WEDDERBURN'S THEOREM FOR REGULAR LOCAL RINGS

MANUEL OJANGUREN

In [Pa] Ivan Panin proved the following theorem.

Theorem 1. Let R be a regular local ring, K its field of fractions and (V, Φ) a quadratic space over R. Suppose R contains a field of characteristic zero. If $(V, \Phi) \otimes_R K$ is isotropic over K, then (V, Φ) is isotropic over R.

The proof rests on a series of lemmas which can be summarized in the following one.

Lemma 2. Let k be a field of characteristic zero, u a closed point of a smooth k-variety and $R = \mathcal{O}_{U,u}$ the local ring of U at u. Let further \mathcal{X} be a projective R-scheme, smooth over R. Let K be the field of fractions of R and suppose that \mathcal{X} has a K-point. Then, for every prime number p there exist an integral R-etale algebra S of degree prime to p and an S-point of \mathcal{X} .

Proof. See [Pa], Lemma 3, Lemma 4 and proof of Theorem 1..

I want to show that the argument used for proving Theorem 1 also yields the following extension of Wedderburn's theorem to a large class of regular local rings.

Theorem 3. Let R be a regular local ring, K its field of fractions and A an Azumaya algebra over R. Suppose R contains a field k of characteristic zero. If $A \otimes_R K$ is isomorphic to $M_n(D)$ where D is a central division algebra over K, then A is isomorphic to $M_n(\Delta)$ where Δ is a maximal (unramified) R-order of D. In other words, every class of the Brauer group of R is represented by a maximal order in a division K-algebra.

Proof. Let d^2 be the dimension of D over K. It suffices to show that A contains a right ideal I such that A/I is free of rank $(n^2 - n)d^2$ over R. In fact, since any A-module is projective over A if and only if it is projective over R, the projection $A \to A/I$ splits, I is a direct factor of the right A-module A, and $\Delta := End_A(I)$ is an Azumaya algebra equivalent to A. Clearly $\Delta \otimes_R K = D$ and by Morita theory

$$A = End_{\Delta}(Hom_A(I, A)) = M_n(\Delta).$$

In order to find a right ideal I of the right rank we consider the set \mathcal{I} of all such ideals or, more precisely, we consider the functor \mathcal{I} that associates to any R-algebra S the set of such ideals in $A \otimes_R S$.

Typeset by $\mathcal{A}_{\mathcal{M}}S$ -T_EX

Lemma 4. \mathcal{I} is a smooth closed subscheme of the Grassmannian scheme \mathcal{G} consisting of all the free *R*-submodules of *A* which are direct factors of *A* and have rank nd^2 .

Proof. We denote by m the maximal ideal of R. To show that \mathcal{I} is closed we first remark that A, as an R-module, is generated by the set A^* of all invertible elements of A. In fact for any $a \in A$ and any $\lambda \in k$ the reduced norm of $\lambda + a$ is a polynomial

$$P(\lambda) = \lambda^{nd} + c_1 \lambda^{n-1} + \dots + c_{nd}$$

whose coefficients are in R and only depend on a. Choosing λ in k^* such that $P(\lambda)$ is not 0 in R/m insures that $\lambda + a$ is invertible and allows to write $a = (\lambda + a) - \lambda$. So an R- submodule M of A is an ideal if aM = M for every unit a. In other words, we must show that the set of fixed points of \mathcal{G} under the action of A^* is closed. This is well-known.

The second point is the smoothness of \mathcal{I} . This means that for any *R*-algebra *S* and any ideal *I* of *S*, any *S*/*I*-point of \mathcal{X} can be lifted to an *S*/*I*²-point. But points correspond to right ideals generated by an idempotent and it is well-known that idempotents can be lifted.

Note that it suffices to treat the case when A is of prime power order in the Brauer group Br(R) of R. In fact the class of A is a product of classes $[A_i]$ of order $p_i^{e_i}$ for some distinct primes p_1, \ldots, p_r . If each of them is represented by an order Δ_i in $D_i = \Delta_i \otimes_R K$ then A is Brauer equivalent to $\Delta_1 \otimes_R \cdots \otimes_R \Delta_r$ which is an order in $D = D_1 \otimes_K \cdots \otimes_K D_r$ and we know that D is a division algebra.

We now assume that R is of geometric type, in other words R is the local ring of a closed point u of a smooth k-variety. The general case then follows from this special case by a standard application of Popescu's theorem, saying that a regular ring containing a field is an inductive limit of smooth algebras.

Suppose now that A is of prime power exponent in Br(R) and that the degree of D is p^e for some prime number p. Since $A \otimes_R K = M_n(D)$ the scheme \mathcal{I} has a K-point and according to Lemma 2 it also has an S-point, where S is an integral etale algebra whose degree d is prime to p. This means that $A \otimes_R S = M_n(B)$ for some maximal order B in $D \otimes_K L$, L being the field of fractions of S. Note that $D \otimes_K L$ remains a division algebra because the degree of L over K is prime to p. So the Brauer class $[A]_S$ of $A \otimes_R S$ in Br(S) is represented by a degree p^e algebra. In [Ga] (see also [AdJ], Proposition 2.6.1) Gabber proved that any class $\alpha \in Br(R)$ which is represented by a degree m algebra when extended to a finite faithfully flat R-algebra S of degree d can be represented by an R-algebra of degree dn. We can thus find an Azumaya algebra A_1 of degree dp^e in the same class as A. On the other hand, we dispose of Ferrand's [Fe] norm functor $N_{S/R}$ from S-algebras to R-algebras. Applying it to B we find that $N_{S/R}(B) = A_2$ is an Azumaya *R*-algebra equivalent to $A^{\otimes d}$ ([Fe], section 7.3), of degree p^{ed} ([Fe], Thorme 4.3.4). If the integer c is an inverse of d modulo p^e , the algebra $A_3 = A_2^{\otimes c}$ is Brauer equivalent to A and its degree is p^{cde} . Recall now that DeMeyer [DM] proved that every class in Br(R) is represented by a unique "minimal" Azumaya algebra Δ with the property that every algebra in the same class is isomorphic to some matrix algebra over Δ . What is the degree m of this Δ in our case? We must have $A_1 \simeq M_{s_1}(\Delta)$ and $A_3 \simeq M_{s_3}(\Delta)$, hence $s_1m = dp^e$ and $s_3m = p^{cde}$. Since d is prime to p, this implies that m divides p^e and extending the scalars to K shows that $m = p^e$. The theorem is proved.

Easy and well-known examples (the simplest one being the usual quaternion algebra extended to $\mathbb{R}[x, y, z]/(x^2 + y^2 + z^2)$) show that we cannot replace regularity by, say, normality.

In a very interesting, recent article, Benjamin Antieau and Ben Williams [AB] show that Theorem 3 fails for nonlocal regular rings.

References

- [AB] Benjamin Antieau and Ben Williams, Azumaya maximal orders do not always exist, preprint, http://arxiv.org/abs/1209.2216 (2012).
- [AdJ] Michel Artin and Aise Johan de Jong, Stable orders over surfaces, preprint.
- [DM] Franck DeMeyer, Projective modules over central separable algebras, Canad. J. Math. 21 (1969), 39–43.
- [Fe] Daniel Ferrand, Un foncteur norme, Bull. Soc. Math. France **126** (1998), 1–49.
- [Ga] Ofer Gabber, Some theorems on Azumaya algebras, The Brauer group, Lecture Notes in Math, vol. 844, Springer, Berlin-New York, 1981, pp. 129–209.
- [Pa] Ivan Panin, Rationally isotropic quadratic spaces are locally isotropic, Invent. Math. 176 (2009), 397–403.