an invertible torus, then sequence of Γ-modules (4.11) is
split.

Proof. We can assume that S is quasi-split. Let {x1, x2, . . . , xm} be a per-

mutation basis for Ŝsep. Then the elements xi ∧ xj for i < j form a Z-basis

for Λ2Ŝsep. The map Λ2Ŝsep −→ H
0
(Ssep,K2), taking xi ∧ xj to {exi, exj} is a

splitting for γ. �

Let
1 −→ T −→ P −→ Q −→ 1

be a coflasque resolution of T , i.e., P is a quasi-split torus and Q is a coflasque
torus (see [11]). The torus P is an open set in the affine space of a separable
F -algebra on which T acts linearly. Hence P −→ Q is a standard classifying
T -torsor. By Theorem 2.2, the natural map

θ : Inv3
(
T,Q/Z(2)

)
−→ H3

(
F (Q),Q/Z(2)

)

is injective.
Consider the spectral sequence (B.11) for the variety X = Q. We have

H1(Qsep,K2) = 0 by [16, Part 2, Cor. 5.6]. In view of Proposition B.4, we
have an injective homomorphism

(4.13) β : H2
(
F,H

0
(Qsep,K2)

)
−→ H

4(
Q,Z(2)

)
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such that the composition of β with the homomorphism

H2(F,Q◦) −→ H2
(
F,H

0
(Qsep,K2)

)

is given by the cup-product with the class of the identity in H0(Q,Q).

Lemma 4.6. The group CH2(Q) is trivial.

Proof. By [28, Th. 9.1], the Grothendieck group K0(Q) is generated by the
classes of the sheaves i∗(P ), where P is an invertible sheaf on XL, L/F a
finite separable field extension and i : XL −→ X is the natural morphism. By
definition of a coflasque torus,

Pic(QL) = H1(L, Q̂sep) = 0.

It follows that every invertible sheaf on QL is trivial, hence K0(Q) = Z · 1.
Since the group CH2(Q) is generated by the second Chern classes of vector
bundles on Q [15, Lemma C.3], CH2(Q) = 0. �

It follows from Proposition A.10, Theorem 4.2, and Lemma 4.6 that the
homomorphism

(4.14) κ : H
4(
Q,Z(2)

)
−→ H

4(
F (Q),Z(2)

)
= H

3(
F (Q),Q/Z(2)

)

is injective.
Consider the diagram

0 // Q◦(Fsep) // H
0
(Qsep,K2)

s

��

// Λ2Q̂sep

t
��

// 0

0 // Q◦(Fsep) // P ◦(Fsep) // T ◦(Fsep
// 0

where s is the composition of the natural map H
0
(Qsep,K2) −→ H

0
(Psep,K2)

and a splitting of P ◦(Fsep) −→ H
0
(Psep,K2) (see Lemma 4.5).

We have the following diagram

H1(F, T ◦)
� _

∂1

��

α // Inv3
(
T,Q/Z(2)

)
� _

θ
��

H1
(
F,H

0
(Qsep,K2)

)
// H1(F,Λ2Q̂sep)

∂ //

t∗
77oooooooooooo

H2(F,Q◦)
σ // H

3(
F (Q),Q/Z(2)

)

where σ is the composition of the maps in (4.13) and (4.14):

H2(F,Q0) −→ H2
(
F,A

0
(Qsep, K2)

) β
−→ H

4(
Q,Z(2)

) κ
−→

H
4(
F (Q),Z(2)

)
= H

3(
F (Q),Q/Z(2)

)
.

Note that the connecting map ∂1 is injective as H1(F, P ◦) = 0 since P ◦ is a
quasi-split torus. As 2∂ = 0 in (4.12), we have 2t∗ = 0.

The commutativity of the triangle follows from the definition of t∗. We claim
that the square in the diagram is anti-commutative. Note that ∂2(ξ) = [Pgen],
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where ∂2 : H0(F,Q) −→ H1(F, T ) is the connecting homomorphism, Pgen is
the generic fiber of the morphism P −→ Q, and ξ ∈ H0(K,Q) is the generic
point of Q with K = F (Q). It follows from the description of the maps α and
β in (4.7) and (4.13), respectively, and Lemma A.1 that

σ
(
∂1(a)

)
= ∂1(a)K ∪ ξ = (−aK) ∪ ∂2(ξ) = (−aK) ∪ [Pgen] = −θ

(
α(a)

)
.

for every a ∈ H1(F, T ◦).
The maps β and κ are injective, hence the bottom sequence in the diagram

is exact. Thus, we have an exact sequence

H1
(
F,H

0
(Qsep,K2)

)
−→ H1

(
F,Λ2Q̂sep

)
−→ Ker(α) −→ 0

and 2 ·Ker(α) = 2 · Im(t∗) = 0. Furthermore, Ker(α) ≃ CH2(BT )tors and the

group H1(F,Λ2Q̂sep) is finite.
We have proved:

Theorem 4.7. Let 1 −→ T −→ P −→ Q −→ 1 be a coflasque resolution of a
torus T . Then there is an exact sequence

H1
(
F,H

0
(Qsep,K2)

)
−→ H1

(
F,Λ2Q̂sep

)
−→ CH2(BT )tors −→ 0.

Moreover, CH2(BT )tors is a finite group satisfying 2 · CH2(BT )tors = 0.

Corollary 4.8. If T ◦ is a direct factor of a rational torus, or if T is split over
a cyclic field extension, then CH2(BT )tors = 0, i.e., the map α in Theorem 4.4
is injective.

Proof. The exact sequence 1 −→ Q◦ −→ P ◦ −→ T ◦ −→ 1 is a flasque reso-
lution of T ◦. If T ◦ is a direct factor of a rational torus, or if T is split over
a cyclic field extension, the torus Q◦ ,and hence Q, is invertible (see §4a and
[35, §4, Th. 3]). By Lemma 4.5, the sequence (4.11) for the torus Q is split,
hence the first map in Theorem 4.7 is surjective. �

4e. Special tori. Let T be an algebraic torus over a field F . The tautological
invariant of the torus T ◦×T is the normalized invariant taking a pair (a, b) ∈
H1(K, T ◦) ×H1(K, T ) to the cup-product a ∪ b ∈ H3

(
K,Q/Z(2)

)
defined in

(4.5).
The following theorem shows that if a torus T has only trivial degree 3

normalized invariants with values in Q/Z(2) universally, i.e., over all field ex-
tensions of F , then T has no non-constant invariants at all by the simple
reason: every T -torsor over a field is trivial. Note that it follows from Theo-
rem 2.4 that T has no degree 2 normalized invariants with values in Q/Z(1)
universally if and only if T is coflasque.

Theorem 4.9. Let T be an algebraic torus over a field F . Then the following
are equivalent:

(1) Inv3
(
TK ,Q/Z(2)

)
norm

= 0 for every field extension K of F .
(2) The tautological invariant of the torus T ◦ × T is trivial.
(3) The torus T is invertible.
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(4) The torus T is universally special.

Proof. (1) ⇒ (2): Let K/F be a field extension and a ∈ H1(K, T ◦). By
assumption, the degree 3 normalized invariant i = α(a) with values in Q/Z(2),
defined by i(b) = a ∪ b for every b ∈ H1(K, T ), is trivial. In other words, the
tautological invariant of the torus T ◦ × T is trivial.

(2) ⇒ (3): The image of the tautological invariant in the group S2(T̂ ◦
sep ⊕

T̂sep)
Γ/Dec is represented by the identity 1T̂ in the direct factor (T̂ ◦

sep⊗T̂sep)
Γ =

EndΓ(T̂sep) of S
2(T̂ ◦

sep ⊕ T̂sep)
Γ (see Appendix A-II). The projection of Dec on

the direct summand (T̂ ◦
sep ⊗ T̂sep)

Γ is generated by the traces Tr(a ⊗ b) for

all open subgroups Γ′ ⊂ Γ and all a ∈ (T̂ ◦
sep)

Γ′

and b ∈ (T̂sep)
Γ′

. Hence

1T̂ = Tr(ai ⊗ bi) for some open subgroups Γi ⊂ Γ, ai ∈ (T̂ ◦)Γi and bi ∈ (T̂ )Γi.

If Pi = Z[Γ/Γi], then ai can be viewed as a Γ-homomorphism T̂ −→ Pi and bi
can be viewed as a Γ-homomorphism Pi −→ T̂ such that the composition

T̂
(bi)
−→ P

(ai)
−→ T̂ ,

where P =
∐

Pi, is the identity. It follows that T̂ is a direct summand of a
permutation Γ-module P and hence T is invertible.

(3) ⇒ (4): Obvious as every invertible torus is universally special.

(4) ⇒ (1): Obvious. �

4f. Linear and quadratic invariants. Let T be a torus over F . By Theorem
4.4, we have a natural homomorphism to the group of linear invariants:

α : H1(F, T ◦) −→ Inv3
(
T,Q/Z(2)

)
lin
.

Let S and T be algebraic tori over F . For every field extension K/F , the
cup-product (4.2) yields a homomorphism

ε : (T̂⊗2
sep)

Γ −→ Inv3
(
T,Q/Z(2)

)

defined by ε(a)(b) = aK ∪ b ∪ b for a ∈ (T̂⊗2
sep)

Γ and b ∈ H1(K, T ).

We say that an invariant i ∈ Inv3
(
T,Q/Z(2)

)
is quadratic if the function

h(a, b) := i(a + b) − i(a) − i(b) is bilinear and h(a, a) = 2i(a) for all a and b.
For example, the tautological invariant of the torus T ◦×T in §4e is quadratic.
We write Inv3

(
T,Q/Z(2)

)
quad

for the subgroup of all quadratic invariants in

Inv3
(
T,Q/Z(2)

)
. The image of ε is contained in Inv3

(
T,Q/Z(2)

)
quad

.

Write D for the subgroup of (T̂⊗2
sep)

Γ generated by Dec(T̂sep, T̂sep) (the latter
defined in Appendix A-II) and the image of 1 − τ , where τ is the exchange

automorphism of (T̂⊗2
sep)

Γ.

Lemma 4.10. The composition of ε with the map Inv3
(
T,Q/Z(2)

)
−→ S2(T̂sep)

Γ/Dec

in Theorem 4.4 is induced by the natural homomorphism T̂⊗2
sep −→ S2(T̂sep).

Moreover, the map ε vanishes on D.
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Proof. Let U −→ U/T =: X be a standard classifying T -torsor as in §4c.
Consider the commutative diagram

(T̂⊗2
sep)

Γ ⊗H1(X, T )⊗2

��

prod // H
4(
X,Z(2)

)
bal

��

// Inv3
(
T,Q/Z(2)

)
norm

T̂⊗2
sep ⊗H1(Xsep, T )

⊗2
prod //

η ≀

��

H
4(
Xsep,Z(2)

)
bal

≀

��

T̂⊗2
sep ⊗ (T̂ ◦

sep)
⊗2 ⊗ T̂⊗2

sep
κ // S2(T̂sep)

Γ/Dec

where the product maps are given by (4.1), η identifies H1(Xsep, T ) = T̂ ◦
sep ⊗

Pic(Xsep) with T̂ ◦
sep ⊗ T̂sep and κ is given by the pairing between the first and

second factors. Write [U ] for the class of the classifying torsor in H1(X, T ).

The image of [U ] in H1(Xsep, Tsep) = T̂ ◦
sep ⊗ T̂sep = End(T̂sep) is the identity

1T̂sep
. Hence for every a ∈ (T̂⊗2

sep)
Γ, the image of a⊗ [U ]⊗ [U ] under the diagonal

map in the diagram coincides with the canonical image of a in S2(T̂sep)
Γ/Dec.

Clearly, ετ = ε, hence ε is trivial on the image of 1−τ . Let Γ′ ⊂ Γ be an open
subgroup and a, b ∈ (T̂sep)

Γ′

= CH1(Xsep)
Γ′

= CH1(XL), where L = (Fsep)
Γ′

.
Then Tr(a ⊗ b) is the image of the trace map CH2(XL) −→ CH2(X) and
therefore, ε

(
Tr(a ⊗ b)

)
belongs to the image of an element from CH2(X) =

CH2(BT ) in the sequence (4.9) and hence is trivial in Inv3
(
T,Q/Z(2)

)
. �

Both compositions of the natural map (T̂⊗2
sep)

Γ/D −→ S2(T̂sep)
Γ/Dec with

the map S2(T̂sep)
Γ/Dec −→ (T̂⊗2

sep)
Γ/D induced by ab 7→ a ⊗ b + b ⊗ a are

multiplication by 2. Hence the kernel and the cokernel of (T̂⊗2
sep)

Γ/D −→

S2(T̂sep)
Γ/Dec have exponent 2. It follows that 2 times the homomorphism

S2(T̂sep)
Γ/Dec −→ H2(F, T 0) from Theorem 4.4 is trivial.

Theorem 4.4 also yields:

Theorem 4.11. Let p be an odd prime and let T be an algebraic torus over
F . Then

Inv3
(
T,Qp/Zp(2)

)
norm

= Inv3
(
T,Qp/Zp(2)

)
lin

⊕ Inv3
(
T,Qp/Zp(2)

)
quad

and there are natural isomorphisms Inv3
(
T,Qp/Zp(2)

)
lin

≃ H1(F, T ◦){p} and

Inv3
(
T,Qp/Zp(2)

)
quad

≃
(
S2(T̂sep)

Γ/Dec
)
{p}.

Example 4.12. Let X = {x1, x2, . . . , xn} be a set of n elements with the
natural action of the symmetric group Sn. A continuous surjective group
homomorphism Γ −→ Sn yields a separable field extension L/F of degree n.
Consider the torus T = RL/F (Gm,L)/Gm, where RL/F is the Weil restriction
(see [35, Ch. 1, §3.12]). Note that the generic maximal torus of the group
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PGLn is of this form (see §5b). The character lattice T̂sep is the kernel of the
augmentation homomorphism Z[X ] −→ Z.

The dual torus T ◦ is the norm one torus R
(1)
L/F (Gm,L). For every field exten-

sion K/F , we have:

H1(K, T ) = Br(KL/K), H1(K, T ◦) = K×/N(KL)×,

where KL := K ⊗ L, N is the norm map for the extension KL/K and
Br(KL/K) = Ker

(
Br(K) −→ Br(KL)

)
. The pairing

K×/N(KL)× ⊗ Br(KL/K) −→ H3
(
F,Q/Z(2)

)

defines linear degree 3 invariants of both T and T ◦.

We claim that S2(T̂sep)
Γ/Dec = 0 and S2(T̂ ◦

sep)
Γ/Dec = 0, i.e., T and T ◦

have no nontrivial quadratic degree 3 invariants. We have T̂ ◦
sep = Z[X ]/ZNX ,

where NX =
∑

xi. The group S2(T̂ ◦
sep)

Γ is generated by S :=
∑

i<j xi · xj . As

S ∈ Dec, we have S2(T̂ ◦
sep)

Γ/Dec = 0.

Let D =
∑

x2
i and E := Qtr(x1−x2) = 2S− (n−1)D, where the quadratic

map Qtr is defined in Appendix A-II. The group S2(T̂sep)
Γ is generated by

E if n is even and by E/2 if n is odd. A computation shows that nE/2 =

Qtr(nx1−NX). It follows that the generator of S
2(T̂sep)

Γ belongs to Dec, hence

S2(T̂sep)
Γ/Dec is trivial.

Note that as the torus T is rational, it follows from Theorem 4.4 and Corol-
lary 4.8 that Inv3

(
T ◦,Q/Z(2)

)
norm

≃ Br(L/F ).

5. Unramified invariants

Let K/F be a field extension and v a discrete valuation of K over F with
valuation ring Ov. We say that an element a ∈ Hn

(
K,Q/Z(j)

)
is unramified

with respect to v if a belongs to the image of the map Hn
(
Ov,Q/Z(j)

)
−→

Hn
(
K,Q/Z(j)

)
(see [10]). We write Hn

nr

(
K,Q/Z(j)

)
for the subgroup of the

elements in Hn
(
K,Q/Z(j)

)
that are unramified with respect to all discrete

valuations of K over F . We have a natural homomorphism

(5.1) Hn
(
F,Q/Z(j)

)
−→ Hn

nr

(
K,Q/Z(j)

)
.

A dominant morphism of varieties Y −→ X yields a homomorphism

Hn
nr

(
F (X),Q/Z(j)

)
−→ Hn

nr

(
F (Y ),Q/Z(j)

)
.

Proposition 5.1. Let K/F be a purely transcendental field extension. Then
the homomorphism (5.1) is an isomorphism.

Proof. The statement is well known for the p-components if p 6= charF (see, for
example, [10, Prop. 1.2]). It suffices to consider the case K = F (t) and prove
the surjectivity of (5.1). The coniveau spectral sequence for the projective line
P1 (see Appendix (A.1)) yields an exact sequence

Hn
(
P1,Q/Z(j)

)
−→ Hn

(
K,Q/Z(j)

)
−→

∐

x∈P1

Hn+1
x

(
P1,Q/Z(j)

)
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and, therefore, a surjective homomorphismHn
(
P1,Q/Z(j)

)
−→ Hn

nr

(
K,Q/Z(j)

)
.

By the projective bundle theorem (classical if p 6= char(F ) and [17, Th. 2.1.11]
if p = char(F ) > 0), we have

Hn
(
P1,Q/Z(j)

)
= Hn

(
F,Q/Z(j)

)
⊕Hn−2

(
F,Q/Z(j − 1)

)
t,

where t is a generator of H2
(
P1,Z(1)

)
= Pic(P1) = Z. As t vanishes over the

generic point of P1, the result follows. �

Let G be an algebraic group over F . Choose a standard classifying G-
torsor U −→ U/G. An invariant i ∈ Invn

(
G,Q/Z(j)

)
is called unramified

if the image of i under θ : Invn
(
G,Q/Z(j)

)
−→ Hn

(
F (U/G),Q/Z(j)

)
is

unramified. This is independent of the choice of standard classifying torsor.
Indeed, if U ′ −→ U ′/G is another standard classifying torsor G-torsor, then
(U × V ′)/G −→ U/G and (V × U ′)/G −→ U ′/G are vector bundles. Hence
the field F

(
(U × U ′)/G

)
is a purely transcendental extension of F (U/G) and

F (U ′/G) and by Proposition 5.1,

Hn
nr

(
F (U/G),Q/Z(j)

)
≃ Hn

nr

(
F ((U×U ′)/G),Q/Z(j)

)
≃ Hn

nr

(
F (U ′/G),Q/Z(j)

)
.

We write Hn
nr

(
F (BG),Q/Z(j)

)
for this common value and Invnnr

(
G,Q/Z(j)

)

for the subgroup of unramified invariants. Similarly, we write Brnr
(
F (BG)

)

for the unramified Brauer group H2
nr

(
F (BG),Q/Z(1)

)
.

Proposition 5.2. The map Invnnr
(
G,Q/Z(j)

)
−→ Hn

nr

(
F (BG),Q/Z(j)

)
in-

duced by θ is an isomorphism.

Proof. By Theorem 3.3, it suffices to show that Hn
nr

(
F (U/G),Q/Z(j)

)
⊂

Hn
(
F (U/G),Q/Z(j)

)
bal
. We follow Totaro’s approach (see [16, p. 99]). Con-

sider the open subscheme W of (U2/G) × A1 of all triples (u, u′, t) such that
(2 − t)u + (t − 1)u′ ∈ U . We have the projection q : W −→ U2/G, the
morphisms f : W −→ U/G defined by f(u, u′, t) = (2 − t)u + (t − 1)u′, and
hi : U

2/G −→ W defined by hi(u, u
′) = (u, u′, i) for i = 1 and 2. The compo-

sition f ◦ hi is the projection pi : U
2/G −→ U/G and q ◦ hi is the identity of

U2/G.
Let wi be the generic point of the pre-image of i with respect to the projec-

tion W −→ A1 and write Oi for the local ring of W at wi. The morphisms q, f ,
and hi yield F -algebra homomorphisms F (U2/G) −→ Oi, F (U/G) −→ Oi and
Oi −→ F (U/G). Note that by Proposition A.11, we haveHn

nr

(
F (W ),Q/Z(j)

)
⊂
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Hn
(
Oi,Q/Z(j)

)
. In the commutative diagram

Hn
nr

(
F (U/G),Q/Z(j)

)
� _

��

f∗

// Hn
nr

(
F (W ),Q/Z(j)

)
� _

��

Hn
nr

(
F (U2/G),Q/Z(j)

)
� _

��

∼

q∗oo

Hn
(
F (U/G),Q/Z(j)

)

p∗i **UUUUUUUUUUUUUUUUU

f∗

// Hn
(
Oi,Q/Z(j)

)

h∗

i

��

Hn
(
F (U2/G),Q/Z(j)

)

iiiiiiiiiiiiiiiii

iiiiiiiiiiiiiiiii

q∗oo

Hn
(
F (U2/G),Q/Z(j)

)

the top right map q∗ is an isomorphism by Proposition 5.1 since the field
extension F (W )/F (U2/G) is purely transcendental. It follows that the re-
striction of p∗i on Hn

nr

(
F (U/G),Q/Z(j)

)
coincides with (q∗)−1 ◦ f ∗ and hence

is independent of i. �

5a. Unramified invariants of tori.

Proposition 5.3. If T is a flasque torus, then every invariant in Invn
(
G,Q/Z(j)

)

is unramified.

Proof. Consider an exact sequence of tori 1 −→ T −→ P −→ Q −→ 1 with
P quasi-split. Choose a smooth projective compactification X of Q (see [6]).
As T is flasque, by [11, Prop. 9], there is a T -torsor E −→ X extending
the T -torsor P −→ Q. The torsor E is classifying and T -rational. Choose an
invariant in Invn

(
G,Q/Z(j)

)
and consider its image a in Hn

(
F (X),Q/Z(j)

)
bal

(see Theorem 3.3). We show that a is unramified with respect to every discrete
valuation v on F (X) over F (cf., [5, Prop. 2.1.8]). By Proposition A.9, a is
unramified with respect to the discrete valuation associated to every point
x ∈ X of codimension 1, i.e., ∂x(a) = 0.

As X is projective, the valuation ring Ov of the valuation v dominates a
point x ∈ X . It follows from Proposition A.11 that a belongs to the image of
Hn

(
OX,x,Q/Z(j)

)
−→ Hn

(
F (X),Q/Z(j)

)
. As the local ring OX,x is a subring

of Ov, a belongs to the image of Hn
(
Ov,Q/Z(j)

)
−→ Hn

(
F (X),Q/Z(j)

)
and

hence a is unramified with respect to v. �

Let T be a torus over F . By [12, Lemma 0.6], there is an exact sequence
of tori 1 −→ T −→ T ′ −→ P −→ 1 with T ′ flasque and P quasi-split. The
following theorem computes the unramified invariants of T in terms of the
invariants of T ′.

Theorem 5.4. There is a natural isomorphism

Invn
nr

(
T,Q/Z(j)

)
≃ Invn

(
T ′,Q/Z(j)

)
.

Proof. Choose an exact sequence 1 −→ T ′ −→ P ′ −→ S −→ 1 with P ′ a
quasi-split torus. Let S ′ is the cokernel of the composition T −→ T ′ −→ P ′.
We have an exact sequence 1 −→ P −→ S ′ −→ S −→ 1. As P is quasi-split,
the latter exact sequence splits at the generic point of S and therefore, F (S ′)
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is a purely transcendental field extension of F (S). It follows from Propositions
5.1, 5.2, and 5.3 that

Invnnr
(
T,Q/Z(j)

)
≃ Hn

nr

(
F (S ′),Q/Z(j)

)
≃ Hn

nr

(
F (S),Q/Z(j)

)
≃

Invn
nr

(
T ′,Q/Z(j)

)
= Invn

(
T ′,Q/Z(j)

)
. �

The following corollary is essentially equivalent to [12, Prop. 9.5] in the case
when F is of zero characteristic.

Corollary 5.5. The isomorphism Inv(T,Br)
∼

−→ Pic(T ) = H1(F, T̂ ) identifies

Invnr(T,Br) with the subgroup H1(F, T̂ ′) of H1(F, T̂ ) of all elements that are
trivial when restricted to all cyclic subgroups of the decomposition group of T .

Proof. The description of H1(F, T̂ ′) as a subgroup of H1(F, T̂ ) is given in [12,
Prop. 9.5], and this part of the proof is characteristic free. �

In view of Propositions 5.1 and 5.2 we can calculate the group of unramified
cohomology for the function field of an arbitrary torus in terms of the invariants
of a flasque torus:

Theorem 5.6. Let S be a torus over F and let 1 −→ T −→ P −→ S −→ 1
be a flasque resolution of S, i.e., T is flasque and P is quasi-split. Then there
is a natural isomorphism

Hn
nr

(
F (S),Q/Z(j)

)
≃ Invn

(
T,Q/Z(j)

)
.

Corollary 5.7. A torus S has no nonconstant unramified degree 3 cohomology
with values in Q/Z(2) universally, i.e., H3

nr

(
K(S),Q/Z(2)

)
= H3

(
K,Q/Z(2)

)

for any field extension K/F , if and only if S is a direct factor of a rational
torus.

Proof. If S is a direct factor of a rational torus, then S has no nonconstant
unramified cohomology by Proposition 5.1.

Conversely, let 1 −→ T −→ P −→ S −→ 1 be a flasque resolution of S.
By Theorem 5.6, Inv3

(
TK ,Q/Z(2)

)
norm

= 0 for every K/F . It follows from
Theorem 4.9 that T is invertible and hence S is a factor of a rational torus
(see §4a). �

5b. The Brauer invariant for semisimple groups. The following theorem
was proved by Bogomolov [2, Lemma 5.7] in characteristic zero:

Theorem 5.8. Let G be a (connected) semisimple group over a field F . Then
Invnr(G,Br) = Inv(G,Br)const = Br(F ) and Brnr

(
F (BG)

)
= Br(F ).

Proof. Let G′ −→ G be a simply connected cover of G and C the kernel of
G′ −→ G. By Theorem 2.4, we have

Inv(G,Br)norm = Pic(G) = Ĉ(F ).

As the map Ĉ(F ) −→ Ĉ(Fsep) is injective, we can replace F by Fsep and
assume that the group G is split.
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Consider the variety T of maximal tori in G and the closed subscheme
X ⊂ G× T of all pairs (g, T ) with g ∈ T . The generic fiber of the projection
X −→ T is the generic torus Tgen of G. Then Tgen is a maximal torus of GK ,
where K := F (T ). We have an exact sequence

1 −→ CK −→ T ′
gen −→ Tgen −→ 1,

where T ′
gen is the generic torus of G′.

The restriction Inv(G,Br)norm −→ Inv(Tgen,Br)norm can be identified with

the connecting homomorphism Ĉ −→ H1(K, T̂gen). Note that the decomposi-
tion group of Tgen coincides with the Weyl group W of G by [34, Th. 1], hence

H1(K, T̂gen) ≃ H1(W, T̂gen).
Let w be a Coxeter element in W .1 It is the product of reflections with

respect to all simple roots (in some order). By [20, Lemma, p. 76], 1 is not

an eigenvalue of w on the space of weights T̂ ′
gen ⊗ R. Let W0 be the cyclic

subgroup in W generated by w. It follows that the first term in the exact
sequence

(T̂ ′
gen)

W0 −→ Ĉ −→ H1(W0, T̂gen)

is trivial, i.e., the second map is injective. Hence every nonzero character χ in

Ĉ restricts to a nonzero element in H1(W0, T̂gen). It follows that the image of

χ in H1(W, T̂gen) is ramified by Theorem 5.5, hence so is χ. �

Appendix A. Generalities

A-I. Proof of Theorem 2.2. Suppose that i(Egen) = 0 for an H-invariant i
of G. Let K/F be a field extension and I −→ SpecK a G-torsor. We need to
show that i(I) = 0 in H(K).

Suppose first that K is infinite. Find a point x ∈ X(K) such that I is
isomorphic to the pull-back of the classifying torsor with respect to x. Let x′

be a rational point ofXK above x and write O for the local ring OXK ,x′. TheK-
algebra O is a regular local ring with residue fieldK. Therefore, the completion
Ô is isomorphic to K[[t1, t2, . . . , tn]] over K. Let L be the quotient field of Ô,
a field extension of K(X). We have the following diagram of morphisms with
a commutative square and three triangles:

SpecK

��

x

""FFFFFFFFF

SpecL

88qqqqqqqqqqq

//

��

Spec Ô //

OO

��

X

SpecK(X) // SpecO

<<yyyyyyyyyy

The pull-back of the classifying torsor E −→ X via SpecK(X) −→ X is
(Egen)K(X). The G-torsor I is the pull-back of E −→ X with respect to x. Let

1We owe the idea to use the Coxeter element and the reference below to S. Garibaldi.
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Ê be the pull-back of E −→ X via Spec Ô −→ X . Therefore, I is the pull-back

of Ê. By a theorem of Grothendieck [19, Prop. 8.1], Ê is the pull-back of I

with respect to Spec Ô −→ Spec(K). It follows that IL ≃ (Egen)L as torsors
over L. Hence the images of i(I) and i(Egen) in H(L) are equal and therefore,
i(I)L = 0. By Property 2.1, we have i(I) = 0.

If K is finite, we replace F by F ((t)) and K by K((t)). By the first part
of the proof, i(I) belongs to the kernel of H(K) −→ H

(
K((t))

)
and hence is

trivial by Property 2.1 again.

A-II. Decomposable elements. Let Γ be a profinite group andA a Γ-lattice.
Write AΓ for the subgroup of Γ-invariant elements in A. Let Γ′ ⊂ Γ be an open
subgroup and choose representatives γ1, γ2, . . . , γn for the left cosets of Γ′ in
Γ. We have the trace map Tr : AΓ′

−→ AΓ defined by Tr(a) =
∑n

i=1 γia.
Let S2(A) be the symmetric square of A. Consider the quadratic trace map

Qtr : AΓ′

−→ S2(A)Γ defined by Qtr(a) =
∑

i<j(γia)(γja). Write Dec(A)

for the subgroup of decomposable elements in S2(A)Γ generated by the square
(AΓ)2 of AΓ and the elements Qtr(a) for all open subgroups Γ′ ⊂ Γ and all
a ∈ AΓ′

.
Let B be another Γ-lattice. We write Dec(A,B) for the subgroup of (A⊗B)Γ

generated by elements of the form Tr(a⊗ b) for all open subgroups Γ′ ⊂ Γ and
all a ∈ AΓ′

, b ∈ BΓ′

.
There is a natural isomorphism

S2(A⊕ B) ≃ S2(A)⊕ (A⊗ B)⊕ S2(B).

Moreover, the equality

Qtr(a+ b) = Qtr(a) +
(
Tr(a) Tr(b)− Tr(ab)

)
+Qtr(b)

yields the decomposition

Dec(A⊕ B) ≃ Dec(A)⊕ Dec(A,B)⊕ Dec(B).

A-III. Cup-products. Let 1 −→ T −→ P −→ Q −→ 1 be an exact sequence
of tori. We consider the connecting maps

∂1 : H
p
(
F, T̂ (i)

)
−→ Hp+1

(
F, Q̂(i)

)

for the exact sequence 0 −→ Q̂sep −→ P̂sep −→ T̂sep −→ 0 of character Γ-
lattices and

∂2 : H
q
(
F, Q̂◦(j)

)
−→ Hq+1

(
F, T̂ ◦(j)

)

for the dual sequence of lattices (see notation in §4b).

Lemma A.1. Let a ∈ Hp
(
F, T̂ (i)

)
and b ∈ Hq

(
F, Q̂◦(j)

)
with i+j ≤ 2. Then

∂1(a) ∪ b = (−1)p+1a ∪ ∂2(b) in Hp+q+1
(
F,Z(i+ j)

)
, where the cup-product is

defined in (4.3).
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Proof. By [4, Ch. V, Prop. 4.1], the elements ∂1(1T ) and ∂2(1Q) in

H1
(
F, T̂ ◦

sep ⊗ Q̂sep

)
= Ext1Γ

(
T̂sep, Q̂sep

)

differ by a sign. Write τ for the isomorphism induced by permutation of the
factors. By the standard properties of the cup-product, we have

∂1(a) ∪ b = 1T ∪ ∂1(a) ∪ b

= ∂1(1T ) ∪ a ∪ b

= (−1)pqτ
(
∂1(1T ) ∪ b ∪ a

)

= (−1)pq+1τ
(
∂2(1Q) ∪ b ∪ a

)

= (−1)pq+1τ
(
1Q ∪ ∂2(b) ∪ a

)

= (−1)p+11Q ∪ a ∪ ∂2(b)

= (−1)p+1a ∪ ∂2(b). �

A-IV. Cosimplicial abelian groups. Let A• be a cosimplicial abelian group

A0
d0 //

d1
// A1 // //// A2

// //
//// · · ·

and write h∗(A
•) for the homology groups of the associated complex of abelian

groups. In particular,

h0(A
•) = Ker

[
(d0 − d1) : A0 −→ A1

]
.

We say that the cosimplicial abelian group A• is constant if for every i, all
the coface maps dj : A

i−1 −→ Ai, j = 0, 1, . . . i, are isomorphisms. In this case
all the dj are equal as dj = s−1

j = dj+1, where the sj are the codegeneracy

maps. For a constant cosimplicial abelian group A•, we have h0(A
•) = A0 and

hi(A
•) = 0 for all i > 0. We will need the following straightforward statement.

Lemma A.2. Let 0 −→ A• −→ B• −→ C• −→ D• be an exact sequence of
cosimplicial abelian groups with A• a constant cosimplicial group. Then the
sequence of groups 0 −→ A0 −→ h0(B

•) −→ h0(C
•) −→ h0(D

•) is exact.

Let H be a contravariant functor from the category of schemes over F to
the category of abelian groups. We say that H is homotopy invariant if for
every vector bundle E −→ X over F , the induced map H(X) −→ H(E) is an
isomorphism.

For an integer d > 0 consider the following property of the functor H :

Property A.3. For every closed subscheme Z of a schemeX with codimX(Z) ≥
d, the natural homomorphism H(X) −→ H(X \ Z) is an isomorphism.

Let G be an algebraic group over a field F and choose a standard classifying
G-torsor U −→ U/G. Let U i denote the product of i copies of U . We have
the G-torsors U i −→ U i/G.

Consider the cosimplicial abelian groupA• = H(U•/G) withAi = H(U i+1/G)
and coface maps Ai−1 −→ Ai induced by the projections U i+1/G −→ U i/G.
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Lemma A.4. Let H be a homotopy invariant functor satisfying Property A.3
for some d. Let U −→ U/G be a standard classifying G-torsor and U ′ an open
subset of a G-representation V ′.
1. If codimV ′(V ′ \ U ′) ≥ d, then the natural homomorphism H(U/G) −→
H
(
(U × U ′)/G

)
is an isomorphism.

2. If codimV (V \ U) ≥ d, then the cosimplicial group H(U•/G) is constant.

Proof. 1. The scheme (U × U ′)/G is an open subset of the vector bundle
(U ×V ′)/G over U/G with complement of codimension at least d. The map in
question is the composition H(U/G) −→ H

(
(U ×V ′)/G

)
−→ H

(
(U ×U ′)/G

)

and both maps in the composition are isomorphisms since H is homotopy
invariant and satisfies Property A.3.

2. By the first part of the lemma applied to theG-torsor U i −→ U i/G and U ′ =
U , the map H(U i/G) −→ H(U i+1/G) induced by a projection U i+1/G −→
U i/G is an isomorphism. �

By Lemma A.4, if H is a homotopy invariant functor satisfying Property
A.3 for some d, then the group H(U/G) does not depend on the choice of
the representation V and the open set U ⊂ V provided codimV (V \ U) ≥ d.
Following [33], we denote this group by H(BG).

Example A.5. The split torus T = (Gm)
n over F acts freely on the product

U of n copies of Ar+1 \ {0} with U/T ≃ (Pr)n, i.e., BT is “approximated” by

the varieties (Pr)n if “r >> 0.” We then have CH∗(BT ) = S∗(T̂ ), where S∗

represents the symmetric algebra and T̂ is the character group of T (see [14,

p. 607]). In particular, Pic(BT ) = CH1(BT ) = T̂ . More generally, by the
Künneth formula [15, Prop. 3.7],

H∗
Zar(BT,K∗) ≃ CH∗(BT )⊗K∗(F ) ≃ S∗(T̂ )⊗K∗(F ),

whereKn(F ) is the QuillenK-group of F and Kn is the Zariski sheaf associated
to the presheaf U 7→ Kn(U).

A-V. Étale cohomology. Let A be a sheaf of abelian groups on the big étale
site over F . For a scheme X and a closed subscheme Z ⊂ X we write H∗

Z(X,A)
for the étale cohomology group of X with support in Z and values in A [29,
Ch. III, §1]. Write X(i) for the set of points in X of codimension i. For a
point x ∈ X(1) set

H∗
x(X,A) = colim

x∈U
H∗

{x}∩U
(U,A),

where the colimit is taken over all open subsets U ⊂ X containing x. If X is
a variety, write

∂x : H∗
(
F (X), A

)
−→ H∗+1

x (X,A)

for the residue homomorphisms arising from the coniveau spectral sequence [9,
1.2]

(A.1) Ep,q
1 =

∐

x∈X(p)

Hp+q
x (X,A) ⇒ Hp+q(X,A).
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Let f : Y −→ X be a dominant morphism of varieties over F , y ∈ Y (1), and
x = f(y). If x ∈ X(1), there is a natural homomorphism f ∗

y : H∗
x(X,A) −→

H∗
y (Y,A). The following lemma is straightforward.

Lemma A.6. Let f : Y −→ X be a dominant morphism of varieties over F ,
y ∈ Y (1) and x = f(y).

(1) If x is the generic point of X, then the composition

H∗
(
F (X), A

) f∗

−→ H∗
(
F (Y ), A

) ∂y
−→ H∗+1

y (Y,A)

is trivial.
(2) If x ∈ X(1), the diagram

H∗
(
F (X), A

)

f∗

��

∂x // H∗+1
x (X,A)

f∗

y

��

H∗
(
F (Y ), A

) ∂y // H∗+1
y (Y,A).

is commutative.

Lemma A.7. Let X be a geometrically irreducible variety, Z ⊂ X a closed
subvariety of codimension 1, and x the generic point of Z. Let P be a variety
over F such that P (K) is dense in P for every field extension K/F with K
infinite, and let y be the generic point of Z × P in Y := X × P . Then
the homomorphism f ∗

y : H∗
x(X,A) −→ H∗

y (Y,A) induced by the projection
f : Y −→ X is injective.

Proof. Assume first that the field F is infinite. An element α ∈ H∗
x(X,A) is

represented by an element h ∈ H∗
Z∩U(U,A) for a nonempty open set U ⊂ X

containing x. If α belongs to the kernel of f ∗
y : H∗

x(X,A) −→ H∗
y (Y,A), then

there is an open subset W ⊂ U × P containing y such that h belongs to the
kernel of the composition

g : H∗
Z∩U(U,A) −→ H∗

(Z∩U)×P (U × P,A) −→ H∗
(Z×P )∩W (W,A).

As F is infinite, by the assumption on P , there is a rational point t ∈ P in the
image of the dominant composition (Z × P ) ∩W →֒ Z × P −→ P . We have
(U × t)∩W = U ′ × t for an open subset U ′ ⊂ U such that x ∈ U ′. Composing
g with the homomorphism H∗

(Z×P )∩W (W,A) −→ H∗
Z∩U ′(U ′, A) induced by the

morphism (U ′, Z∩U ′) −→ (W, (Z×P )∩W ), u 7→ (u, t), we see that h belongs
to the kernel of the restriction homomorphism H∗

Z∩U(U,A) −→ H∗
Z∩U ′(U ′, A),

hence the image of α in H∗
x(X,A) is trivial.

Suppose now that F is a finite field. Choose a prime integer p and an infinite
algebraic pro-p-extension L/F . By the first part of the proof, the statement
holds for the variety XL over L. By the restriction-corestriction argument,
Ker(f ∗

y ) is a p-primary torsion group. Since this holds for every prime p, we
have Ker(f ∗

y ) = 0. �
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Corollary A.8. Let E −→ X be a G-torsor over a geometrically irreducible
variety X with E a G-rational variety and consider the first projection p :
E2/G −→ X. Let x ∈ X and y ∈ E2/G be points of codimension 1 such
that p(y) = x. Then the homomorphism p∗y : H∗

x(X,A) −→ H∗
y (E

2/G,A) is
injective.

Proof. Choose a linear G-space V and a nonempty G-variety U that is G-
isomorphic to open subschemes of E and V . We can replace the variety E2/G
by (E × U)/G, an open subscheme in the vector bundle (E × V )/G over X .
Shrinking X around x we may assume that the vector bundle is trivial, i.e.,
(E×U)/G is isomorphic to an open subscheme in X×V . The statement then
follows from Lemma A.7. �

Proposition A.9. In the conditions of Corollary A.8, let h ∈ H∗
(
F (X), A

)
bal
.

Then ∂x(h) = 0 for every point x ∈ X of codimension 1.

Proof. Let y ∈ E2/G be the point of codimension 1 such that p1(y) = x.
As p2(y) is the generic point of X , by Lemma A.6(1), ∂y(h

′) = 0, where
h′ = p∗1(h) = p∗2(h) in H∗

(
F (E2/G), A

)
. It follows from Lemma A.6(2) that

∂x(h) is in the kernel of (p1)
∗
y : H

∗
x(X,A) −→ H∗

y (E
2/G,A) and hence is trivial

by Corollary A.8. �

The sheaf H∗
(
Q/Z(j)

)
defined in §3 has a flasque resolution related to the

Cousin complex by [9, §2] (for the p-components with p 6= charF ) and [18,
Th. 1.4] (for the p-component with p = charF > 0):

0 −→ Hn
(
Q/Z(j)

)
−→

∐

x∈X(0)

ix∗H
n
x

(
X,Q/Z(j)

)
−→

∐

x∈X(1)

ix∗H
n+1
x

(
X,Q/Z(j)

)
−→ · · · ,

where ix : SpecF (x) −→ X are the canonical morphisms. In particular, we
have:

Proposition A.10. Let X be a smooth variety over F . The sequence

0 −→ H0
Zar

(
X,H∗(Q/Z(j))

)
−→ H∗

(
F (X),Q/Z(j)

) ∂
−→

∐

x∈X(1)

H∗+1
x

(
X,Q/Z(j)

)
,

where ∂ =
∐

∂x, is exact.

Proposition A.11. Let X be a smooth variety over F and x ∈ X. The
sequence

0 −→ H∗
(
OX,x,Q/Z(j))

)
−→ H∗

(
F (X),Q/Z(j)

) ∂
−→

∐

x′∈X(1)

x′∈{x}

H∗+1
x′

(
X,Q/Z(j)

)

is exact.
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Appendix B. Spectral sequences

B-I. Hochschild-Serre spectral sequence. Let

A
W
−→ B

V
−→ C

be additive left exact functors between abelian categories with enough injective
objects. If W takes injective objects to V -acyclic ones, there is a spectral
sequence

Ep,q
2 = RpV

(
RqW (A)

)
⇒ Rp+q(VW )(A)

for every complex A in A bounded from below.
We have exact triangles in the derived category of B:

(B.1) τ≤nRW (A) −→ RW (A) −→ τ≥n+1RW (A) −→ τ≤nRW (A)[1],

(B.2) τ≤n−1RW (A) −→ τ≤nRW (A) −→ RnW (A)[−n] −→ τ≤n−1RW (A)[1].

The filtration on Rn(VW )(A) is defined by

F jRn(VW )(A) = Im
(
RnV (τ≤(n−j)RW (A)) −→ RnV (RW (A)) = Rn(VW )(A)

)
.

As τ≥n+1RW (A) is acyclic in degrees ≤ n, the morphism

RnV
(
τ≤nRW (A)

)
−→ RnV (RW (A)) = Rn(VW )(A)

is an isomorphism, in particular, F 0Rn(VW )(A) = Rn(VW )(A).
The edge homomorphism is defined as the composition

Rn(VW )(A)
∼

−→ RnV
(
τ≤nRW (A)

)
−→ RnV

(
RnW (A)[−n]

)
= V

(
RnW (A)

)
.

Moreover, the kernel F 1Rn(VW )(A) of the edge homomorphism is isomorphic
to RnV

(
τ≤n−1RW (A)

)
. We define the morphism dn as the composition

dn : F 1Rn(VW )(A) −→ RnV
(
Rn−1W (A)[−n+1]

)
= R1V

(
Rn−1W (A)

)
= E1,n−1

2 .

B-II. First spectral sequence. Let X be a smooth variety over a field F .
We have the functors

Sheavesét(X)
q∗
−→ Sheavesét(F )

V
−→ Ab,

where q∗ is the push-forward map for the structure morphism q : X −→
Spec(F ) and V (M) = H0(F,M).

Consider the Hochschild-Serre spectral sequence

(B.3) Ep,q
2 = Hp

(
F,Hq(Xsep,Z(2)

)
⇒ Hp+q

(
X,Z(2)

)
.

Set ∆(i) := Rq∗
(
Z(i)

)
for i = 1 or 2. Then ∆(i) is the complex of étale sheaves

on F concentrated in degrees ≥ 1. The jth term F jHn(X,Z(i)) of the filtration
on Hn

(
X,Z(i)

)
coincides with the image of the canonical homomorphism

Hn
(
F, τ≤(n−j)∆(i)

)
−→ Hn

(
F,∆(i)

)
= Hn

(
X,Z(i)

)
.

Let M be a Γ-lattice viewed as an étale sheaf over F . Note that there are
canonical isomorphisms

(B.4) H∗
(
F,M◦ ⊗∆(i)

)
= Ext∗F

(
M,∆(i)

)
= Ext∗X

(
q∗M,Z(i)

)
,
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where M◦ := Hom(M,Z) is the dual lattice.
Consider also the following product map

Z(1)⊗L∆(1) −→ Rq∗
(
q∗Z(1)⊗LZ(1)

)
−→ Rq∗

(
Z(1)⊗LZ(1)

)
−→ Rq∗

(
Z(2)

)
.

The complex Z(1)⊗L τ≤2∆(1) is trivial in degrees > 3, hence we have a com-
mutative diagram

Z(1)⊗L τ≤2∆(1)

��

prod // τ≤3Rq∗
(
Z(2)

)

��

= τ≤3∆(2)

Z(1)⊗L ∆(1)
prod // Rq∗

(
Z(2)

)
= ∆(2).

There are canonical morphisms from (B.2):

h2 : τ≤2∆(1)[2] −→ H2
(
Xsep,Z(1)

)
,

h3 : τ≤3∆(1)[3] −→ H3
(
Xsep,Z(2)

)
.

Consider an element

δ ∈ H1(F,M ⊗ F×
sep) = Ext1F (M

◦,Gm,F ) = Ext2F
(
M◦,Z(1)

)
,

and view δ as a morphism

δ : M◦ −→ Z(1)[2]

in D+
(
Sheavesét(F )

)
.

The following diagram

M◦ ⊗∆(1)[2]
δ⊗1 // Z(1)⊗L ∆(1)[4]

prod // ∆(2)[4]

M◦ ⊗ τ≤2∆(1)[2]

1⊗h2

��

(1⊗i2)[2]

OO

δ⊗1 // Z(1)⊗L τ≤2∆(1)[4]

1⊗h2

��

(1⊗i2)[4]

OO

prod // τ≤3∆(2)[4]

h3

��

(i3)[4]

OO

M◦ ⊗H2
(
Xsep,Z(1)

) δ⊗1 // Z(1)⊗L H2
(
Xsep,Z(1)

)
[2]

prod // H3
(
Xsep,Z(2)

)
[1],

where i2 : τ≤2∆(1) −→ ∆(1) and i3 : τ≤3∆(2) −→ ∆(2) are natural morphisms,
is commutative.

By (B.4), we have

H0
(
F,M◦ ⊗∆(1)[2]

)
= Ext2F

(
M,∆(1)

)
= Ext2X

(
q∗M,Z(1)

)
.

Furthermore, the diagram above yields a commutative square

Ext2X
(
q∗M,Z(1)

)

d2
��

q∗(δ) ∪ −
// F 1H4

(
X,Z(2)

)

d4
��

HomΓ

(
M,H2(Xsep,Z(1)

) j // H1
(
F,H3(Xsep,Z(2))

)
,
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where d2 is the edge map coming from the spectral sequence

(B.5) ExtpF
(
M,Hq(Xsep,Z(1))

)
⇒ Extp+q

X

(
q∗M,Z(1)

)

and j coincides with the composition

HomΓ

(
M,H2(Xsep,Z(1)

)
= H0

(
F,M◦ ⊗H2(Xsep,Z(1))

) δ ∪ −
−→

H1
(
F, F×

sep ⊗H2(Xsep,Z(1))
) ρ
−→ H1

(
F,H3

(
Xsep,Z(2))

)
,

with ρ given by the product map.
Now suppose the group H2

(
Xsep,Z(1)

)
, which is canonically isomorphic to

Pic(Xsep), is a lattice. Let M = Pic(Xsep) and consider the torus T over F

with T̂sep = M . It follows that

δ ∈ H1(F, T ◦) = H1(F, T̂sep ⊗ F×
sep) = H2

(
F, T̂sep ⊗ Z(1)

)
,

where T ◦ is the dual torus. Note that δ ∪ 1M = δ, where

1M ∈ H0
(
F,M◦ ⊗H2(Xsep,Z(1))

)
= EndΓ(M)

is the identity.
The top map in the last diagram is given by the pairing

H1(X, T 0)⊗H1(X, T ) −→ F 1H4
(
X,Z(2)

)
,(B.6)

a⊗ b 7→ a ∪ b(B.7)

defined as the cup-product in (4.3),

H2
(
X, T̂ (1)

)
⊗H2

(
X, T̂ ◦(1)

)
−→ F 1H4

(
X,Z(2)

)
,

if we identify Ext2X(q
∗M,Z(1)) with H2

(
X, T̂ ◦(1)

)
= H1(X, T ).

In this case, the homomorphism

(B.8) ρ : H1(F, T ◦) −→ H1
(
F,H3

(
Xsep,Z(2))

)

is given by the product homomorphism

T ◦(Fsep) = F×
sep ⊗ T̂sep = F×

sep ⊗ Pic(Xsep) −→ H3(Xsep,Z(2)).

A T -torsor E −→ X is called universal if the class of E in H1(X, T ) =
Ext2X

(
q∗M,Z(1)

)
satisfies d2

(
[E]

)
= 1M (see [7]).

Commutativity of the previous diagram gives:

Proposition B.1. Let X be a smooth variety over F such that Pic(Xsep) is

a lattice. Let T be the torus over F satisfying T̂sep = Pic(Xsep) and let E be
a universal T -torsor over X with the class [E] ∈ H1(X, T ). Then for every
δ ∈ H1(F, T ◦), we have

d4
(
q∗(δ) ∪ [E]

)
= ρ(δ),

where d4 : F 1H4
(
X,Z(2)

)
−→ H1

(
F,H3(Xsep,Z(2))

)
is the map induced by

the Hochschild-Serre spectral sequence (B.3) and the cup-product is taken for
the pairing (B.6).
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B-III. Second spectral sequence. We assume that H3
(
Xsep,Z(2)

)
= 0,

hence in particular E0,3
2 = 0 in the spectral sequence (B.3) and so E2,2

∞ ⊂ E2,2
2 .

Therefore, we have a canonical map

e4 : F
2H4

(
X,Z(2)

)
−→ E2,2

∞ →֒ E2,2
2 = H2

(
F,H2(Xsep,Z(2)

)
.

Let N be a Γ-lattice. Consider an element

γ ∈ H2(F,N ⊗ F×
sep) = Ext2F (N

◦,Gm,F ) = Ext3F
(
N◦,Z(1)

)
,

and view γ as a morphism

γ : N◦ −→ Z(1)[3]

in D+
(
Sheavesét(F )

)
.

As above, the commutative diagram

N◦ ⊗∆(1)[1]
γ⊗1 // Z(1)⊗L ∆(1)[4]

prod // ∆(2)[4]

N◦ ⊗ τ≤1∆(1)[1]

1⊗h1

��

(1⊗i1)[1]

OO

γ⊗1 // Z(1)⊗L τ≤1∆(1)[4]

1⊗h1

��

(1⊗i1)[4]

OO

prod // τ≤2∆(2)[4]

h2

��

(i2)[4]

OO

N◦ ⊗H1
(
Xsep,Z(1)

) γ⊗1 // Z(1)⊗L H1
(
Xsep,Z(1)

)
[3]

prod // H2
(
Xsep,Z(2)

)
[2],

where i1, i2, h1 and h2 are defined in a similar fashion as in §B-II, yields a
commutative square

Ext1X(q
∗N,Z(1))

d1
��

q∗(γ) ∪ −
// F 2H4

(
X,Z(2)

)

e4
��

HomΓ

(
N,H1(Xsep,Z(1)

) k // H2
(
F,H2(Xsep,Z(2))

)
,

where d1 is the edge map coming from the spectral sequence

ExtpF
(
N,Hq(Xsep,Z(1))

)
⇒ Extp+q

X

(
q∗N,Z(1)

)

and k coincides with the composition

HomΓ

(
N,H1(Xsep,Z(1)

)
= H0

(
F,N◦ ⊗H1(Xsep,Z(1))

) γ ∪ −
−→

H2
(
F, F×

sep ⊗H1(Xsep,Z(1))
)
−→ H2

(
F,H2

(
Xsep,Z(2))

)

with the last homomorphism given by the product map.
Suppose N is a Γ-lattice in Fsep[X ]× such that the composition N →֒

Fsep[X ]× −→ Fsep[X ]×/F×
sep is an isomorphism. Consider the torus Q with

Q̂sep = N , so that γ ∈ H2(F,Q◦).
Note that γ ∪ iN = γ, where

iN ∈ H0
(
F,N◦ ⊗H1(Xsep,Z(1))

)
= HomΓ(N,Fsep[X ]×)

is the embedding.
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The top map in the previous diagram is given by the pairing

H2(X,Q0)⊗H0(X,Q) −→ F 2H4
(
X,Z(2)

)

a⊗ b 7−→ a ∪ b,
(B.9)

defined as the cup-product in (4.3),

H3
(
X, Q̂(1)

)
⊗H1

(
X, Q̂◦(1))

)
−→ H4

(
X,Z(2)

)
,

if we identify Ext1X
(
q∗N,Z(1)

)
with H1

(
X, Q̂◦(1)

)
= H0(X,Q).

The inclusion of Q̂sep into Fsep[X ]× yields a morphism ε : X −→ Q that can
be viewed as an element of H0(X,Q). Consider the map

(B.10) µ : H2(F,Q◦) −→ H2
(
F,H2

(
Xsep,Z(2))

)

given by composition with the product homomorphism

Q◦(Fsep) = F×
sep ⊗ Q̂sep −→ F×

sep ⊗H1
(
Xsep,Z(1)

)
−→ H2

(
Xsep,Z(2)

)
.

We have proved:

Proposition B.2. Let X be a smooth variety over F such that H3
(
Xsep,Z(2)

)
=

0. Let N be a Γ-lattice in Fsep[X ]× such that the composition N →֒ Fsep[X ]× −→

Fsep[X ]×/F×
sep is an isomorphism. Let Q be the torus over F satisfying Q̂sep =

N . Then for every γ ∈ H2(F,Q◦), we have

e4
(
q∗(γ) ∪ ε

)
= µ(γ),

where e4 : F 2H4
(
X,Z(2)

)
−→ H2

(
F,H2(Xsep,Z(2))

)
is the map induced by

the Hochschild-Serre spectral sequence (B.3) and the cup-product is taken for
the pairing (B.9).

B-IV. Relative étale cohomology. Let X be a smooth variety over F . Fol-
lowing [23, §3], we define the relative étale cohomology groups as follows.
Recall that ∆(i) = Rq∗

(
Z(i)

)
for i = 1 and 2, where q : X −→ Spec(F ) is

the structure morphism, and let ∆′(i) be the cone of the natural morphism
Z(i) −→ ∆(i) in D+

(
Sheavesét(F )

)
. Define H∗

(
X/F,Z(2)

)
:= H∗

(
F,∆′(2)

)
.

There is an infinite exact sequence

. . . −→ H i
(
F,Z(2)

)
−→ H i

(
X,Z(2)

)
−→ H i

(
X/F,Z(2)

)
−→ H i+1

(
F,Z(2)

)
−→ · · ·

If X has a rational point, we have

H i
(
X/F,Z(2)

)
= H

i(
X,Z(2)

)
:= H i

(
X,Z(2)

)
/H i

(
F,Z(2)

)
.

There is a Hochschild-Serre type spectral sequence [23, §3]

(B.11) Ep,q
2 = Hp

(
F,Hq(Xsep/Fsep,Z(2))

)
⇒ Hp+q

(
X/F,Z(2)

)
,

and we have by [23, Lemma 3.1] that

Hq
(
Xsep/Fsep,Z(2)

)
=





0, if q ≤ 0;
uniquely divisible group, if q = 1;

H
0

Zar(Xsep,K2), if q = 2;
H1

Zar(Xsep,K2), if q = 3.
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It follows that Ep,q
2 = 0 if q ≤ 1 and p > 0. Comparing the spectral sequences

(B.3) and (B.11), by Proposition B.1 we have:

Proposition B.3. Let X be a smooth variety over F such that X(F ) 6= ∅. If
H0

Zar(Xsep,K2) = K2(Fsep), then the spectral sequence (B.11) yields an exact
sequence

0 −→ H1
(
F,H1

Zar(Xsep,K2)
) α
−→ H

4(
X,Z(2)

)
−→

H
4(
Xsep,Z(2)

)Γ
−→ H2

(
F,H1

Zar(Xsep,K2)
)
.

If, moreover, the group Pic(Xsep) is a lattice and T is the torus over F such

that T̂sep = Pic(Xsep), then α
(
ρ(δ)

)
= q∗(δ) ∪ [E] for every δ ∈ H1(F, T ◦),

where ρ is defined in (B.8) and E is a universal T -torsor over X.

Comparing the spectral sequences (B.3) and (B.11), by Proposition B.2 we
have:

Proposition B.4. Let X be a smooth variety over F such that X(F ) 6= ∅. If
H1

Zar(Xsep,K2) = 0, then the spectral sequence (B.11) yields an exact sequence

0 −→ H2
(
F,H

0

Zar(Xsep,K2)
) β
−→ H

4(
X,Z(2)

)
−→

H
4(
Xsep,Z(2)

)Γ
−→ H3

(
F,H

0

Zar(Xsep,K2)
)
.

If N is a Γ-lattice in Fsep[X ]× such that the composition N →֒ Fsep[X ]× −→

Fsep[X ]×/F×
sep is an isomorphism and Q is the torus over F satisfying Q̂sep =

N , then β
(
µ(γ)

)
= q∗(γ) ∪ ε for every γ ∈ H2(F,Q◦), where µ is defined in

(B.10) and ε ∈ H0(X,Q) is given by the inclusion of Q̂sep into Fsep[X ]×.
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[34] V. E. Voskresenskĭı, Maximal tori without affect in semisimple algebraic groups, Mat.
Zametki 44 (1988), no. 3, 309–318, 410.
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