Rationally trivial quadratic spaces are locally trivial:III

I.Panin, ${ }^{*}$ K.Pimenov ${ }^{\dagger}$

25.12.2012

Abstract

It is proved the following. Let R be a regular semi-local domain containing a field such that all the residue fields are infinite. Let K be the fraction field of R. If a quadratic space $\left(R^{n}, q: R^{n} \rightarrow R\right)$ over R is isotropic over K, then there is a unimodular vector $v \in R^{n}$ such that $q(v)=0$. If $\operatorname{char}(R)=2$, then in the case of even n we assume that q is a non-singular space in the sense of Kn] and in the case of odd $n>2$ we assume that q is a semi-regular in the sense of $K n$.

1 Introduction

Let k be an infinite field,possibly $\operatorname{char}(k)=2$, and let X be a k-smooth irreducible affine scheme,let $x_{1}, x_{2}, \ldots, x_{s} \in X$ be closed points. Let P be a free $k[X]$-module of rank $n>0$. If n is odd, then let $(P, q: P \rightarrow k[X])$ be a semi-regular quadratic module over $k[X]$ in the sense of [Kn, Ch.IV, §3]. If n is even, then let $(P, q: P \rightarrow k[X])$ be a non-singular quadratic space in the sense of [Kn, Ch.I, (5.3.5))]. (In both cases it is equivalent of saying that the X-scheme $Q:=\{q=0\} \subset \mathbf{P}_{X}^{n-1}$ is smooth over $\left.X\right)$.

Let $p: Q \rightarrow X$ be the projection. For a nonzero element $g \in k[X]$ let $Q_{g}=p^{-1}\left(X_{g}\right)$. Let $U=\operatorname{Spec}\left(\mathcal{O}_{X,\left\{x_{1}, x_{2}, \ldots, x_{s}\right\}}\right)$. Set ${ }_{U} Q=U \times_{X} Q$. For a k-scheme D equipped with k-morphisms $U \leftarrow D$ and $D \rightarrow X_{g}$ set ${ }_{D} Q={ }_{U} Q \times{ }_{U} D$ and $Q_{D, g}=D \times_{X_{g}} Q_{g}$.
1.0.1 Proposition. If $n>1$, then there exists a finite surjective étale k-morphism $U \leftarrow$ D of odd degree, a morphism $D \rightarrow X_{g}$ and an isomorphism of the D-schemes ${ }_{D} Q \stackrel{\Phi}{\leftarrow} Q_{D, g}$.

Given this Proposition we may prove the following Theorem
1.0.2 Theorem (Main). Assume that $g \in k[X]$ is a non-zero element such that there is a section $s: X_{g} \rightarrow Q$ of the projection $Q_{g} \rightarrow X_{g}$. Then there is a section $s_{U}: U \rightarrow{ }_{U} Q$ of the projection ${ }_{U} Q \rightarrow U$.

[^0]Proof of Main Theorem. We will give a proof of the Theorem only in the local case and left to the reader the semi-local case. So, $s=1$ and we will write x for x_{1} and $\mathcal{O}_{X, x}$ for $\mathcal{O}_{X,\left\{x_{1}\right\}}$. If $g \in k[X]-m_{x}$, then there is nothing to prove. Now let $g \in m_{x}$ then by Proposition 1.0.1 there is a a finite surjective étale k-morphism $U \leftarrow D$ of odd degree, a morphism $D \rightarrow X_{g}$ and an isomorphism of the D-schemes ${ }_{D} Q \stackrel{\Phi}{\leftarrow} Q_{D, g}$.

The section s defines a section $s_{D}=(i d, s): D \rightarrow Q_{D, g}$ of the projection $Q_{D, g} \rightarrow D$. Further $\bar{\Phi} \circ s_{D}: D \rightarrow{ }_{D} Q$ is a section of the projection ${ }_{D} Q \rightarrow D$. Finally, if $p_{1}:{ }_{D} Q \rightarrow{ }_{U} Q$ is the projection, then $p_{1} \circ \bar{\Phi} \circ s_{D}: D \rightarrow{ }_{U} Q$ is a U-morphism of U-schemes. Recall that $U \leftarrow D$ is a a finite surjective étale k-morphism of odd degree and U is local with an infinite residue field. Whence by a variant of Springer's theorem proven in $[\mathrm{PR}]$ there is a section $s_{U}: U \rightarrow{ }_{U} Q$ of the projection ${ }_{U} Q \rightarrow U$. (If char $(\mathrm{k})=2$ the proof a variant of Springer's theorem given in [PR] works well with a very mild modification). The Theorem is proven.

The Main Theorem has the following corollaries
1.0.3 Corollary (Main1). Let $\mathcal{O}_{X,\left\{x_{1}, x_{2}, \ldots, x_{s}\right\}}$ be the semi-local ring as above and let $k(X)$ be the rational function field on X. Let P be a free $\mathcal{O}_{X,\left\{x_{1}, x_{2}, \ldots, x_{s}\right\}}-$ module of rank $n>1$ and $q: P \rightarrow \mathcal{O}_{X,\left\{x_{1}, x_{2}, \ldots, x_{s}\right\}}$ be a form over $\mathcal{O}_{X,\left\{x_{1}, x_{2}, \ldots, x_{s}\right\}}$ as above, that is the $\mathcal{O}_{X,\left\{x_{1}, x_{2}, \ldots, x_{s}\right\}^{-}}$ scheme $Q:=\{q=0\} \subset \mathbf{P}_{\mathcal{O}_{X, x}}^{n-1}$ is smooth over $\mathcal{O}_{X, x}$. If the equation $q=0$ has a non-trivial solution over $k(X)$, then it has a unimodular solution over $\mathcal{O}_{X,\left\{x_{1}, x_{2}, \ldots, x_{s}\right\}}$.
1.0.4 Corollary (Main2). Let R be a semi-local regular domain containing a field and R is such that all the residue fields are infinite. Let K be the fraction field of R. Let P be a free R-module of rank $n>1$ and $q: P \rightarrow R$ be a quadratic form over R such that the R-scheme $Q:=\{q=0\} \subset \mathbf{P}_{R}^{n-1}$ is smooth over R. If the equation $q=0$ has a non-trivial solution over K, then it has a unimodular solution over R.
1.0.5 Corollary (Main3). Let R be a semi-local regular domain containing a field and R is such that all the residue fields are infinite. Let K be the fraction field of R. Let P be a free R-module of even rank $n>0$ and $q: P \rightarrow R$ be a quadratic form over R such that the R-scheme $Q:=\{q=0\} \subset \mathbf{P}_{R}^{n-1}$ is smooth over R. Let $u \in R^{\times}$be a unit. If u is represented by q over K, then u is represented by q already over R.

If $1 / 2 \in R$, then the same holds for a quadratic space of an arbitrary rank.
Proof of Proposition 1.0.1. The following Lemma is a corollary from Lemma 2.2.1 and Proposition 3.1.7. from Kn
1.0.6 Lemma. For $n>1$ there exists an affine open subset X^{0} containing x and a Galois étale cover $\tilde{X}^{0} \xrightarrow{\pi} X^{0}$ such that the $k\left[X^{0}\right]$-module $P \otimes_{k[X]} k\left[X^{0}\right]$ coincides with $k\left[X^{0}\right]^{n}$ and $\pi^{*}(q)$ is proportional to the quadratic space $\perp_{i=1}^{m} T_{i} T_{i+m}$ in the case $n=2 m$ and is proportional to the semi-regular quadratic module $\perp_{i=1}^{m} T_{i} T_{i+m} \perp T_{n}^{2}$ in the case $n=2 m+1$.

By this Lemma we may and will assume that $P=k[X]^{n}$ and that we are given with a Galois étale cover $\pi: \tilde{X} \xrightarrow{\pi} X$ such that the quadratic space $\pi^{*}(q)$ is proportional to a split quadratic space. Let Γ be the Galois group of \tilde{X} over X. Let $\tilde{U}=\pi^{-1}(U) \subset \tilde{X}$.

Let $\overline{U \times X}:=(\tilde{U} \times \tilde{X}) / \Delta(\Gamma)$. Clearly, $U \times X=(\tilde{U} \times \tilde{X}) /(\Gamma \times \Gamma)$. Let $\rho: \overline{U \times X} \rightarrow$ $U \times X$ be the obvious map.

Let $p_{2}: U \times X \rightarrow X$ be projection to X and $p_{1}: U \times X \rightarrow U$ be the projection to U. The quadratic spaces $p_{1}^{*}(q)$ and $p_{2}^{*}(q)$ over $U \times X$ are not proportional in general. However the following Proposition holds (see Appendix, Lemma 2.0.8)
1.0.7 Proposition. The quadratic spaces $\rho^{*}\left(p_{2}^{*}(q)\right)$ and $\rho^{*}\left(p_{1}^{*}(q)\right)$ are proportional.

Further by [PSV, Prop. 3.3, Prop. 3.4] and [PaSV] we may find an open X^{\prime} in X containing x and an open affine $S \subset \mathbf{P}^{d-1}(\mathrm{~d}=\operatorname{dim}(\mathrm{X}))$ and a smooth morphism $f^{\prime}: X^{\prime} \rightarrow S$ making X^{\prime} into a smooth relative curve over S with the geometrically irreducible fibres. Moreover we may find f^{\prime} such that $\left.f^{\prime}\right|_{X^{\prime} \cap Z}: Z^{\prime}=X^{\prime} \cap Z \rightarrow S$ is finite, where Z is the vanishing locus of $g \in k[X]$. Moreover f^{\prime} can be written as $p r_{S} \circ \Pi^{\prime}=f^{\prime}$, where $\Pi^{\prime}: X^{\prime} \rightarrow \mathbf{A}^{1} \times S$ is a finite surjective morphism. Set $\tilde{X}^{\prime}=\pi^{-1}\left(X^{\prime}\right)$. Replacing notation we write X for X^{\prime}, \tilde{X} for \tilde{X}^{\prime}, Z for $Z^{\prime}, f: X \rightarrow S$ for $f^{\prime}: X^{\prime} \rightarrow S$, $\Pi: X \rightarrow \mathbf{A}^{1} \times S$ for $\Pi^{\prime}: X^{\prime} \rightarrow \mathbf{A}^{1} \times S$.

Let $\overline{U \times_{S} X}:=\left(\tilde{U} \times_{S} \tilde{X}\right) / \Delta(\Gamma)$. Clearly, $U \times_{S} X=\left(\tilde{U} \times_{S} \tilde{X}\right) /(\Gamma \times \Gamma)$. Let

$$
\rho_{S}: \overline{U \times_{S} X} \rightarrow U \times_{S} X
$$

be the obvious map.
Let $p_{X}: U \times_{S} X \rightarrow X$ be projection to X and $p_{U}: U \times_{S} X \rightarrow U$ be the projection to U. By Proposition 1.0.7 the quadratic spaces $\rho_{S}^{*}\left(p_{X}^{*}(q)\right)$ and $\rho_{S}^{*}\left(p_{U}^{*}(q)\right)$ are ...

Now the pull-back of Π be means of the morphism $U \hookrightarrow X \rightarrow S$ defines a finite surjective morphism $\Theta: U \times_{S} X \rightarrow \mathbf{A}^{1} \times U$. So, $\Theta \circ \rho_{S}: \overline{U \times S X} \rightarrow \mathbf{A}^{1} \times U$ is a finite surjective morphism of U-schemes. The U-scheme $\overline{U \times_{S} X}$ is smooth over U since $U \times_{S} X$ is smooth over U and ρ_{S} is étale. The subscheme $\Delta(\tilde{U}) / \Delta(\Gamma) \subset \overline{U \times_{S} X}$ projects isomorphically onto U. So, we are given with a section $\tilde{\Delta}$ of the morphism

$$
\overline{U \times_{S} X} \xrightarrow{\rho_{S}} U \times_{S} X \xrightarrow{p_{U}} U .
$$

The recollection from the latter paragraph shows that we are under the hypotheses of Lemma 3.0.9 from Appendix B for the relative U-curve $X:=\overline{U \times_{S} X}$ and its closed subset $\mathcal{Z}:=\rho_{S}^{-1}\left(U \times_{S} Z\right)$. (If to be more accurate, then one should take the connected component X^{c} of X containing $\tilde{\Delta}(U)$ and the closed subset $Z \cap X^{c}$ of $\left.X^{c}\right)$.

By Lemma 3.0 .9 there exists an open subscheme $X^{0} \hookrightarrow X$ and a finite surjective morphism $\alpha: X^{0} \rightarrow \mathbf{A}^{1} \times U$ such that α is étale over $0 \times U$ and $1 \times U$ and $\alpha^{-1}(0 \times U)=$ $\tilde{\Delta}(U) \amalg D_{0}$. Moreover if we define D_{1} as $\alpha^{-1}(1 \times U)$, then $D_{1} \cap Z=\emptyset$ and $D_{0} \cap Z=\emptyset$. One has $\left[D_{1}: U\right]=\left[D_{0}: U\right]+1$. Thus either $\left[D_{1}: U\right]$ is odd or $\left[D_{0}: U\right]$ is odd.

Assume $\left[D_{1}: U\right]$ is odd. Then the morphism $1 \times U \stackrel{\left.\alpha\right|_{D_{1}}}{\longleftrightarrow} D_{1}$, the morphism $D_{1} \xrightarrow{p_{X} \circ \rho_{S}}$ $X-Z$ and the isomorphism $\bar{\Phi}:=\left.\Phi\right|_{D_{1}}$ satisfy the conclusion of the Proposition 1.0.1 (here Φ is from the Proposition 1.0.7). The Proposition is proven.

2 Appendix A: Equating Lemma

Let k be a field, X be a k-smooth affine scheme, G be a reductive k-group, \mathcal{G} / X be a principle G-bundle over X. Let $\pi: \tilde{X} \rightarrow X$ be a finite étale Galois cover of X with a Galois group Γ and let $s: \tilde{X} \rightarrow \mathcal{G}$ be an X-scheme morphism (in other words \mathcal{G} splits over $\tilde{X})$. Let $\overline{X \times X}:=(\tilde{X} \times \tilde{X}) / \Delta(\Gamma)$. Clearly, $X \times X=(\tilde{X} \times \tilde{X}) /(\Gamma \times \Gamma)$. Let $\pi: \overline{X \times X} \rightarrow X \times X$ be the obvious map. Observe that the map $\tilde{X} \times \tilde{X} \rightarrow \overline{X \times X}$ is an étale Galois cover with the Galois group Γ.

Let $q_{i}: \tilde{X} \times \tilde{X} \rightarrow \tilde{X}$ be projection to the i-th factor and let $p_{i}: X \times X \rightarrow X$ be projection to the i-th factor. The principal G bundles $\mathcal{G}_{1}:=p_{1}^{*}(\mathcal{G})$ and $\mathcal{G}_{2}:=p_{2}^{*}(\mathcal{G})$ over $X \times X$ are not isomorphic in general. However the following Proposition holds
2.0.8 Lemma. The principal G-bundles $\pi^{*}\left(\mathcal{G}_{1}\right)$ and $\pi^{*}\left(\mathcal{G}_{2}\right)$ are isomorphic and moreover there is such an isomorphism $\Phi: \pi^{*}\left(\mathcal{G}_{1}\right) \rightarrow \pi^{*}\left(\mathcal{G}_{2}\right)$ that the restriction of Φ to the subscheme $X=\Delta(\tilde{X}) /(\Gamma) \subset \overline{X \times X}$ is the identity isomorphism.
Proof. The morphism $s: \tilde{X} \rightarrow \mathcal{G}$ gives rise to a 1-cocycle $a: \Gamma \rightarrow G(\tilde{X})$ defined as follows: given $\gamma \in \Gamma$ consider the composition $s \circ \gamma$ and set $a_{\gamma} \in G(\tilde{X})$ to be a unique element with $a_{\gamma} \cdot s=s \circ \gamma$ in $G(\tilde{X})$.

It's straight forward to check that the 1-cocycle corresponding to the principal G bundle $\pi^{*}\left(\mathcal{G}_{1}\right)$ and the morphism $\tilde{X} \times \tilde{X} \xrightarrow{q_{1}} \tilde{X} \xrightarrow{s} \mathcal{G}$ coincides with the one

$$
\Gamma \xrightarrow{a} G(\tilde{X}) \xrightarrow{q_{1}^{*}} G(\tilde{X} \times \tilde{X}) .
$$

Similarly the 1-cocycle corresponding to the principal G bundle $\pi^{*}\left(\mathcal{G}_{2}\right)$ and the morphism $\tilde{X} \times \tilde{X} \xrightarrow{q_{2}} \tilde{X} \xrightarrow{s} \mathcal{G}$ coincides with the one

$$
\Gamma \xrightarrow{a} G(\tilde{X}) \xrightarrow{q_{2}^{*}} G(\tilde{X} \times \tilde{X}) .
$$

Let $b \in G(\tilde{X} \times \tilde{X})$ be an element defined by the equality $b \cdot\left(s \circ q_{2}\right)=s \circ q_{1}$. To prove that the principal G bundles $\pi^{*}\left(\mathcal{G}_{1}\right)$ and $\pi^{*}\left(\mathcal{G}_{2}\right)$ are isomorphic it suffices to check that for every $\gamma \in \Gamma$ the following relation holds in $G(\tilde{X} \times \tilde{X})$

$$
\begin{equation*}
{ }^{\gamma} b \cdot q_{2}^{*}(a)(\gamma) \cdot b^{-1}=q_{1}^{*}(a)(\gamma) \tag{1}
\end{equation*}
$$

where $q_{i}^{*}(a)(\gamma):=q_{i}^{*} \circ a$ for $i=1,2$.
To prove the relation (11) it suffices to check the following one in $\mathcal{G}(\tilde{X} \times \tilde{X})$

$$
\begin{equation*}
\left({ }^{\gamma} b \cdot q_{2}^{*}(a)(\gamma) \cdot b^{-1}\right) \cdot\left(s \circ q_{1}\right)=q_{1}^{*}(a)(\gamma) \cdot\left(s \circ q_{1}\right) . \tag{2}
\end{equation*}
$$

One has the following chain of relations

$$
\begin{gathered}
\left({ }^{\gamma} b \cdot q_{2}^{*}(a)(\gamma) \cdot b^{-1}\right) \cdot\left(s \circ q_{1}\right)=\left({ }^{\gamma} b \cdot q_{2}^{*}(a)(\gamma)\right) \cdot\left(s \circ q_{2}\right)={ }^{\gamma} b \cdot{ }^{\gamma}\left(s \circ q_{2}\right)= \\
={ }^{\gamma}\left(s \circ q_{1}\right)=s \circ q_{1} \circ(\gamma \times \gamma)
\end{gathered}
$$

The first one follows from the definition of the element b, the second one follows from the commutativity of the diagram

the third one follows from the commutativity of the diagram

Thus $\left({ }^{\gamma} b \cdot q_{2}^{*}(a)(\gamma) \cdot b^{-1}\right) \cdot\left(s \circ q_{1}\right)=s \circ q_{1} \circ(\gamma \times \gamma)$. The right hand side of the relation (2) is equal to $s \circ q_{1} \circ(\gamma \times \gamma)$ as well, as follows from the commutativity of the diagram

So, the relation (2) holds. Whence the relation (11) holds. Whence the principal G bundles $\pi^{*}\left(\mathcal{G}_{1}\right)$ and $\pi^{*}\left(\mathcal{G}_{2}\right)$ are isomorphic.

The composite $\tilde{X} \xrightarrow{\Delta} \tilde{X} \times \tilde{X} \xrightarrow{q_{2}} \tilde{X} \xrightarrow{s} \mathcal{G}$ equals s and equals the composite $s \circ q_{1} \circ$ Δ. Whence $\Delta^{*}(b)=1 \in G(\tilde{X})$. This shows that the restriction to $X=\Delta(X) / \Delta(\Gamma)$ of the isomorphism $\pi^{*}\left(\mathcal{G}_{1}\right)$ and $\pi^{*}\left(\mathcal{G}_{2}\right)$ corresponding to the element b is the identity isomorphism. The Lemma is proved.

3 Appendix B: a variant of geometric lemma

Let k be an infinite field, Y be a k-smooth algebraic variety, $y \in Y$ be a point, $\mathcal{O}=\mathcal{O}_{Y, y}$ be the local ring, $U=\operatorname{Spec}(\mathcal{O})$. Let X / U be a U-smooth relative curve with geometrically
connected fibres equipped with a finite surjective morphism $\pi: X \rightarrow \mathbf{A}^{1} \times U$ and equipped with a section $\Delta: U \rightarrow X$ of the projection $p: X \rightarrow U$. Let $Z \subset X$ be a closed subset finite over U. The following Lemma is a variant of Lemma 5.1 from [OP].
3.0.9 Lemma. There exists an open subscheme $X^{0} \hookrightarrow X$ and a finite surjective morphism $\alpha: X^{0} \rightarrow \mathbf{A}^{1} \times U$ such that α is étale over $0 \times U$ and $1 \times U$ and $\alpha^{-1}(0 \times U)=\Delta(U) \coprod D_{0}$. Moreover if we define D_{1} as $\alpha^{-1}(1 \times U)$, then $D_{1} \cap \mathcal{Z}=\emptyset$ and $D_{0} \cap z=\emptyset$.
Proof. Let \bar{X} be the normalization of the scheme $\mathbf{P}^{1} \times U$ in the function field $k(X)$ of X. Let $\bar{\pi}: \bar{X} \rightarrow \mathbf{P}^{1} \times U$ be the morphism. Let $X_{\infty}=\pi^{-1}(\infty \times U)$ be the set theoretic preimage of $\infty \times U$. Let $\bar{p}: \bar{X} \rightarrow U$ be the structure map. Let $u \in U$ be the closed point and $\bar{X}_{u}=\bar{X} \times_{U} u$.

Let, $L^{\prime}=\bar{\pi}^{*}\left(\mathcal{O}_{\mathbf{P}^{1} \times U}(1)\right)$, $L^{\prime \prime}=\mathcal{O}_{\bar{X}}(\Delta(U))$. Let $D_{\infty}=\left(\pi^{*}\right)(\infty \times U)$ be the pull-back of the Cartier divisor $\infty \times U \subset \mathbf{P}^{1} \times U$. Choose and fix a closed embedding $i: \bar{X} \hookrightarrow \mathbf{P}^{n} \times U$ of U-schemes. Set $L=i^{*}\left(\mathcal{O}_{\mathbf{P}^{n} \times U}(1)\right)$.

The sheaf L is very ample. Thus the sheaf $L^{\prime \prime} \otimes L$ is very amply as well. So, there exists a closed embedding $i^{\prime \prime}: \bar{X} \hookrightarrow \mathbf{P}^{n^{\prime \prime}} \times U$ of U-schemes such that $L^{\prime \prime} \otimes L=\left(i^{\prime \prime}\right)^{*}\left(\mathcal{O}_{\mathbf{P}^{n^{\prime \prime}} \times U}(1)\right)$. Using Bertini theorem choose a hyperplane $H^{\prime \prime} \subset \mathbf{P}^{n^{\prime \prime}} \times U$ such that $\left(a^{\prime \prime}\right) H^{\prime \prime} \cap \Delta(U)=\emptyset, H^{\prime \prime} \cap Z=\emptyset, H^{\prime \prime} \cap D_{\infty}=\emptyset$.
Define a Cartier divisor $D^{\prime \prime}$ on \bar{X} as the the closed subscheme $H^{\prime \prime} \cap \bar{X}$ of \bar{X}.
Regard $D_{1}^{\prime \prime}:=D^{\prime \prime} \coprod D_{\infty}$ as a Cartier divisor on \bar{X}. Clearly, one has $\mathcal{O}_{\bar{x}}\left(D_{1}^{\prime \prime}\right)=L^{\prime \prime} \otimes L \otimes L^{\prime}$.
The sheaf L is very ample. Thus the sheaf $L^{\prime} \otimes L$ is very ample as well. So, there exists a closed embedding $i^{\prime}: \bar{X} \hookrightarrow \mathbf{P}^{n^{\prime}} \times U$ of U-schemes such that $L^{\prime} \otimes L=\left(i^{\prime}\right)^{*}\left(\mathcal{O}_{\mathbf{P}^{n^{\prime} \times U}}(1)\right)$. Using Bertini theorem choose a hyperplane $H^{\prime} \subset \mathbf{P}^{n^{\prime}} \times U$ such that
$\left(a^{\prime}\right) H^{\prime} \cap \Delta(U)=\emptyset, H^{\prime} \cap \mathcal{Z}=\emptyset, H^{\prime} \cap D_{1}^{\prime \prime}=\emptyset$;
(b^{\prime}) the scheme theoretic intersection $H^{\prime} \cap \bar{X}_{u}$ is a $k(u)$-smooth scheme.
Define a Cartier divisor D^{\prime} on \bar{X} as the closed subscheme $D^{\prime}=H^{\prime} \cap \bar{X}$ of \bar{X}.
Regard $D_{1}^{\prime}:=D^{\prime} \coprod \Delta(U)$ as a Cartier divisor on \bar{X}. Clearly, one has $\mathcal{O}_{\bar{x}}\left(D_{1}^{\prime}\right)=L^{\prime} \otimes L \otimes L^{\prime \prime}$.
Observe that D^{\prime} is an essentially k-smooth scheme finite and étale over U. Let s^{\prime} and $s^{\prime \prime}$ be global sections of $L^{\prime} \otimes L \otimes L^{\prime \prime}$ such that the vanishing locus of s^{\prime} is the Cartier divisor D_{1}^{\prime} and the vanishing locus of $s^{\prime \prime}$ is the Cartier divisor $D_{1}^{\prime \prime}$. Clearly $D_{1}^{\prime} \cap D_{1}^{\prime \prime}=\emptyset$. Thus $f=\left[s^{\prime}: s^{\prime \prime}\right]: \bar{X} \rightarrow \mathbf{P}^{1}$ is a regular morphism of U-schemes. Set

$$
\bar{\alpha}=(f, \bar{p}): \bar{X} \rightarrow \mathbf{P}^{1} \times U .
$$

Clearly, $\bar{\alpha}$ is a finite surjective morphism. Set $X^{0}=\bar{\alpha}^{-1}\left(\mathbf{A}^{1} \times U\right)$ and

$$
\alpha=\left.\bar{\alpha}\right|_{x_{0}}: X^{0} \rightarrow \mathbf{A}^{1} \times U .
$$

Clearly, α is a finite surjective morphism and X^{0} is an open subscheme of X. Since α is a finite surjective morphism and $X^{0}, \mathbf{A}^{1} \times U$ are regular schemes the morphism α is flat by a theorem of Grothendieck. Since D_{1}^{\prime} is finite étale over U the morphism α is étale over $0 \times U$. So, we may choose a point $1 \in \mathbf{P}^{1}$ such that the α is étale over $1 \times U$ and $(\alpha)^{-1}(1 \times U) \cap Z=\emptyset$. If we set $D_{0}=D_{1}^{\prime}$, then $\alpha^{-1}(0 \times U)=\Delta(U) \coprod D_{0}$ and $D_{0} \cap z=\emptyset$. The Lemma is proven.

References

[A] M. Artin. Comparaison avec la cohomologie classique: cas d'un préschéma lisse. Lect. Notes Math., vol. 305, Exp XI.
[OP] M. Ojanguren, I. Panin. A purity theorem for the Witt group. Ann. Sci. Ecole Norm. Sup. (4) 32 (1999), no. 1, 71-86.
[PR] I.Panin, U.Rehmann. A variant of a Theorem by Springer. Algebra i Analyz, vol. 19 (2007), 117-125.
[Pa] I. Panin. Rationally isotropic quadratic spaces are locally isotropic. Invent. math. 176, 397-403 (2009).
[Pa] I. Panin, K. Pimenov. Rationally isotropic quadratic spaces are locally isotropic:II. Documenta Mathematica, Vol. Extra Volume: 5. Andrei A. Suslin's Sixtieth Birthday , 515-523, (2010).
[P] D. Popescu. General Néron desingularization and approximation, Nagoya Math. Journal, 104 (1986), 85-115.
[PaSV] I. Panin, A. Stavrova, N. Vavilov. Grothendieck-Serre conjecture I: Appendix, Preprint October, 2009, http://arxiv.org/abs/0910.5465.
[PSV] I. Panin, A. Stavrova, N. Vavilov. On Grothendieck-Serre's conjecture concerning principal G-bundles over reductive group schemes I, Preprint (2009), http://www.math.uiuc.edu/K-theory/0929/.
[Kn] M. Knus. Quadratic and hermitian forms over rings. Springer Verlag, 1991.

[^0]: *The research of the first author is partially supported by RFBR-grant 10-01-00551-a
 ${ }^{\dagger}$ The research of the second author is partially supported by RFBR grant 12-01-33057 "Motivic homotopic cohomology theories on algebraic varieties"

