Rationally trivial quadratic spaces are locally trivial:III

I.Panin^{*}, K.Pimenov [†]

25.12.2012

Abstract

It is proved the following. Let R be a regular semi-local domain containing a field such that all the residue fields are infinite. Let K be the fraction field of R. If a quadratic space $(R^n, q : R^n \to R)$ over R is isotropic over K, then there is a unimodular vector $v \in R^n$ such that q(v) = 0. If char(R) = 2, then in the case of even n we assume that q is a non-singular space in the sense of [Kn] and in the case of odd n > 2 we assume that q is a semi-regular in the sense of [Kn].

1 Introduction

Let k be an infinite field, possibly char(k) = 2, and let X be a k-smooth irreducible affine scheme, let $x_1, x_2, \ldots, x_s \in X$ be closed points. Let P be a free k[X]-module of rank n > 0. If n is odd, then let $(P, q : P \to k[X])$ be a semi-regular quadratic module over k[X] in the sense of [Kn, Ch.IV, §3]. If n is even, then let $(P, q : P \to k[X])$ be a non-singular quadratic space in the sense of [Kn, Ch.I, (5.3.5))]. (In both cases it is equivalent of saying that the X-scheme $Q := \{q = 0\} \subset \mathbf{P}_X^{n-1}$ is smooth over X).

Let $p: Q \to X$ be the projection. For a nonzero element $g \in k[X]$ let $Q_g = p^{-1}(X_g)$. Let $U = \operatorname{Spec}(\mathcal{O}_{X,\{x_1,x_2,\dots,x_s\}})$. Set ${}_UQ = U \times_X Q$. For a k-scheme D equipped with k-morphisms $U \leftarrow D$ and $D \to X_g$ set ${}_DQ = {}_UQ \times_U D$ and $Q_{D,g} = D \times_{X_g} Q_g$.

1.0.1 Proposition. If n > 1, then there exists a finite surjective étale k-morphism $U \leftarrow D$ of odd degree, a morphism $D \to X_g$ and an isomorphism of the D-schemes ${}_DQ \xleftarrow{\bar{\Phi}} Q_{D,g}$.

Given this Proposition we may prove the following Theorem

1.0.2 Theorem (Main). Assume that $g \in k[X]$ is a non-zero element such that there is a section $s : X_g \to Q$ of the projection $Q_g \to X_g$. Then there is a section $s_U : U \to {}_UQ$ of the projection ${}_UQ \to U$.

^{*}The research of the first author is partially supported by RFBR-grant 10-01-00551-a

[†]The research of the second author is partially supported by RFBR grant 12-01-33057 "Motivic homotopic cohomology theories on algebraic varieties"

Proof of Main Theorem. We will give a proof of the Theorem only in the local case and left to the reader the semi-local case. So, s = 1 and we will write x for x_1 and \mathcal{O}_{X,x_1} for $\mathcal{O}_{X,\{x_1\}}$. If $g \in k[X] - m_x$, then there is nothing to prove. Now let $g \in m_x$ then by Proposition 1.0.1 there is a a finite surjective étale k-morphism $U \leftarrow D$ of odd degree, a morphism $D \to X_g$ and an isomorphism of the D-schemes ${}_DQ \leftarrow Q_{D,g}$.

The section s defines a section $s_D = (id, s) : D \to Q_{D,g}$ of the projection $Q_{D,g} \to D$. Further $\overline{\Phi} \circ s_D : D \to {}_D Q$ is a section of the projection ${}_D Q \to D$. Finally, if $p_1 : {}_D Q \to {}_U Q$ is the projection, then $p_1 \circ \overline{\Phi} \circ s_D : D \to {}_U Q$ is a U-morphism of U-schemes. Recall that $U \leftarrow D$ is a a finite surjective étale k-morphism of odd degree and U is local with an infinite residue field. Whence by a variant of Springer's theorem proven in [PR] there is a section $s_U : U \to {}_U Q$ of the projection ${}_U Q \to U$. (If char(k)=2 the proof a variant of Springer's theorem given in [PR] works well with a very mild modification). The Theorem is proven.

The Main Theorem has the following corollaries

1.0.3 Corollary (Main1). Let $\mathcal{O}_{X,\{x_1,x_2,...,x_s\}}$ be the semi-local ring as above and let k(X) be the rational function field on X. Let P be a free $\mathcal{O}_{X,\{x_1,x_2,...,x_s\}}$ -module of rank n > 1 and $q: P \to \mathcal{O}_{X,\{x_1,x_2,...,x_s\}}$ be a form over $\mathcal{O}_{X,\{x_1,x_2,...,x_s\}}$ as above, that is the $\mathcal{O}_{X,\{x_1,x_2,...,x_s\}}$ -scheme $Q := \{q = 0\} \subset \mathbf{P}^{n-1}_{\mathcal{O}_{X,x}}$ is smooth over $\mathcal{O}_{X,x}$. If the equation q = 0 has a non-trivial solution over k(X), then it has a unimodular solution over $\mathcal{O}_{X,\{x_1,x_2,...,x_s\}}$.

1.0.4 Corollary (Main2). Let R be a semi-local regular domain containing a field and R is such that all the residue fields are infinite. Let K be the fraction field of R. Let P be a free R-module of rank n > 1 and $q : P \to R$ be a quadratic form over R such that the R-scheme $Q := \{q = 0\} \subset \mathbf{P}_R^{n-1}$ is smooth over R. If the equation q = 0 has a non-trivial solution over K, then it has a unimodular solution over R.

1.0.5 Corollary (Main3). Let R be a semi-local regular domain containing a field and R is such that all the residue fields are infinite. Let K be the fraction field of R. Let P be a free R-module of even rank n > 0 and $q : P \to R$ be a quadratic form over R such that the R-scheme $Q := \{q = 0\} \subset \mathbf{P}_R^{n-1}$ is smooth over R. Let $u \in \mathbb{R}^{\times}$ be a unit. If u is represented by q over K, then u is represented by q already over R.

If $1/2 \in \mathbb{R}$, then the same holds for a quadratic space of an arbitrary rank.

Proof of Proposition 1.0.1. The following Lemma is a corollary from Lemma 2.2.1 and Proposition 3.1.7. from [Kn]

1.0.6 Lemma. For n > 1 there exists an affine open subset X^0 containing x and a Galois étale cover $\tilde{X}^0 \xrightarrow{\pi} X^0$ such that the $k[X^0]$ -module $P \otimes_{k[X]} k[X^0]$ coincides with $k[X^0]^n$ and $\pi^*(q)$ is proportional to the quadratic space $\perp_{i=1}^m T_i T_{i+m}$ in the case n = 2m and is proportional to the semi-regular quadratic module $\perp_{i=1}^m T_i T_{i+m} \perp T_n^2$ in the case n = 2m + 1.

 $\mathbf{2}$

By this Lemma we may and will assume that $P = k[X]^n$ and that we are given with a Galois étale cover $\pi : \tilde{X} \xrightarrow{\pi} X$ such that the quadratic space $\pi^*(q)$ is proportional to a split quadratic space. Let Γ be the Galois group of \tilde{X} over X. Let $\tilde{U} = \pi^{-1}(U) \subset \tilde{X}$.

Let $\overline{U \times X} := (\tilde{U} \times \tilde{X}) / \Delta(\Gamma)$. Clearly, $U \times X = (\tilde{U} \times \tilde{X}) / (\Gamma \times \Gamma)$. Let $\rho : \overline{U \times X} \to U \times X$ be the obvious map.

Let $p_2 : U \times X \to X$ be projection to X and $p_1 : U \times X \to U$ be the projection to U. The quadratic spaces $p_1^*(q)$ and $p_2^*(q)$ over $U \times X$ are not proportional in general. However the following Proposition holds (see Appendix, Lemma 2.0.8)

1.0.7 Proposition. The quadratic spaces $\rho^*(p_2^*(q))$ and $\rho^*(p_1^*(q))$ are proportional.

Further by [PSV, Prop. 3.3, Prop. 3.4] and [PaSV] we may find an open X' in X containing x and an open affine $S \subset \mathbf{P}^{d-1}$ (d=dim(X)) and a smooth morphism $f': X' \to S$ making X' into a smooth relative curve over S with the geometrically irreducible fibres. Moreover we may find f' such that $f'|_{X'\cap Z}: Z' = X' \cap Z \to S$ is finite, where Z is the vanishing locus of $g \in k[X]$. Moreover f' can be written as $pr_S \circ \Pi' = f'$, where $\Pi': X' \to \mathbf{A}^1 \times S$ is a finite surjective morphism. Set $\tilde{X}' = \pi^{-1}(X')$. Replacing notation we write X for X', \tilde{X} for \tilde{X}', Z for $Z', f: X \to S$ for $f': X' \to S$, $\Pi: X \to \mathbf{A}^1 \times S$ for $\Pi': X' \to \mathbf{A}^1 \times S$.

Let $\overline{U \times_S X} := (\tilde{U} \times_S \tilde{X}) / \Delta(\Gamma)$. Clearly, $U \times_S X = (\tilde{U} \times_S \tilde{X}) / (\Gamma \times \Gamma)$. Let

$$\rho_S: \overline{U \times_S X} \to U \times_S X$$

be the obvious map.

Let $p_X : U \times_S X \to X$ be projection to X and $p_U : U \times_S X \to U$ be the projection to U. By Proposition 1.0.7 the quadratic spaces $\rho_S^*(p_X^*(q))$ and $\rho_S^*(p_U^*(q))$ are ...

Now the pull-back of Π be means of the morphism $U \hookrightarrow X \to S$ defines a finite surjective morphism $\Theta : U \times_S X \to \mathbf{A}^1 \times U$. So, $\Theta \circ \rho_S : \overline{U} \times_S \overline{X} \to \mathbf{A}^1 \times U$ is a finite surjective morphism of U-schemes. The U-scheme $\overline{U} \times_S \overline{X}$ is smooth over U since $U \times_S X$ is smooth over U and ρ_S is étale. The subscheme $\Delta(\tilde{U})/\Delta(\Gamma) \subset \overline{U} \times_S \overline{X}$ projects isomorphically onto U. So, we are given with a section $\tilde{\Delta}$ of the morphism

$$\overline{U \times_S X} \xrightarrow{\rho_S} U \times_S X \xrightarrow{p_U} U.$$

The recollection from the latter paragraph shows that we are under the hypotheses of Lemma 3.0.9 from Appendix B for the relative U-curve $\mathfrak{X} := \overline{U \times_S X}$ and its closed subset $\mathfrak{Z} := \rho_S^{-1}(U \times_S Z)$. (If to be more accurate, then one should take the connected component \mathfrak{X}^c of \mathfrak{X} containing $\tilde{\Delta}(U)$ and the closed subset $\mathfrak{Z} \cap \mathfrak{X}^c$ of \mathfrak{X}^c).

By Lemma 3.0.9 there exists an open subscheme $\mathfrak{X}^0 \hookrightarrow \mathfrak{X}$ and a finite surjective morphism $\alpha : \mathfrak{X}^0 \to \mathbf{A}^1 \times U$ such that α is étale over $0 \times U$ and $1 \times U$ and $\alpha^{-1}(0 \times U) = \widetilde{\Delta}(U) \coprod D_0$. Moreover if we define D_1 as $\alpha^{-1}(1 \times U)$, then $D_1 \cap Z = \emptyset$ and $D_0 \cap Z = \emptyset$. One has $[D_1 : U] = [D_0 : U] + 1$. Thus either $[D_1 : U]$ is odd or $[D_0 : U]$ is odd.

Assume $[D_1 : U]$ is odd. Then the morphism $1 \times U \xleftarrow{\alpha|_{D_1}} D_1$, the morphism $D_1 \xrightarrow{p_X \circ \rho_S} X - Z$ and the isomorphism $\overline{\Phi} := \Phi|_{D_1}$ satisfy the conclusion of the Proposition 1.0.1 (here Φ is from the Proposition 1.0.7). The Proposition is proven.

2 Appendix A: Equating Lemma

Let k be a field, X be a k-smooth affine scheme, G be a reductive k-group, \mathfrak{G}/X be a principle G-bundle over X. Let $\pi : \tilde{X} \to X$ be a finite étale Galois cover of X with a Galois group Γ and let $s : \tilde{X} \to \mathfrak{G}$ be an X-scheme morphism (in other words \mathfrak{G} splits over \tilde{X}). Let $\overline{X \times X} := (\tilde{X} \times \tilde{X})/\Delta(\Gamma)$. Clearly, $X \times X = (\tilde{X} \times \tilde{X})/(\Gamma \times \Gamma)$. Let $\pi : \overline{X \times X} \to X \times X$ be the obvious map. Observe that the map $\tilde{X} \times \tilde{X} \to \overline{X \times X}$ is an étale Galois cover with the Galois group Γ .

Let $q_i : \tilde{X} \times \tilde{X} \to \tilde{X}$ be projection to the i-th factor and let $p_i : X \times X \to X$ be projection to the i-th factor. The principal G bundles $\mathcal{G}_1 := p_1^*(\mathcal{G})$ and $\mathcal{G}_2 := p_2^*(\mathcal{G})$ over $X \times X$ are not isomorphic in general. However the following Proposition holds

2.0.8 Lemma. The principal G-bundles $\pi^*(\mathfrak{G}_1)$ and $\pi^*(\mathfrak{G}_2)$ are isomorphic and moreover there is such an isomorphism $\Phi : \pi^*(\mathfrak{G}_1) \to \pi^*(\mathfrak{G}_2)$ that the restriction of Φ to the subscheme $X = \Delta(\tilde{X})/(\Gamma) \subset \overline{X \times X}$ is the identity isomorphism.

Proof. The morphism $s : \tilde{X} \to \mathcal{G}$ gives rise to a 1-cocycle $a : \Gamma \to G(\tilde{X})$ defined as follows: given $\gamma \in \Gamma$ consider the composition $s \circ \gamma$ and set $a_{\gamma} \in G(\tilde{X})$ to be a unique element with $a_{\gamma} \cdot s = s \circ \gamma$ in $G(\tilde{X})$.

It's straight forward to check that the 1-cocycle corresponding to the principal G bundle $\pi^*(\mathfrak{G}_1)$ and the morphism $\tilde{X} \times \tilde{X} \xrightarrow{q_1} \tilde{X} \xrightarrow{s} \mathfrak{G}$ coincides with the one

$$\Gamma \xrightarrow{a} G(\tilde{X}) \xrightarrow{q_1^*} G(\tilde{X} \times \tilde{X}).$$

Similarly the 1-cocycle corresponding to the principal G bundle $\pi^*(\mathcal{G}_2)$ and the morphism $\tilde{X} \times \tilde{X} \xrightarrow{q_2} \tilde{X} \xrightarrow{s} \mathcal{G}$ coincides with the one

$$\Gamma \xrightarrow{a} G(\tilde{X}) \xrightarrow{q_2^*} G(\tilde{X} \times \tilde{X}).$$

Let $b \in G(\tilde{X} \times \tilde{X})$ be an element defined by the equality $b \cdot (s \circ q_2) = s \circ q_1$. To prove that the principal G bundles $\pi^*(\mathcal{G}_1)$ and $\pi^*(\mathcal{G}_2)$ are isomorphic it suffices to check that for every $\gamma \in \Gamma$ the following relation holds in $G(\tilde{X} \times \tilde{X})$

$${}^{\gamma}b \cdot q_2^*(a)(\gamma) \cdot b^{-1} = q_1^*(a)(\gamma), \tag{1}$$

where $q_i^*(a)(\gamma) := q_i^* \circ a$ for i = 1, 2.

To prove the relation (1) it suffices to check the following one in $\mathcal{G}(\tilde{X} \times \tilde{X})$

$$({}^{\gamma}b \cdot q_2^*(a)(\gamma) \cdot b^{-1}) \cdot (s \circ q_1) = q_1^*(a)(\gamma) \cdot (s \circ q_1).$$
(2)

One has the following chain of relations

$$({}^{\gamma}b \cdot q_2^*(a)(\gamma) \cdot b^{-1}) \cdot (s \circ q_1) = ({}^{\gamma}b \cdot q_2^*(a)(\gamma)) \cdot (s \circ q_2) = {}^{\gamma}b \cdot {}^{\gamma}(s \circ q_2) =$$
$$= {}^{\gamma}(s \circ q_1) = s \circ q_1 \circ (\gamma \times \gamma)$$

The first one follows from the definition of the element b, the second one follows from the commutativity of the diagram

$$\begin{array}{cccc} G \times \mathfrak{G} & \stackrel{\nu}{\longrightarrow} & \mathfrak{G} \\ & & & & \uparrow^{s} \\ \tilde{X} & \stackrel{\gamma}{\longrightarrow} & \tilde{X} \\ & & & q_{2} \uparrow & & \uparrow^{q_{2}} \\ & & & \tilde{X} \times \tilde{X} & \stackrel{\gamma \times \gamma}{\longrightarrow} & \tilde{X} \times \tilde{X} \end{array}$$

the third one follows from the commutativity of the diagram

$$\begin{array}{cccc} G \times \mathfrak{G} & \stackrel{\nu}{\longrightarrow} & \mathfrak{G} \\ (b, s \circ q_2) & & \uparrow s \\ \tilde{X} \times \tilde{X} & \stackrel{q_1}{\longrightarrow} & \tilde{X} \\ & \tilde{X} \times \tilde{X} & \stackrel{q_1}{\longrightarrow} & \tilde{X} \\ & \gamma \times \gamma & \uparrow \\ & \tilde{X} \times \tilde{X}. \end{array}$$

Thus $(\gamma b \cdot q_2^*(a)(\gamma) \cdot b^{-1}) \cdot (s \circ q_1) = s \circ q_1 \circ (\gamma \times \gamma)$. The right hand side of the relation (2) is equal to $s \circ q_1 \circ (\gamma \times \gamma)$ as well, as follows from the commutativity of the diagram

So, the relation (2) holds. Whence the relation (1) holds. Whence the principal G bundles $\pi^*(\mathfrak{G}_1)$ and $\pi^*(\mathfrak{G}_2)$ are isomorphic.

The composite $\tilde{X} \xrightarrow{\Delta} \tilde{X} \times \tilde{X} \xrightarrow{q_2} \tilde{X} \xrightarrow{s} \mathcal{G}$ equals s and equals the composite $s \circ q_1 \circ \Delta$. Δ . Whence $\Delta^*(b) = 1 \in G(\tilde{X})$. This shows that the restriction to $X = \Delta(X)/\Delta(\Gamma)$ of the isomorphism $\pi^*(\mathcal{G}_1)$ and $\pi^*(\mathcal{G}_2)$ corresponding to the element b is the identity isomorphism. The Lemma is proved.

3 Appendix B: a variant of geometric lemma

Let k be an infinite field, Y be a k-smooth algebraic variety, $y \in Y$ be a point, $\mathcal{O} = \mathcal{O}_{Y,y}$ be the local ring, $U = \text{Spec}(\mathcal{O})$. Let \mathfrak{X}/U be a U-smooth relative curve with geometrically

connected fibres equipped with a finite surjective morphism $\pi : \mathfrak{X} \to \mathbf{A}^1 \times U$ and equipped with a section $\Delta : U \to \mathfrak{X}$ of the projection $p : \mathfrak{X} \to U$. Let $\mathfrak{Z} \subset \mathfrak{X}$ be a closed subset finite over U. The following Lemma is a variant of Lemma 5.1 from [OP].

3.0.9 Lemma. There exists an open subscheme $\mathfrak{X}^0 \hookrightarrow \mathfrak{X}$ and a finite surjective morphism $\alpha : \mathfrak{X}^0 \to \mathbf{A}^1 \times U$ such that α is étale over $0 \times U$ and $1 \times U$ and $\alpha^{-1}(0 \times U) = \Delta(U) \coprod D_0$. Moreover if we define D_1 as $\alpha^{-1}(1 \times U)$, then $D_1 \cap \mathfrak{Z} = \emptyset$ and $D_0 \cap \mathfrak{Z} = \emptyset$.

Proof. Let $\bar{\mathfrak{X}}$ be the normalization of the scheme $\mathbf{P}^1 \times U$ in the function field $k(\mathfrak{X})$ of \mathfrak{X} . Let $\bar{\pi} : \bar{\mathfrak{X}} \to \mathbf{P}^1 \times U$ be the morphism. Let $\mathfrak{X}_{\infty} = \pi^{-1}(\infty \times U)$ be the set theoretic preimage of $\infty \times U$. Let $\bar{p} : \bar{\mathfrak{X}} \to U$ be the structure map. Let $u \in U$ be the closed point and $\bar{X}_u = \bar{\mathfrak{X}} \times_U u$.

Let , $L' = \bar{\pi}^*(\mathcal{O}_{\mathbf{P}^1 \times U}(1)), L'' = \mathcal{O}_{\bar{X}}(\Delta(U))$. Let $D_{\infty} = (\pi^*)(\infty \times U)$ be the pull-back of the Cartier divisor $\infty \times U \subset \mathbf{P}^1 \times U$. Choose and fix a closed embedding $i : \bar{\mathcal{X}} \hookrightarrow \mathbf{P}^n \times U$ of U-schemes. Set $L = i^*(\mathcal{O}_{\mathbf{P}^n \times U}(1))$.

The sheaf L is very ample. Thus the sheaf $L'' \otimes L$ is very amply as well. So, there exists a closed embedding $i'': \bar{\mathfrak{X}} \hookrightarrow \mathbf{P}^{n''} \times U$ of U-schemes such that $L'' \otimes L = (i'')^* (\mathcal{O}_{\mathbf{P}^{n''} \times U}(1))$. Using Bertini theorem choose a hyperplane $H'' \subset \mathbf{P}^{n''} \times U$ such that $(a'') H'' \cap \Delta(U) = \emptyset, H'' \cap \mathfrak{Z} = \emptyset, H'' \cap D_{\infty} = \emptyset$.

Define a Cartier divisor D'' on $\overline{\mathfrak{X}}$ as the the closed subscheme $H'' \cap \overline{\mathfrak{X}}$ of $\overline{\mathfrak{X}}$.

Regard $D''_1 := D'' \coprod D_{\infty}$ as a Cartier divisor on $\bar{\mathcal{X}}$. Clearly, one has $\mathcal{O}_{\bar{\mathcal{X}}}(D''_1) = L'' \otimes L \otimes L'$. The sheaf L is very ample. Thus the sheaf $L' \otimes L$ is very ample as well. So, there exists a closed embedding $i' : \bar{\mathcal{X}} \hookrightarrow \mathbf{P}^{n'} \times U$ of U-schemes such that $L' \otimes L = (i')^* (\mathcal{O}_{\mathbf{P}^{n'} \times U}(1))$. Using Bertini theorem choose a hyperplane $H' \subset \mathbf{P}^{n'} \times U$ such that

 $(a') H' \cap \Delta(U) = \emptyset, H' \cap \mathfrak{Z} = \emptyset, H' \cap D_1'' = \emptyset;$

(b') the scheme theoretic intersection $H' \cap \overline{X}_u$ is a k(u)-smooth scheme.

Define a Cartier divisor D' on $\overline{\mathfrak{X}}$ as the closed subscheme $D' = H' \cap \overline{\mathfrak{X}}$ of $\overline{\mathfrak{X}}$.

Regard $D'_1 := D' \coprod \Delta(U)$ as a Cartier divisor on $\bar{\mathcal{X}}$. Clearly, one has $\mathcal{O}_{\bar{\mathcal{X}}}(D'_1) = L' \otimes L \otimes L''$. Observe that D' is an essentially k-smooth scheme finite and étale over U. Let s' and s'' be global sections of $L' \otimes L \otimes L''$ such that the vanishing locus of s' is the Cartier divisor D'_1 and the vanishing locus of s'' is the Cartier divisor D'_1 . Clearly $D'_1 \cap D''_1 = \emptyset$. Thus $f = [s' : s''] : \bar{\mathcal{X}} \to \mathbf{P}^1$ is a regular morphism of U-schemes. Set

$$\bar{\alpha} = (f, \bar{p}) : \bar{\mathfrak{X}} \to \mathbf{P}^1 \times U.$$

Clearly, $\bar{\alpha}$ is a finite surjective morphism. Set $\mathfrak{X}^0 = \bar{\alpha}^{-1}(\mathbf{A}^1 \times U)$ and

$$\alpha = \bar{\alpha}|_{\mathfrak{X}^0} : \mathfrak{X}^0 \to \mathbf{A}^1 \times U.$$

Clearly, α is a finite surjective morphism and \mathfrak{X}^0 is an open subscheme of \mathfrak{X} . Since α is a finite surjective morphism and \mathfrak{X}^0 , $\mathbf{A}^1 \times U$ are regular schemes the morphism α is flat by a theorem of Grothendieck. Since D'_1 is finite étale over U the morphism α is étale over $0 \times U$. So, we may choose a point $1 \in \mathbf{P}^1$ such that the α is étale over $1 \times U$ and $(\alpha)^{-1}(1 \times U) \cap \mathfrak{Z} = \emptyset$. If we set $D_0 = D'_1$, then $\alpha^{-1}(0 \times U) = \Delta(U) \coprod D_0$ and $D_0 \cap \mathfrak{Z} = \emptyset$. The Lemma is proven.

References

- [A] *M. Artin.* Comparaison avec la cohomologie classique: cas d'un préschéma lisse. Lect. Notes Math., vol. 305, Exp XI.
- [OP] *M. Ojanguren, I. Panin.* A purity theorem for the Witt group. Ann. Sci. Ecole Norm. Sup. (4) 32 (1999), no. 1, 71–86.
- [PR] *I.Panin, U.Rehmann.* A variant of a Theorem by Springer. Algebra i Analyz, vol.19 (2007), 117–125.
- [Pa] *I. Panin.* Rationally isotropic quadratic spaces are locally isotropic. Invent. math. 176, 397-403 (2009).
- [Pa] I. Panin, K. Pimenov. Rationally isotropic quadratic spaces are locally isotropic:II. Documenta Mathematica, Vol. Extra Volume: 5. Andrei A. Suslin's Sixtieth Birthday, 515–523, (2010).
- [P] D. Popescu. General Néron desingularization and approximation, Nagoya Math. Journal, 104 (1986), 85–115.
- [PaSV] I. Panin, A. Stavrova, N. Vavilov. Grothendieck—Serre conjecture I: Appendix, Preprint October, 2009, http://arxiv.org/abs/0910.5465.
- [PSV] I. Panin, A. Stavrova, N. Vavilov. On Grothendieck—Serre's conjecture concerning principal G-bundles over reductive group schemes I, Preprint (2009), http://www.math.uiuc.edu/K-theory/0929/.
- [Kn] *M. Knus.* Quadratic and hermitian forms over rings. Springer Verlag, 1991.