
DEGREE THREE COHOMOLOGICAL INVARIANTS OF

SEMISIMPLE GROUPS

A. MERKURJEV

Abstract. We study the degree 3 cohomological invariants with coeffi-
cients in Q/Z(2) of a semisimple group over an arbitrary field. A list of all
invariants of adjoint groups of inner type is given.

1. Introduction

1a. Cohomological invariants. Let G be a linear algebraic group over a
field F (of arbitrary characteristic). The notion of an invariant of G was
defined in [8] as follows. Consider functor

H1(−, G) : FieldsF −→ Sets ,

where FieldsF is the category of field extensions of F , taking a field K to the
set H1(K,G) of isomorphism classes of G-torsors over SpecK. Let

H : FieldsF −→ Abelian Groups

be another functor. An H-invariant of G is then a morphism of functors

I : H1(−, G) −→ H.

We denote the group of H-invariants of G by Inv(G,H).
An invariant I ∈ Inv(G,H) is called normalized if I(X) = 0 for the trivial

G-torsor X . The normalized invariants form a subgroup Inv(G,H)norm of
Inv(G,H) and there is a natural isomorphism

Inv(G,H) ≃ H(F )⊕ Inv(G,H)norm.

Of particular interest to us is the functor H which takes a field K/F to
the Galois cohomology group Hn

(
K,Q/Z(j)

)
, where the coefficients Q/Z(j),

j ≥ 0, are defined as the direct sum of the colimit over n of the Galois modules
µ⊗j
m , where µm is the Galois module of mth roots of unity, and a p-component

in the case p = char(F ) > 0 defined via logarithmic de Rham-Witt differentials
(see [13, I.5.7], [14]).

We write Invn
(
G,Q/Z(j)

)
for the group of cohomological invariants of G of

degree n with coefficients in Q/Z(j).
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2 A. MERKURJEV

If G is connected, then Inv1
(
G,Q/Z(j)

)
norm

= 0 (see [15, Proposition
31.15]). The degree 2 cohomological invariants with coefficients in Q/Z(1)
(equivalently, the invariants with values in the Brauer group Br) of a smooth
connected group were determined in [1]:

Inv2(G,Br)norm = Inv2
(
G,Q/Z(1)

)
norm

≃ Pic(G).

In particular, for a semisimple group G we have

Inv2
(
G,Q/Z(1)

)
norm

≃ Ĉ(F ),

where Ĉ(F ) is the group of characters defined over F of the kernel C of the

universal cover G̃ → G by [21, Prop. 6.10].
The group of degree 3 invariants Inv3

(
G,Q/Z(2)

)
norm

was determined by
Rost in the case when G is simply connected quasi-simple. This group is finite
cyclic with a canonical generator called the Rost invariant (see [8, Part II]).

In the present paper, based on the results in [18], we extend Rost’s result to
all semisimple groups.

Theorem. Let G be a semisimple group over a field F . Then there is an exact
sequence

0 −→ CH2(BG)tors −→ H1
(
F, Ĉ(1)

) σ
−→

Inv3
(
G,Q/Z(2)

)
norm

−→ Q(G)/Dec(G) −→ H2
(
F, Ĉ(1)

)
.

Here BG is the classifying space of G and Q(G)/Dec(G) is the group defined
in Section 3c in terms of the combinatorial data associated with G (the root
system, weight and root lattices).

If G is simply connected, the character group Ĉ is trivial and we obtain
Rost’s theorem mentioned above.

The main result has clearer form for adjoint groups G of inner type. In

this case every character of C is defined over F , i.e., Ĉ = Ĉ(F ) We show
that the group Inv3

(
G,Q/Z(2)

)
dec

:= Im(σ) of decomposable invariants (given
by a cup-product with the degree 2 invariants), is canonically isomorphic to

Ĉ ⊗ F×. The factor group Inv3
(
G,Q/Z(2)

)
ind

of Inv3
(
G,Q/Z(2)

)
norm

by the
decomposable invariants is nontrivial if and only if G has a simple component
of type Cn or Dn (when n is divisible by 4), E6 or E7. If G is simple, the group
of indecomposable invariants is cyclic with a canonical generator restricting to
a multiple of the Rost invariant.

We will use the following notation in the paper.
F is the base field,
Fsep a separable closure of F ,
ΓF = Gal(Fsep/F ).
For a complex A of étale sheaves on a variety X , we write H∗(X,A) for the

étale (hyper-)cohomology group of X with values in A.

Acknowledgements: The authors would like to thank Vladimir Chernousov,
Skip Garibaldi, Jean-Pierre Tignol and Burt Totaro for helpful discussions.
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2. Preliminaries

2a. Cohomology of BG. Let G be a connected algebraic group over a field
F and let V be a generically free representation of G such that there is an open
G-invariant subscheme U ⊂ V and a G-torsor U → U/G such that U(F ) 6= ∅
(see [26, Remark 1.4]).

Let H be a (contravariant) functor from the category of smooth varieties
over F to the category of abelian groups. Very often the value H(U/G) is
independent (up to canonical isomorphism) of the choice of the representation
V provided the codimension of V \ U in V is sufficiently large. This is the
case, for example, if H = CHi, the Chow group functor of cycles of codimen-
sion i (see [26] or [5]). We write H(BG) for H(U/G) and view U/G as an
“approximation” for the “classifying space” BG of G.

We have the two maps p∗i : H(U/G) → H
(
(U × U

)
/G

)
, i = 1, 2, induced

by the projections pi : (U × U)/G → U/G. An element h ∈ H(U/G) is called
balanced if p∗1(h) = p∗2(h). We write H(U/G)bal for the subgroup of all balanced
elements in H(U/G).

Write Hn
(
Q/Z(j)

)
for the Zariski sheaf on a smooth scheme X associated

to the presheaf S 7→ Hn
(
S,Q/Z(j)

)
.

Let u ∈ H0
Zar

(
U/G,Hn(Q/Z(j))

)
bal
. Define an invariant Iu ∈ Invn(G,Q/Z(j))

as follows (see [1]). Let X be a G-torsor over a field extension K/F . Choose
a point x ∈ (U/G)(K) such that X is isomorphic to the pull-back via x of the
versal G-torsor U → U/G and set Iu(X) = x∗(u), where

x∗ : H0
Zar

(
U/G,Hn(Q/Z(j))

)
−→ H0

Zar

(
SpecK,Hn(Q/Z(j))

)
= Hn

(
K,Q/Z(j)

)

is the pull-back homomorphism given by x : Spec(K) → U/G. The fact that
the element u is balanced ensures that x∗(u) does not depend on the choice of
the point x (see [1, Lemma 3.2]).

WriteH
0

Zar

(
U/G,Hn(Q/Z(j))

)
for the factor group ofH0

Zar

(
U/G,Hn(Q/Z(j))

)

by the natural image of Hn
(
F,Q/Z(j)

)
.

Proposition 2.1.
(
[1, Corollary 3.4]

)
The assignment u 7→ Iu yields an iso-

morphism

H
0

Zar

(
U/G,Hn(Q/Z(j))

)
bal

∼
−→ Invn

(
G,Q/Z(j)

)
norm

.

2b. The map αG. Let G be a semisimple group over F and let C be the kernel

of the universal cover G̃ → G. For a character χ ∈ Ĉ(F ) over F consider the
push-out diagram

1 // C //

χ

��

G̃ //

��

G // 1

1 // Gm
// G′ // G // 1.

We define a map

αG : H1(F,G) −→ Hom
(
Ĉ(F ),Br(F )

)
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by αG(ξ)(χ) = δ(ξ), where δ : H1(F,G) → H2(F,Gm) = Br(F ) is the con-
necting map for the bottom row of the diagram.

Example 2.2. Let G = PGLn. Then Ĉ = Z/nZ and the map αG takes the
class [A] ∈ H1(F,PGLn) of a central simple algebra A of degree n to the
homomorphism i+ nZ 7→ i[A] ∈ Br(F ).

Let C ′ be the center of G. Recall that there is the Tits homomorphism (see
[15, Theorem 27.7])

βG : Ĉ ′(F ) −→ Br(F ).

A central simple algebra over F representing the class βG for some χ ∈ Ĉ ′(F )
is called a Tits algebra of G over F .

In the following proposition we relate the maps αG and βG̃.

Proposition 2.3. Let G be a semisimple group, X a G-torsor over F and

χ ∈ Ĉ ′(F ), where C ′ is the center of the universal cover G̃ of G. Let XG :=

AutG(X) be the twist of G by X and XG̃ the universal cover of XG. Then

αG(X)(χ|C) = βXG̃(χ)− βG̃(χ),

where C ⊂ C ′ is the kernel of G̃ → G.

Proof. By [15, §31], there exist a unique (up to isomorphism) G-torsor Y
such that the twist YG = AutG(Y ) is quasi-split and αG(Y )(χ|C) = −βG̃(χ).
If XY is the twist of Y by X , then AutXG(

XY ) ≃ AutG(Y ) is quasi-split.
Hence αXG(

XY )(χ|C) = −βXG̃(χ). It follows from [15, Proposition 28.12] that
αXG(

XY ) + αG(X) = αG(Y ). �

2c. Admissible maps. Let G be a split simply connected group over F and
Π a set of simple roots of G.

Proposition 2.4. (cf. [9, Proposition 5.5]) Let G be a split simply connected
group over F , C the center of G. Let Π′ be a subset of Π and let G′ be the
subgroup of G generated by the root subgroups of all roots in Π′. Then G′ is
a simply connected group and C ⊂ G′ if and only if every fundamental weight
wα for α ∈ Π \ Π′ is contained in the root lattice Λr of G.

Proof. The group G′ is simply connected by [22, 5.4b]. The images of the
co-roots α∗ : Gm → T for α ∈ Π′ generate the maximal torus T ′ = G′ ∩ T of
G′. Therefore, the character group Ω of the torus T/T ′ coincides with

{λ ∈ T̂ such that 〈λ, α∗〉 = 0 for all α ∈ Π′}

and hence Ω is generated by the fundamental weights wβ for all β ∈ Π \ Π′.

We have T̂ ′ = Λw/Ω and Ĉ = Λw/Λr. Therefore, C ⊂ G′ ∩ T = T ′ if and only
if Ω ⊂ Λr. �

A homomorphism a : Ĉ(F ) → Br(F ) is called admissible if ind a(χ) divides

ord(χ) for every χ ∈ Ĉ(F ).



DEGREE THREE COHOMOLOGICAL INVARIANTS OF SEMISIMPLE GROUPS 5

Example 2.5. Suppose G is the product of split adjoint groups of type A. By
Example 2.2, every admissible map belongs to the image of αG.

Proposition 2.6. Let G be a split adjoint group over F . Then every admissible

map in Hom
(
Ĉ(F ),Br(F )

)
belongs to the image of αG.

Proof. Let Π′ be the subset of Π of all roots α such that wα ∈ Λr and let G′ be

the subgroup of G̃ generated by the root subgroups for all roots in Π′. Then
by Proposition 2.4, G′ is a simply connected group such that C ⊂ G′. Let C ′

be the center of G′ and set C ′′ := C ′/C. By Lemma 2.7 below, the top row in
the commutative diagram

H1(F,G′/C) //

αG′/C

��

H1(F,G′/C ′) //

αG′/C′

��

Hom
(
Ĉ ′′(F ),Br(F )

)

Hom
(
Ĉ(F ),Br(F )

)
�

�

// Hom
(
Ĉ ′(F ),Br(F )

)
// Hom

(
Ĉ ′′(F ),Br(F )

)

is exact.
Let a ∈ Hom

(
Ĉ(F ),Br(F )

)
be an admissible map. Then the image a′ of a in

Hom
(
Ĉ ′(F ),Br(F )

)
is also admissible. Inspection shows that every component

of the Dynkin diagram of G′ is of type A. (A root α belongs to Π′ if and only if
the ith row of the inverse C−1 of the Cartan matrix is integer, see Section 4b.)
By Example 2.5, a′ belongs to the image of αG′/C′ . A diagram chase shows
that a belongs to the image of αG′/C . The map αG′/C is the composition of
H1(F,G′/C) → H1(F,G) and αG, hence a belongs to the image of αG. �

Lemma 2.7. Let G1 → G2 be a central isogeny of split semisimple groups with
the kernel C1. Then the sequence

H1(F,G1) −→ H1(F,G2) −→ Hom
(
Ĉ1(F ),Br(F )

)

with the second map the composition of αG2 and the restriction map on C1, is
exact.

Proof. The group C1 is diagonalizable as G1 is split. Let T be a split torus
containing C1 as a subgroup. The push-out diagram

1 // C1
//

χ

��

G1
//

��

G2
// 1

1 // T // G3
// G2

// 1

yields a commutative diagram

H1(F,G1) //

��

H1(F,G2) // Hom
(
Ĉ1(F ),Br(F )

)

χ∗

��

H1(F,G3) // H1(F,G2) // Hom
(
T̂ (F ),Br(F )

)
.
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The bottom row is exact as Hom
(
T̂ (F ),Br(F )

)
= H2(F, T ). The left vertical

arrow is surjective since H1(F,Coker(χ)) = 1 by Hilbert’s Theorem 90. The
result follows by diagram chase. �

2d. The morphism βf . Let G be a semisimple group, C the kernel of the

universal cover G̃ → G and f : X → SpecF a G-torsor. Write Zf (1) for
the cone of the natural morphism ZF (1) → Rf∗ZX(1) of complexes of étale
sheaves over SpecF , where Z(1) = Gm[−1]. The composition (see [18, §4])

βf : Ĉ ≃ τ≤2Zf (1)[2] −→ Zf (1)[2] −→ ZF (1)[3]

yields a homomorphism

β∗
f : Ĉ(F ) −→ H3

(
F,ZF (1)

)
= Br(F ).

In the following proposition we relate the maps β∗
f and αG.

Proposition 2.8. For a G-torsor f : X → SpecF , we have β∗
f = αG(X).

Proof. By [18, Example 6.12], the map β∗
f coincides with the connecting ho-

momorphism for the exact sequence

(2.1) 1 −→ F×
sep −→ Fsep(X)× −→ Div(Xsep) −→ Ĉsep −→ 0,

where Div is the divisor group (recall that Ĉsep = Pic(Xsep)).
Consider first the case G = PGLn and X = Isom(B,Mn) is the variety of

isomorphisms between a central simple algebra B of degree n and the matrix

algebra Mn over F . We have C = µn and Ĉ = Z/nZ. The exact sequence
(2.1) for the Severi-Brauer variety S of B in place of X gives the connecting
homomorphism Z → Br(F ) that takes 1 to the class [B] by [12, Theorem
5.4.10]. A natural map between the two exact sequences induced by the natural
morphism X → S and Example 2.2 yield

(2.2) β∗
f(1̄) = [B] = αPGLn(X)(1̄).

Suppose now that G = PGL1(A) for a central simple algebra A of degree n.
Consider the PGLn-torsor Y = Isom(A,Mn). Then G is the twist of PGLn

by Y . The G-torsor Z = Isom(B,A) is the twist of X by Y . It follows from
[15, Proposition 28.12] that

(2.3) αG(Z)(1̄) = αPGLn(X)(1̄)− αPGLn(Y )(1̄) = [B]− [A].

The group homomorphism PGL1(B)×PGL1(A
op) → PGL1(B ⊗ Aop) takes

the torsor Z × Isom(Aop, Aop) to V := Isom(B ⊗ Aop, A ⊗ Aop). Let g and h
be the structure morphisms for Z and V , respectively. It follows from (2.2)
applied to β∗

h and (2.3) that

(2.4) β∗
g (1̄) = β∗

h(1̄) = [B]− [A] = αG(Z)(1̄).

Now consider the general case. By [25, Théorème 3.3], for every χ ∈ Ĉ(F ),
there is a central simple algebra A (of degree n) over F and a commutative
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diagram

1 // C //

χ

��

G̃ //

��

G //

��

1

1 // µn
// SL1(A) // PGL1(A) // 1.

A G-torsor f : X → SpecF yields a PGL1(A)-torsor, say k : W → SpecF .
We have by (2.4),

β∗
f(χ) = β∗

k(1̄) = αPGL1(A)(W )(1̄) = αG(X)(χ). �

3. The group Inv3
(
G,Q/Z(2)

)

In this section we determine the group Inv3
(
G,Q/Z(2)

)
of degree 3 coho-

mological invariants of a semisimple group G.
Recall first a construction of degree two cohomological invariants of G with

coefficients in Q/Z(1), or, equivalently, the invariants with values in the Brauer

group. Every character χ ∈ Ĉ(F ) yields an invariant Iχ of G of degree 2 with
coefficients in Q/Z(1) defined by

Iχ(X) = αG(X)(χK) ∈ Br(K).

By [1, Theorem 2.4], the assignment χ 7→ Iχ yields an isomorphism

Ĉ(F )
∼

−→ Inv2
(
G,Q/Z(1)

)
norm

.

3a. Representation ring. (See [25].) Write R(G) for the representation ring
of G, i.e., R(G) is the Grothendieck group of the category of finite dimensional
representations of G. As an abelian group R(G) is free with basis the isomor-
phism classes of irreducible representations.

Consider the weight lattice Λ of G (the character group of a maximal split
torus over Fsep) as a ΓF -lattice with respect to the ∗-action (see [24]). Let
Γ′ be the (finite) factor group of ΓF acting faithfully on Λ. Write ∆ for the
semidirect product of the Weyl group W of G and Γ′ with respect to the
natural action of Γ′ on W . The group ∆ acts naturally on Λ.

Assigning to a representation of G the formal sum of its weights, we get an
injective homomorphism

ch : R(G) −→ Z[Λ]∆.

For any λ ∈ Λ write Aλ for the corresponding Tits algebra (over the field of
definition of λ) and ∆(λ) for the sum

∑
eλ

′

in Z[Λ]∆, where λ′ runs over the
∆-orbit of λ (we employ the exponential notation for Z[Λ]). By [8, Part II,
Theorem 10.11], the image of R(G) in Z[Λ]∆ is generated by ind(Aλ) · ∆(λ)
over all λ ∈ Λ.

In particular, if G is quasi-split, all Tits algebras are trivial and hence ch is
an isomorphism.
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Example 3.1. Consider the variety X of maximal tori in G and the closed
subscheme T ⊂ G×X of all pairs (g, T ) with g ∈ T . The generic fiber of the
projection T → X is a maximal torus in GF (X ), it is called the generic maximal
torus Tgen of G. By [27, Theorem 1], if G is split, the decomposition group of
Tgen coincides with the Weyl group W . It follows that if G is quasi-split, then
∆ is the decomposition group of Tgen. Moreover, ch is an isomorphism, hence
the restriction homomorphism R(G) → R(Tgen) = Z[Λ]∆ is an isomorphism
for a quasi-split G.

3b. Root systems and invariant quadratic forms. Let {α1, α2 . . . αn}
be a set of simple roots of an irreducible root system in a vector space V ,
{w1, w2, . . . , wn} the corresponding fundamental weights generating the weight
lattice Λw and W the Weyl group.

Consider the n-columns α := (α1, α2, . . . , αn)
t and w := (w1, w2, . . . , wn)

t.
Then α = Cw, where C = (cij) is the Cartan matrix (see [2, Chapitre VI]).
There is a (unique) W -invariant bilinear form on the dual space V ∗ such that
the length of a short co-root is equal to 1. Let D := diag(d1, d2, . . . , dn) be the
diagonal matrix with di the length of the ith co-root. Then DC is a symmetric
even integer matrix (i.e., the diagonal terms are even).

Note that if A is a symmetric n×n matrix over Q, then 1
2
wtAw is contained

in Sym2(Λw) if and only if the matrix A is even integer.
Consider the integer quadratic form

q :=
1

2
wtDCw ∈ Sym2(Λw)

on Λ∗
r, where Λr is the root lattice. Recall that the Weyl groupW acts naturally

on Λw.

Lemma 3.2. The quadratic form q is W -invariant.

Proof. Let si be the reflection with respect to αi. It suffices to prove that
si(q) = q. We have si(w) = w − αiei. Hence

si(q) =
1

2
(w − αiei)

tDC(w − αiei)

= q − αie
t
iD(Cw −

1

2
αiCei)

= q − αidi(e
t
iα−

1

2
αie

t
iCei)

= q − αidi(αi −
1

2
αicii) = q

as cii = 2. �

If α∗
i is a short co-root, then q(α∗

i ) = di = 1 since 〈wj, α
∗
i 〉 = δji. It follows

that q is a (canonical) generator of the cyclic group Sym2(Λw)
W .

Example 3.3. For the root system of type An−1, n ≥ 2, we have Λw = Zn/Ze,
where e = e1 + e2 + · · · + en. The root lattice Λr is generated by the simple
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roots ē1− ē2, ē2− ē3, . . . , ēn−1− ēn. The Weyl group W is the symmetric group
Sn acting naturally on Λw. The generator of Sym2(Λw)

W is the form

q = −
∑

i<j

x̄ix̄j =
1

2

n∑

i=1

x̄2
i .

The group Sym2(Λr)
W = Sym2(Λr) ∩ Sym2(Λw)

W is also cyclic with the
canonical generator a positive multiple of q.

Proposition 3.4. Let m be the smallest positive integer such that the matrix
mDC−1 is even integer. Then mq is a generator of Sym2(Λr)

W .

Proof. Rewrite q in the form q = 1
2
(C−1α)tDC(C−1α) = 1

2
αtDC−1α. The

multiple mq is contained in Sym2(Λr) if and only if the matrix mDC−1 is even
integer. �

3c. The groups Dec(G) ⊂ Q(G). Let A be a lattice. Consider the abstract
total Chern class homomorphism

c• : Z[A] −→ Sym•(A)[[t]]×

defined by c•(e
a) = 1 + at. We define the abstract Chern class maps

ci : Z[A] −→ Symi(A), i ≥ 0,

by c•(x) =
∑

i≥0 ci(x)t
i. Clearly, c0(x) = 1,

c1
(∑

i

eai
)
=

∑

i

ai, c2
(∑

i

eai
)
=

∑

i<j

aiaj ,

c1 is a homomorphism and

c2(x+ y) = c2(x) + c1(x)c1(y) + c2(y)

for all x, y ∈ Z[A].
If a group W acts on A, then all the ci are W -equivariant.
Suppose that AW = 0. Then c1 is zero on Z[A]W and c2 yields a group

homomorphism

(3.1) c2 : Z[A]
W → Sym2(A)W .

We write Dec(A) for the image of this homomorphism. The group Dec(A) is
generated by the decomposable elements

∑
i<j aiaj , where {a1, a2, . . . .an} is a

W -invariant subset of A. We also have

(3.2) c2(xy) = rank(x)c2(y) + rank(y)c2(x)

for all x, y ∈ Z[A]W , where rank : Z[A] → Z is the map ea 7→ 1. If S ⊂ A is a
finite W -invariant subset, then since

∑
x∈S x ∈ AW = 0, we have

(3.3) c2
(∑

a∈S

ea
)
= −

1

2

∑

a∈S

a2.
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Let G be a semisimple group over F . Recall that the weight lattice Λ is a ∆-
module (see Section (3a)). Note that ΛW = 0, so we have the homomorphism
of ΓF -modules (3.1) with A = Λ.

Set

Q(G) := Sym2(Λ)∆ =
(
Sym2(Λ)W

)ΓF .

and write Dec(G) for the image of the composition

(3.4) τ : R(G)
ch
−→ Z[Λ]∆

c2−→ Sym2(Λ)∆ = Q(G).

Example 3.5. The map τ : R(SLn) → Q(SLn) takes the class of the tauto-
logical representation to the quadratic form

∑
i<j x̄ix̄j which is the negative of

the canonical generator of Q(SLn) (see Example 3.3).

It follows from Example 3.5 that if G is a quasi-simple group, then for a
representation ρ of G, we have τ(ρ) = −N(ρ)q, where N(ρ) is the Dynkin
index of ρ (see [7]). Hence the image of Dec(G) under τ is equal to nGZq,
where nG is the gcd of the Dynkin indexes of all the representations of G. The
numbers nG for split adjoint groups G of types Bn, Cn and E7 were computed
in [7] (see also Section 4b).

A loop in G is a group homomorphism Gm → Gsep over Fsep (see [15, §31]).
By [8, Part II, §7]), the group Q(G) has an intrinsic description as the group
of all ΓF -invariant quadratic integral-valued functions on the set of all loops
in G. It follows that a homomorphism G → G′ of semisimple groups yields
a group homomorphism Q(G′) → Q(G). The functoriality of the Chern class
shows that this homomorphism takes Dec(G′) into Dec(G).

3d. The key diagram. Let V be a generically free representation of G such
that there is an open G-invariant subscheme U ⊂ V and a G-torsor U → U/G
such that U(F ) 6= ∅ (see Section 2a). We assume in addition that V \ U is of
codimension at least 3.

By [14, Th. 1.1], there is an exact sequence

0 −→ CH2(Un/G) −→ H
4(
Un/G,Z(2)

)
−→ H

0

Zar

(
Un/G,H3(Q/Z(2))

)
−→ 0

for every n. We can view this as an exact sequence of cosimplicial groups. The
group CH2(Un/G) is independent of n, so it represents a constant cosimplicial
groups CH2(BG). Therefore, we have an exact sequence

0 −→ CH2(BG) −→ H
4(
U/G,Z(2)

)
bal

−→ H
0

Zar

(
U/G,H3(Q/Z(2))

)
bal

−→ 0.

The right group in the sequence is canonically isomorphic to Inv3
(
G,Q/Z(2)

)
norm

by Proposition 2.1, and hence is independent of V . Therefore, the middle term

is also independent of V and we write H
4(
BG,Z(2)

)
for H

4(
U/G,Z(2)

)
bal
.

Therefore, we have the exact row in the following diagram with the exact
column given by [18, Theorem 5.3]:
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0

��

H1
(
F, Ĉ(1)

)

��

σ

))❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘❘
❘

0 // CH2(BG) //

γ
''❖❖

❖❖
❖❖

❖❖
❖❖

❖❖
❖

H
4(
BG,Z(2)

)
//

��

Inv3
(
G,Q/Z(2)

)
norm

// 0

Q(G)

θ∗G
��

H2
(
F, Ĉ(1)

)
,

where Ĉ(1) is the derived tensor product Ĉ
L
⊗ ZY (1) in the derived category

of et́ale sheaves on F . Explicitly (see [18, Section 4c]),

Ĉ(1) = TorZ1 (Ĉsep, F
×
sep)⊕ (Ĉsep ⊗ F×

sep)[−1].

Example 3.6. The group SLn is special simply connected, hence Ĉ = 0 and
Inv3

(
SLn,Q/Z(2)

)
norm

= 0. It follows that we have isomorphisms of infinite
cyclic groups

γ : CH2(B SLn)
∼
→ H

4
(B SLn,Z(2))

∼
→ Q(SLn).

The group CH2(B SLn) is generated by c2 of the tautological representation
by [20, §2].

3e. The map σ. The map σ is defined as follows (see [18, §5]). Let f : X →
SpecK be a G-torsor over a field extension K/F , so we have a morphism

βf : Ĉ → ZK(1)[3] as in Section 2d, and therefore, the composition

Ĉ(1) = Ĉ
L
⊗ ZF (1)

βf

L
⊗Id

−−−−→
(
ZK(1)

L
⊗ ZF (1)

)
[3] −→ ZK(2)[3],

which induces a homomorphismH1
(
F, Ĉ(1)

)
→ H4

(
K,Z(2)

)
= H3

(
K,Q/Z(2)

)
.

Then the value of the invariant σ(α) for an element α ∈ H1(F, Ĉ(1)) is equal
to the image of α under this homomorphism.

Let χ ∈ Ĉ(F ) and a ∈ F×. By [18, Remark 5.2], we have χ ∪ (a) ∈

H1(F, Ĉ(1)) and therefore, σ(χ∪(a)) is the invariant taking a G-torsor X over
K to αG(X)(χK)∪ (a) ∈ H3

(
K,Q/Z(2)

)
. Here the cup-product is taken with

respect to the pairing

Br(K)⊗K× = H2
(
K,Q/Z(1)

)
⊗H1

(
K,Z(1)

)
−→ H3

(
K,Q/Z(2)

)
.
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3f. The map γ. We will determine the map γ in the key diagram.

Lemma 3.7. The maps γ and H
4(
BG,Z(2)

)
→ Q(G) are functorial in G.

Proof. In [18] the map γ is given by the composition

CH2(BG) −→ H4(BG,Z(2))
∼
→ H3

(
BG,Zf (2)

) ∼
→

H3
(
BG, τ≤3Zf (2)

)
−→ H1

Zar(BG,K2)
ΓF → D(G),

where Zf (2) is the cone of ZBG(2) → Rf∗ZEG(2) for the versal G-torsor f :
EG → BG and the group D(G) containing Q(G) is defined in [18]. The first
four homomorphisms are functorial in G, and the last one is functorial as was
shown in [8, Page 116] in the case G is simply connected. The proof also goes
through for an arbitrary semisimple G. �

Lemma 3.8. The composition of the second Chern class map

R(G) −→ K0(BG)
c2−→ CH2(BG)

with the diagonal morphism γ in the diagram coincides with the map τ in (3.4)
up to sign. The image of γ coincides with Dec(G).

Proof. As Q(G) injects when the base field gets extended, for the proof of the
first statement we may assume that F is separably closed. Let ρ : G → SLn

be a representation. Write x1, x2, . . . , xn for the characters of ρ in the weight
lattice Λ. Consider the diagram

R(SLn)

c2 ''◆◆
◆◆

◆◆
◆◆

◆◆
◆

τ
//

��

Q(SLn)

��

CH2(B SLn)

��

γ

77♣♣♣♣♣♣♣♣♣♣♣

R(G)

c2 ''◆◆
◆◆

◆◆
◆◆

◆◆
◆

τ
// Q(G)

CH2(BG)

γ

77♣♣♣♣♣♣♣♣♣♣♣

with the vertical homomorphisms induced by ρ. The vertical faces of the di-
agram are commutative by Lemma 3.7 and the functoriality of c2 and the
character map ch. By Example 3.5, the top map τ takes the class of the tauto-
logical representation ι of SLn to the a generator of Q(SLn). By Example 3.6,
γ in the top of the diagram is an isomorphism taking the canonical generator
of CH2(B SLn) to a generator of Q(SLn). It follows that τ(ι) and γ(c2(ι)) in
the top face of the diagram are equal up to sign. The class of ρ in R(G) is
the image of τ under the left vertical homomorphism. It follows that τ(ρ) and
γ(c2(ρ)) in the bottom face of the diagram are also equal to sign.

The second statement follows from the first and the surjectivity of the second
Chern class map R(G) → CH2(BG) (see [6, Appendix C] and [26, Corollary
3.2]). �
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3g. Main theorem. The following theorem describes the group of degree 3
cohomological invariants with coefficients in Q/Z(2) of an arbitrary semisimple
group.

Theorem 3.9. Let G be a semisimple group over a field F . Then there is an
exact sequence

0 −→ CH2(BG)tors −→ H1
(
F, Ĉ(1)

) σ
−→

Inv3
(
G,Q/Z(2)

)
norm

−→ Q(G)/Dec(G)
θ∗G−→ H2

(
F, Ĉ(1)

)
.

Proof. Follows from the key diagram above and Lemma 3.8 as Q(G) is torsion

free and H1
(
F, Ĉ(1)

)
is torsion. �

Remark 3.10. The map θ∗G is trivial if G is split or adjoint of inner type (see
[18, Proposition 4.1 and Remark 5.5]).

The exact sequence in Theorem 3.9 is functorial in G. More precisely, let
G → G′ be a homomorphism of semisimple groups extending to a homomor-
phism C → C ′ of the kernels of the universal covers. By Lemma 3.7, the
diagram

H1
(
F, Ĉ ′(1)

) σ′

//

��

Inv3
(
G′,Q/Z(2)

)
norm

//

��

Q(G′)/Dec(G′)

��

H1
(
F, Ĉ(1)

) σ
// Inv3

(
G,Q/Z(2)

)
norm

// Q(G)/Dec(G)

is commutative.
Write Inv3

(
G,Q/Z(2)

)
dec

for the image of σ. We call these invariants de-
composable. Thus, we have an exact sequence

0 −→ CH2(BG)tors −→ H1
(
F, Ĉ(1)

) σ
−→ Inv3

(
G,Q/Z(2)

)
dec

−→ 0.

We don’t know if the group CH2(BG)tors is trivial, but it is always finite.

Proposition 3.11. The group CH2(BG) is finitely generated. In particular,
CH2(BG)tors is finite.

Proof. By [25, Théorème 3.3] and Section 3a, we have

Z[Λr]
∆ ⊂ R(G) ⊂ Z[Λw].

The Noetherian ring Z[Λr] is finite over Z[Λr]
∆, hence Z[Λr]

∆ is Noetherian.
The Z[Λr]

∆-algebra Z[Λw] is finite, hence so is R(G). It follows that the
ring R(G) is Noetherian. Let I be the kernel of the rank map R(G) → Z.
Since I is finitely generated, the factor group R(G)/I2 is finitely generated.
By (3.2), the second Chern class factors through a surjective homomorphism
R(G)/I2 → CH2(BG), whence the result. �

We will show in Section 4a that the group CH2(BG)tors is trivial if G is
adjoint of inner type.
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The factor group

Inv3
(
G,Q/Z(2)

)
ind

:= Inv3
(
G,Q/Z(2)

)
/ Inv3

(
G,Q/Z(2)

)
dec

is called the group of indecomposable invariants. Thus, we have an exact
sequence

0 −→ Inv3
(
G,Q/Z(2)

)
ind

−→ Q(G)/Dec(G)
θ∗G−→ H2

(
F, Ĉ(1)

)
.

If G is simply connected quasi-simple, all decomposable invariants are triv-
ial, and the group Inv3

(
G,Q/Z(2)

)
= Inv3

(
G,Q/Z(2)

)
ind

≃ Q(G)/Dec(G) is
cyclic generated by the Rost invariant RG. The order of the Rost number nG

of RG is determined in [8, Part II].

4. Groups of inner type

Let G be a semisimple group over F . A group G′ is called an inner form
of G if there is a G-torsor X over F such that G′ is the twist of G by X , or
equivalently, G′ ≃ AutG(X). The choice of the torsor X yields a canonical
bijection ϕ : H1(K,G′)

∼
→ H1(K,G) for every field extension K/F (see [15,

Proposition 8.8]). Therefore, we have an isomorphism Invn
(
G,Q/Z(j)

) ∼
→

Invn
(
G′,Q/Z(j)

)
. Note that this isomorphism does not preserve normalized

invariants as ϕ does not preserve trivial torsors. Precisely, ϕ takes the class
of a trivial torsor to the class of X . We modify the isomorphism to get an
isomorphism

(4.1) Invn
(
G,Q/Z(j)

)
norm

∼
→ Invn

(
G′,Q/Z(j)

)
norm

,

taking an invariant I of G to an invariant I ′ of G′ satisfying

I ′(X ′) = I(ϕ(X ′))− I(X).

4a. Decomposable invariants. Let G be a semisimple group of inner type.

Then Ĉ is a diagonalizable finite group.

Lemma 4.1. There is a natural isomorphism H1
(
F, Ĉ(1)

)
≃ Ĉ ⊗ F×.

Proof. Write Ĉ ≃ R/S, where R and S are lattices. In the exact sequence

H1
(
F, S(1)

)
−→ H1

(
F,R(1)

)
−→ H1

(
F, Ĉ(1)

)
−→ H2

(
F, S(1)

)

the first two terms are S ⊗ F× and R⊗ F×, respectively, and the last term is
equal to S⊗H2

(
F,Z(1)

)
= 0 by Hilbert’s Theorem 90. The result follows. �

Recall that under the isomorphism in Lemma 4.1, the map σ in Theorem 3.9

is defined as follows. For every χ ∈ Ĉ and a ∈ F×, the invariant σ(χ∪(a)) takes
a G-torsor X over a field extension K/F to αG(X)(χK)∪(a) ∈ H3(K,Q/Z(2))
(see Section 3e).
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Theorem 4.2. Let G be a semisimple adjoint group of inner type over a field
F . Then the homomorphism

σ : Ĉ ⊗ F× −→ Inv3
(
G,Q/Z(2)

)
dec

is an isomorphism. Equivalently, the group CH2(BG) is torsion-free.

Proof. As G is an inner form of a split group, by (4.1), we may assume that

G is split. The group Ĉ is a direct sum of cyclic subgroups generated by
χ1, . . . , χm, respectively. Let a1, . . . , am ∈ F× be such that the element u :=∑

χi⊗ai belongs to the kernel of σ. It suffices to show that ai ∈ (F×)si, where
si := ord(χi) for all i.

Fix an integer i. For a field extension K/F and any ρ ∈ H1(K,Q/Z) of

order si, consider the admissible map f : Ĉ → Br(K(t)) for the field K(t) of
rational functions over K, defined by

f(χj) =

{
ρ ∪ (t), in Br(K(t)) if j = i;
0, otherwise.

By Proposition 2.6, there is a G-torsor X over K(t) satisfying αG(X)(χj) =
f(χj) for all j. As u ∈ Ker(σ), we have

0 = σ(u)(X) =
∑

j

αG(X)(χj) ∪ (aj) = ρ ∪ (t) ∪ (ai)

in H3(K(t),Q/Z(2)). Taking residue at t (see [8, Part II, Appendix A]),

H3
nr

(
K(t),Q/Z(2)

)
−→ H2

(
K,Q/Z(1)

)
= Br(K),

we get ρ ∪ (ai) = 0 in Br(K). By Lemma 4.3 below, we have a ∈ (F×)si. �

Lemma 4.3. Let a ∈ F× and s > 0 be such that for every field extension K/F
and every ρ ∈ H1(K,Q/Z) of order s one has ρ∪(a) = 0 in H2

(
K,Q/Z(1)

)
=

Br(K). Then a ∈ (F×)s.

Proof. Let H = Z/sZ. Choose an H-torsor X → Y with smooth Y , Pic(X) =
0 and F [X ]× = F×. (For example, take an approximation of EH → BH .) By
[3] or [17], there is an exact sequence

Pic(X)H −→ H2(H,F [X ]×) −→ Br(Y ),

which yields an injective map F×/F×s → Br(F (Y )) as H2(H,F [X ]×) =
H2(H,F×) = F×/F×s and Br(Y ) injects into Br(F (Y )) by [19, Corollary
2.6]. This map takes a to ρ ∪ (a), where ρ ∈ H1(F (Y ),Q/Z) corresponds
to the cyclic extension F (X)/F (Y ). As ρ ∪ (a) = 0 by assumption, we have
a ∈ (F×)s. �

4b. Indecomposable invariants. In this section we compute the groups of
indecomposable invariants of adjoint groups of inner type.
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Type An−1

In the split case we have G = PGLn, the projective general linear group,
n ≥ 2, Λw = Zn/Ze, where e = e1+ e2+ · · ·+ en. The root lattice is generated

by the simple roots ē1 − ē2, ē2 − ē3, . . . , ēn−1 − ēn, Ĉ = Λw/Λr ≃ Z/nZ. The
generator of Sym2(Λw)

W is the form

q = −
∑

i<j

x̄ix̄j =
1

2

∑
x̄2
i .

The matrix D (see Section 3b) is the identity matrix In. The inverses of Cartan
matrices here and below are taken from [4, Appendix F]:

C−1 =
1

n




n− 1 n− 2 n− 3
... 2 1

n− 2 2(n− 2) 2(n− 3)
... 4 2

n− 3 2(n− 3) 3(n− 3)
... 6 3

· · · · · · · · · · · · · · ·

2 4 6
... 2(n− 2) n− 2

1 2 3
... n− 2 n− 1




By Proposition 3.4,

Q(G) = Sym2(Λr)
W =

{
2nZq, if n is even;
nZq, if n is odd.

If a :=
∑n

i,j=1 e
x̄i−x̄j ∈ Z[Λr]

W , we have by (3.3),

c2(a) =
1

2

∑
(x̄i − x̄j)

2 = n
∑

x̄2
i = 2nq ∈ Dec(G).

It follows that Dec(G) = Q(G) if n is even.
Suppose that n is odd. If b =

∑n
i=1 e

nx̄i ∈ Z[Λr]
W , we have by (3.3),

c2(b) =
1

2

∑
(nx̄i)

2 = n2q ∈ Dec(G).

As n is odd, gcd(2n, n2) = n, hence nq ∈ Dec(G) and again Dec(G) = Q(G).
Thus, Inv3(G,Q/Z(2))ind = Q(G)/Dec(G) = 0.
A G-torsor is given by a central simple algebra A of degree n (here and

below see [15]). The twist of G by A is the group PGL1(A). The Tits classes of
algebras for this group are the multiples of [A] in Br(F ). In view of Proposition
2.3 and 4.1, we have

Theorem 4.4. Let G = PGL1(A) for a central simple algebra A over F .
Then

Inv3
(
G,Q/Z(2)

)
norm

≃ F×/F×n.

An element x ∈ F× corresponds to the invariant taking a central simple algebra
A′ of degree n to the cup-product ([A′]− [A]) ∪ (x).
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Type Bn

In the split case we have G = O+
2n+1, the special orthogonal group, n ≥ 2,

Λw = Zn + Ze, where e = 1
2
(e1 + e2 + · · ·+ en), Λr = Zn and Ĉ ≃ Z/2Z. The

generator of Sym2(Λw)
W is the form q = 1

2

∑
i x

2
i and D = diag(1, 1, . . . 1, 2),

C−1 =




1 1 1
... 1 1 1

1 2 2
... 2 2 2

1 2 3
... 3 3 3

· · · · · · · · · · · · · · · · · ·

1 2 3
... n− 2 n− 2 n− 2

1 2 3
... n− 2 n− 1 n− 1

1/2 1 3/2
... (n− 2)/2 (n− 1)/2 n/2




By Proposition 3.4, Q(G) = Sym2(Λr)
W = 2Zq.

If a :=
∑n

i=1(e
xi + e−xi) ∈ Z[Λr]

W , we have

c2(a) =
1

2

∑
(x2

i + (−xi)
2) = 2q ∈ Dec(G).

It follows that Dec(G) = Q(G), so Inv3(G,Q/Z(2))ind = Q(G)/Dec(G) = 0.
A G-torsor is given by the similarity class of a nondegenerate quadratic form

p of dimension 2n + 1. The twist of G by p is the special orthogonal group
O+(p) of the form p. The only nontrivial Tits class of algebras for this group
is the class of the even Clifford algebra C0(p) of p. In view of Proposition 2.3
and 4.1, we have

Theorem 4.5. Let G = O+(p) for a nondegenerate quadratic form p of di-
mension 2n+ 1. Then

Inv3
(
G,Q/Z(2)

)
norm

≃ F×/F×2.

An element x ∈ F× corresponds to the invariant taking the similarity class
of a nondegenerate quadratic form p′ of dimension 2n + 1 to the cup-product
([C0(p

′)]− [C0(p)]) ∪ (x).

Type Cn

In the split case we have G = PGSp2n, the projective symplectic group,

n ≥ 3, Λw = Zn, Λr consists of all
∑

aiei with
∑

ai even, Ĉ ≃ Z/2Z. The
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generator of Sym2(Λw)
W is q =

∑
i x

2
i . D = diag(2, 2, . . . 2, 1) and

C−1 =




1 1 1
... 1 1 1/2

1 2 2
... 2 2 1

1 2 3
... 3 3 3/2

· · · · · · · · · · · · · · · · · ·

1 2 3
... n− 2 n− 2 (n− 2)/2

1 2 3
... n− 2 n− 1 (n− 1)/2

1 2 3
... n− 2 n− 1 n/2




By Proposition 3.4,

Q(G) = Sym2(Λr)
W =





Zq, if n ≡ 0 modulo 4;
2Zq, if n ≡ 2 modulo 4;
4Zq, if n is odd.

If a :=
∑

i(e
2xi + e−2xi) ∈ Z[Λr]

W , we have

c2(a) =
∑

(2xi)
2 = 4q ∈ Dec(G).

It follows that Dec(G) = Q(G) if n is odd.
Suppose that n is even. If b :=

∑
i 6=j(e

xi+xj + exi−xj) ∈ Z[Λr]
W , we have

c2(b) =
1

2

∑

i 6=j

[(xi − xj)
2 + (xi + xj)

2] = 2(n− 1)q ∈ Dec(G).

As n is even, gcd(4, 2(n− 1)) = 2, we have 2q ∈ Dec(G). On the other hand,
by [8, Part II, Lemma 14.2], Dec(G) ⊂ 2qZ, therefore, Dec(G) = 2qZ.

It follows that

Inv3
(
G,Q/Z(2)

)
ind

= Q(G)/Dec(G) =

{
(Z/2Z)q, if n ≡ 0 modulo 4;
0, otherwise.

A G-torsor is given by a pair (A, σ), where A is a central simple algebra of
degree 2n and σ is a symplectic involution on A. The twist of G by (A, σ) is
the projective symplectic group PGSp(A, σ). The only nontrivial Tits class
of algebras for this group is the class of the algebra A. In view of Proposition
2.3 and 4.1, we have

Theorem 4.6. Let G = PGSp(A, σ) for a a central simple algebra of degree
2n with symplectic involution σ. Then

Inv3
(
G,Q/Z(2)

)
dec

≃ F×/F×2.

An element x ∈ F× corresponds to the invariant taking a pair (A′, σ′) to the
cup-product ([A′]− [A]) ∪ (x).

If n is not divisible by 4, we have Inv3
(
G,Q/Z(2)

)
norm

= Inv3
(
G,Q/Z(2)

)
dec

.

If n is divisible by 4, the group Inv3
(
G,Q/Z(2)

)
ind

is cyclic of order 2.
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In the case n is divisible by 4 and char(F ) 6= 2 an invariant I of order 2
generating Inv3

(
G,Q/Z(2)

)
ind

was constructed in [11, §4]. Thus, in this case
we have

Inv3
(
G,Q/Z(2)

)
norm

= Inv3
(
G,Q/Z(2)

)
dec

⊕ (Z/2Z)I ≃ F×/F×2 ⊕ (Z/2Z).

Type Dn

In the split case we have G = PGO+
2n, the projective orthogonal group,

n ≥ 4, Λw = Zn +Ze, where e = 1
2
(e1 + e2+ · · ·+ en), Λr consists of all

∑
aiei

with
∑

ai even, C̃ is isomorphic to Z/2Z ⊕ Z/2Z if n is even and to Z/4Z if
n is odd. The generator of Sym2(Λw)

W is the form q = 1
2

∑
i x

2
i and D = In,

C−1 =




1 1 1
... 1 1/2 1/2

1 2 2
... 2 1 1

1 2 3
... 3 3/2 3/2

· · · · · · · · · · · · · · · · · ·

1 2 3
... n− 2 (n− 2)/2 (n− 2)/2

1/2 1 3/2
... (n− 2)/2 n/4 (n− 2)/4

1/2 1 3/2
... (n− 2)/2 (n− 2)/4 n/4




By Proposition 3.4,

Q(G) = Sym2(Λr)
W =





2Zq, if n ≡ 0 modulo 4;
4Zq, if n ≡ 2 modulo 4;
8Zq, if n is odd.

If a :=
∑

i(e
2xi + e−2xi) ∈ Z[Λr]

W , we have

c2(a) =
∑

(2xi)
2 = 8q ∈ Dec(G).

It follows that Dec(G) = Q(G) if n is odd.
Suppose that n is even. If b :=

∑
i 6=j(e

xi+xj + exi−xj) ∈ Z[Λr]
W , we have

c2(b) =
1

2

∑

i 6=j

[
(xi − xj)

2 + (xi + xj)
2
]
= 4(n− 1)q ∈ Dec(G).

As n is even, gcd(8, 4(n− 1)) = 4, we have 4q ∈ Dec(G). On the other hand,
by [8, Part II, Lemma 15.2], Dec(G) ⊂ 4Zq, therefore, Dec(G) = 4Zq.

It follows that

Inv3
(
G,Q/Z(2)

)
ind

= Q(G)/Dec(G) =

{
(2Z/4Z)q, if n ≡ 0 modulo 4;
0, otherwise.

A G-torsor is given by a quadruple (A, σ, f, e), where A is a central simple
algebra of degree 2n, (σ, f) is a quadratic pair on A of trivial discriminant and
e an idempotent in the center of the Clifford algebra C(A, σ, f). The twist
of G by (A, σ, f, e) is the projective orthogonal group PGO+(A, σ, f). The
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nontrivial Tits classes of algebras for this group are the class of the algebra A
and the classes of the two components C±(A, σ, f) of the Clifford algebra. In
view of Proposition 2.3 and 4.1, we have

Theorem 4.7. Let G = PGO+(A, σ, f) for a a central simple algebra of degree
2n with quadratic pair (σ, f) of trivial discriminant. Then

Inv3
(
G,Q/Z(2)

)
dec

≃

{
(F×/F×2)⊕ (F×/F×2), if n is even;
F×/F×4, if n is odd.

If n is even and x+, x− ∈ F×, then the corresponding invariant takes a quadru-
ple (A′, σ′, f ′, e′) to
(
[C+(A′, σ′, f ′)]−[C+(A, σ, f)]

)
∪(x+)+

(
[C−(A′, σ′, f ′)]−[C−(A, σ, f)]

)
∪(x−).

If n is even and x ∈ F×, then the corresponding invariant takes a quadruple
(A′, σ′, f ′, e′) to

(
[C+(A′, σ′, f ′)]− [C+(A, σ, f)]

)
∪ (x).

If n is not divisible by 4, we have Inv3
(
G,Q/Z(2)

)
norm

= Inv3
(
G,Q/Z(2)

)
dec

.

If n is divisible by 4, the group Inv3
(
G,Q/Z(2)

)
ind

is cyclic of order 2.

In the case n is divisible by 4 and char(F ) 6= 2 we sketch below a construction
of a nontrivial indecomposable invariant I of order 2 for a split adjoint group
G = PGO+

2n. A G-torsor X over F is given by a triple (A, σ, e), where A
is a central simple algebra over F with an orthogonal involution σ of trivial
discriminant and e is a nontrivial idempotent of the center of the Clifford
algebra of (A, σ) (see [15, §29F]). We need to determine the value of I(X) in
H3

(
F,Q/Z(2)

)
.

We have G = Aut(A, σ, e) = PGO+(A, σ). The exact sequence

1 −→ µ2 −→ O+(A, σ) −→ PGO+(A, σ) −→ 1,

where O+(A, σ) is the special orthogonal group, yields an exact sequence

H1
(
F,O+(A, σ)

) ϕ
−→ H1

(
F,PGO+(A, σ)

) δ
−→ Br(F ).

The reduction method used in [11] for the construction of an indecomposable
degree 3 invariant for a symplectic involution works as well in the orthogonal
case. It reduces the general situation to the case ind(A) ≤ 4. In this case
the algebra A is isomorphic to M2(B) for a central simple algebra B as 2n is
divisible by 8 and hence it admits a hyperbolic involution σ′. By [15, Proposi-
tion 8.31], one of the two components of the Clifford algebra C(A, σ′) is split.
Let e′ be the corresponding idempotent in the center of C(A, σ′). (If both
components split, then A is split by [15, Theorem 9.12], and we let e′ be any
of the two idempotents.)

The element δ(A, σ′, e′) is trivial, hence (A, σ′, e′) = ϕ(v) for some v ∈
H1

(
F,O+(A, σ)

)
. The set H1

(
F,O+(A, σ)

)
is described in the [15, §29.27] as

the set of equivalence classes of pairs (a, x) ∈ A×F such that a is σ-symmetric
invertible element and x2 = Nrd(a). Thus, v = (a, x) for such a pair (a, x) and
we set I(X) = [A] ∪ (x).
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Type E6

We have Ĉ ≃ Z/3Z and D = I6,

C−1 =
1

3




4 5 6 4 2 3
5 10 12 8 4 6
6 12 18 12 6 9
4 8 12 10 5 6
2 4 6 5 4 3
3 6 9 6 3 6




By Proposition 3.4, Q(G) = Sym2(Λr)
W = 3Zq.

Write δi ∈ Z[Λw]
W for the sum of elements in the W -orbit of ewi. We have

c2(δ1) = 6q, c2(δ2) = 24q, c2(δ3) = 150q by [16, §2] and rank(δ1) = [W (E6) :
W (D5)] = 27, rank(δ3) = [W (E6) : W (A1+A4)] = 216. Note that δ2 and δ1w3

belong to Z[Λr]
W . By (3.2),

c2(δ1δ3) = rank(δ1)c2(δ3) + rank(δ3)c2(δ1) = 27 · 150q + 216 · 6q = 5346q.

As gcd(24, 5346) = 6, we have 6q ∈ Dec(G). On the other hand, c2(δi) ∈ 6Zq
for all i by [16, §2], hence Dec(G) = 6Zq. Thus,

Inv3
(
G,Q/Z(2)

)
ind

= Q(G)/Dec(G) = (3Z/6Z)q.

Note that the exponents of the groups Inv3(G)dec and Inv3(G)ind are relatively
prime.

Theorem 4.8. Let G be an adjoint group of type E6 of inner type. Then

Inv3
(
G,Q/Z(2)

)
norm

≃ (F×/F×3)⊕ (Z/2Z).

It follows from the computation that the pull-back of the generator of

Inv3(G)ind to Inv3(G̃)norm is 3 times the Rost invariant RG̃. This was observed
in [10, Proposition 7.2] in the case char(F ) 6= 2.

Type E7

We have Ĉ ≃ Z/2Z and D = I7,

C−1 =
1

2




4 6 8 6 4 2 4
6 12 16 12 8 4 8
8 16 24 18 12 6 12
6 12 18 15 10 5 9
4 8 12 10 8 4 6
2 4 6 5 4 3 3
4 8 12 9 6 3 7




By Proposition 3.4, Q(G) = Sym2(Λr)
W = 4Zq.

We have c2(δ1) = 36q and c2(δ7) = 12q by [16, §2] and rank(δ7) = [W (E7) :
W (E6)] = 56. Note that δ1 and δ27 belong to Z[Λr]

W .



22 A. MERKURJEV

By (3.2),

c2(δ
2
7) = 2 rank(δ7)c2(δ7) = 2 · 56 · 12q = 1344.

As gcd(36, 1344) = 12, we have 12q ∈ Dec(G). On the other hand, c2(δi) ∈
12Zq for all i by [16, §2], hence Dec(G) = 12Zq. Thus,

Inv3(G,Q/Z(2))ind = Q(G)/Dec(G) = (4Z/12Z)q.

Theorem 4.9. Let G be an adjoint group of type E7 of inner type. Then

Inv3
(
G,Q/Z(2)

)
norm

≃ (F×/F×2)⊕ (Z/3Z).

It follows from the computation that the pull-back of the generator of
Inv3(G)ind to Inv3(G̃)norm is 4 times the Rost invariant RG̃. This was observed
in [10, Proposition 7.2] in the case char(F ) 6= 3.

Every inner semisimple group of the types G2, F4 and E8 is simply connected.
Then the group Inv3(G,Q/Z(2))norm is of order 2, 6 and 60, respectively (see
[8, Part II]).

Recall that the groups Inv3(G)ind are all the same for all twisted forms of

G. This is not the case for Inv3(G̃)ind = Inv3(G̃). Write G̃gen for a “generic”

twisted form of G̃ (see [10, §6]). For such groups the Rost number nG̃gen
is the

largest possible. Their values can be found in [8, Part II].

Theorem 4.10. Let G be an adjoint semisimple group of inner type, G̃ → G
a universal cover. Then the map

Inv3(G)ind ≃ Inv3(Ggen)ind −→ Inv3(G̃gen)ind = Inv3(G̃gen) = (Z/nG̃gen
Z)RG̃gen

is injective. In the case G is simple, the group Inv3(G)ind is nonzero only in
the following cases:

Cn, n is divisible by 4: Inv3(G)ind = (Z/2Z)RG̃,

Dn, n is divisible by 4: Inv3(G)ind = (2Z/4Z)RG̃,

E6: Inv
3(G)ind = (3Z/6Z)RG̃,

E7: Inv
3(G)ind = (4Z/12Z)RG̃.

5. Restriction to the generic maximal torus

Let G be a semisimple group over F and Tgen the generic maximal torus of G
defined over F (X ), where X is the variety of maximal tori in G (see Example
3.1). We can restrict invariants of G to invariant of Tgen via the composition

Invn
(
G,Q/Z(j)

)
−→ Invn

(
GF (X ),Q/Z(j)

) Res
−→ Invn

(
Tgen,Q/Z(j)

)
.

The degree 3 invariants of algebraic tori have been studied in [1].
Suppose that G is quasi-split. Then the character group of Tgen is isomor-

phic to the weight lattice Λ with the ∆-action (see Example 3.1). The exact
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sequence 0 → Λ → Λw → Ĉ → 0, Example 3.1, Theorem 3.9 and [1, Theorem
4.3] yield a diagram

H1
(
F, Ĉ(1)

)
//

��

Inv3
(
G,Q/Z(2)

)
norm

//

��

Z[Λ]∆/Dec(Λ)

H2
(
F (X ), T̂gen(1)

)
// Inv3

(
Tgen,Q/Z(2)

)
norm

// Z[Λ]∆/Dec(Λ).

Theorem 5.1. Let G be a quasi-split group over a perfect field F , Tgen the
generic maximal torus. Then the homomorphism

Invn
(
G,Q/Z(j)

)
−→ Invn

(
Tgen,Q/Z(j)

)

is injective, i.e., every invariant of G is determined by its restriction on the
generic maximal torus.

Proof. Consider the morphism T → X as in Example 3.1. Let V be a generi-
cally free representation of G such that there is an open G-invariant subscheme
U ⊂ V and a G-torsor U → U/G. The group scheme T over X acts naturally
on U × X . Consider the factor scheme (U × X )/T . In fact, we can view this
as a variety as follows. Let T0 be a quasi-split maximal torus in G. The Weyl
group W of T0 acts on (U/T0) × (G/T0) by w(T0u, gT0) = (T0wu, gw

−1T0).
Then (U × X )/T can be viewed as a factor variety

(
(U/T0) × (G/T0)

)
/W .

Note that the function field of (U × X )/T is isomorphic to the function field
of UF (X )/Tgen over F (X ).

We claim that the natural morphism

f : (U ×X )/T −→ U/G

is surjective on K-points for any field extension K/F . A K-point of U/G is a
G-orbit O ⊂ U defined over K. As F is perfect, by [23, Theorem 11.1], there is
a maximal torus T ⊂ G and a T -orbit O′ ⊂ O defined over K. Then the pair
(O′, T ) determines a point of

(
(U ×X )/T

)
(K) over O. The claim is proved.

It follows from the claim that the generic fiber of f has a rational point (over
F (U/G)). Therefore, the natural homomorphism

(5.1) Hn
(
F (U/G),Q/Z(j)

)
−→ Hn

(
F (X )(UF (X )/Tgen),Q/Z(j)

)

is injective.
Let I ∈ Invn(G,Q/Z(j)) be an invariant with trivial restriction on Tgen. Let

pgen be the generic fiber of p : U → U/G and let qgen be the generic fiber
of q : UF (X ) → UF (X )/Tgen. Then the pull-back of pgen with respect to the
field extension F (X )(UF (X )/Tgen)/F (U/G) is isomorphic to the pull-back of
qgen under the change of group homomorphism Tgen → G. It follows that

0 = Res(I)(qgen) = I(pgen)F (X )(UF (X)/Tgen).

As (5.1) is injective, we have I(pgen) = 0 in Hn
(
F (U/G),Q/Z(j)

)
and hence

I = 0 by [8, Part II, Theorem 3.3] or [1, Theorem 2.2]. �
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[9] S. Garibaldi and A. Quéguiner-Mathieu, Restricting the Rost invariant to the center,

Algebra i Analiz 19 (2007), no. 2, 52–73.
[10] S. Garibaldi and Ph. Gille, Algebraic groups with few subgroups, J. Lond. Math. Soc.

(2) 80 (2009), no. 2, 405–430.
[11] S. Garibaldi, R. Parimala, and J. P.Tignol, Discriminant of symplectic involutions, Pure

Appl. Math. Q. 5 (2009), no. 1, 349–374.
[12] Ph. Gille and T. Szamuely, Central simple algebras and Galois cohomology, Cambridge

Studies in Advanced Mathematics, vol. 101, Cambridge University Press, Cambridge,
2006.

[13] L. Illusie, Complexe de deRham-Witt et cohomologie cristalline, Ann. Sci. École Norm.
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