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Abstract. In the present paper, we provide general bounds for the torsion in the codi-
mension 2 Chow groups of the products of projective homogeneous surfaces. In particular,
we determine the torsion for the product of four Pfister quadric surfaces and the maximal
torsion for the product of three Severi-Brauer surfaces. We also find an upper bound for
the torsion of the product of three quadric surfaces with the same discriminant.
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1. Introduction

Let X be a projective homogenous variety under the action of a semisimple group G over
an algebraically closed field F . The Chow group CH(X) of algebraic cycles modulo the
rational equivalence relation is well-understood as well as its ring structure. Namely, the
Chow group of X is a free abelian group with the basis of Schubert cycles. For an arbitrary
base field F , this is no longer true: the Chow group CH(X) can have torsion. Indeed, by a
transfer argument the problem of determining the Chow group of X over an arbitrary field
F reduces to computing its torsion subgroup.

For codimension d ≤ 1, the Chow group CHd(X) is torsion-free. A nontrivial torsion
first appears in codimension 2 cycles on X and the exact structure of the torsion subgroup
is known in many cases. For a projective quadric X, the torsion subgroup of CH2(X) is
either 0 or Z/2Z [6]. For a Severi-Brauer variety X, it is shown that the torsion subgroup
of CH2(X) is either 0 or a cyclic group if the corresponding simple algebra satisfies certain
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conditions [8]. For a simple simply connected group G splits over F (X), it is known that the
torsion subgroup of CH2(X) is a cyclic group generated by the Rost invariant [2]. However,
the only partial results are known for their products. In this case, the structure of the
torsion subgroup is more complicated.

As a first step in determining torsion in codimension 2 cycles on the product of flag
varieties, we consider in this paper the product of two dimensional flag varieties of the same
type. For an integer n ≥ 1, this can be divided into two classes: the set of all products of
n Severi-Brauer surfaces, denoted by SBn and the set of all products of n quadric surfaces,
denoted by Qn. The latter has a special subclass PQn consisting of all product of n Pfister
quadric surfaces. Here, we view the product of two conics as the product of two Pfister
quadric surfaces since they have the same torsion subgroup in codimension 2 cycles by [3,
Corollary 2.5]. To measure the size of the torsion subgroup of codimension 2 cycles, we
introduce the following notation: M(A) = maxX∈A |CH2(X)tors |, where A is any of SBn,
Qn, and PQn. Hence, the torsion subgroup of any element of A is an elementary abelian
group whose order is a divisor of M(A). We denote by Cn the set of all products of n
conics, thus we have M(PQn) = M(Cn).

It is well-known that M(SB1) = M(Q1) = M(C 2) = 1. In [10] Peyre proved that
M(C 3) = 2, thus M(PQ3) = 2. In [4], [3] and [5] Izhboldin and Karpenko proved that
M(SB2) = 3 and M(Q2) = 2. As it is showed in [11, Theorem 2.1] and [10, Theorem
4.1], the torsion subgroup of codimension 2 cycles is closely related to a relative Galois
cohomology group in degree 3 and the above results were used to describe the cohomology
groups. Moreover, Izhboldin and Karpenko’s result was the key part of their results on
isotropy of quadratic forms.

The main goal of this paper is to extend their results to arbitrary n. First, we determine
the maximal torsion M(Cn) (= M(PQn)) in Corollary 4.4, which gives a general lower
bound of M(Qn). In particular, we determine the torsion in the gamma filtration of the
product of four conics in Theorem 4.6 as well as its torsion in Chow group. Secondly, we
find a general lower bound of M(SBn) in Proposition 5.2. Especially, we show that the
bound is sharp for the product of three Severi-Brauer surfaces in Theorem 5.4. The results
M(PQ4) = 25 and M(SB3) = 38 give the first examples such that the torsion subgroup
CH2(X)tors is not cyclic in their classes. In the last part, we provide an elementary proof of
Izhboldin and Karpenko’s result for the product of two quadric surfaces and find an upper
bound for the torsion of the product of three quadric surfaces with the same discriminant
in Theorem 6.1, Proposition 6.3, and Theorem 6.5.

As Karpenko showed in [7] and [8], the topological filtration and the gamma filtration on
the Grothendieck ring can be used to find the torsion in Chow groups of codimension 2 of
projective homogeneous varieties. Moreover, the torsion in the filtrations can be computed
by studying the divisibility of certain polynomials produced by the characteristic classes
on the Grothendieck ring. We use this general approach to find the torsion in codimension
2 cycles on the product of projective homogeneous surfaces together with some additional
combinatorial arguments.

This paper is organized as follows. In Sections 2 and 3, we recall basics of the topological
filtration and the gamma filtration on the Grothendieck ring as well as their torsion sub-
groups of the product of Severi-Brauer varieties. In Section 4, we determine the bound of
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the torsion in codimension 2 cycles on the product of n conics or the product of n Pfister
quadric surfaces. In particular, we determine the torsion of the product of four conics or
the product of four Pfister quadric surfaces in terms of the indexes of the corresponding
algebras. In the last part of this section, we also present its application to a Galois co-
homology group in degree 3. In Section 5, we find a general lower bound of the torsion
in codimension 2 cycles on the product of n Severi-Brauer surfaces. Using this bound, we
determine the maximal torsion subgroup of the Chow group of codimension 2 cycles on
the product of three Severi-Brauer surfaces. In the last section, we recover a result of Izh-
boldin and Karpenko and extend it to the product of three quadric surfaces with the same
discriminant.

In the present paper, Ators denotes the torsion subgroup of an abelian group A and
In = {1, . . . , n} for any integer n ≥ 1. We denote by min{·} and max{·} the minimum
integer of a set and the maximum of a set, respectively.

2. Two filtrations on the Grothendieck ring

In this section, we briefly recall definitions and properties of the topological filtration and
the gamma filtration on the Grothendieck ring K of a smooth projective variety (see [1]
and [8] for details). We also provide a useful fact concerning the torsion part of these two
filtrations on a smooth projective homogeneous variety.

Let X be a smooth projective variety and let K(X) be the Grothendieck ring of X. The
topological filtration

K(X) = T 0(X) ⊃ T 1(X) ⊃ . . .

is given by the ideal T d(X) generated by the class [OY ] of the structure sheaf of a closed sub-

variety Y of codimension at least d. We write T d/d+1(X) for the quotient T d(X)/T d+1(X).
Let Γ0(X) = K(X) and let Γ1(X) be the kernel of the rank map K(X) → Z. The gamma

filtration

K(X) = Γ0(X) ⊃ Γ1(X) ⊃ . . .

is given by the ideals Γd(X) generated by the product γd1(x1) · · · γdi(xi) with xj ∈ Γ1(X)
and d1 + · · · + di ≥ d, where γdj is the gamma operation on K(X). For instance, we have
γ0(x) = 1 and γ1 = id, where x ∈ K(X). Indeed, the gamma operation defines the Chern
class cj(x) := γj(x− rank(x)) with values in K.

For any d ≥ 0, the gamma filtration Γd(X) is contained in the topological filtration
T d(X). For small degree d = 1, 2, two filtrations coincide. Moreover, the second quotient
of the topological filtration can be identified with the codimension 2 cycles so that we have:

(1) Γ2/3(X) ։ T 2/3(X) = CH2(X).

Now we assume that X is a smooth projective homogeneous variety over a field F . Let
E be a splitting field of X. Then, by [11, Proposition 3.4] we have

(2) T d(X) = Γd(X) = Γd(XE) ∩K(X)

for d = 1, 2.
Let F be either the gamma-filtration Γ or the topological filtration T on K(X). Ap-

plying the Snake lemma to the commutative diagram involving the exact sequences 0 →
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Fd+1(X) → Fd(X) → Fd/d+1(X) → 0 and the one over a splitting field E, we have the
following useful formula [7, Proposition 2]:

(3) |⊕ Fd/d+1(X)tors | · |K(XE)/K(X)| =
dim(X)
∏

d=1

|Fd/d+1(XE)/ Im(resd/d+1)|,

where resd/d+1 : Fd/d+1(X) → Fd/d+1(XE) is the restriction map.

3. Grothendieck group of the product of Severi-Brauer varieties

We now recall the Grothendieck group of a product of Severi-Brauer varieties. In addition,
we state some basic facts about codimension 2 cycles of a product of Severi-Brauer varieties.

Let Ai be a central simple F -algebra of degree di for 1 ≤ i ≤ n. Consider the restriction
map

(4) K(

n
∏

i=1

SB(Ai)) → K(

n
∏

i=1

P
di−1
E ),

where the corresponding Severi-Brauer variety SB(Ai) over a splitting field E is identified

with the projective space P
di−1
E . The latter ring in (4) is isomorphic to the quotient ring

Z[x1, · · · , xn]/((x1 − 1)d1 , · · · , (xn − 1)dn), where xi is the pullback of the class of the tau-

tological line bundle on P
di−1
E . Then by [12, §8 Theorem 4.1] (see also [10, Proposition 3.1])

the image of the map (4) coincides with the sublattice with basis

(5) {ind(A⊗i1
1 ⊗ · · · ⊗A⊗in

n ) · xi11 · · · xinn | 0 ≤ ij ≤ dj − 1, 1 ≤ j ≤ n}.

Let X be the product of Severi-Brauer varieties SB(Ai) as above. For codimension 2
cycles, one can simplify the computation of torsion subgroup by using [4, Proposition 4.7]:
if 〈A′

1, . . . , A
′
n′〉 = 〈A1, . . . , An〉 in the Brauer group Br(F ), then

(6) CH2(X)tors ≃ CH2(X ′)tors ,

where X ′ =
∏n′

i=1 SB(A
′
i).

Now we restrict our attention to p-primary algebras. Let A1, . . . , An be central simple
algebras of p-power degree with given indices ind(A⊗i1

1 ⊗ · · · ⊗ A⊗in
n ) for all nonnegative

integers i1, . . . , in. Let X be the product of SB(A1), . . . ,SB(An). Then, by [8, Corollary
2.15] the map (1) induces a surjection on torsion subgroups Γ2/3(X)tors ։ CH2(X)tors .
Moreover, by [4, Theorem 4.5] and [9, Proposition III.1] there is a product X̄ of Severi-

Brauer varieties SB(Āi) of algebras Āi with ind(A⊗i1
1 ⊗· · ·⊗A⊗in

n ) = ind(Ā⊗i1
1 ⊗· · ·⊗ Ā⊗in

n )
such that the above surjective map becomes bijective map

(7) Γ2/3(X̄)tors
∼→ CH2(X̄)tors .

This variety X̄ will be called a generic variety corresponding to X.
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4. Product of Conics

In the present section, we provide a general bound for the torsion in codimension 2
cycles of the product of n conics in Corollary 4.4. In case of the product of four conics, we
determine its torsion in terms of the indexes of the corresponding algebras in Theorem 4.6.
In the last subsection, we present its application to a Galois cohomology group.

The following example was proved in a different way [10, Corollary 3.9].

Example 4.1. Consider the product of two conics X = SB(Q1) × SB(Q2), where Q1 and
Q2 are quaternions. Let a = ind(Q1), b = ind(Q2), and ind(Q1 ⊗ Q2) = c. If ab = 1,
then the Chow group of X is torsion free, thus we may assume that ab ≥ 1. By (5),
we have a basis {1, ax1, bx2, cx1x2} of K(X), where x1 and x2 are the pullbacks of the
classes of the line bundles on the projective line over a splitting field E. Therefore, we have
|K(XE)/K(X)| = abc. By substitution yn = xn − 1 for n = 1, 2, we have a different basis
{1, ay1, by2, c(y1y2 + y1 + y2)} of K(X). Let αn = |T n/n+1(XE)/ Im(resn/n+1)|. If c ≥ 2,

then by (2) we have ay1, by2 ∈ T 1(X) and cy1y2 ∈ T 2(X). Therefore, |⊕ T n/n+1(X)tors | is
trivial. Otherwise, by the diagonal embedding SB(Q1) →֒ X we have y1 + y2 ∈ Im(res1/2),

thus α1 ≤ min{a, b}. As 2y1y2 ∈ T 2(X), we get α2 ≤ 2. Hence, |⊕ T n/n+1(X)tors | is trivial
as well. In any case, CH2(X) is trivial. In particular, M(C 2) = M(PQ2) = 0.

We determine the Chow group of codimension 2 of the product of three conics.

Proposition 4.2. (cf. [10, Proposition 6.1, Proposition 6.3]) Let Q1, Q2, Q3 be quaternions

and X = SB(Q1)× SB(Q2) × SB(Q3). Then, we have M(C 3) = M(PQ3) = 2. Moreover,

CH2(X)tors is trivial except the cases where the division algebras Qi satisfying ind(Qi⊗Qj) =
ind(Q1 ⊗ Q2 ⊗Q3) = 2 or 4 for all 1 ≤ i 6= j ≤ 3 and CH2(X̄)tors = Z/2Z in these cases,

where X̄ is the corresponding generic variety.

Proof. Let d = ind(Q1 ⊗ Q2 ⊗ Q3) and eij = ind(Qi ⊗ Qj) for 1 ≤ i 6= j ≤ 3. If one of

ind(Qi), eij , and d is 1, then by (6) and Example 4.1 CH2(X)tors is trivial. Therefore, by
(5) we have the following basis

{1, 2yi, eijyiyj, d(y1y2y3 + y1y2 + y1y3 + y2y3)}
of K(X), where yi = xi − 1, xi is the pullback of the tautological line bundle on the
projective line over a splitting field E, and eij , d ≥ 2.

If either d = 8 or d = 4 and eij = 2 for some i, j, then the set K(X) ∩ T 3(XE) has only
one element dy1y2y3 of the basis. As eijyiyj ∈ T 2(X) and 2yk ∈ T 1(X) for k 6= i, j, we have

dy1y2y3 = 2eijy1y2y3 = 2yk(eijyiyj) ∈ T 3(X), which implies that T 2/3(X)tors = CH2(X)tors
is trivial.

Now we assume that d = eij = 2 or 4 for all 1 ≤ i 6= j ≤ 3. Then, we have

|K(XE)/K(X)| = 23e3ijd. Let αn = |Γn/n+1(XE)/ Im(resn/n+1)|. Then, we obtain α1 ≤ 23,

α2 ≤ e3ij , and α3 ≤ 2d as 2dy1y2y3 = 2y1(dy2y3) ∈ Γ3(X). Hence, |⊕ Γn/n+1(X)tors | ≤ 2.

As c2(dx1x2x3) =
(d
2

)

(6y1y2y3 +2y1y2 +2y1y3 +2y2y3) ∈ Γ2(X), we have dy1y2y3 ∈ Γ2(X).

Observe that Γ3(X) is generated by Γ1(X) · Γ2(X) and any element of Γ1(X) · Γ2(X) is

divisible by 2d. Therefore, the class of dy1y2y3 gives a torsion of order 2 in Γ2/3(X). Hence,

we have Γ2/3(X)tors = Z/2Z and CH2(X̄)tors = Z/2Z by (7). �
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We determine the maximal torsion in Chow group of codimension 2 of the product of n
conics or the product of n Pfister quadric surfaces.

Proposition 4.3. Let n ≥ 2 and 1 ≤ i ≤ n be integers, Qi quaternion algebras satisfying

ind(⊗m
k=1Qik) = 2 for any 1 ≤ m ≤ n and all distinct ik, and X =

∏n
i=1 SB(Qi). Then, the

torsion subgroup CH2(X̄)tors of the corresponding generic variety X̄ is

(Z/2Z)⊕N , where N = 2n − (

(

n

2

)

+ n+ 1).

In particular, M(Cn) = M(PQn) ≥ 2N .

Proof. Let 1 ≤ i ≤ n and let Qi be a quaternion such that ind(⊗m
k=1Qik) = 2 for any

1 ≤ m ≤ n and all distinct ik, and X =
∏n

i=1 SB(Qi). Then, by (5) we have a basis
{1, 2xi1 · · · xim} of K(X), where xi is the pullback of the class of the tautological line
bundle on the projective line over a splitting field E. Let yi = xi − 1. Consider another
basis {1, 2yi1 · · · yim} of K(X).

Let j ≥ 1. As any element of Γ2j+1(X) is divisible by 2j+1, we have

(8) 2jyi1 · · · yik ∈ Γ2j(X)\Γ2j+1(X)

for any 2j + 1 ≤ k ≤ n. Moreover, if 2j + 1 ≤ k ≤ 2j + 2, then we obtain

(9) 2j+1yi1 · · · yik ∈ Γ2j+2(X).

Then, it follows from (8) and (9) that for any j ≥ 1 the class of 2jyi1 · · · yik generates a

subgroup of Γ2j/2j+1(X)tors of order 2. By the divisibility of an element of Γ2j+1(X), any
two subgroups generated by different classes of the elements 2jyi1 · · · yik and 2jyi1 · · · yik′
have trivial intersection. Hence, we have

(10) (Z/2Z)⊕Nj ⊆ Γ2j/2j+1(X)tors ,

where Nj =
∑n

k=2j+1

(n
k

)

.

Let βi = |Γi/i+1(XE)/ Im(resi/i+1)|/|Ki(XE)/K
i(X)|, where Ki(XE) (resp. Ki(X)) is

the codimension i part of K(XE) (resp. K(X)). Then, It follows from the base of K(X)
that β1, β2 ≤ 1 and

βi ≤ 2([i+1/2]−1)(ni) = 2[i+1/2](ni)/2(
n

i)

for any 3 ≤ i ≤ n. Hence, by (3) we have

(11) |⊕ Γi/i+1(X)tors | ≤ 2
∑n

i=3
([i+1/2]−1)(ni).

Therefore, it follows from (10) and (11) that for any j ≥ 1

Γ2j/2j+1(X)tors = (Z/2Z)Nj .

As N1 = N , the result follows from (7). �

Corollary 4.4. For any n ≥ 2, we have M(Cn) = M(PQn) = 2N .
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Proof. Let X =
∏n

i=1 SB(Qi) ∈ Cn such that ind(Qi) = 2 for all i. For 1 ≤ m ≤ n, set

ei1...im = max{ind(Q⊗j1
i1

⊗· · ·⊗Q⊗jm
im

)}, where the maximum ranges over 0 ≤ j1, . . . , jm ≤ 1.

If m ≥ 3, then ei1...imyi1 · · · yim−1
∈ T 2(X). As 2yim ∈ T 1(X), we have

(12) 2ei1...imyi1 · · · yim ∈ T 3(X).

Since the subgroup T 3(XE) ∩K(X) is generated by ei1...imyi1 · · · yim for m ≥ 3, it follows
from (1), (2), and (12) that |CH2(X)tors | ≤ 2N . If ind(Qi) = 1 for some i, then by (6) the
computation of the upper bound for the torsion subgroup reduces to the case of product of
less than n conics. Hence, we have M(Cn) ≤ 2N , thus by Proposition 4.3 we obtain the
result. �

4.1. Four Conics. Let Qi be a quaternion algebra over a field F for 1 ≤ i ≤ 4. Consider
the product X of the corresponding conics SB(Qi). If ind(Qi) = 1 for some i, then by (6)
the problem to find torsion in CH2(X) is reduced to the case of product of three conics
(Proposition 4.2). Hence, we may assume that ind(Qi) = 2 for all i. Let gij = ind(Qi⊗Qj),
hi = ind(Qj ⊗Qk ⊗Ql), and d = ind(Q1⊗Q2⊗Q3⊗Q4) for all integers i, j, k, l such that
{i, j, k, l} = I4. For the same reason, we may assume that gij , hi, d ≥ 2. By (5), we have
the following basis of K(X)

(13) {1, 2xi, gijxixj, hixjxkxl, dx1x2x3x4},

where xi, xj , xk, xl are the pullbacks of the classes of the tautological line bundles on the
projective lines. By substitution yi = xi − 1 for all 1 ≤ i ≤ 4, it follows from (13) that we
have another basis K(X)

(14) {1, 2yi, gijyiyj, hi(yjykyl + yjyk + yjyl + ykyl), d(y1y2y3y4 +
∑

yiyjyk +
∑

yiyj}.

Now we will set up some notations, which will be used in this subsection. For any integer
m ∈ {2, 4, 8}, we set

Hm = {1 ≤ i ≤ 4 |hi = m}.
Let J be the set of all indices {12, 13, 14, 23, 24, 34} of gij. We consider the decompositions
of J :

J = J1 ∪ J2 ∪ J3 = Ki ∪ Li,

where J1 = {12, 34}, J2 = {13, 24}, J3 = {14, 23}, Ki = {jk, jl, kl}, and Li = J\Ki for
j < k < l. We set

G = {ij ∈ J | gij = 2}.
We will use the following lemma to find bounds for the torsion in CH2(X).

Lemma 4.5. Let 1 ≤ m ≤ 3 and 1 ≤ p < q < r ≤ 4 be integers and let i, j, k, l be integers

such that {i, j, k, l} = I4. Then, in codimension 2, 3, and 4 respectively, we have

(1) Im(res2/3) ∋
{

2
∑

ypyq if d = 2,

2(yiyj + yiyk + yjyk) if hl = 2,
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(2) Im(res3/4) ∋































4yiyjyk, 4yiyjyl if gij = 2,

4yiyjyk,−4yiyjyk+4
∑

ypyqyr if hl = 2,

4yiyjyk, 4yiyjyl, 4yiykyl if gij = gik = 2,

∀ 4ypyqyr if d = 2 or |G| ≥ 4 or |G ∩ Jm|=2

or |G ∩Ki|=3,

(3) Γ4(X) ∋
{

8y1y2y3y4 if d ∈ {2, 4} or |G| ≥ 1 or |H2| ≥ 1,

4y1y2y3y4 if |G ∩ Jm| = 2.

Proof. If d = 2, then we have

c2(2x1x2x3x4) = 2(y1y2y3y4 +
∑

ypyqyr +
∑

ypyq) ∈ Γ2(X),

thus, we obtain c1(2xi)c1(2xj)c2(2x1x2x3x4) = 8y1y2y3y4 ∈ Γ4(X), which imply the results
in Lemma 4.5 (1), (3), respectively. Since 8

∑

ypyqyr ∈ Γ3(X), the result in Lemma 4.5 (2)
follows from

c1(2xi)c2(2x1x2x3x4) = 12y1y2y3y4 + 4yi(yjyk + yjyl + ykyl) ∈ Γ3(X) and

c1(2x1x2x3x4)c2(2x1x2x3x4) = 72y1y2y3y4 + 12
∑

ypyqyr ∈ Γ3(X).

If hl = 2, then it follows from (2) and (14) that

(15) 2(yiyjyk + yiyj + yiyk + yjyk) ∈ Γ2(X),

which completes the proof of Lemma 4.5 (1). Multiplying (15) by c1(2xk) and c1(2xl),
respectively, we obtain the results in Lemma 4.5 (2). Multiplying 4yiyjyk by c1(2xl), we
have the result in Lemma 4.5 (3).

If |G ∩ Jm| = 2 for some m, then we have gij = gkl = 2 for some i, j, k, l, thus the results
in Lemma 4.5 (2)(3) follow from (14) and (2).

If gij = 2, then it follows from (14) and (2) that

(16) 2yiyjc1(2yk), 2yiyjc1(2yl) ∈ Γ3(X).

Multiplying the first element in (16) by c1(2xl), we obtain the result in Lemma 4.5 (3). If
d = 4, then we have c4(4x1x2x3x4) = 24y1y2y3y4 ∈ Γ4(X). As 16y1y2y3y4 ∈ Γ4(X), we
complete the proof of Lemma 4.5 (3).

If |G| ≥ 4, then we have |G ∩ Jm| = 2 for some m, hence the result in Lemma 4.5 (2)
follows from the case of |G ∩ Jm| = 2. If gij = gik = 2, then it follows from (14) and (2)
that

2yiyjc1(2xk), 2yiyjc1(2xl), 2yiykc1(2xl) ∈ Γ3(X).

If |G ∩Ki| = 3, then we get gjk = gjl = gkl = 2, thus, by the same argument we complete
the proof of Lemma 4.5 (2). �

We determine the codimension 2 cycles of the product of four conics as in Proposition
4.2.
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Theorem 4.6. The torsion in Chow group of codimension 2 of the product X of four conics

is trivial if it satisfies one of the conditions (17), (22), (23), (25), (31), (32), (33), d = 16.
Otherwise, the torsion subgroup admits all elementary abelian group whose order is a divisor

of 25.

Proof. Let m be an integer in I3, Qi a quaternion division algebra over F and X the product
of the corresponding conics SB(Qi) for 1 ≤ i ≤ 4. Set

βi = |Γi/i+1(XE)/ Im(resi/i+1)|/|Ki(XE)/K
i(X)|,

where E is a splitting field of X and Ki(XE) (resp. Ki(X)) is the codimension i part of
K(XE) (resp. K(X)). We find upper bounds of βi using case by case analysis. Note that
we have β1 ≤ 1.

We begin with some observations on d: if d = 24, then we have hi = d/2 for all i, which
implies that gij = d/4 for all 1 ≤ i 6= j ≤ 4. Therefore, we obtain βi ≤ 1 for all i, thus,

|⊕ Γi/i+1(X)tors | ≤ 1, i.e., CH2(X)tors is trivial. Hence, we may assume that 2 ≤ d ≤ 23.
Note also that we have

d ≤ 4 if |H2| ≥ 1, and |H8| = 0 if d = 2,

thus we only consider the cases where d = 4, 8 (resp. d = 2, 4) in the first 3 cases (resp. the
last 4 cases) of the following. In case where |H2| = 4, we have d ∈ {2, 4, 8}.

Case: |H8| ≥ 3. In this case, we have gij = 4 for all i, j. It follows from Lemma 4.5 (1)

that β2 ≤ (45 · 22−|H2|)/46. By Lemma 4.5 (2), we obtain

β3 ≤
{

(82 · 42)/83 · 2 if |H2| = 1,

2|H4| otherwise.

It follows by Lemma 4.5 (3) that β4 ≤ 2. Hence, by (3) the order of the group ⊕Γi/i+1(X)tors
is nontrivial except the case where

(17) |H2| = 1, |H8| = 3.

If |H8| = 4, d = 8, then by the divisibility of elements in Γ3(X) the class of 8y1y2y3y4
gives a torsion element of Γ2/3(X)tors of order 2. As β1β2β3β4 ≤ 2, we have

(18) Γ2/3(X)tors = Z/2Z.

Similarly, if |H8| = 3, hi = 4 and d = 4, then we have

(19) Γ2/3(X)tors = (Z/2Z)⊕2

generated by the classes of 4yjykyl and 4(yiyjyk + yiyjyl + yiykyl + y1y2y3y4).
Case: |H8| = 2. A simple calculation of index implies that 0 ≤ |G| ≤ 1. Hence, it follows

from Lemma 4.5 (1) that

(20) β2 ≤ (46−|G|−|H2| · 2|G|+|H2|)/46−|G| · 2|G|.

If |G| = |H2| = 0, then we have β3 ≤ 84/(82 · 42). Otherwise, by Lemma 4.5 (2) we obtain

β3 ≤ (83−|G|−|H2| · 41+|G|+|H2|)/82 · 42−|H2| · 2|H2|.
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In summary, we have

β3 ≤











1 if |G| = 1, |H2| = 0 or |G| = |H2| = 1,

2 if |G| = 0, |H2| = 1 or |H2| = 2,

22 otherwise.

It follows from Lemma 4.5 (3) that

(21) β4 ≤
{

1 if |G| ≥ 1, |H2| = 0, d = 8,

2 otherwise.

Therefore, it follows by the same argument as in the previous case that |⊕ Γi/i+1(X)tors | is
nontrivial except the case where

(22) |H2| = 2 or |G| = |H2| = 1 or |G| = 1, |H2| = 0, d = 8.

Case: |H8| = 1. By this assumption, we have 0 ≤ |G| ≤ 3. It follows by the same
argument as in the previous case that we have the same upper bounds in (20) and (21) for
β2 and β4, respectively. Let Gn = G ∩ (∩i∈HnKi) for n = 2, 4. If |G| = |G2| = |H2| = 1
(resp. |G| = |G4| = 1, |H2| = 2), then we have hi = 2, hl = 8, hj = hk = 4 (resp. hj = 2,
hk = 4), and gil = 2 (resp. gkl = 2) for {i, j, k, l} = I4, which implies that β3 ≤ 44/(8 ·42 ·2)
(resp. β3 ≤ 8·43/(8·4·22)) by Lemma 4.5 (2). If |H2| = 0, |G| ≥ 2 (resp. |H2| = 0, |G| = 0),
then by Lemma 4.5 (2) we obtain β3 ≤ 8 · 43/(8 · 43) (resp. β3 ≤ 84/(8 · 43)). Otherwise, by
Lemma 4.5 (2) we have

β3 ≤ min{1, 83−|G|−|H2|} ·min{44, 41+|G|+|H2|}/(8 · 43−|H2| · 2|H2|).

Therefore, we conclude that

β3 ≤



















1 if 0 ≤ |H2| ≤ 1, |G| ≥ 2 or |H2| = |G2| = |G| = 1,

2 otherwise,

22 if 1 ≤ |H2| ≤ 2, |G| = 0 or |H2| = 2, |G| = |G4| = 1,

23 if |H2| = |G| = 0.

By the same argument, the order of the torsion |⊕ Γi/i+1(X)tors | is nontrivial except the
following cases:
(23)
|G| ≥ 2, |H2| = 0, d = 8 or |G| ≥ |H2||H4| = 2 or |H2||H4| = 2, |G| = |G2| = 1 or |H2| = 3.

If d = 8, |G| = 6, and hi = 8, then by the same argument as above we obtain

(24) Γ2/3(X)tors = (Z/2Z)⊕3 and Γ3/4(X)tors = Z/2Z

generated by 4yiykyl, 4yiyjyl, 4yiyjyk, and 8y1y2y3y4, respectively.
Case: |H4| = 4. By Lemma 4.5 (1), we have

β2 ≤
{

(45−|G| · 2|G|+1)/46−|G| · 2|G| if d = 2, |G| 6= 6,

(46−|G| · 2|G|)/46−|G| · 2|G| otherwise.
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It follows from Lemma 4.5 (2) that

44 · β3 ≤



















44 otherwise,

8 · 43 if d ∈ {4, 8}, 2 ≤ |G| = |G ∩ Li| ≤ 3 for some i,

82 · 42 if d ∈ {4, 8}, |G| = 1,

84 if d ∈ {4, 8}, |G| = 0.

By Lemma 4.5 (3) and (14), we obtain

β4 ≤











1 if d = 8, |G| 6= 0 or d = 4, |G ∩ Jm| = 2 for some m,

2 otherwise,

22 if d = 2, |G| 6= 6, |G ∩ Jm| 6= 2 ∀m.

Applying the same argument, we have that the order of ⊕Γi/i+1(X)tors is nontrivial except
the following cases: for some m and i

(25) d = 2, |G| 6= 6, |G ∩ Jm| = 2 or d = 4, |G ∩ Jm| = 2 or d = 8, |G ∩Ki| = 3.

If |G| = 0 and d = 4, then by (14) and (2) one has hiyjykyl, 4y1y2y3y4 ∈ Γ2(X)\Γ3(X)
for all {i, j, k, l} = I4 since any element of Γ3(X) is divisible by 23. Therefore, by (14) and

Lemma 4.5 (3) the classes of hiyjykyl and 4y1y2y3y4 give torsion elements of Γ2/3(X) of
order 2. Moreover, the subgroups generated by these classes have trivial intersection by the
divisibility of an element of Γ3(X). Hence, it follows from Corollary 4.4 that

(26) Γ2/3(X)tors = (Z/2Z)⊕5, thus CH2(X̄)tors = (Z/2Z)⊕5,

where X̄ is the corresponding generic variety. If |G| = 0 and d = 8, then by the same

argument as above the classes of hiyjykyl generate different subgroups of Γ2/3(X)tors of

order 2 and the class of 8y1y2y3y4 = 2y1(4y2y3y4) generates a subgroup of Γ3/4(X)tors of
order 2. Therefore, it follows Corollary 4.4 that

(27) Γ2/3(X)tors = (Z/2Z)⊕4 and Γ3/4(X)tors = Z/2Z.

Case: |H2| = 4. By (14) and Lemma 4.5 (1), one has

(28) β2 ≤































d/25 otherwise,

d/24 if |G| = d = 4 or |G| = 3, d = 2,

d/23 if |G| = 4, d = 2 or |G| = 5, d = 4,

d/22 if |G| = 6, d = 4 or |G| = 5, d = 2,

d/2 if |G| = 6, d = 2.

It follows from (14) that β3 ≤ 24 = 84/44. By Lemma 4.5 (3), we have

(29) β4 ≤
{

22/d if |G| ≥ 2, |G ∩ Jm| = 2 for some m,

23/d otherwise.

Applying the same argument together with the upper bounds βi, we have Γ2/3(X)tors 6= 0
for any case. In particular, if |G| = 6 and d = 2, then by Proposition 4.3 we have

(30) Γ2/3(X)tors = (Z/2Z)⊕5, thus CH2(X̄)tors = (Z/2Z)⊕5.
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Case: |H2| = 3, |H4| = 1. Let H ′
2 = {i ∈ H2 | |Ki∩G| = 3}. Then, by the same argument

as in the previous case we have the same upper bound (28) for β2 if we add one case |G| = 3,
d = 4, |H ′

2| = 1 to the second line of (28). It follows by Lemma 4.5 (2) that β3 ≤ 23. By
applying the same argument as in the previous case we have the same upper bound (29)

for β4. it follows by the same argument as in the previous case that |⊕ Γi/i+1(X)tors | is
nontrivial except the case:

(31) |G| = 2, |G ∩ Jm| = 2 or |G| = 3, |G ∩ Jm| = 2, d = 4 for some m.

Case: |H2| = 2, |H4| = 2. By Lemma 4.5 (1), we have

β2 ≤



















d/24 otherwise,

d/23 if 3 ≤ |G| ≤ 4, |H ′
2|=1 or |G| =4, |H ′

2|=0, d=2 or |G|= 5, |H ′
2| ≤ 1, d=4,

d/22 if |G| = 5, |H ′
2| = 2 or |G| = 5, |H ′

2| ≤ 1, d = 2 or |G| = 6, d = 4,

d/2 if |G| = 6, d = 2.

It follows from Lemma 4.5 (2) that

β3 ≤
{

22 otherwise,

23 if |G| = 0, d = 4 or |G| = |G2| = 1, d = 4.

Applying the same argument as in the previous case, one has the same upper bound (29) for

β4. Therefore, by the same argument, the order of the torsion |⊕Γi/i+1(X)tors | is nontrivial
except the following cases: for some m and i

(32) |G| = |G ∩ Jm| = 2 or |G| = |G ∩Ki| = 3 or |G| = 4, |H ′
2| = 0, d = 4.

Case: |H2| = 1, |H4| = 3. By Lemma 4.5 (1), we obtain

β2 ≤











d/23 otherwise,

d/22 if 3 ≤ |G| ≤ 5, |H ′
2| = 1 or |G| = 5, |H ′

2| = 0, d = 2 or |G| = 6, d = 4,

d/2 if |G| = 6, d = 2.

In codimension 3, it follows from Lemma 4.5 (2) that

β3 ≤











2 otherwise,

22 if |G| = |G2| = 1, d = 4,

23 if |G| = 0, d = 4.

In codimension 4, it follows by Lemma 4.5 (2) that

β4 ≤











1 if 2 ≤ |G| ≤ 3, |G ∩ Jm| = 2 for some m,d = 4 or |G| ≥ 4, d = 4,

2 otherwise,

22 if 0 ≤ |G| ≤ 3, |G ∩ Jm| 6= 2 ∀m,d = 2.

Hence, by the same argument as above the order of ⊕Γi/i+1(X)tors is nontrivial except the
following cases:

(33) 2 ≤ |G| ≤ 3, |G∩Jm| = 2 for some m or |G| = 4, |H ′
2| = 0 or |G| = 5, |H ′

2| = 0, d = 4.

Finally, the second statement of the theorem follows from (18), (19), (24), (26), and (27). �
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Remark 4.7. Indeed, one can easily show that the upper bounds β1β2β3β4 for each case
of the proof of Theorem 4.6 are sharp.

4.2. Galois cohomology and torsion groups. As mentioned in Section 1, the torsion
subgroup of the Chow group of codimension 2 cycles can be used to measure how far is a
relative Galois cohomology group from being a decomposable subgroup (generated by the
class of Ai below) [10, Theorem 4.1]. Namely, for an F -variety X =

∏

i SB(Ai) ∈ Cn or
SBn we have

(34) CH2(X)tors ≃ H3(F (X)/F,Q/Z(2))/ ⊕i H
1(F,Q/Z(1)) ∪ [Ai],

where H3(F (X)/F,Q/Z(2)) denotes the kernel of H3(F,Q/Z(2)) → H3(F (X),Q/Z) of
Galois cohomology groups with coefficient in Q/Z(2) and [Ai] denotes the class in the Brauer
group Br(F ) = H2(F,Q/Z(1)). Therefore, our main results (Corollary 4.4, Proposition 5.2,
and Theorem 5.4) tell us how large indecomposable subgroups we can have.

Moreover, by [10, Remark 4.1] there is a canonical injection from a Galois cohomology
group with the finite coefficient µ⊗2

n to the torsion subgroup:

(35) H3(F (X)/F,µ⊗2
n )/⊕i H

1(F,µn) ∪ [Ai] →֒ CH2(X)tors .

Therefore, if the torsion subgroup CH2(X)tors is trivial, then one can write the relative
Galois cohomology group in terms of decomposable subgroups with the finite coefficient
µn. For instance, if X ∈ C4 satisfying one of the conditions (17), (22), (23), (25), (31),
(32), (33), d = 16 in Theorem 4.6, then we obtain |CH2(X)tors | = 1, thus by (35) we have

H3(F (X)/F,Z/2Z) = ⊕4
i=1H

1(F,Z/2Z) ∪ [Qi].

5. Product of Severi-Brauer surfaces

In this section, we find a general lower bound of the torsion in Chow group of codimension
2 of the product of n Severi-Brauer surfaces in Proposition 5.2 and prove that the lower
bound is sharp for n = 3 in Theorem 5.4.

To prove Proposition 5.2 we shall need the following lemma.

Lemma 5.1. Let p be an odd prime and let n ≥ 2 and mi be integers such that 1 ≤ mi ≤ p−1
for all 1 ≤ i ≤ n. Let Φ be the polynomial (

∏n
i=1(si +1)mi − 1)p in Z[s1, . . . , sn]. Then, the

alternating sum
∑p−1

j1=···=jn=1(−1)j1+···+jnCj1···jn in the quotient Z[s1, . . . , sn]/(s
p
1, . . . , s

p
n) is

divisible by p2, where Cj1···jn is the coefficient of the monomial sj11 · · · sjnn in Φ.

Proof. Let tn = (sn + 1)mn . For any 1 ≤ j1, . . . , jn−1 ≤ p − 1, we write
∑p

k=1 dj1···jn−1kt
k

for the coefficient of sj11 · · · sjn−1

n−1 in Φ. Let ej1···jn−1
be the coefficient of sj11 · · · sjn−1

n−1 in
Ψn := (s1 +1)pm1 · · · (sn−1 +1)pmn−1 . By expanding each factor (si +1)pmi = ((si +1)p)mi

of Ψn, we have

(36) ej1···jn−1
=

(

(

p

j1

)

m1 + α1

)

· · ·
(

(

p

jn−1

)

mn−1 + αn−1

)

,

where p2 | αi for all 1 ≤ i ≤ n− 1.
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We prove by induction on n. Assume n = 2. First, observe that Cj10 = 0 in the quotient
Z[s1, s2]/(s

p
1, s

p
2). Hence, we have

p−1
∑

j2=1

(−1)j2Cj1j2 =

p−1
∑

j2=0

(−1)j2Cj1j2=

p
∑

k=1

dj1k

p−1
∑

i=0

(−1)i
(

m2k

i

)

=

p
∑

k=1

dj1k

(

m2k − 1

p− 1

)

,

which implies that

(37)

p−1
∑

j1=j2=1

(−1)j1+j2Cj1j2 =

p−1
∑

j1=1

p
∑

k=1

dj1k

(

m2k − 1

p− 1

)

(−1)j1 .

For each 1 ≤ k ≤ p− 1, we have

(38) p |
(

m2k − 1

p− 1

)

.

As

Φ =

p
∑

i=0

(

p

i

)

(s1 + 1)m1iti2(−1)p−i,

for any 1 ≤ k ≤ p we obtain

(39) p | dj1k.
From (38) and (39), it suffices to show that

(40) p2 |
p−1
∑

j1=1

dj1p

(

m2p− 1

p− 1

)

(−1)j1 .

Since dj1p = ej1 and
∑p−1

j1=1

( p
j1

)

(−1)j1 = 0, the divisibility in (40) follows from (36).

Now we assume that the result holds for n− 1. By the induction hypothesis, it is enough
to show that

∑p−1
j1=···=jn−1=1,jn=0(−1)j1+···+jnCj1···jn is divisible by p2. Applying the same

argument as in the case n = 2, we have

(41)

p−1
∑

j1=···=jn−1=1,jn=0

(−1)j1+···+jnCj1···jn =

p−1
∑

j1=···=jn−1=1

p
∑

k=1

dj1···jn−1k

(

mnk − 1

p− 1

)

(−1)j1+···+jn−1 .

We have p |
(mnk−1

p−1

)

for each 1 ≤ k ≤ p − 1. By the same argument with tn, we also have

p | dj1···jn−1k for each 1 ≤ k ≤ p. For k = p, we have p2 | dj1···jn−1p by (36). Therefore, the
result immediately follows. �

We will provide lower bounds of the torsion in Chow group of codimension 2 of the
product of n Severi-Brauer surfaces, which generalize the case of n = 2 in [4, Proposition
6.3].

Proposition 5.2. Let n ≥ 2 and 1 ≤ i ≤ n be integers, Ai a central simple algebra

satisfying ind(A⊗j1
1 ⊗ · · · ⊗A⊗jn

n ) = 3 for any integers 0 ≤ j1, . . . , jn ≤ 2, not all equal to 0,
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and X =
∏n

i=1 SB(Ai). Then, the torsion subgroup CH2(X̄)tors of the corresponding generic

variety X̄ contains

(Z/3Z)⊕N , where N = 2n + 4

(

n

3

)

− (n+ 1).

In particular, M(SBn) ≥ 3N .

Proof. Let 1 ≤ i ≤ n and let Ai be a central simple algebra such that ind(⊗n
k=1A

⊗jk
k ) = 3

for any integers 0 ≤ j1, . . . , jn ≤ 2, and X =
∏n

i=1 SB(Ai). Then, by (5) we have a basis

{1, 3xj1i1 · · · x
jm
im

} of K(X), where xi is the pullback of the class of the tautological line bundle
on the projective plane and 1 ≤ m ≤ n.

Let yi = xi − 1. Consider another basis {1, 3yj1i1 · · · y
jm
im

} of K(X). Let B1 = {bpq :=

3y2py
2
q}, B2 = {bpqr := 3ypyqyr}, B3 = {b′pqr := 3y2pyqyr}, andDs = {di1···is := 3(yi1 · · · yis)2}

for all distinct 1 ≤ p, q, r ≤ n and 3 ≤ s ≤ n. Then we have y3i = 0, |B1| =
(n
2

)

, |B2| =
(n
3

)

,

|B3| = 3
(n
3

)

, and |Ds| =
(n
m

)

. Set

N = |B1|+ |B2|+ |B3|+
n
∑

s=3

|Ds| = 2n + 4

(

n

3

)

− (n+ 1).

It follows from (2) that each element of B1, B2, B3,Ds is in Γ2(X). If any element of
B1, B2, B3,Ds is in Γ3(X), then by applying Lemma 5.1 with yi = −1 for all 1 ≤ i ≤ n
we have 3 is divisible by 9, which is impossible. Therefore, any element of B1, B2, B3,Ds

is in Γ2(X)\Γ3(X). Since 3bpq = 3y2p(3y
2
q ) ∈ Γ4(X), 3bpqr = 3ypyq(3yr) ∈ Γ3(X), 3b′par =

3y2p(3yqyr) ∈ Γ3(X), 3di1···is = 3y2i1(3y
2
i2
· · · y2im) ∈ Γ4(X), any element of B1, B2, B3,Ds

gives a torsion of Γ2/3(X) of order 3.
We show that any two subgroups generated by any two elements of B1, B2, B3, Ds have

trivial intersection. Let bpq and btu be two different elements of B1. If bpq ± btu ∈ Γ3(X),
then by applying Lemma 5.1 with yp = yq = −1, yl = 0 for all 1 ≤ l 6= p, q ≤ n we obtain
3 is divisible by 9, which is a contradiction. Hence, the subgroups generated by bpq and btu
have trivial intersection. Moreover, by the same argument the subgroup generated by bpq
has trivial intersection with any subgroup generated by any element of B2, B3, and Ds.

Let z be either 1 or a product of x1, · · · , xn which does not contain any of xp, xq, and
xr. Consider the sequence β′

pqr consisting of the coefficient of b′pqr/3 in

c3(3x
2
pxqxrz), c3(3xpx

2
qxrz), c3(3xpxqx

2
rz), c3(3x

2
px

2
qxrz), c3(3x

2
pxqx

2
r),(42)

c3(3xpx
2
qx

2
rz), c3(3x

2
px

2
qx

2
rz), c3(3xpxqxrz), respectively.

Then, by a direct calculation, we have β′
pqr = (66, 30, 30, 132, 132, 60, 264, 15). Hence, each

element of β′
pqr − β′

qpr, β
′
pqr − β′

rpq, and β′
qpr − β′

rpq is divisible by 9, i.e.,

(43) 9 | β′
pqr − β′

qpr, β
′
pqr − β′

rpq, β
′
qpr − β′

rpq.

Consider another sequence βpqr consisting of the coefficient of bpqr/3 in (42). Then, we have
βpqr = (12, 12, 12, 24, 24, 24, 48, 6). Therefore, we have

(44) 9 | βpqr − β′
pqr, βpqr − β′

qpr, βpqr − β′
rpq.
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Let b′pqr and b′tuv be two different elements of B3. If b
′
pqr±b′tuv ∈ Γ3(X), then by applying

Lemma 5.1 with yp = yq = yr = −1, yl = 0 for all 1 ≤ l 6= p, q, r ≤ n we obtain 3 is
divisible by 9, which is impossible. Therefore, the subgroups generated by b′pqr and b′tuv
have trivial intersection. Assume that b′pqr ± btuv ∈ Γ3(X) or b′pqr ± di1···is ∈ Γ3(X). Then,

this contradicts the divisibility in (43). Hence, the subgroup generated by b′pqr has trivial
intersection with any subgroup generated by any element of B2 and Ds.

Let bpqr and btuv be two different elements of B2. Suppose that bpqr±btuv ∈ Γ3(X). Then,
by applying Lemma 5.1 with yp = yq = yr = −1, yl = 0 for all 1 ≤ l 6= p, q, r ≤ n we obtain
−3 is divisible by 9, which is a contradiction. Therefore, the subgroups generated by bpqr
and btuv have trivial intersection. If bpqr ± di1···is ∈ Γ3(X), then we obtain a contradiction
by the divisibility in (44). Hence, the subgroup generated by bpqr has trivial intersection
with any subgroup generated by any element of Ds.

Let 3 ≤ s, s′ ≤ n and let di1···is and di′
1
···i′

s′
be two different elements of Ds and Ds′ ,

respectively. If di1···is ± di′
1
···i′

s′
∈ Γ3(X), then by applying Lemma 5.1 with yi1 = · · · =

yis = −1 and yl = 0 for all 1 ≤ l 6= i1, . . . , is ≤ n we have 3 is divisible by 9, which is a
contradiction. It follows that the torsion subgroup Γ2/3(X)tors contains (Z/3Z)⊕N , so does
CH2(X̄)tors . �

5.1. Three Severi-Brauer surfaces. We consider the product of three Severi-Brauer
surfaces. Let A1, A2, A3 be a central simple algebras of degree 3 over F and let X be
the product of the corresponding Severi-Brauer surfaces SB(A1),SB(A2),SB(A3). If one of
A1, A2, A3 is split, then by (6) the problem to compute torsion in Chow group of codimension
2 is reduced to the case of product of two Severi-Brauer varieties, which was done in [4,
Theorem 5.1]. Therefore, we may assume that ind(Am) = 3 for all 1 ≤ m ≤ 3. Let
ei = ind(Aj⊗Ak), fi = ind(A⊗2

j ⊗Ak), d = ind(A1⊗A2⊗A3), and gi = ind(A⊗2
i ⊗Aj⊗Ak)

for all i, j, k such that {i, j, k} = I3. For the same reason, we may assume that ei, fi, d, gi ≥ 3.
By (5), we have the following basis of K(X)

(45) {1, 3xm, 3x2m, eixjxk, fix
2
jxk, dx1x2x3, eix

2
jx

2
k, gix

2
ixjxk, gixix

2
jx

2
k, dx

2
1x

2
2x

2
3},

where xm is the pullback of the class of the tautological line bundle on the projective plane.
We will need the following lemma to find upper bounds of the torsion.

Lemma 5.3. Let i, j, k be integers such that {i, j, k} = I3 and let ym = xm − 1 for all

1 ≤ m ≤ 3. Then, we have

(1) 3y2m ∈ Γ2(X) in any case and 3yjyk ∈ Γ2(X), 3y2j yk + 3yjy
2
k ∈ Γ3/4(X) if ei = 3,

(2) 3y2j yk − 3yjy
2
k ∈ Γ3/4(X) if fi = 3,

(3) 3
∑3

m,l=1 ymyl ∈ Im(res2/3), 6y1y2y3+3
∑3

m,l=1 y
2
myl ∈ Γ3/4(X) and 9y21y

2
2y

2
3 ∈ Γ6(X)

if d = 3,

(4) 3
∑3

m,l=1 y
2
myl+3(yiy

2
j +y2i yj)+12y1y2y3 ∈ Γ3/4(X), 3(yjyk−yiyk−yiyj) ∈ Im(res2/3)

if gi = 3,

(5) 3y21y
2
2y3 − 3y21y2y

2
3 ∈ Γ3(X) if fm = gm = em = 3 for all m.

(6) 3y21y
2
2y

2
3 − 6y21y

2
2y3 ∈ Γ3(X) if fm = gm = em = d = 3 for all m.
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Proof. (1) By (45), we have γ2(3xm−3) = 3y2m ∈ Γ2(X). Since 3yjyk ∈ K(X), this element
is in Γ2(X). The rest of them follow from direct computation of c3(3xjxk).

(2) By (45) and Lemma 5.3 (1), the elements 9y2j yk = 3y2j (3yk) and 9yjy
2
k = 3yj(3y

2
k) are

in Γ3(X), the result follows from the calculation of c3(3x
2
jxk).

(3) By (45), we obtain 3(y1y2y3 +
∑3

m,l=1 ymyl) ∈ Γ2(X). Thus, the first inclusion imme-

diately follows. As 27(y1y2y3)
2 ∈ Γ6(X), the rest of them follow from the computations of

c3(3x1x2x3) and c6(6x1x2x3).

(4) By the calculation of c3(3x
2
i xjxk), the first inclusion follows. By (45) we get 3x2i xjxk ∈

Γ2(X). Hence, the second inclusion follows by expanding the element 3(yi+1)2(yj+1)(yk+
1).

(5) By direct calculation, we have

150(y21y
2
2y3−y21y2y

2
3)=−6(c3(3x1x

2
2x3)+ c3(3x1x

2
2))+6(c3(3x1x2x

2
3)+ c3(3x1x

2
3))

+3(c3(3x
2
1x

2
2x3)+ c3(3x

2
2x3))−3(c3(3x

2
1x2x

2
3) + c3(3x2x

2
3))

− 9c3(3x
2
1x2) + 9c3(3x

2
1x3) + 42c3(3x1x2)− 42c3(3x1x3).

Since 3y21(3y
2
2y3)− 3y21(3y2y

2
3) ∈ Γ4(X), the result follows.

(6) It follows by a direct computation that

150y21y
2
2y

2
3−300y21y

2
2y3= 4(c3(3x1x2x

2
3)−c3(3x

2
1x

2
2x3))+6(c3(3x

2
1x2) + c3(3x1x

2
2))

+2(c3(3x1x
2
3) + c3(3x2x

2
3))−2(c3(3x

2
1x2x

2
3) + c3(3x1x

2
2x

2
3))

+ 8(c3(3x
2
1x2x3)+ c3(3x1x

2
2x3))−8(c3(3x1x3) + c3(3x2x3))

+ c3(3x
2
1x

2
2x

2
3)− 16c3(3x1x2x3)− 36c3(3x1x2).

As 9y21y
2
2y

2
3 ∈ Γ4(X) by Lemma 5.3 (3) and 3y21(3y

2
2y3) ∈ Γ4(X), the result follows. �

Applying Proposition 5.2, we prove the main result of this section.

Theorem 5.4. The maximal torsion in Chow group of codimension 2 of the product of

three Severi-Brauer surfaces is (Z/3Z)⊕8. In other words, M(SB3) = 38.

Proof. Let A1, A2, A3 be division algebras of degree 3 over F and let X be the product of
the corresponding Severi-Brauer surfaces SB(A1),SB(A2),SB(A3). Set

βn = |Γn/n+1(XE)/ Im(resn/n+1)|/|Kn(XE)/K
n(X)|,

where E is a splitting field of X, 1 ≤ n ≤ 6, and Kn(XE) (resp. K
n(X)) is the codimension

n part of K(XE) (resp. K(X)).
We shall find upper bounds of βn for 1 ≤ n ≤ 6. First of all, by (45) we have β1 ≤ 1. For

the rest of them, we will find upper bounds using case by case analysis. Let i, j, k be integers
such that {i, j, k} = I3, f = f1f2f3, g = g1g2g3, e = e1e2e3, G = {1 ≤ m ≤ 3 | gm = 3}
and H = {1 ≤ m ≤ 3 | fm = 9}. Observe that if one of {e1, e2, e3} is 3 (say, ei = 3), then
d, gm ≤ 9 for 1 ≤ m ≤ 3 and 9y1y2y3 = 3yjyk(3yi) ∈ Γ3(X) by Lemma 5.3 (1).
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Case: e1 = e2 = e3 = 3. By Lemma 5.3 (1), we have β2 ≤ 1. If d = 3, then by Lemma

5.3 (1) and (3) we get 3y1y2y3 ∈ Im(res3/4). Hence, by Lemma 5.3 (1), (2), and (4) we have

f2 · β3 ≤



















36 if |H| = 0,

33fifj min{gi, gj} if |H| = 1, fk = 9,

33fimax{34−|G|, 32} if |H| = 2, fi = 3,

33 max{36−|G|, 34} if |H| = 3.

It follows from 5.3 (1) that 9yiyjy
2
k, 9y

2
i y

2
j ∈ Im(res4/5), thus we obtain β4 ≤ 312/33g. Again,

by Lemma 5.3 (1), we have 3y2i (3y
2
j yk +3jjy

2
k) ∈ Im(res4/5). Therefore, we have β5 ≤ 36/g.

It follows from Lemma 5.3 (3) that we have β6 ≤ 33/32. Finally, by (3) we conclude that

(46) |⊕ Γn/n+1(X)tors | ≤



















316/g2 if |H| = 0,

313 min{gi, gj}/g2 if |H| = 1, fk = 9,

310 max{34−|G|, 32}/g2 if |H| = 2,

37 max{36−|G|, 34}/g2 if |H| = 3.

The maximum upper bound of (46) is 310 when gm = fm = 3 for all 1 ≤ m ≤ 3 and
d ∈ {3, 9}. If gm = fm = d = 3, then by Lemma 5.3 (5) and (6) we have a := 3y21y

2
2y3 −

3y21y2y
2
3, b := 3y21y

2
2y

2
3 − 6y21y

2
2y3 ∈ Γ3(X)\Γ4(X) as any element of Γ4(X) is divisible by

9. Hence, the classes of a and b give torsion elements of Γ3/4(X) of order 3 since 3a =
3y21(3y

2
2y3) − 3y21(3y2y

2
3), 3b = 9y21y

2
2y

2
3 − 3y21(3y

2
2y3) ∈ Γ4(X). Moreover, we have a − b,

a+ b 6∈ Γ4 as any element of Γ4(X) is divisible by 9, thus the subgroups generated by a and
b have trivial intersection. By Proposition 5.2, we have

Γ2/3(X)tors = (Z/3Z)⊕8 and Γ3/4(X)tors = (Z/3Z)⊕2.

In this case, by (7) we have

(47) CH2(X̄)tors = (Z/3Z)⊕8,

where X̄ is the corresponding generic variety. If gm = fm = 3 and d = 9, then by the same
argument the class a is a torsion of Γ3/4(X). Moreover, we have either 9y21y

2
2y

2
3 is a torsion

of order 3 in Γ4/5(X)⊕ Γ5/6(X) or β6 ≤ 1. Therefore, we obtain

(48) |⊕ Γn/n+1(X)tors | ≤ 38.

Case: ei = ej = 3 and ek = 9. By Lemma 5.3 (1), (3) and (4) we have

β2 ≤ (35 min{d, g1, g2, g3})/33e.
If d = 9, then by Lemma 5.3 (1), (2), and (4) we have

f2 · β3 ≤



















32f min{9, gk} if |H| = 0,

32ftfkgtgk if |H| = 1, fs = 9,

32fifjgk min{gi, gj} if |H| = 1, fk = 9,

3|H|+1g if |H| ≥ 2,
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where s and t are integers such that {s, t} = {i, j}. Similarly, if d = 3, then it follows by
Lemma 5.3 (1), (2), (3), and (4) that

f2 · β3 ≤



















32f min{9, gm} if |H| = 0,

32ftfkgsmin{gt, gk} if |H| = 1, fs = 9,

32fifj max{34−|G|, 32} if |H| = 1, fk = 9,

3|H|+1g if |H| ≥ 2,

where the minimum of the first inequality ranges over 1 ≤ m ≤ 3. By Lemma 5.3 (1), we

have 9yiyjy
2
k, 9y

2
i y

2
j ∈ Im(res4/5). Hence, β4 ≤ 312/(34g).

By Lemma 5.3 (1), we have 3y2i (3y
2
j yk + 3yjy

2
k), 3y

2
j (3y

2
i yk + 3yiy

2
k) ∈ Im(res5/6). If

fi = 3 (resp. fj = 3), then by Lemma 5.3 (2) we obtain 3y2i (3y
2
j yk − 3yjy

2
k) ∈ Im(res5/6)

(resp. 3y2j (3y
2
i yk − 3yiy

2
k) ∈ Im(res5/6)). Moreover, if d = 3, then by Lemma 5.3 (3)

3y2k(−3y1y2y3 + 3
∑3

m,l=1 y
2
myl) = 9y2i yjy

2
k + 9yiy

2
j y

2
k ∈ Im(res5/6). Therefore, we conclude

that β5 ≤ 36/g (resp. 37/g) if one of {fi, fj , d} is 3 (resp. otherwise). By Lemma 5.3 (3),
we have β6 ≤ 3. In conclusion, we have

(49) |⊕ Γn/n+1(X)tors | ≤ 38 for all cases.

Case: ei = 3 and ej = ek = 9. By Lemma 5.3 (1), (3) and (4) we obtain

β2 ≤ (34 min{gj , gk}min{d, gi})/33e.
In codimension 3, by Lemma 5.3 (1), (2), (3), and (4) we have

f2 · β3 ≤







































3fgjgk if |H| = 0, d = 9,

3fgimin{gj , gk} if |H| = 0, d = 3,

33fjfkgjgk if |H| = 1, fi = 9, d = 9,

33fjfk max{34−|G|, 9} if |H| = 1, fi = 9, d = 3,

33g if |H| = 1, fi 6= 9,

3|H|+2g if |H| ≥ 2.

By Lemma 5.3 (1), we get 3y2i (3yjyk), 3yi(3y
2
j yk + 3yjy

2
k) ∈ Im(res4/5). Hence, it follows

from Lemma 5.3 (2) that β4 ≤ 38/g (resp. 37/g) if |H| = 3 (resp. otherwise).

By Lemma 5.3 (1), we obtain 3y2i (3y
2
j yk +3yjy

2
k) ∈ Im(res5/6). Therefore, by Lemma 5.3

(2) and (3) we have

g · β5 ≤











93 if |H| ≤ 1 or d = 3,

92 · 27 if |H| = 2, d 6= 3,

9 · 272 if |H| = 3, d 6= 3.

Finally, by Lemma 5.3 (3) β6 ≤ 3. Therefore, for all cases we have

(50) |⊕ Γn/n+1(X)tors | ≤ 36.

Case: e1 = e2 = e3 = 9. By Lemma 5.3 (1), (3) and (4) we have

β2 ≤ 33 max{1/33, 1/3|G|+[3/d]}/33.
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In codimension 3, by Lemma 5.3 (2), (3) and (4) we obtain β3 ≤ (33fg)/df2. It follows
from Lemma 5.3 (4) that

eg · β4 ≤











95 · 27 if |H| ≤ 1,

94 · 272 if |H| = 2,

93 · 273 if |H| = 3.

In codimension 5, by Lemma 5.3 (2) and (3) we obtain

g · β5 ≤



















93 if d = 3,

92 · 27 if d 6= 3, |H| ≤ 1,

9 · 272 if d 6= 3, |H| = 2,

273 if d 6= 3, |H| = 3.

Finally, by Lemma 5.3 (3) we have β6 ≤ 33/max{9, d}. Therefore, for all cases we obtain

(51) |⊕ Γn/n+1(X)tors | ≤ 37.

In conclusion, the result follows from (47), (48), (49), (50), and (51). �

6. Product of Quadric surfaces

In this section, we obtain upper bounds for the torsion in Chow group of codimension
2 of the product of two quadric surfaces in Theorem 6.1 and the product of three quadric
surfaces with the same discriminant in Theorem 6.5. In the case of the product of two
quadric surfaces, we also provide a sharp lower bound in the gamma filtration in Proposition
6.3.

Let F be a field of characteristic different from 2 and let q = 〈c,−a,−b, ab〉 be a non-
degenerate quadratic form over F of rank 4 for c, a, b ∈ F×. If the discriminant is trivial,
then the quadric surface corresponding to the form q is birational to P1 × SB(Q), where Q
is the quaternion F -algebra determined by a and b. Otherwise, the quadric is isomorphic
to RL/F (SB(Q)), where RL/F is the Weil restriction over a quadratic field L = F (

√
c). We

shall write discQ for the discriminant c.
Consider two quadric surfaces with the corresponding quaternions Q1, Q2 and quadratic

extensions L1, L2 as above. We set

(52) X =











SB(Q1)× SB(Q2) if discQi = 1,

SB(Q1)×RL2/F (SB(Q2)) if discQ1 = 1 6= discQ2,

RL1/F (SB(Q1))×RL2/F (SB(Q2)) if discQi 6= 1.

Then, by [3, Corollary 2.5] the torsion in codimension 2 cycles of X of the first and second
cases of (52) is isomorphic to that of the product of two quadric surfaces. Therefore, it
suffices to consider X for the torsion in codimension 2 cycles of the product of two quadric
surfaces. We call X the variety associated to the product of two quadric surfaces.

Consider the last case of (52). If ind(Q1)L1
= ind(Q1)L1

= 1, then the associated variety
X has torsion-free Chow groups. Thus, we may assume that ind(Q1)L1

= 2. We choose a
splitting field E of X as follows. If ind(Q2)L2

= 1, then we take a maximal subfield (6= L2)
of Q1 for E. Otherwise, we take for E a common maximal subfield (6= L1, L2) of Q1 and
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Q2 if ind(Q1 ⊗ Q2) ≤ 2 or the tensor product of maximal subfields E1(6= L2) of Q1 and
E2(6= L1) of Q2 if ind(Q1 ⊗ Q2) = 4. Hence, d := [E : F ] = 4 if ind(Q1 ⊗ Q2) = 4 and
d = 2 otherwise. For the second case (52), we choose a splitting field E in the same way.

The theorem below was proven in [3]. Here, we give an elementary proof which does not
use any cohomological method and K theory of quadrics. Moreover, we find upper bound
of the total torsion in the topological filtration of the product of two quadric surfaces with
nontrivial discriminants.

Theorem 6.1. [3, Theorems 5.1, 5.7, 5.8, 5.9] Let X be the variety associated to the product

of two quadric surfaces. Then, the torsion subgroup CH2(X)tors is either trivial or Z/2Z,
i.e., M(Q2) ≤ 2.

Proof. Let Qi be a quaternion algebra for i = 1, 2, X the variety associated to the product
of two quadric surfaces of Qi, and E the splitting field of X. If discQi = 1 for all i, then
the variety X is torsion free. From now on we only consider the other cases. To apply (3)

we shall find upper bounds of αn := |T n/n+1(XE)/ Im(resn/n+1)| for each of the following 3
cases.

Case: L1L2 := L1 ⊗ L2 is a biquadratic field extension. Let L = L1L2. Then, we have
XE = REL1/E(P

1)×REL2/E(P
1) and XEL = P1×P1×P1×P1, which have torsion-free Chow

groups. For each 1 ≤ k ≤ 4, let xk be the pullback of the class of tautological line bundle on
the projective space in K(XEL). We set xi1···ik = xi1 · · · xik for 1 ≤ i1 < . . . < ik ≤ 4. By
the action of the Galois group of EL/E, we have the following bases of K(XE) and K(X),
respectively:

(53) {1, x2i−1 + x2i, x12, x34, (x1 + x2)(x3 + x4), x12(x3 + x4), x34(x1 + x2), x1234} and

(54) {1, ei(x2i−1 +x2i), x12, x34, f(x1+x2)(x3 +x4), e2x12(x3 +x4), e1x34(x1 +x2), x1234},
where ei = ind(Qi)L and f = ind(Q1 ⊗Q2)L. Then, we have |K(XE)/K(X)| = e21e

2
2f . If

e1 = e2 = 1, then f = 1. Hence, we may assume that e1e2 ≥ 2.
Let yk = xk− 1. Set yi1···ik = yi1 · · · yik for 1 ≤ i1 < . . . < ik ≤ 4. We will use other bases

for K(XE) the basis (53) by replacing xk by yk and for K(X)

(55) {1, ei(y2i−1 + y2i), z12, z34, f(y1 + y2)(y3 + y4), e2z12(y3 + y4), e1z34(y1 + y2), z12z34},
where z12 = y1 + y2 + y1y2 and z34 = y3 + y4 + y3y4.

It follows from z12, z34 ∈ K(X) that y1 + y2, y3 + y4 ∈ Im(res1/2), thus we have α1 = 1.

By the same argument, we get (y1 + y2)(y3 + y4) ∈ Im(res2/3). In addition, it follows from
the basis and (2) that e1y12, e2y34 ∈ T 2(X). Hence, α2 ≤ e1e2.

If ind(Q1⊗Q2)= 1, then it follows from closed embeddings SB(Q1)×RL2/F (SB(Q1)) →֒
X and RL1/F (SB(Q1))×SB(Q1) →֒ X that we have y34(y1+y2), y1y2(y3+y4) ∈ Im(res3/4),
respectively. Otherwise, it follows from e1y12 · (y34 + y3 + y4) and e2y34 · (y12 + y1 + y2)

that e1y12(y3 + y4), e2y34(y1 + y2) ∈ Im(res3/4). Therefore, α3 ≤ 1 if ind(Q1 ⊗Q2) = 1 and
α3 ≤ e1e2 otherwise.

By a transfer argument, we have α4 ≤ d. Hence, we obtain

|⊕ T n/n+1(X)tors | ≤
{

1 if ind(Q1 ⊗Q2) = 1,

d/f otherwise.
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If f = 1, then ind(Q1⊗Q2) ≤ 2, thus d = 2. Therefore, |T 2/3(X)tors | ≤ 2. Moreover, the

order of the group ⊕T n/n+1(X)tors is trivial if f = 4 or f = d = 2 or ind(Q1 ⊗Q2) = 1.
Case: L1 = L2. Let L = L1 = L2. Then, XE = REL/E(P

1) × REL/E(P
1). Applying

the same argument with the previous case, we have the basis (53) (resp. (54)) replacing
(x1 + x2)(x3 + x4) (resp. f(x1 + x2)(x3 + x4)) with two elements x13 + x24 and x14 + x23
(resp. f(x13 + x24) and f(x14 + x23) for K(XE) (resp. K(X)). As e1 = 2, we have
|K(XE)/K(X)| = 4e22f

2.
Similarly, we use other bases for K(XE) the basis by replacing xk with yk and for K(X)

the basis replacing f(y1 + y2)(y3 + y4) with two elements f(y13 + y24 +
∑4

k=1 yk) and

f(y14 + y23 +
∑4

k=1 yk).
By the same argument used in the previous case, we have α1 = 1. In codimension

2, we have 2y12, e2y34, (y1 + y2)(y3 + y4) ∈ Im(res2/3). If f = 1, then e2 = d = 2, and
X = RL/F (SB(Q1))×RL/F (SB(Q1)), thus by the diagonal embedding RL/F (SB(Q1)) →֒ X

the sum of all elements of codimension 2 in the basis is contained in the group Im(res2/3).
Moreover, if f 6= 1, then f(y13+y24), f(y14+y23) ∈ T 2(X). Therefore, we obtain α2 ≤ 2e2f .

If f = 1, then we have z12(y12 + y34 + y13 + y24 + y14 + y23) ∈ Im(res3/4). Otherwise,

we obtain 2y12(y3 + y4), e2y34(y1 + y2) ∈ Im(res3/4). Hence, we have α3 ≤ 2 if f = 1 and
α3 ≤ 2e2 otherwise. Finally, we get α4 ≤ d, thus

(56) |⊕ T n/n+1(X)tors | ≤
{

1 if f = 1,

d/f otherwise.

Hence, the group ⊕T n/n+1(X)tors is trivial except the case where f = 2 and d = 4. In
the latter case, we can further reduce the upper bound of α4 to 2 if 2y1234 ∈ T 4(X).

Hence, the group ⊕T n/n+1(X)tors is trivial in this case. If 2y1234 /∈ T 4(X), then the class
of 2y1234 = 2y12 · z34 − z12 · 2(y13 + y24) ∈ T 3(X) gives a torsion element of order 2 in
T 3/4(X)tors . Therefore, the group T 2/3(X)tors is trivial in all cases.

Case: one of discQi is trivial. Let discQ1 = 1. Then, we have XE = P1 × RL2E/E(P
1).

We have the following bases of K(XE) and K(X), respectively:

{1, x1, x2 + x3, x23, x1(x2 + x3), x123} and {1, e1x1, e2(x2 + x3), x23, fx1(x2 + x3), e1x123},
where e1 = ind(Q1)L2

, e2 = ind(Q2)L2
, f = ind(Q1 ⊗ Q2)L2

. It follows that we obtain
|K(XE)/K(X)| = e21e2f . We will use other bases for K(XE) the above basis by replacing
xk by yk and for K(X)

(57) {1, e1y1, e2(y2 + y3), z23, f(y1 + 1)(y2 + y3), e1y1z23},
where z23 = y2 + y3 + y23.

Obviously, we have α1 ≤ e1. In codimension 2, we have e2y23, e1y1(y2 + y3) ∈ T 2(X).
If f = 1, then (y12 + y13 + y2 + y3) + z23 − 2(y2 + y3) = y12 + y13 + y23 ∈ T 2(X). Hence,
we get α2 ≤ min{e1, e2} if f = 1 and α3 ≤ e1e2 otherwise. Finally, we have α3 ≤ d, thus
the same upper bound (56) is obtained for the order of the group ⊕T n/n+1(X)tors . Hence,

the group ⊕T n/n+1(X)tors is trivial if f = 1 or f = d = 2 or f = 4. Assume that f = 2
and d = 4. Then it follows from (57) that 2y123 ∈ T 2(X). If 2y123 ∈ T 3(X), then we have

α3 ≤ 2. Therefore, the group ⊕T n/n+1(X)tors is trivial in this case. Otherwise, the class of
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2y123 gives a torsion element of order 2 in T 2/3(X). In any case, we have |T 2/3(X)tors | ≤ 2.
In conclusion, the result follows from (1). �

Remark 6.2. Observe that the proof of Theorem 6.1 indicates when the torsion in Chow
group of codimension 2 of X is trivial. Moreover, the proof still works if we replace the
topological filtration by the gamma filtration.

Now we provide a nontrivial torsion subgroup in the gamma filtration:

Proposition 6.3. With the above notations, we have Γ2/3(X)tors = Z/2Z if L is a bi-

quadratic extension, f = 2, and d = 4.

Proof. It follows from the basis (55) that 2y1234 ∈ K(X). Hence, by (2) we have 2y1234 ∈
Γ2(X). As d = 4, 4y1234 ∈ Γ3(X). We show that this element is not contained in Γ3(X) by
computing the Chern classes of the elements in the basis (54).

Consider the basis (54) of K(X) with f = ei = 2, where i = 1, 2. It follows from Whitney
formula that we have c1(2(x2i−1 + x2i)) = 2(y2i−1 + y2i), c1(x2i−1 + x2i) = y2i−1 + y2i, and
c2(x2i−1 + x2i) = y2i−1y2i. Therefore, we have

(58) c2(2(x2i−1 + x2i)) = 4y2i−1y2i, c1(x2i−1x2i)
2 = 2y2i−1y2i and c1(x2i−1x2i)

3 = 0.

Similarly, we obtain cj(2(x2i−1 + x2i)) = 0 for 3 ≤ j ≤ 4.
Let z = (x1 + x2)(x3 + x4), z

′ = (y1 + y2)(y3 + y4), u = y123 + y124, and v = y134 + y234.
Then, by a direct computation, we have

(59) cj(z) =



















2(
∑4

k=1 yk) + z′ for j = 1,

2y1234 + 3z′ + 4(u+ v + y12 + y34) for j = 2,

4(u+ v + 3y1234) for j = 3,

2y1234 for j = 4.

Since c2(2z) = c1(z)
2 + 2c2(z), it follows from (59) that

(60) c2(2z) = 8y1234 + 14z′ + 16(u + v + y12 + y34).

As c3(2z) = 2(c1(z)c2(z)+ c3(z)) and c4(2z) = 2(c1(z)c3(z)+ c4(z))+ c2(z)
2, it follows from

(59) that

(61) cj(2z) ≡ 0 mod 4 for j = 3, 4.

Let w = x12(x3 + x4). Then, we obtain c1(w) = 2z12 + y3 + y4 + z′ + u and c2(w)=
4y1234 + 3u+ 2(y12 + v) + y13 + y14 + y23 + y24 + y34. Therefore, we have

(62) cj(2w)=











2(8y1234 + 9u+ 4v + 6y12 + 3y13 + 3y23 + 3y14 + 3y24 + 2y34) for j = 2,

4(10y1234 + 3u+ 2v) for j = 3,

8y1234 for j = 4.

Let w′ = x34(x1 + x2). Then, we have the Chern classes (62) for 2w′ by replacing 1, 2, 3, 4
with 3, 4, 1, 2, respectively.

It follows from (58) that c1(x12)
2c1(x34) = c1(x12)

2c1(x1234) = 2(u+y1234), c1(x34)
2c1(x12)

= c1(x34)
2c1(x1234) = 2(v + y1234). Since c1(x) is divisible by 2 for any element x ∈

{2z, 2w, 2w′ , 2(x2i−1 + x2i)}, one can see easily that the subgroup generated by the prod-
ucts of three of the first Chern classes of any element of the basis (54) is generated by
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2(u + y1234) and 2(v + y1234) modulo 4. Similarly, using (58), (60), (62) one sees that the
subgroup generated by the products of the first and second Chern classes of any element
of the basis (54) is also generated by 2(u + y1234) and 2(v + y1234) modulo 4. It follows
from (61) and (62) that the third and fourth Chern classes of 2z, 2w, 2w′ is divisible by
4. Therefore, the subgroup Γ3(X) is generated by 2(u + y1234) and 2(v + y1234) modulo 4.

Hence, 2y1234 is not contained in Γ3(X) and this element gives a torsion of Γ2/3(X) of order
2. The result immediately follows from Remark 6.2. �

Remark 6.4. If X̄ is a corresponding generic variety to X in Proposition 6.3, then we
obtain CH2(X̄) = Z/2Z, which recovers a theorem of Izhboldin and Karpenko [5, Theorem
14.1]. Indeed, it is possible to find such a variety by showing that the gamma filtration for
the variety RL1/F (SB(Q

′
1))×RL2/F (SB(Q

′
2))×RL/F (SB(2, Q

′
1 ⊗Q′

2)) is torsion free, where
L = L1L2 is a biquadratic extension and SB(2, Q′

1 ⊗ Q′
2) is the generalized Severi-Brauer

variety of rank 2 left ideals in the biquaternion algebra (Q′
1 ⊗Q′

2)L.

6.1. Three quadric surfaces with the same discriminant. In this subsection we con-
sider the product of three quadric surfaces with the same discriminant. Let Q1, Q2, Q3 be
three quaternion F -algebras and let L be the quadratic extension over F corresponding to
three quadratic surfaces with the same discriminant as above.

We set

(63) X =

{

SB(Q1)× SB(Q2)× SB(Q3) if discQi = 1,

RL/F (SB(Q1))×RL/F (SB(Q2))×RL/F (SB(Q3)) otherwise

and call it the variety associated to the product of three quadric surfaces with the same
discriminant. Then, by the same argument as in the case of two quadric surfaces, the torsion
in codimension 2 cycles of X is isomorphic to that of the product of three quadric surfaces
with the same discriminant.

Let h = ind(Q1 ⊗ Q2 ⊗ Q3), J = {{1, 2}, {3, 4}, {5, 6}}, and fpq = ind(Qmax{r,s}/2 ⊗
Qmax{t,u}/2)L for any {{p, q}, {r, s}, {t, u}} = J . Set

Fm = {{p, q} ∈ J | fpq = m} for m = 1, 2, 4.

Consider the second case of (63). If ind(Qi)L = 1 for all 1 ≤ i ≤ 3, then the variety
X has torsion-free Chow groups, thus we may assume that ind(Q1)L 6= 1. We choose a
splitting field E of X as follows. If ind(Q2)L = ind(Q3)L = 1, then we take a maximal
subfield for E. If ind(Q2)L = 2 and ind(Q3)L = 1, then we take for E a common maximal
subfield of Q1 and Q2 if ind(Q1⊗Q2) ≤ 2 or the tensor product of maximal subfields of Q1

and Q2 if ind(Q1 ⊗Q2) = 4.
Now we may assume that ind(Qi)L = 2 for all 1 ≤ i ≤ 3. If h = 8, then we take for

E the tensor product of maximal subfields of Qi. If h = 1, then |F2| = 3, thus we take
the tensor product of a common maximal subfield of Q1 and Q2 and a maximal subfield
of Q3 for E. If |F1| ≥ 2, then we have (Q1)L ≃ (Q2)L ≃ (Q3)L, thus we take for E a
maximal subfield of Q1. If h ∈ {2, 4}, |F1| ≤ 1, and |F4| ≥ 1, then there exist Qi and Qj

such that ind(Qi ⊗Qj) = 4 for some 1 ≤ i 6= j ≤ 3, thus we take for E the tensor product
of maximal subfields of Qi and Qj which also splits the remaining quaternion algebra. If
h ∈ {2, 4}, |F1| = 1, and |F4| = 0, then there exist Qi and Qj such that (Qi)L ≃ (Qj)L for
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some 1 ≤ i 6= j ≤ 3, thus we take for E the tensor product of a maximal subfield of Qi and
a maximal subfield of the remaining quaternion algebra. Hence, we have

d := [E : F ] =











2 if |F1| ≥ 2,

4 if h = 1 or h ∈ {2, 4}, |F1 | ≤ 1,

8 if h = 8.

Theorem 6.5. The torsion subgroup in the codimension 2 Chow group of the product of

three quadric surfaces with the same discriminant is contained in (Z/2Z)⊕7.

Proof. Let Qi be a quaternion F -algebra for 1 ≤ i ≤ 3 such that the corresponding qaudrics
have the same discriminant. Let X be the associated variety to the product of three quadric
surfaces of Qi and E be the splitting field of X as above. If the discriminant is trivial, the
result follows from Proposition 4.2. Hence, we may assume that the discriminant is non-
trivial, thus we have XE = REL/E(P

1) × REL/E(P
1) × REL/E(P

1) and XEL = P1 × P1 ×
P1 × P1 × P1 × P1.

For each 1 ≤ k ≤ 6, let xk be the pullback of the class of tautological bundle on the
projective line in K(XEL). Set xi1···ik = xi1 · · · xik for 1 ≤ i1 < . . . < ik ≤ 6. It follows
from the action of the Galois group Z/2Z⊕ Z/2Z⊕ Z/2Z of LE/E that we have the bases
of K(XE) and K(X), repectively:

{1, xp + xq, xpq, xpr + xqs, xrs(xp + xq), xprt + xqsu, xpqrs, xpq(xrt + xsu), xpqrs(xt + xu),

xpqrstu} and

{1, epq(xp + xq), xpq, ftu(xpr + xqs), epqxrs(xp + xq), g(xprt + xqsu), xpqrs, fpqxpq(xrt + xsu),

etuxpqrs(xt + xu), xpqrstu},
where epq = ind(Qmax{p,q}/2)L, g = ind(Q1 ⊗ Q2 ⊗ Q3)L, and p, q, r, s, t, u range over

{{p, q}, {r, s}, {t, u}} = J . Then, we have |K(XE)/K(X)| = (e12e34e56f12f34f56g)
4.

Let yk = xk − 1 and yi1···ik = yi1 · · · yik for 1 ≤ i1 < . . . < ik ≤ 6. To simplify the
computation, we shall use other bases for K(XE) the above basis replacing xk with yk and
for K(X)

{1, epq(yp + yq), zpq, ftu(zpr + zqs), epqzrs(yp + yq), g(zprt + zqsu), zpqzrs, fpqzpq(zrt + zsu),

zpqzrsztu},
where zpq = ypyq + yp + yq, zpr = ypyr + yp + yr, and zprt = yprt + zpr + ypt + yrt + yt.

Let αn = |T n/n+1(XE)/ Im(resn/n+1)|. We will find upper bounds of αn for 1 ≤ n ≤ 6.
Observe that any basis element of K(XE) multiplied by d is contained in the image of the

restriction map. Since zpq ∈ K(X), we get yp + yq ∈ Im(res1/2). Hence, we have α1 = 1.
We divide the proof into three cases.

Case: fpq 6= 1 for all {p, q} ∈ J , i.e., |F1| = 0. It follows from the basis of K(X) that

epqypq ∈ T 2(X) and (yp+yq)(yr+ys) ∈ Im(res2/3) for any {p, q} 6= {r, s} ∈ J . Since ftu 6= 1,
we obtain ftu(ypr + yqs) ∈ T 2(X) for any {t, u} ∈ J . Therefore, we have

(64) α2 ≤ e12e34e56f12f34f56.

Since zpq ∈ T 1(X), we have ersyrs · (yp + yq) ∈ Im(res3/4). Moreover, as z12z34z56 ∈ T 3(X)

we obtain
∑

yprt + yqsu ∈ Im(res3/4), where the sum ranges over all such elements in the
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basis. As ftu 6= 1, the element ftu(ypr + yqs) · (yt + yu) is contained in the group Im(res3/4).
Hence, we have

(65) α3 ≤ (e12e34e56)
2f12f34f56d/max{f12, f34, f56}.

As epqypq, fpq(yrt+ysu) ∈ T 2(X), we obtain epqersypqrs, epqypq ·fpq(yrt+ysu) ∈ T 4(X). As

epqypq · zrs · ztu ∈ Im(res4/5), we have α4 ≤
∏

pq∈J epq min{d, e12e34e56/epq}min{d, fpqepq}.
It follows from epqypq ∈ T 2(X) that we have α5 ≤ ∏

pq∈J min{d, e12e34e56/epq}. Obvi-
ously, α6 ≤ d. Hence, we obtain

(66) |⊕ T n/n+1(X)tors | ≤
d2

g4 max{f12, f34, f56}
∏

pq∈J

min{d, e12e34e56/epq}min{d, fpqepq}
f2
pq

.

Let B be the right-hand side of the inequality of (66). We first consider the case where
G := g = h. Then, one can compute B for each subcase of g = h. Consider a subcase
where G = 4 and |F2| = 1. Then, fpq = 2 for some pq ∈ J . If 2yrstu ∈ T 4(X), then

2yrstu(yp + yq) ∈ Im(res5/6), thus we can reduce the upper bound B(= 22) to 1. Hence,

we have |⊕ T n/n+1(X)tors | ≤ 1. Otherwise, by Lemma 6.6 (1) below we obtain either

|⊕ T n/n+1(X)tors | ≤ 22, T 3/4(X)tors = T 4/5(X)tors = Z/2Z or |⊕ T n/n+1(X)tors | ≤ 2,

T 3/4(X)tors = Z/2Z. Therefore, T 2/3(X)tors = 0 in any case.
Let E2 = {{p, q} ∈ J | epq = 2}. Then, we may assume that |E2| ≥ 1. If G = 1, then

we have |F2| = |E2| = 3 and d = 4. Therefore, by Lemma 6.6 (2) we can reduce the upper
bound 26 (resp. 210) obtained by (64) (resp. 65) to 25 (resp. 28).

Applying the same argument, together with Lemma 6.6 to each subcase of g = h, we
obtain
(67)

|T 2/3(X)tors | ≤



















1 if G = 4, 0 ≤ |F2| ≤ 2 or G = |E2| = d = 2, |F2| = 3,

2 (resp. 25) if G = 8 or G = 4 (resp. 2), |F2| = 3, |E2| = 3,

24 if G = |E2| = 2, |F2| = 3, d = 4 or G = 2, 0 ≤ |F2| ≤ 2,

26 if G = 1.

Now we consider the case where H := g = h/2. By the same argument, we have the same

upper bound (67) for |T 2/3(X)tors | if G = H = 1, 2. Similarly, if H = 4, then we obtain

(68) |T 2/3(X)tors | ≤











1 if H = 4, |F2| = 2, |E2| = 2,

22 if H = 4, 2 ≤ |F2| ≤ 3, |E2| = 3,

25 (resp. 23) if H = 4, |F2| = 0 (resp. |F2| = 1).

Case: |F1| = 1. Let ftu = 1, e = epq = ers, and e′ = etu. For any number t, we write
m(t) for min{d, t}. Then, Lemma 6.6 (3) and the above argument implies that

|⊕ T n/n+1(X)tors | ≤
(

e2e′fpqfrs
)(

e3e′2m(fpq)m(frs)d
)(

edm(e2)m(ee′)2m(fpqe)m(frse)
)

·
(

m(e2)m(ee′)2
)(

d
)

/
(

e2e′fpqfrsg
)4
,

where each term inside the parentheses of the numerator is the upper bound of αn for
2 ≤ n ≤ 6.
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By the same argument used above, Lemma 6.6 (1) and (2) yield

(69) |T 2/3(X)tors | ≤











2 if G (or H) = 2, |F2| = 2, |E2| = 2,

22 if G (or H) = 2, |F2| = 2, |E2| = 1 or G (or H) = 1,

27 if G (or H) = 2, 0 ≤ |F2| ≤ 2, |E2| = 3.

Case: |F1| ≥ 2. Then, we have |F1| = |E2| = 3, d = 2, and g ∈ {1, 2}. It follows from
Lemma 6.6 (3) that ypr + yqs − (ypq + yrs) ∈ T 2(X) for all {p, q} 6= {r, s} ∈ J . Since we

have 2ypq ∈ T 2(X) and (yp + yq)(yr + ys) ∈ Im(res2/3) for all {p, q} 6= {r, s} ∈ J , we obtain
α2 ≤ 23.

As d = 2 and
∑

yprt + yqsu ∈ Im(res3/4), where the sum ranges over all such elements
in the basis, it follows from Lemma 6.6 (3) that α3 ≤ 26. Similarly, by Lemma 6.6 (3) we
have α4 ≤ 25. As d = 2, we obtain α5 ≤ 23 and α6 ≤ 2. In conclusion, we have

(70) |⊕ T n/n+1(X)tors | ≤ 27/g4

for 1 ≤ g ≤ 2.
The result follows from (67), (68), (69), and (70). �

Lemma 6.6. With the above notation, the followings hold:

(1) If fpq = ers (resp. fpq = etu), then











ersyrstu (resp. etuyrstu) ∈ T 3(X),

ersyrstuzpq (resp. etuyrstuzpq) ∈ T 4(X),

epqers · y123456(resp. epqetuy123456) ∈ T 5(X).

Moreover, if in addition ersyrstu (resp. etuyrstu) /∈ T 4(X), then we have a subgroup

〈ersyrstu (resp. etuyrstu)〉 ⊆ T 3/4(X)tors of order etu (resp. ers). If in addition ersyrstuzpq
(resp. etuyrstuzpq) /∈ T 5(X) and etuersy123456 ∈ T 5(X), then we obtain a subgroup 〈ersyrstu ·
(yp + yq) (resp. etuyrstu(yp + yq))〉 ⊆ T 4/5(X)tors of order etu (resp. ers). If in addition

epqersy123456 (resp. epqetuy123456) /∈ T 6(X), then we have a subgroup 〈epqersy123456 (resp.
epqetuy123456)〉 ⊆ T 5/6(X)tors of order etu (resp. ers).

(2) If g = 1, then















(ypr + yqs) + (ypt + yqu) + (yrt + ysu)− (ypq + yrs + ytu) ∈ Im(res2/3),

(yr + ys)(ypt + yqu − ypq − ytu) + yrs(yp + yq + yt + yu) ∈ Im(res3/4),

(yp + yq)(yrt + ysu − yrs − ytu) + ypq(yr + ys + yt + yu) ∈ Im(res3/4).

(3) If ftu = 1, then



























ypr + yqs − (ypq + yrs) ∈ T 2(X),

ypq(yr + ys)− yrs(yp + yq) ∈ Im(res3/4),

ypq(yrt + ysu + yru + yst)− yrs(ypt + yqu + ypu + yqt) ∈ Im(res4/5),

ypqtu + yrstu + ytu(ypr + yqs) + ytu(yps + yqr) ∈ Im(res4/5).

Proof. (1) For simplicity, we give the proof for the case of fpq = ers. In this case, we have

ersyrs · (ytu + yt + yu)− (yrs + yr + ys) · fpq(yrt + ysu) = ersyrstu ∈ T 3(X).

It follows from the previous result that ersyrstu · zpq ∈ T 4(X) and epqypq · ersyrstu ∈ T 5(X).
Since we have etuytu · ersyrs ∈ T 4(X), ersyrs · etuytu · zpq − etuersy123456 ∈ T 5(X) and

epqypq · ersyrs · etuytu ∈ T 6(X), the second statement immediately follows.
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(2) If g = 1, then zprt+ zqsu− (zpq+ zrs+ ztu) ∈ T 2(X), which implies the first result. As

yr + ys, yp + yq ∈ Im(res1/2), the remaining results follow by multiplication the first result
by these elements.

(3) Since ftu = 1, we have ypr + yqs − (ypq + yrs) = zpr + zqs − (zpq + zrs) ∈ T 2(X). As

yp+yq ∈ Im(res1/2), the second and third results follow from (yp+yq)(ypr+yqs−ypq−yrs) ∈
Im(res3/4) and (yt + yu)[ypq(yr + ys)− yrs(yp + yq)] ∈ Im(res4/5), respectively.

The assumption implies that (Qmax{p,q}/2)L ≃ (Qmax{r,s}/2)L =: QL. Hence, the last one
follows from the closed embeddingRL/F (SB(Q))×RL/F (SB(Qmax{t,u}/2)) →֒ RL/F (SB(Q))×
RL/F (SB(Q))×RL/F (SB(Qmax{t,u}/2)). �
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