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1. Introduction

In a series of papers [KK86], [KK90] Kostant and Kumar introduced and suc-
cessfully applied the techniques of nil (or 0-) Hecke algebras to study equivariant
cohomology and K-theory of flag varieties. In particular, they showed that the dual
of the nil Hecke algebra serves as an algebraic model for the T -equivariant singular
cohomology of G/B (here G is a split semisimple linear algebrac group with a cho-
sen split maximal torus T and G/B is the variety of Borel subgroups). In [HMSZ]
and [CZZ], this formalism has been generalized using an arbitrary formal group law
associated to an algebraic oriented cohomology theory in the sense of Levine-Morel
[LM07], via the Quillen formula. Namely, given a formal group law F and a finite
root system with a set of simple roots Π, one defines the formal affine Demazure
algebra DF and its dual D⋆

F provides an algebraic model for the T -equivariant
oriented cohomology hT (G/B). Specializing to the additive and the multiplica-
tive formal group laws, one recovers Chow groups (or singular cohomology) and
K-theory respectively.

2010 Mathematics Subject Classification. 20C08, 14F43, 57T15.
The first author acknowledges the support of the French Agence Nationale de la Recherche

(ANR) under reference ANR-12-BL01-0005. The second author was supported by the NSERC

Discovery grant 385795-2010, NSERC DAS grant 396100-2010 and the Early Researcher Award
(Ontario). We appreciate the support of the Fields Institute; part of this work has been done
while authors were attending the Thematic Program on Torsors, Nonassociative algebras and
Cohomological Invariants at the Fields Institute.

1
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Another motivation for studying the algebraDF comes from its close relationship
to Hecke algebras. Indeed, for the additive (resp. multiplicative) F it coincides with
the completion of the nil (resp. 0-) affine Hecke algebra (see [HMSZ]). Moreover,
in section 8, we show that for some elliptic formal group law F and a root system
of Dynkin type A the non-affine part of DF is isomorphic to the classical Iwahori-
Hecke algebra, hence, relating it to equivariant elliptic cohomology.

In the present paper we pursue the ‘algebraization program’ for oriented coho-
mology theories started in [CPZ] and continued in [HMSZ] and [CZZ]; the general
idea is to match cohomology rings of flag varieties and elements of classical interest
in them (such as classes of Schubert varieties) with algebraic and combinatorial
objects that can be introduced simply and algebraically, in the spirit of [De73] or
[KK86]. This approach is useful to study the structure of these rings, and to per-
form various computations. We focus here on algebraic constructions pertaining to
T -equivariant oriented cohomology groups. The precise proofs and details of how
our algebraic objects match cohomology groups will be treated in a forthcoming
paper; however, for the convenience of the reader, we now give a brief description
of the geometric setting.

Given an equivariant oriented cohomology theory h over a base field whose spec-
trum is denoted by pt, the formal group algebra S will correspond to hT (pt).

1 It
is an algebra over R = h(pt).

The T -fixed points of G/B are naturally in bijection with the Weyl group W .
This gives a pull-back to the fixed locus map hT (G/B) → hT (W ) ≃

⊕

w∈W hT (pt).
This map happens to be injective. We do not know a direct geometric reason for
that, but it follows from our algebraic description, in which it appears as the map
D⋆

F → S⋆
W ≃

⊕

w∈W S of Definition 9.1. It is then convenient to enlarge S to its
localization Q at a multiplicative subset generated by Chern class of line bundles
corresponding canonically to roots, which gives injections S ⊆ Q, SW ⊆ QW and
S⋆
W ⊆ Q∗

W . Although we do not know good geometric interpretations of Q, QW or
Q∗

W , all the formulas and operators we are interested in are easily defined at that
localized level, because they involve denominators. The main technical difficulties
then lie in proving that these operators actually restrict to S, S⋆

W , D⋆
F etc., or so

to speak, that the denominators cancel out.
Our central object of study is a push-pull operator on D⋆

F , which is an algebraic
version of the composition

hT (G/P )
p∗

→ hT (G/Q)
p∗

→ hT (G/P )

of the push-forward followed by the pull-back along the quotient map p : G/P →
G/Q, where P ⊆ Q are two parabolic subgroups of G. Again p∗ happens to be
injective, and it identifies hT (G/Q) to a subring of hT (G/P ), namely the subring
of invariants under the action of the parabolic subgroup WQ of the Weyl group W .
This does not seem to be straightforward from the geometry either, and it once more
follows from our algebraic description: given subsets Ξ′ ⊆ Ξ of a given set of simple
roots Π (each giving rise to a parabolic subgroup), we define an element YΞ/Ξ′ in
QW (see 5.3). We define an action of the Demazure algebra DF on its S-dual D⋆

F ,
by precomposition by multiplication on the right. The action of YΞ/Ξ′ thus defines

the desired push-pull operator AΞ/Ξ′ : (D⋆
F )

WΞ′ → (D⋆
F )

WΞ . The formula for the

1We will require that the cohomology rings are ‘complete’ in some precise sense, but this is a
technical point, that we prefer to hide here for simplicity.



PUSH-PULL OPERATORS ON THE FORMAL AFFINE DEMAZURE ALGEBRA AND ITS DUAL3

element YΞ/Ξ′ with Ξ′ = ∅ had already appeared in related contexts, namely, in
discussions around the Becker-Gottlieb transfer for topological complex-oriented
theories (see [BE90, (2.1)] and [GR12, §4.1]).

Finally, we define the algebraic counterpart of the natural pairing hT (G/B) ⊗
hT (G/B) → hT (pt) obtained by multiplication and push-forward to the point. It
is a pairing D⋆

F ⊗D⋆
F → S. We show that it is non-degenerate, and that algebraic

classes corresponding to (chosen) desingularization of Schubert varieties form a
basis of D⋆

F , with a very simple dual basis with respect to the pairing. We provide
the same kind of description for hT (G/P ). This generalizes (to parabolic subgroups
and to equivariant cohomology groups) and simplifies several statements from [CPZ,
§14], as well as results from [KK86] and [KK90] (to arbitrary oriented cohomology
theories).

The paper is organized as follows. In sections 2 and 3, we recall definitions and
basic properties from [CPZ, §2,3], [HMSZ, §6] and [CZZ, §4,5]: the formal group
algebra S, the Demazure and push-pull operators ∆α and Cα for every root α, the
formal twisted group algebra QW and its Demazure and push-pull elements Xα

and Yα. In section 4, we introduce a left QW -action ‘•’ on the dual Q∗
W . It induces

both an action of the Weyl group W on Q∗
W (the Weyl-action) and an action of

Xα and Yα on Q∗
W (the Hecke-action). In sections 5 and 6, we introduce and study

the more general push-pull elements in QW and operators on Q∗
W with respect to

given coset representatives of parabolic quotients of the Weyl group. In section 7,
we construct a basis of the subring of invariants of Q∗

W , which generalizes [KK90,
Lemma 2.27].

In section 8, we recall the definition and basic properties of the formal (affine)
Demazure algebraDF following [HMSZ, §6], [CZZ, §5] and [Zh13]. We show that for
the special elliptic formal group law, the formal Demazure algebra is related to the
classical Iwahori-Hecke algebra. In section 9, we define the algebraic restriction to
the fixed locus map which is used in section 10 to restrict all our push-pull operators
and elements toDF and its dualD⋆

F as well as to restrict the non-degenerate pairing
on D⋆

F . At last, in section 11, we define and discuss the non-degenerate pairing on
the subring of invariants of D⋆

F under a parabolic subgroup of the Weyl group.

AcknowledgmentsWe would like to mention that one of the ingredients of this paper,
the push-pull formulas in the context of Weyl group actions, arose in discussions
between the first author and Victor Petrov, whose unapparent contribution we
therefore gratefully acknowledge.

2. Formal Demazure and push-pull operators

In this section we recall definitions of the formal group algebra and of the formal
Demazure and push-pull operators, following [CPZ] and [CZZ].

Let R be a commutative ring with unit, and let F be a one-dimensional commu-
tative formal group law (FGL) over R, i.e. F (x, y) ∈ R[[x, y]] satisfies

F (x, 0) = 0, F (x, y) = F (y, x), F (x, F (y, z)) = F (F (x, y), z).

Example 2.1. The additive FGL is defined by Fa(x, y) = x+y, and a multiplicative
FGL is defined by Fm(x, y) = x+ y − βxy with β ∈ R. The coefficient ring of the
universal FGL is generated by the coefficients aij modulo relations induced by the
above properties and is called the Lazard ring.
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Example 2.2. Consider an elliptic curve given in Tate coordinates by

(1− µ1t− µ2t
2)s = t3.

The corresponding FGL over the coefficient ring R = Z[µ1, µ2] is given by, e.g. see
[BB10, Example 63],

Fe(x, y) :=
x+y−µ1xy
1+µ2xy

and will be called a special elliptic FGL. Observe that

Fe(x, y) = x+ y − xy(µ1 + µ2Fe(x, y)),

and thus that the formal inverse of Fe is identical to the one of Fm, i.e. x
µ1x−1 , and

Fe(x, x) =
2x−µ1x

2

1+µ2x2 .

Let Λ be an Abelian group and let R[[xΛ]] be the ring of formal power series
with variables xλ for all λ ∈ Λ. Define the formal group algebra R[[Λ]]F to be
the quotient of R[[xΛ]] by the closure of the ideal generated by elements x0 and
xλ1+λ2

− F (xλ1
, xλ2

) for any λ1, λ2 ∈ Λ. Here 0 is the identity element in Λ. Let
IF denote the kernel of the augmentation map ǫ : R[[Λ]]F → R, xα 7→ 0.

Assume that Λ is a free Abelian group of finite rank and let Σ be a finite subset
of Λ. A root datum is an embedding Σ →֒ Λ∨, α 7→ α∨ into the dual of Λ satisfying
certain conditions [SGA, Exp. XXI, Def. 1.1.1]. The rank of the root datum is the
Q-rank of Λ ⊗Z Q. The root lattice Λr is the subgroup of Λ generated by Σ, and
the weight lattice Λw is the Abelian group defined by

Λw := {ω ∈ Λ⊗Z Q | α∨(ω) ∈ Z for all α ∈ Σ}.

We always assume that the root datum is reduced and semisimple (Q-ranks of Λr,
Λw and Λ are the same and no root is twice another one). We say that a root datum
is simply connected (resp. adjoint) if Λ = Λw (resp. Λ = Λr), and then use the
notation Dsc

n (resp. Dad
n ) for irreducible root data where D = A,B,C,D,E, F,G is

one of the Dynkin types and n is the rank.

The Weyl group W of a root datum (Λ,Σ) is a subgroup of AutZ(Λ) generated
by simple reflections sα for all α ∈ Σ defined by

sα(λ) := λ− α∨(λ)α, λ ∈ Λ.

We fix a set of simple roots Π = {α1, . . . , αn} ⊂ Σ that is a basis of the root datum:
each element of Σ is an integral linear combination of simple roots with either all
positive coefficients or negative. This partitions Σ into Σ+ and Σ− the subsets of
positive roots, resp. negative roots. Let ℓ denote the length function on W with
respect to the set of simple roots Π. Let w0 be the longest element of W with
respect to ℓ and let N := ℓ(w0).

Following [CZZ, Def. 4.4] we say that the formal group algebra R[[Λ]]F is Σ-
regular if xα is not a zero-divisor in R[[Λ]]F for all roots α ∈ Σ. We will always
assume that:

The formal group algebra R[[Λ]]F is Σ-regular.

By [CZZ, Lemma 2.2] this holds if 2 is not a zero-divisor in R, or if the root datum
does not contain any Csc as an irreducible component.
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Following [CPZ, Def. 3.5 and 3.12] for each α ∈ Σ we define two R-linear opera-
tors ∆α and Cα on R[[Λ]]F as follows:

(2.1) ∆α(y) :=
y−sα(y)

xα
, Cα(y) := καy −∆α(y) =

y
x−α

+ sα(y)
xα

, y ∈ R[[Λ]]F ,

where κα := 1
xα

+ 1
x−α

(note that κα ∈ R[[Λ]]F ). The operator ∆α is called the

Demazure operator and the operator Cα is called the push-pull operator or the
BGG operator.

Example 2.3. For the special elliptic formal group law Fe we have κα = µ1 +
µ2Fe(x−α, xα) = µ1 for each α ∈ Σ. If the root datum is of type Asc

1 , we have
Σ = {±α}, Λ = 〈ω〉 with simple root α = 2ω and

Cα(xα) =
xα

x−α
+ x−α

xα
= µ1xα−1+ 1

µ1xα−1 , Cα(xω) =
xω

x−α
+ x−ω

xα
= µ1xω−

1+µ2x
2
ω

1−µ1xω
.

If it is of type Asc
2 we have Σ = {±α1,±α2,±(α1 + α2)}, Λ = 〈ω1, ω2〉 with simple

roots α1 = 2ω1 − ω2, α2 = 2ω2 − ω1 and xα1
=

2x1−µ1x
2
1−x2−µ2x

2
1x2

1+µ2x2
1
−µ1x2−2µ2x1x2

,

Cα2
(x1) = µ1x1, Cα1

(x1) = µ1x1 −
1+µ2x

2
1−µ1x2−2µ2x1x2

1−µ1x1−µ2x1x2
,

where x1 := xω1
and x2 := xω2

.

According to [CPZ, §3] the operators ∆α satisfy the twisted Leibniz rule

(2.2) ∆α(xy) = ∆α(x)y + sα(x)∆α(y), x, y ∈ R[[Λ]]F ,

i.e. ∆α is a twisted derivation. Moreover, they are R[[Λ]]Wα

F -linear, where Wα =
{e, sα}, and

(2.3) sα(x) = x if and only if ∆α(x) = 0.

Remark 2.4. Properties (2.2) and (2.3) suggest that the Demazure operators
can be effectively studied using the theory of twisted derivations and the invariant
theory of W . On the other hand, push-pull operators do not satisfy properties (2.2)
and (2.3) but according to [CPZ, Theorem 12.4] they correspond to the push-pull
maps between flag varieties and, hence, are of geometric origin.

For the i-th simple root αi, let ∆i := ∆αi and si := sαi . Given a sequence
I = (i1, . . . , im) with ij ∈ {1, . . . , n}, denote |I| = m and define

∆I := ∆i1 ◦ · · · ◦∆im , CI := Ci1 ◦ · · · ◦ Cim and set ∆∅ = C∅ = id.

We say that a sequence I is reduced in W if si1si2 . . . sim is a reduced expression
in W . In this case we also say that I = Iw is a reduced sequence of the element
w(I) := si1si2 . . . sim . We set Ie = ∅ (here e is the identity element of W ).

Remark 2.5. It is well-known that for a nontrivial root datum, all w ∈ W , ∆Iw

and CIw are independent of the choice of a reduced sequence Iw of w ∈ W if and
only if F is of the form F (x, y) = x+y+βxy, β ∈ R. The “if” part of the statement
is due to Demazure [De73, Th. 1] and the “only if” part to Bressler and Evens
[BE90, Theorem 3.7]. So for such F we can define ∆w := ∆Iw and Cw := CIw for
each w ∈ W .

The operators ∆w and Cw play a crucial role in Schubert calculus and compu-
tations of the singular cohomology (F = Fa) and the K-theory (F = Fm) rings of
flag varieties.

For a general F , e.g. for F = Fe, the situation becomes much more intricate as
we have to rely on choices of reduced decomposition Iw .
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3. Two bases of the formal twisted group algebra

We now recall definitions and basic properties of the formal twisted group algebra
QW , Demazure elements Xα and push-pull elements Yα, following [HMSZ] and
[CZZ]. For a chosen set of reduced sequences {Iw}w∈W we introduce two bases
{XIw} and {YIw} of QW and describe the matrices (aXv,w) and (aYv,w) by expressing

them on the canonical basis {δw} of QW . We also relate the coefficients aXv,w and

the corresponding coefficients a′Xv,w of the reversed elements XIrev
w

.

For simplicity we write S := R[[Λ]]F . Since the formal group algebra S is Σ-
regular, it embeds into the localization Q = S[ 1

xα
| α ∈ Σ]. Let QW be the twisted

group algebra of Q and of the group ring R[W ] over R, i.e. QW = Q ⊗R R[W ] as
an R-module and the product in QW is given by

(q ⊗ δw)(q
′ ⊗ δw′) = qw(q′)⊗ δww′ , q, q′ ∈ Q, w,w′ ∈ W.

where δw is the canonical element corresponding to w in R[W ]. Note that QW is
not a Q-algebra since the embedding Q →֒ QW , q 7→ q ⊗ δe is not central.

Inside QW , we use the notation q := q ⊗ δe and δw := 1 ⊗ δw, 1 := δe and
δα := δsα for a root α ∈ Σ. Thus qδw = q ⊗ δw and δwq = w(q) ⊗ δw. Clearly,
{δw}w∈W is a basis of QW as a left Q-module.

For each α ∈ Σ we define the following elements of QW (corresponding to the
operators ∆α and Cα, respectively, by the action of (4.3)):

Xα := 1
xα

− 1
xα

δα, Yα := κα −Xα = 1
x−α

+ 1
xα

δα

called the Demazure elements and the push-pull elements, respectively.

By straightforward computations, for each α ∈ Σ we have

(3.1) X2
α = καXα = Xακα and Y 2

α = καYα = Yακα,

Xαq = sα(q)Xα +∆α(q) and Yαq = sα(q)Yα +∆−α(q), q ∈ Q,

XαYα = YαXα = 0.

Let δi := δsi , Xi := Xαi and Yi := Yαi be the i-th simple root αi. Given a
sequence I = (i1, i2, . . . , im) with ij ∈ {1, . . . , n}, let the product Xi1Xi2 . . . Xim be
denoted by XI and Yi1Yi2 . . . Yim by YI . Set X∅ = Y∅ = 1.

By [Bo68, Ch. VI, §1, No 6, Cor. 2] if v ∈ W has a reduced decomposition
v = si1si2 · · · sim , then

(3.2) vΣ− ∩Σ+ = {αi1 , si1(αi2), . . . , si1(si2(· · · sim−1
(αim) · · · ))}.

In particular, siΣ
− ∩ Σ+ = {αi}.

Lemma 3.1. Let Iv be a reduced sequence of an element v ∈ W .
Then XIv =

∑

w≤v a
X
v,wδw for some aXv,w ∈ Q, where the sum is taken over

all elements of W less or equal to v with respect to the Bruhat order and aXv,v =

(−1)ℓ(v)
∏

α∈vΣ−∩Σ+ x−1
α .

Moreover, we have δv =
∑

w≤v b
X
v,wXIw for some bXv,w ∈ S such that bXv,e = 1

and bXv,v = (−1)ℓ(v)
∏

α∈vΣ−∩Σ+ xα.

Proof. It follows from [CZZ, Lemma 5.4, Corollary 5.6] and the fact that δα =
1− xαXα. �

Similar for YI ’s we have
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Lemma 3.2. Let Iv be a reduced sequence for an element v ∈ W .
Then YIv =

∑

w≤v a
Y
v,wδw for some aYv,w ∈ Q and aYv,v = (−1)ℓ(w)aXv,v. Moreover,

we have δv =
∑

w≤v b
Y
v,wYIw for some bYv,w ∈ S and bYv,v = (−1)ℓ(v)bXv,v.

Proof. We follow the proof of [CZZ, Lemma 5.4] replacing X by Y . By induction
we have

YIv = (x−1
−β + x−1

β δβ)
∑

w≤v′

aYv′,wδw = x−1
β sβ(a

Y
v′,v′)δv +

∑

w<v

aYv,wδw,

where Iv = (i1, . . . , im) is a reduced sequence of v, β = αi1 and v′ = sβv. This
implies the formulas for YIv and for aYv,v. Remaining statements involving bYv,w
follow by the same arguments as in the proof of [CZZ, Corollary 5.6] using the fact
that δα = xαYα − xα

x−α
and xα

x−α
∈ S. �

As in the proof of [CZZ, Corollary 5.6], Lemmas 3.1 and 3.2 immediately imply:

Corollary 3.3. The elements {XIv}v∈W (resp. {YIv}v∈W ) form a basis of QW as
a left Q-module.

Example 3.4. For the root data Aad
1 or Asc

1 and the formal group law Fe we have
xΠ = x−α and

(aYv,w)v,w∈W =

(

1 0
µ1 −

1
xα

1
xα

)

where the first row and column correspond to e ∈ W and the second to sα ∈ W .

Given a sequence I = (i1, . . . , im), let Irev := (im, . . . , i1). We set

xΠ :=
∏

α∈Σ−

xα ∈ S.

Observe that by (3.2) we have sα(xΠ)x−α = xΠxα for α ∈ Σ+.

Lemma 3.5. Let I = (i1, . . . , im) be a sequence in {1, . . . , n}. Let

XI =
∑

v∈W

aXI,vδv and XIrev =
∑

v∈W

a′XI,vδv for some aXI,v, a
′X
I,v ∈ Q,

then v(xΠ) a
′X
I,v = v(aXI,v−1)xΠ. Similarly, let

YI =
∑

v∈W

aYI,vδv and YIrev =
∑

v∈W

a′YI,vδv for some aYI,v, a
′Y
I,v ∈ Q,

then v(xΠ) a
′Y
I,v = v(aYI,v−1)xΠ.

Proof. If I = (i), then YI = YIrev . So a′I,v = aI,v for all v ∈ W (we omit the

superscripts ‘Y ’). For v /∈ {e, si} we have a′I,v = aI,v = 0. For v = e we have

xΠa
′
I,e = xΠaI,e. For v = si we have si(xΠ)a

′
I,si

= xΠsi(aI,si), since aI,si = 1
xαi

.

The proof is analogous for Xi.
Now the conclusion immediately follows by induction on the length |I| using

Lemma 3.6 below with x = xΠ, f = YJ , f
′ = YJrev , g = YK and g′ = YKrev for any

splitting of I in smaller sequences J followed by K. �
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Lemma 3.6. Given x ∈ Q, assume that elements

f =
∑

v∈W

avδv and f ′ =
∑

v∈W

a′vδv with av, a
′
v ∈ Q

g =
∑

v∈W

bvδv and g′ =
∑

v∈W

b′vδv with bv, b
′
v ∈ Q

of QW satisfy v(x)a′v = v(av−1 )x and v(x)b′v = v(bv−1)x for all v ∈ W . Then
the product fg =

∑

cvδv and the element (fg)′ := g′f ′ =
∑

c′vδv bear the same
relation: v(x)c′v = v(cv−1 )x.

Proof. By definition of the product, we have

c′v =
∑

v1v2=v

b′v1v1(a
′
v2) and cv−1 =

∑

v1v2=v

av−1

2

v−1
2 (bv−1

1

).

We then compute (all sums still being over pairs (v1, v2) ∈ W 2 such that v1v2 = v)

v(cv−1 )x =
∑

v1v2
(

av−1

2

v−1
2 (bv−1

1

)
)

x =
∑

v1v2(av−1

2

)v1(bv−1

1

)x

=
∑

v1v2(av−1

2

)v1(x) b
′
v1 =

∑

v1
(

v2(av−1

2

)x
)

b′v1 =
∑

v1
(

v2(x)a
′
v2

)

b′v1

= v(x)
∑

b′v1v1(a
′
v2) = v(x)c′v. �

4. The Weyl and the Hecke actions

In the present section we recall several basic facts concerning the Q-linear dual
Q∗

W following [HMSZ] and [CZZ]. We introduce a left QW -action ‘•’ on Q∗
W . The

latter induces an action of the Weyl group W on Q∗
W (the Weyl-action) and the

action by means of Xα and Yα on Q∗
W (the Hecke-action). These two actions will

play an important role in the sequel.

Let Q∗
W := HomQ(QW , Q) denote the Q-linear dual of the left Q-module QW .

By definition, Q∗
W is a left Q-module via (qf)(z) := qf(z) for any z ∈ QW , f ∈ Q∗

W

and q ∈ Q. Moreover, there is aQ-basis {fw}w∈W of Q∗
W dual to the basis {δw}w∈W

defined by fw(δv) := δw,v (the Kronecker symbol), w, v ∈ W .

Definition 4.1. We define a left action of QW on Q∗
W as follows:

(z • f)(z′) := f(z′z), z, z′ ∈ QW , f ∈ Q∗
W .

By definition, this action is left Q-linear, i.e. z • (qf) = q(z • f) and it induces a
different left Q-module structure on Q∗

W via the embedding q 7→ qδe, i.e.

(q • f)(z) := f(zq).

It also induces a Q-linear action of W on Q∗
W via w(f) := δw • f .

Lemma 4.2. We have q • fw = w(q)fw and w(fv) = fvw−1 for any q ∈ Q and
w, v ∈ W .

Proof. We have (q • fw)(δv) = fw(v(q)δv) = v(q)δw,v which shows that q • fv =
v(q)fv. As for the second we have [w(fv)](δu) = fv(δuδw) = δv,uw, so w(fv) =
fvw−1 . �
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There is a coproduct on QW defined by [CZZ, Def. 8.9]:

△ : QW → QW ⊗Q QW , qδw 7→ qδw ⊗ δw.

Here ⊗Q is the tensor product of left Q-modules. It is cocommutative with co-unit
ε : QW → Q, qδw 7→ q [CZZ, Prop. 8.10]. The coproduct structure on QW induces
a product structure on Q∗

W , which is Q-bilinear for the natural action of Q on Q∗
W

(not the one using •). In terms of the basis {fw}w∈W the product is given by
component-wise multiplication:

(4.1) (
∑

v∈W

qvfv)(
∑

w∈W

q′wfw) =
∑

w∈W

qwq
′
wfw, qw, q

′
w ∈ Q.

In other words, if we identify the dual Q∗
W with the Q-module of maps Hom(W,Q)

via
Q∗

W → Hom(W,Q), f 7→ f ′, f ′(w) := f(δw),

then the product is the classical multiplication of functions with values in a ring.
The multiplicative identity 1 of this product corresponds to the counit ε and

equals 1 =
∑

w∈W fw. We also have

(4.2) q • (ff ′) = (q • f)f ′ = f(q • f ′) for q ∈ Q and f, f ′ ∈ Q∗
W .

Lemma 4.3. For any α ∈ Σ and f, f ′ ∈ Q∗
W we have sα(ff

′) = sα(f)sα(f
′), i.e.

W acts on the algebra Q∗
W by Q-linear automorphisms.

Proof. By Q-linearity of the action of W and of the product, it suffices to check the
formula on basis elements f = fw and f ′ = fv, for which it is straightforward. �

Observe that the ring Q can be viewed as a left QW -module via the following
action:

(4.3) (qδw) · q
′ := qw(q′), q, q′ ∈ Q, w ∈ W.

Then by definition we have

(4.4) (q • 1)(z) = z · q, z ∈ QW .

Definition 4.4. For α ∈ Σ we define two Q-linear operators on Q∗
W by

Aα(f) := Yα • f and Bα(f) := Xα • f, f ∈ Q∗
W .

An action by means of Aα or Bα will be called a Hecke-action on Q∗
W .

Remark 4.5. If F = Fm (resp. F = Fa) one obtains actions introduced by
Kostant–Kumar in [KK90, I18] (resp. in [KK86, I51]).

As in (2.2) and (2.3) we have

(4.5) Bα(ff
′) = Bα(f)f

′ + sα(f)Bα(f
′) and Bα ◦ sα = −Bα, for f, f ′ ∈ Q∗

W ,

(4.6) Bα(f) = 0 if and only if f ∈ (Q∗
W )Wα .

Indeed, using (4.2) and Lemma 4.3 we obtain

Bα(f)f
′ + sα(f)Bα(f

′) = [ 1
xα

(1− δα) • f ]f
′ + sα(f)[

1
xα

(1− δα) • f
′]

= [ 1
xα

• (f − sα(f))]f
′ + sα(f)[

1
xα

• (f ′ − sα(f
′))]

= 1
xα

• (ff ′ − sα(f)sα(f
′)) = Bα(ff

′)

and Bα(sα(f)) =
1
xα

(1− δα) • sα(f) =
1
xα

• (sα(f)− f) = −Bα(f). As for (4.6) we

have 0 = Bα(f) = Xα • f = 1
xα

• [(1− δα) • f ] which is equivalent to f = sα(f).
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And similarly to (3.1) we obtain

(4.7) A◦2
α (f) = κα •Aα(f) = Aα(κα • f), B◦2

α (f) = κα •Bα(f) = Bα(κα • f),

Aα ◦Bα = Bα ◦Aα = 0.

We set Ai = Aαi and Bi := Bαi for the i-th simple root αi. We set AI =
Ai1 ◦ . . . ◦ Aim and BI = Bi1 ◦ . . . ◦ Bim for a sequence I = (i1, . . . , im) with
ij ∈ {1, . . . , n}. The operators AI and BI are key ingredients in the proof that the
natural pairing of Theorem 10.7 on the dual of the formal affine Demazure algebra
is non-degenerate.

Lemma 4.6. For any sequence I, we have

AIrev (xΠfe) =
∑

v∈W

v(xΠ)a
Y
I,vfv and BIrev (xΠfe) =

∑

v∈W

v(xΠ)a
X
I,vfv.

Proof. We prove the first formula only. The second one is obtained using similar
arguments. Let YIrev =

∑

v∈W a′YI,vδv and YI =
∑

v∈W aYI,vδv as in Lemma 3.5.
Then

AIrev (xΠfe) = YIrev • xΠfe =
∑

v∈W

xΠ(a
′Y
I,vδv • fe) =

∑

v∈W

xΠ(a
′Y
I,v • fv−1) =

∑

v∈W

xΠv
−1(a′YI,v)fv−1 =

∑

v∈W

xΠv(a
′Y
I,v−1)fv.

The formula then follows by Lemma 3.5. �

5. Push-pull operators and elements

Let us now introduce and study a key notion of the present paper, the notion
of push-pull operators (resp. elements) on Q (resp. in QW ) with respect to given
coset representatives in parabolic quotients of the Weyl group.

Let (Σ,Λ) be a root datum with a chosen set of simple roots Π. Let Ξ ⊆ Π
and let WΞ denote the subgroup of the Weyl group W of the root datum generated
by simple reflections sα, α ∈ Ξ. We thus have W∅ = {e} and WΠ = W . Let
ΣΞ := {α ∈ Σ | sα ∈ WΞ} and let Σ+

Ξ := ΣΞ ∩ Σ+, Σ−
Ξ := ΣΞ ∩ Σ− be subsets of

positive and negative roots respectively.
Given subsets Ξ′ ⊆ Ξ of Π, let Σ+

Ξ/Ξ′
:= Σ+

Ξ \ Σ+
Ξ′ and Σ−

Ξ/Ξ′
:= Σ−

Ξ \ Σ−
Ξ′ . We

define

xΞ/Ξ′ :=
∏

α∈Σ−

Ξ/Ξ′

xα and set xΞ := xΞ/∅.

Lemma 5.1. Given subsets Ξ′ ⊆ Ξ of Π we have

v(Σ−
Ξ/Ξ′

) = Σ−
Ξ/Ξ′

and v(Σ+
Ξ/Ξ′

) = Σ+
Ξ/Ξ′

for any v ∈ WΞ′ .

Proof. We prove the first statement only, the second one can be proven similarly.
Since v acts faithfully on ΣΞ, it suffices to show that for any α ∈ Σ−

Ξ/Ξ′
, the root

β := v(α) 6∈ ΣΞ′ and is negative. Indeed, if β ∈ ΣΞ′ , then so is α = v−1(β) (as
v−1 ∈ WΞ′), which is impossible. On the other hand, if β is positive, then

β = v(α) ∈ vΣ−
Ξ ∩ Σ+

Ξ = vΣ−
Ξ′ ∩ Σ+

Ξ′ ,

where the latter equality follows from (3.2) and the fact that v ∈ WΞ′ . So α =
v−1(β) ∈ ΣΞ′ , a contradiction. �
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Corollary 5.2. For any v ∈ WΞ′ , we have v(xΞ/Ξ′ ) = xΞ/Ξ′ .

Definition 5.3. Given a set of left coset representatives WΞ/Ξ′ of WΞ/WΞ′ we
define a push-pull operator on Q with respect to WΞ/Ξ′ by

CΞ/Ξ′(q) :=
∑

w∈WΞ/Ξ′

w
(

q
xΞ/Ξ′

)

.

and a push-pull element with respect to WΞ/Ξ′ by

YΞ/Ξ′ :=
(

∑

w∈WΞ/Ξ′

δw
)

1
xΞ/Ξ′

.

We set CΞ := CΞ/∅ and YΞ := YΞ/∅ (so they do not depend on the choice of
WΞ/∅ = WΞ in these two special cases).

By definition, we have CΞ/Ξ′(q) = YΞ/Ξ′ · q, where YΞ/Ξ′ acts on q ∈ Q by
(4.3). Also in the trivial case where Ξ = Ξ′, then xΞ/Ξ = 1, while CΞ/Ξ = idQ
and YΞ/Ξ = 1 if we choose e as representative of the only coset. Observe that for
Ξ = {αi} we have WΞ = {e, si} and CΞ = Ci (resp. YΞ = Yi) is the push-pull
operator (resp. element) introduced before and preserves S.

Example 5.4. For the formal group law Fe and the root datum A2, we have
xΠ = x−α1

x−α2
x−α1−α2

and

CΠ(1) =
∑

w∈W

w( 1
xΠ

) = µ1(
1

x−α2
x−α1−α2

+ 1
x−α1

xα2

+ 1
xα1

xα1+α2

) = µ3
1 + µ1µ2.

Lemma 5.5. The operator CΞ/Ξ′ restricted to QWΞ′ is independent of the choices

of representatives WΞ/Ξ′ and it maps QWΞ′ to QWΞ .

Proof. Since 1/xΞ/Ξ′ ∈ QWΞ′ by corollary 5.2, the independence statement is clear.
The second part follows, since for any v ∈ WΞ, and for any set of coset representa-
tives WΞ/Ξ′ , the set vWΞ/Ξ′ is again a set of coset representatives. �

Actually, we will see in Corollary 10.4 that the operator CΞ sends S to SWΞ .

Remark 5.6. The formula for the operator CΞ (with Ξ′ = ∅) had appeared before
in related contexts, namely, in discussions around the Becker-Gottlieb transfer for
topological complex-oriented theories (see [BE90, (2.1)] and [GR12, §4.1]). The
definition of the element YΞ/Ξ′ can be viewed as a generalized algebraic analogue
of this formula.

Lemma 5.7 (Composition rule). Given subsets Ξ′′ ⊆ Ξ′ ⊆ Ξ of Π and given sets of
representatives WΞ/Ξ′ and WΞ′/Ξ′′ , take WΞ/Ξ′′ := {wv | w ∈ WΞ/Ξ′ , v ∈ WΞ′/Ξ′′}
as the set of representatives of WΞ/WΞ′′ . Then

CΞ/Ξ′ ◦ CΞ′/Ξ′′ = CΞ/Ξ′′ and YΞ/Ξ′YΞ′/Ξ′′ = YΞ/Ξ′′ .

Proof. We prove the formula for Y ’s, the one for C’s follows since C acts as Y , and
the composition of actions corresponds to multiplication. We have YΞ/Ξ′YΞ′/Ξ′′ =

(
∑

w∈WΞ/Ξ′

δw
1

xΞ/Ξ′

)(
∑

v∈WΞ′/Ξ′′

δv
1

xΞ′/Ξ′′

) =
∑

w∈WΞ/Ξ′ , v∈WΞ′/Ξ′′

δwv
1

v−1(xΞ/Ξ′)xΞ′/Ξ′′

.

By Corollary 5.2, we have v−1(xΞ/Ξ′) = xΞ/Ξ′ . Therefore, v−1(xΞ/Ξ′)xΞ′/Ξ′′ =
xΞ/Ξ′xΞ′/Ξ′′ = xΞ/Ξ′′ . We conclude by definition of WΞ/Ξ′′ . �
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The following lemma is clear from the defining formula of CΞ/Ξ′ .

Lemma 5.8 (Projection formula). We have

CΞ/Ξ′(qq′) = q CΞ/Ξ′(q′) for any q ∈ (QW )WΞ and q′ ∈ (QW )WΞ′ .

Lemma 5.9. Given a subset Ξ of Π and α ∈ Ξ we have

(a) YΞ = Y ′Yα = YαY
′′ for some Y ′ and Y ′′ ∈ QW ,

(b) YΞXα = XαYΞ = 0, YαYΞ = καYΞ and YΞYα = YΞκα.

Proof. (a) The first identity follows from Lemma 5.7 applied to Ξ′ = {α} (in this
case Y ′ = YΞ/Ξ′).

For the second identity, let αWΞ be set of right coset representatives of Wα\WΞ,
thus each w ∈ WΞ can be written uniquely either as w = sαu or as w = u with
u ∈ αWΞ. Then

YΞ =
∑

u∈αWΞ

(1 + δα)δu
1
xΞ

=
∑

u∈αWΞ

(1 + δα)
1

x−α
x−αδu

1
xΞ

=
∑

u∈αWΞ

Yαx−αδu
1
xΞ

= Yα

∑

u∈αWΞ

δw
w−1(x−α)

xΞ
.

(b) then follows from (a) and (3.1). �

6. The push-pull operators on the dual

We now introduce and study the push-pull operators on the dual of the twisted
formal group algebra Q∗

W .

For w ∈ W , we define fΞ
w :=

∑

v∈wWΞ
fv. Observe that fΞ

w = fΞ
w′ if and only

if wWΞ = w′WΞ. Consider the subring of invariants (Q∗
W )WΞ by means of the

‘•’-action of WΞ on Q∗
W and fix a set of representatives WΠ/Ξ. By Lemma 4.2, we

then have the following lemma:

Lemma 6.1. The set {fΞ
w}w∈WΠ/Ξ

forms a basis of (Q∗
W )WΞ as a left Q-module,

and fΞ
wf

Ξ
v = δw,vf

Ξ
v for any w, v ∈ WΠ/Ξ.

In other words, {fw}w∈WΠ/Ξ
is a set of pairwise orthogonal projectors, and the

direct sum of their images is (Q∗
W )WΞ .

Definition 6.2. Given subsets Ξ′ ⊆ Ξ of Π and a set of representatives WΞ/Ξ′ we
define a Q-linear operator on Q∗

W by

AΞ/Ξ′(f) := YΞ/Ξ′ • f, f ∈ Q∗
W ,

and call it the push-pull operator with respect to WΞ/Ξ′ . It is Q-linear since so is
the ′•′-action. We set AΞ = AΞ/∅.

Lemma 5.7 immediately implies:

Lemma 6.3 (Composition rule). Given subsets Ξ′′ ⊆ Ξ′ ⊆ Ξ of Π and sets of
representatives WΞ/Ξ′ and WΞ′/Ξ′′ , let WΞ/Ξ′′ = {wv | w ∈ WΞ/Ξ′ , v ∈ WΞ′/Ξ′′},
then we have AΞ/Ξ′ ◦AΞ′/Ξ′′ = AΞ/Ξ′′ .

Here is an analogue of Lemma 5.5.

Lemma 6.4. The operator AΞ/Ξ′ restricted to (Q∗
W )WΞ′ is independent of the

choices of representatives WΞ/Ξ′ and it maps (Q∗
W )WΞ′ to (Q∗

W )WΞ .
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Proof. Let f ∈ (Q∗
W )WΞ′ . For any w ∈ W and v ∈ WΞ′ , by Corollary 5.2, we have

(

δwv
1

xΞ/Ξ′

)

• f =
(

δw
1

xΞ/Ξ′

δv
)

• f =
(

δw
1

xΞ/Ξ′

)

• δv • f =
(

δw
1

xΞ/Ξ′

)

• f.

which proves that the action on f of any factor δw(
1

xΞ/Ξ′

) in YΞ/Ξ′ is independent

of the choice of the coset representative w.
Now if v ∈ WΞ, we have

v(AΞ/Ξ′(f)) = δv • YΞ/Ξ′ • f = (δvYΞ/Ξ′) • f = AΞ/Ξ′(f)

where the last equality holds since δvYΞ/Ξ′ is again an operator YΞ/Ξ′ corresponding
to the set of coset representatives vWΞ/Ξ′ instead of WΞ/Ξ′ . This proves the second
claim. �

Lemma 6.5. We have

AΞ/Ξ′(fv) =
1

v(xΞ/Ξ′ )

∑

w∈WΞ/Ξ′

fvw−1 =
1

v(xΞ/Ξ′)

∑

w∈WΞ/Ξ′

w(fv).

In particular, we have AΞ/Ξ′(fΞ′

v ) = 1
v(xΞ/Ξ′)

fΞ
v and AΠ/Ξ(f

Ξ
v ) =

1
v(xΠ/Ξ)

1.

Proof. By Lemma 4.2 we obtain AΞ/Ξ′(fv) =

=
(

∑

w∈WΞ/Ξ′

δw
1

xΞ/Ξ′

)

• fv =
∑

w∈WΞ/Ξ′

δw •
(

1
v(xΞ/Ξ′)

fv
)

= 1
v(xΞ/Ξ′)

∑

w∈WΞ/Ξ′

fvw−1 .

In particular

AΞ/Ξ′(fΞ′

v ) =
∑

w∈WΞ′

1
vw(xΞ/Ξ′)

∑

u∈WΞ/Ξ′

fvwu−1 = 1
v(xΞ/Ξ′)

∑

w∈WΞ′

∑

u∈WΞ/Ξ′

fvwu−1

= 1
v(xΞ/Ξ′)

∑

w∈vWΞ

fw = 1
v(xΞ/Ξ′)

fΞ
v

where the second equality follows from Corollary 5.2. �

Together with Lemma 6.1 we therefore obtain:

Corollary 6.6. We have AΞ/Ξ′((Q∗
W )WΞ′ ) = (Q∗

W )WΞ .

Lemma 6.7 (Projection formula). We have

AΞ/Ξ′(ff ′) = fAΞ/Ξ′(f ′) for any f ∈ (Q∗
W )WΞ and f ′ ∈ (Q∗

W )WΞ′ .

Proof. Using (4.2) and Lemma 4.3, we compute

AΞ/Ξ′(ff ′) = YΞ/Ξ′ • (ff ′) =
(

∑

w∈WΞ/Ξ′

δw
1

xΞ/Ξ′

)

• (ff ′) =
∑

w∈WΞ/Ξ′

δw • 1
xΞ/Ξ′

• (ff ′)

=
∑

w∈WΞ/Ξ′

δw •
(

f( 1
xΞ/Ξ′

• f ′)
)

=
∑

w∈WΞ/Ξ′

(δw • f)(δw • 1
xΞ/Ξ′

• f ′)

= f
∑

w∈WΞ/Ξ′

δw • 1
xΞ/Ξ′

• f ′ = fAΞ/Ξ′(f ′) �

Lemma 6.8. Given a sequence I in {1, . . . , n}, for any x, y ∈ S and f, f ′ ∈ Q∗
W

we have

CΠ(∆I(x)y) = CΠ(x∆Irev (y)) and AΠ(BI(f)f
′) = AΠ(fBIrev (f ′)).
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Proof. We prove the second formula only. The first one is obtained similarly. By
Lemma 5.9.(b) we have YΠXα = 0 for any α ∈ Π. By (4.5) we obtain

0 = AΠ

(

Bα(sα(f)f
′)
)

= AΠ

(

fBα(f
′)−Bα(f)f

′
)

.

Hence, AΠ(Bα(f)f
′) = AΠ(fBα(f

′)). The formula then follows by iteration. �

Let {X∗
Iw
}w∈W and {Y ∗

Iw
}w∈W be the Q-linear basis of Q∗

W dual to {XIw}w∈W

and {YIw}w∈W , respectively, i.e. X∗
Iw
(XIv ) = δw,v for w, v ∈ W . We have X∗

Ie
= 1.

Indeed, from Lemma 3.1, we have δv =
∑

w≤v b
X
v,wXIw with bXv,e = 1. So for each

v ∈ W we have X∗
Ie
(δv) = bXv,e = 1 = 1(δv).

Lemma 6.9. Let w0 be the longest element in W , of length N . We have

AΠ(X
∗
Iw0

) = (−1)N1 and AΠ(Y
∗
Iw0

) = 1.

Proof. Consider the first formula. By Lemma 3.1 δv =
∑

w≤v b
X
v,wXIw , therefore

X∗
Iw

=
∑

v≥w bXv,wfv. Lemma 6.5 yields

AΠ(X
∗
Iw ) =

∑

v≥w

bXv,w
v(xΠ)1.

If w = w0 is the longest element, then AΠ(X
∗
Iw0

) =
bXw0,w0

w0(xΠ)1. By Lemma 3.1 we

have bXw0,w0
= (−1)N

∏

α∈Σ+ xα which by (3.2) equals to (−1)Nw0(xΠ).
The second formula is obtained similarly using Lemma 3.2 instead. �

Definition 6.10. We define the characteristic map c : Q → Q∗
W by q 7→ q • 1.

By the definition of the ‘•’ action, c is an R-algebra homomorphism given by
c(q) =

∑

w∈W w(q)fw . Note that c is QW -equivariant with respect to the action
(4.3) and the ‘•’-action. Indeed, c(z · q) = (z · q) • 1 = z • (q • 1) = z • c(q). In
particular, it is W -equivariant.

The following lemma provides an analogue of the push-pull formula of [CPZ,
Theorem. 12.4].

Lemma 6.11. Given subsets Ξ′ ⊆ Ξ of Π, we have AΞ/Ξ′ ◦ c = c ◦ CΞ/Ξ′ .

Proof. By definition, we have

AΞ/Ξ′(c(q)) = YΞ/Ξ′ • c(q) = c(YΞ/Ξ′ · q) = c(CΞ/Ξ′(q)). �

7. Another basis of the WΞ-invariant subring

Recall that {fΞ
w}w∈WΠ/Ξ

is a basis of the invariant subring (Q∗
W )WΞ . In the

present section we construct another basis {X∗
Iu
}u∈WΞ of the subring (Q∗

W )WΞ ,
which generalizes [KK90, Lemma 2.27].

Given a subset Ξ of Π we define

WΞ = {w ∈ W | ℓ(wsα) > ℓ(w) for any α ∈ Ξ}.

Note that WΞ is a set of left coset representatives of W/WΞ such that each w ∈ WΞ

is the unique representative of minimal length.
We will extensively use the following fact [Hu90, §1.10]:

(7.1) For any w ∈ W there exist unique u ∈ WΞ and v ∈ WΞ

such that w = uv and ℓ(w) = ℓ(u) + ℓ(v).
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Definition 7.1. Let Ξ be a subset of Π. We say that the set of reduced sequences
{Iw}w∈W is Ξ-compatible if for each w ∈ W and the unique factorization w = uv
with u ∈ WΞ and v ∈ WΞ, ℓ(w) = ℓ(u) + ℓ(v) of (7.1) we have Iw = Iu ∪ Iv, i.e. Iw
starts with Iu and ends by Iv.

Observe that there always exists a Ξ-compatible set of reduced sequences. In-
deed, we can take any reduced sequence for w ∈ WΞ ∪ WΞ and then define
Iw := Iu ∪ Iv for w = uv with u ∈ WΞ and v ∈ WΞ.

Lemma 7.2. For any z ∈ QW , we have X∗
Ie
(z) = z · 1, where e is the neutral

element of W and z · 1 is defined in (4.3). In particular, for any sequence I with
|I| ≥ 1, the coefficient of X∗

Ie
(XI) = 0.

Proof. Since Xα · 1 = 0, for any sequence I with |I| ≥ 1, we have XI · 1 = 0, and
of course XIe · 1 = 1 · 1 = 1. Thus

z · 1 = (
∑

w∈W

X∗
Iw(z)XIw ) · 1 = X∗

Ie(z). �

It follows that if |I| ≥ 1 and we express XI =
∑

v∈W qvXIv , then qe = 0.

Lemma 7.3. For any reduced sequence I of an element w and q ∈ Q we have

XIq =
∑

v≤w

φI,v(q)XIv for some φI,Iv (q) ∈ Q.

Proof. For any subsequence J of I (not necessarily reduced), we have w(J) ≤ w by
[De77, Th. 1.1]. Thus, by developing all Xi =

1
xαi

(1− δαi), moving all coefficients

to the left, and then using Lemma 3.1 and transitivity of the Bruhat order,

XIq =
∑

w≤v

φ̃I,w(q)δw =
∑

w≤v

φI,w(q)XIw

for some coefficients φ̃I,w(q) and φI,w(q) ∈ Q. �

Theorem 7.4. Assume that the set of reduced sequences {Iw}w∈W is Ξ-compatible.
For any u ∈ WΞ, and for any sequence I of length at least 1 and in WΞ (i.e. αi ∈ Ξ
for any i appearing in the sequence I), we have

X∗
Iu(zXI) = 0 for all z ∈ QW .

Proof. Since {XIw}w∈W is a basis of QW , we may assume that z = XIw for some
w ∈ W . We proceed by induction on the length of w. First decompose XI =
∑

e<v∈WΞ
qvXIv with qv ∈ Q by Lemma 7.2.

When ℓ(w) = 0, we haveXIw = XIe = 1. Since WΞ∩WΞ = {e}, for any v ∈ WΞ,
v 6= e, we have X∗

Iu
(XIv ) = 0 so this case is clear.

Then, the induction step goes as follows: since the sequences are Ξ-compatible,
we have XIwXI = XIw′

XIv′XI = XIw′
XI′ with w′ ∈ WΞ, v′ ∈ Wξ and I ′ ∈ WΞ

with ℓ(I ′) ≥ ℓ(I) ≥ 1. We can thus assume that w ∈ WΞ. Then, by Lemma 7.3,

XIwXI =
∑

v 6=e

XIwqvXIv =
∑

w′≤w,v 6=e

φIw,w′
(qv)XIw′

XIv .

Now X∗
Iu
(XIwXIv ) = X∗

Iu
(XIwv ) = 0 since wv is not minimal (v 6= e) so wv 6= u.

Applying X∗
Iu

to other terms in the above summation gives zero by induction. �
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Remark 7.5. The proof will not work if we replace X ’s by Y ’s, because constant
terms appear.

Corollary 7.6. Assume that the set of reduced sequences {Iw}w∈W is Ξ-compatible.
The elements {X∗

Iu
}u∈WΞ form a Q-module basis of (Q∗

W )WΞ .

Proof. For every αi ∈ Ξ we have

(δi •X
∗
Iu)(z) = X∗

Iu(zδi) = X∗
Iu(z(1− xiXi)) = X∗

Iu(z), z ∈ QW ,

where the last equality follows by Theorem 7.4. Therefore, X∗
Iu

is WΞ-invariant.

Let σ ∈ (Q∗
W )WΞ , i.e. for each αi ∈ Ξ we have σ = si(σ) = δi • σ. Then

σ(zXi) = σ(z 1
xαi

(1− δαi)) = σ(z 1
xαi

)− (δi • σ)(z
1
xi
) = (σ − δi • σ)(z

1
xi
) = 0

for any z ∈ QW . Write σ =
∑

w∈W cwX
∗
Iw

for some cw ∈ S. If w /∈ WΞ, then Iw
ends by some i such that αi ∈ Ξ which implies that

cw = σ(XIw ) = σ(XIw\iXi) = 0,

where Iw \ i is the sequence obtained by deleting the last i in Iw. So σ is a linear
combination of {X∗

Iu
}u∈WΞ . �

Corollary 7.7. Assume that the set of reduced sequences {Iw}w∈W is Ξ-compatible.
Then we have bXwv,u = bXw,u for any v ∈ WΞ, u ∈ WΞ and w ∈ W , where bXwv,u are
the coefficients of Lemma 3.1.

Proof. From Lemma 3.1 we have X∗
Iu

=
∑

w≥u b
X
w,ufw. By Lemma 4.2 we obtain

that v(X∗
Iu
) =

∑

w≥u b
X
w,ufwv−1 for any v ∈ WΞ. Since X∗

Iu
is WΞ-invariant by

Corollary 7.7 and {fw} is a basis of Q∗
W , this implies that bXwv−1,u = bXw,u. �

8. The formal affine Demazure algebra

In the present section we recall the definition and basic properties of the formal
(affine) Demazure algebra DF following [HMSZ], [CZZ] and [Zh13]. We show that
for the special elliptic formal group law Fe, the formal Demazure algebra is related
to the classical Iwahori-Hecke algebra.

Following [HMSZ], we define the formal affine Demazure algebra DF to be the
R-subalgebra of the twisted formal group algebra QW generated by elements of S
and the Demazure elements Xi for all i ∈ {1, . . . , n}. By [CZZ, Lemma 5.8], DF is
also generated by S and all Xα for all α ∈ Σ. Since κα ∈ S, the algebra DF is also
generated by Yα’s and elements of S. Finally, since δα = 1−xαXα, all elements δw
are in DF , and DF is a sub-SW -module of QW , both on the left and on the right.

Remark 8.1. Since {XIw}w∈W is a Q-linear basis of QW , restricting the action
(4.3) of QW onto DF we obtain an isomorphism between the algebra DF and the
R-subalgebra D(Λ)F of EndR(S) generated by operators ∆α (resp. Cα) for all
α ∈ Σ, and multiplications by elements from S. This isomorphism maps Xα 7→ ∆α

and Yα 7→ Cα. Therefore, for any identity or statement involving elements Xα or
Yα there is an equivalent identity or statement involving operators ∆α or Cα.

According to [HMSZ, Theorem 6.14] (or [CZZ, 7.9] when the ring R is not
necessarily a domain), in type An, the algebra DF is generated by the Demazure
elements Xi, i ∈ {1, . . . , n}, and multiplications by elements from S subject to the
folowing relations:
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(a) X2
i = Xi

(b) XiXj = XjXi for |i− j| > 1,
(c) XiXjXi −XjXiXj = κij(Xj −Xi) for |i− j| = 1 and
(d) Xiq = si(q)Xi +∆i(q),

Recall that the Iwahori-Hecke algebra H of the symmetric group Sn+1 is an
Z[t, t−1]-algebra with generators Ti, i ∈ {1, . . . , n}, subject to the following rela-
tions:

(A) (Ti + t)(Ti − t−1) = 0 or, equivalently, T 2
i = (t−1 − t)Ti + 1,

(B) TiTj = TjTi for |i− j| > 1 and
(C) TiTjTi = TjTiTj for |i− j| = 1.

(The Ti’s appearing in the definition of the Iwahori-Hecke algebra in [CG10, Def. 7.1.1]
correspond to tTi in our notation, where t = q−1/2.)

Following [HMSZ, Def. 6.3] let DF denote the R-subalgebra of DF generated by
the elements Xi, i ∈ {1, . . . , n}, only. By [HMSZ, Prop. 7.1], over R = C, if F = Fa

(resp. F = Fm), then DF is isomorphic to the completion of the nil-Hecke algebra
(resp. the 0-Hecke algebra) of Kostant-Kumar. The following observation provides
another motivation for the study of formal (affine) Demazure algebras.

Let us consider the special elliptic formal group law of example 2.2 with coeffi-
cient µ1 = 1. Then its formal inverse is x/(x − 1), and since (1 + µ2xixj)xi+j =
xi + xj − xixj , the coefficient κij of relation (c) is simply µ2:

(8.1) κij =
1

xi+jxj
− 1

xi+jx−i
− 1

xixj
=

xi+xj−xixj−xi+j

xixjxi+j
=

(1+µ2xixj)xi+j−xi+j

xixjxi+j
= µ2

Proposition 8.2. Let Fe be a normalized (i.e. µ1 = 1) special elliptic formal
group law over an integral domain R containing Z[t, t−1], and let a, b ∈ R. Then
the following are equivalent

(1) The assignment Ti 7→ aXi + b, i ∈ {1, . . . , n}, defines an isomorphism of
R-algebras H⊗Z[t,t−1] R → DF .

(2) We have a = t+t−1 or −t−t−1 and b = −t or t−1 respectively. Furthermore
µ2(t+ t−1)2 = −1; in particular, the element t+ t−1 is invertible in R.

Proof. Assume there is an isomorphism of R-algebras given by Ti 7→ aXi+ b. Then
relations (b) and (B) are equivalent and relation (A) implies that

0 = (aXi+b)2+(t−t−1)(aXi+b)−1 = [a2+2ab+a(t−t−1)]Xi+b2+b(t−t−1)−1.

Therefore b = −t or t−1 and a = t−1 − t − 2b = t + t−1 or −t − t−1 respectively,
since 1 and Xi are S-linearly independent in DF ⊆ DF .

Relations (C) and (a) then imply

0 = (aXi + b)(aXj + b)(aXi + b)− (aXj + b)(aXi + b)(aXj + b)

= a3(XiXjXi −XjXiXj) + (a2b+ ab2)(Xi −Xj).

Therefore, by relation (c) and (8.1), we have a3µ2 − a2b − ab2 = 0 which implies
that 0 = a2µ2 − ab− b2 = (t+ t−1)2µ2 + 1.

Conversely, by substituting the values of a and b, it is easy to check that the as-
signment is well defined, essentially by the same computations. It is an isomorphism
since a = ±(t+ t−1) is invertible in R. �
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Remark 8.3. The isomorphism of Theorem 8.2 provides a presentation of the
Iwahori-Hecke algebra with t+ t−1 inverted in terms of the Demazure operators on
the formal group algebra R[[Λ]]Fe.

9. The algebraic restriction to the fixed locus

In the present section we define the algebraic counterpart of the restriction to
T -fixed points of G/B.

Let SW be the twisted group algebra of S and the group ring R[W ], i.e. SW =
S ⊗R R[W ] as a R-module and the multiplication is defined by

(xδw)(x
′δw′) = xw(x′)δww′ , x, x′ ∈ S, w,w′ ∈ W.

The algebra SW is a free S-module with basis {δw}w∈W . Since S is Σ-regular, it
injects into its localization Q. Therefore, SW injects into QW via δw 7→ δw.

Since δα = 1 − xαXα for each α ∈ Σ, there is a natural inclusion of S-modules
η : SW →֒ DF . By [CZZ, Prop. 7.7] the elements {XIw}w∈W and, hence, {YIw}w∈W

form a basis of DF as a left S-module. Tensoring η by Q we obtain an isomorphism

ηQ : QW
≃
→ Q⊗S DF , because both are free Q-modules and their bases {XIw}w∈W

are mapped to each other. Observe that by definition DF injects into Q⊗S DF ≃
QW .

Consider the S-linear dual S⋆
W = HomS(SW , S). Since {δw}w∈W is a basis for

both SW and QW , S⋆
W can be identified with the free S-submodule of Q∗

W with
basis {fw}w∈W or, equivalently, with the subset {f ∈ Q∗

W | f(SW ) ⊆ S}. Consider
the S-linear dual D⋆

F = HomS(DF , S).

Definition 9.1. The induced map η⋆ : D⋆
F → S⋆

W (composition with η) will be
called the algebraic restriction to the fixed locus, because of its geometric interpre-
tation, given in the introduction.

Lemma 9.2. The map η⋆ is injective and its image in S⋆
W ⊆ Q∗

W = Q ⊗S S⋆
W

coincides with the subset

{f ∈ Q∗
W | f(DF ) ⊆ S}.

Proof. There is a commutative diagram

D⋆
F

��

η⋆

// S⋆
W

��

Q⊗S D⋆
F

η⋆
Q

≃
// Q⊗S S⋆

W

where the vertical maps are injective by freeness of the modules and because S
injects into Q. The description for the image then follows from the fact that
{XIw}w∈W is a basis for both DF and QW . �

Remark 9.3. Observe that η⋆ is not surjective, unless the root datum is trivial.
Indeed, since Xα = 1

xα
− 1

xα
δα, we have fsα(Xα) = − 1

xα
/∈ S, so fsα is not in the

image of η∗.
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Since DF is a subring of QW , the ‘•’-action of QW on Q∗
W restricts to an S-linear

action of DF on D⋆
F given by the same formula: (z′ • σ)(z) = σ(zz′) for σ ∈ D⋆

F

and z, z′ in DF . Thus, the action of W on Q∗
W restricts to an action on DF .

By [CZZ, Theorem 9.2] the coproduct △ on QW restricts to a coproduct on DF .
Hence, the dual D⋆

F becomes a subring of Q∗
W .

10. The push-pull operators on D⋆
F

In this section we restrict the push-pull operators onto the dual of the formal
affine Demazure algebra D⋆

F , and define a non-degenerate pairing on it.

Lemma 10.1. For any subset Ξ of Π we have YΞ ∈ DF .

Proof. The ring QW is functorial in the root datum (i.e. along morphisms of lattices
that send roots to roots) and in the formal group law. This functoriality sends
elements Xα (or Yα) to themselves, so it restricts to a functoriality the subring DF .
We can therefore assume that the root datum is adjoint, and that the formal group
law is the universal one over the Lazard ring, in which all integers are regular, since
it is a polynomial ring over Z.

Consider the involution ι onQW given by qδw 7→ (−1)ℓ(w)w−1(q)δw−1 . It satisfies
ι(zz′) = ι(z′)ι(z). Since ι(Xα) = Y−α, it restricts to an anti-automorphism on DF .
Hence, it suffices to show that ι(YΞ) ∈ DF . By definition we have

ι(YΞ) =
∑

w∈WΞ

(−1)ℓ(w) 1
xΞ

δw−1 = 1
xΞ

∑

w∈WΞ

(−1)ℓ(w)δw.

Since the root datum is adjoint, DF = {z ∈ QW | z ·S ⊆ S} by [CZZ, Remark 7.8].
It therefore suffices to show that ι(YΞ) · x ∈ S for any x ∈ S. We have

ι(YΞ) · x = 1
xΞ

∑

w∈WΞ

(−1)ℓ(w)w(x).

For any α ∈ Σ−
Ξ let αWΞ = {w ∈ WΞ | ℓ(sαw) > ℓ(w)}. Then WΞ = αWΞ ∐

sα
αWΞ and the sum

∑

w∈WΞ

(−1)ℓ(w)w(x) =
∑

w∈αWΞ

(−1)ℓ(w)(w(x)−sα(w(x))) = xα

∑

w∈αWΞ

(−1)ℓ(w)∆α(w(x))

is divisible by xα. By using the next lemma recursively, we then conclude that xΞ

divides the sum and thus that (ι(YΞ)) · x ∈ DF . �

Lemma 10.2. Assume that all integers are regular in R, and that the root datum
is adjoint. Let α and β be roots such that α 6= ±β and let x′ ∈ S. Then if xα | xβx

′,
we have xα | x′.

Proof. By [CZZ, Lemma 2.1], the root α can be completed as a basis (e1 =
α, e2, . . . , en) of the lattice, giving anR-algebra isomorphism φ : S → R[[x1, . . . , xn[[,
sending xα to x1, by [CPZ, Cor 2.13]. Since β 6= ±α, we have β =

∑

i niei with
ni 6= 0 for some i 6= 1 and φ(xβ) =

∑

i nixi + z, where z ∈ I2, the square of
the augmentation ideal (generated by the variables). Since R[[x1, . . . , xn]]/(x1) ≃
R[[x2, . . . , xn]], the result follows from the regularity of the class of xβ in that quo-
tient, which in turn follows from [CZZ, Lemma 12.3]. �
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Corollary 10.3. The operator YΞ (resp. AΞ) restricted to S (resp. to D⋆
F ) defines

an operator on S (resp. on D⋆
F ). Moreover, we have

YΞ(S) ⊆ SWΞ and AΞ(D
⋆
F ) ⊆ (D⋆

F )
WΞ .

Proof. Here YΞ acts on S ⊆ Q via (4.3). Since YΞ ∈ DF ⊆ {z ∈ QW | z · S ⊆ S}
by [CZZ, Remark 7.8] and YΞ ·Q ⊆ (Q)WΞ , the result follows.

As for AΞ, by Lemma 9.2 any f ∈ D⋆
F has the property that f(DF ) ⊆ S.

Therefore, (AΞ(f))(DF ) = (YΞ • f)(DF ) = f(DFYΞ) ⊆ S, so AΞ(f) ∈ D⋆
F . The

result then follows by Lemma 6.7. �

Corollary 10.4. Suppose that the root datum has no irreducible component of type
Csc

n or that 2 is invertible in R. Then if |WΞ′ | is regular in R, for any Ξ′ ⊆ Ξ ⊆ Π,
we have

YΞ/Ξ′(SWΞ′ ) ⊆ SWΞ .

Proof. Let x ∈ (S)WΞ′ , then |WΞ′ | · x =
∑

w∈WΞ′
w(x). So we have

|WΞ′ | · YΞ/Ξ′(x) = YΞ/Ξ′(|WΞ′ | · x) =
∑

u∈WΞ/Ξ′

u(
|WΞ′ | · x

xΞ/Ξ′

)

=
∑

u∈WΞ/Ξ′

∑

v∈WΞ′

uv(
x

xΞ/Ξ′

) =
∑

w∈WΞ

w(
xxΞ′

xΞ
) ∈ SWΞ .

Thus |WΞ′ | · YΞ/Ξ′(x) ∈ S, which implies that YΞ/Ξ′(x) ∈ S by [CZZ, Lemma 3.5].
Besides, it is fixed by WΞ by 5.5. �

For each v ∈ W define

f̃v := xΠfv ∈ S⋆
W , i.e. f̃v(

∑

w∈W

qwδw) = xΠqv.

Lemma 10.5. For any v ∈ W we have f̃v ∈ D⋆
F .

Proof. We first show that f̃w0
∈ D⋆

F . By Lemma 3.1, we have

XIv =
∑

w≤v

aXv,wδw, where aXv,v =
∏

α∈(vΣ−)∩Σ+

(− 1
xα

).

Since w0Σ
− = Σ+, we have

f̃w0
(XIv ) = f̃w0

(
∑

w≤v

aXv,wδw) = (xΠa
X
w0,w0

)δv,w0
=

∏

α∈Σ+

(−x−α

xα
)δv,w0

∈ S.

By Lemma 9.2, we have f̃w0
∈ D⋆

F . For an arbitrary v ∈ W , by Lemma 4.2, we
obtain

f̃v = xΠfw0w
−1

0
v = v−1w0(xΠfw0

) = v−1w0(f̃w0
) ∈ D⋆

F . �

Corollary 10.6. For any X ∈ DF we have xΠX ∈ SW .

Proof. It suffices to show that for any sequence Iv, xΠXIv ∈ SW . And indeed,

xΠXIv = xΠ(
∑

w≤v

aXv,wδw) =
∑

w≤v

(xΠa
X
v,w)δw =

∑

w≤v

f̃w(XIv )δw ∈ SW . �



PUSH-PULL OPERATORS ON THE FORMAL AFFINE DEMAZURE ALGEBRA AND ITS DUAL21

Theorem 10.7. For any v, w ∈ W , we have

AΠ(Y
∗
IvAIrev

w
(xΠfe)) = δw,v1 = AΠ(X

∗
IvBIrev

w
(xΠfe)).

Consequently, the pairing

AΠ : D⋆
F ×D⋆

F → (D⋆
F )

W ∼= S, (σ, σ′) 7→ AΠ(σσ
′)

is non-degenerate and satisfies that {AIrev
w

(xΠfe)}w∈W is dual to the basis {Y ∗
Iv
}v∈W ,

and {BIrev
w

(xΠfe)}w∈W is dual to the basis {X∗
Iv
}v∈W .

Proof. We prove the first identity. The second identity is obtained similarly.
Let YIrev

w
=

∑

v∈W a′w,vδv and YIw =
∑

v∈W aw,vδv. Let δw =
∑

v∈W bw,vYIv so
that

∑

v∈W aw,vbv,u = δw,u and Y ∗
Iu

=
∑

v∈W bv,ufv.

Combining the formula of Lemma 4.6 with the formula AΠ(fv) = 1
v(xΠ)1 of

Lemma 6.5, we obtain

AΠ(Y
∗
IuAIrev

w
(xΠfe)) =

∑

v∈W

bv,uv(xΠ)aw,vAΠ(fv) =
∑

v∈W

bv,uaw,v1 = δw,u1. �

The characteristic map c introduced in 6.10 restricts to a homomorphism of R-
algebras cS : S → D⋆

F which maps x ∈ S to the evaluation at x using the action of
DF on S, that is cS(x)(z) = z · x for z ∈ DF . In particular, we have

cS(x)(XI) = ∆I(x) and cS(x)(δw) = w(x), w ∈ W.

Lemma 10.8. For any sequence I and x ∈ S, we have

AΠ(cS(x)AIrev (xΠfe)) = CI(x)1 and AΠ(cS(x)BIrev (xΠfe)) = ∆I(x)1.

Proof. We prove the first formula only. The second formula is obtained similarly.
Let YI =

∑

v∈W aYI,vδv. Since cS(x) =
∑

v∈W v(x)fv, by Lemma 4.6, we get

AΠ(cS(x)AIrev (xΠfe)) = AΠ(
∑

v∈W

v(x)v(xΠ)a
Y
I,vfv) =

∑

v∈W

aYI,vv(x)1 = CI(x)1. �

11. The non-degenerate pairing on the WΞ-invariant subring

In this last section, we construct a non-degenerate pairing on the subring of in-
variants (D⋆

F )
WΞ . Using this pairing we provide several S-module bases of (D⋆

F )
WΞ .

Lemma 11.1. Suppose that the set of reduced sequences {Iw}w∈W is Ξ-compatible,
then the set {X∗

Iu
}u∈WΞ is a basis of (D⋆

F )
WΞ .

Proof. This follows immediately from Lemma 6.1 and the identity (Q⋆
W )WΞ ∩D⋆

F =
(D⋆

F )
WΞ . �

Given representatives u, u′ ∈ WΞ we set

dYu,u′ := u′(xΠ/Ξ)
∑

v∈WΞ

aYu,u′v, dXu,u′ := u′(xΠ/Ξ)
∑

v∈WΞ

aXu,u′v, ηΞ =
∏

w∈WΞ

w(xΠ/Ξ)

where aXw,v and aYw,v are the coefficients introduced in Lemma 3.1 and 3.2.

Lemma 11.2. For any u ∈ WΞ we have

AΞ(AIrev
u

(xΠfe)) =
∑

u′∈WΞ

dYu,u′fΞ
u′ , AΞ(BIrev

u
(xΠfe)) =

∑

u′∈WΞ

dXu,u′fΞ
u′ .
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Proof. We prove the first formula only. The second formula follows similarly. By
Lemma 4.6 and 6.5 we obtain

AΞ(AIrev
u

(xΠfe)) = AΞ(
∑

w∈W

w(xΠ)a
Y
u,wfw) =

∑

w∈W

w(xΠ/Ξ)a
Y
u,wf

Ξ
w =

by (7.1), representing w = u′v, and Lemma 5.1 we get

=
∑

u′∈WΞ, v∈WΞ

u′v(xΠ/Ξ)a
Y
u,u′vf

Ξ
u′v =

∑

u′∈WΞ, v∈WΞ

u′(xΠ/Ξ)a
Y
u,u′vf

Ξ
u′ . �

Theorem 11.3. Assume that the set of reduced sequences {Iw}w∈W is Ξ-compatible,
then the sets {AΞ(AIrev

u
(xΠfe))}u∈WΞ and {AΞ(BIrev

u
(xΠfe))}u∈WΞ are S-module

bases of (D⋆
F )

WΞ .

Proof. Observe that by Corollary 10.3 our sets are in the S-module (D⋆
F )

WΞ . To
show that they are bases, it suffices to show that the respective matrices MY

Ξ

and MX
Ξ expressing them on the basis {X∗

Iu
}u∈WΞ of Lemma 11.1 have invertible

determinants (in S).
If u′ ∈ WΞ and v ∈ WΞ, we have u

′ ≤ u′v where the equality holds if and only if
v = e. By Lemma 3.2, we get aYu,u′v = 0 unless u′ ≤ u and aYu,uv = 0 if v 6= e. This

implies that dYu,u′ = 0 unless u′ ≤ u, and that

dYu,u = u(xΠ/Ξ)
∑

v∈WΞ

aYu,uv = u(xΠ/Ξ)a
Y
u,u = u(xΠ/Ξ)

1
bYu,u

.

Hence, the matrix DY
Ξ := (dYu,u′)u,u′∈WΞ is lower triangular with determinant

ηΞ
∏

u∈WΞ
1

bYu,u
. Similarly, the matrix DX

Ξ := (dXu,u′)u,u′∈WΞ is lower triangular

with determinant ηΞ
∏

u∈WΞ
1

bXu,u
.

On the other hand, for u ∈ WΞ, we have

X∗
Iu =

∑

w∈W

bXw,ufw =
∑

u′∈WΞ

∑

v∈WΞ

bXu′v,ufu′v.

By Corollary 7.7, and becauseX∗
Iu

is fixed byWΞ, we have b
X
u′v,u = bXu′,u. Therefore,

X∗
Iu =

∑

u′∈WΞ

bXu′,u

∑

v

fu′v =
∑

u′∈WΞ

bXu′,uf
Ξ
u′ .

By Lemma 3.1, bXu′,u = 0 unless u′ ≥ u, so the matrix EX
Ξ := {bXu′,u}u′,u∈WΞ is

lower triangular with determinant
∏

u∈WΞ bXu,u =
∏

u∈WΞ(−1)ℓ(u)bYu,u.

The matrix MX
Ξ = (EX

Ξ )−1DX
Ξ has determinant

ηΞ
∏

u∈WΞ

1
(bXu,u)

2 = ηΞ
∏

u∈WΞ

1
(bYu,u)

2

which is invertible in S by Lemma 11.5 below. Since the determinant of MY
Ξ =

(EX
Ξ )−1DY

Ξ differs by sign only, it is invertible as well. �

Recall the definition of ΣΞ from the beginning of section 5, and let wΞ
0 be the

longest element of WΞ.

Lemma 11.4. For any w ∈ WΞ, we have bYw,wb
Y
wwΞ

0
,wwΞ

0

= wΞ
0 (xΞ). In particular,

if Ξ = Π we have bYw,wb
Y
ww0,ww0

= w0(xΠ).
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Proof. Recall from Lemma 3.2 that bYw,w =
∏

wΣ−∩Σ+ xα. By (3.2), it also equals
∏

wΣ−

Ξ
∩Σ+

Ξ

xα. Since wΞ
0Σ

−
Ξ = Σ+

Ξ , we have wwΞ
0 Σ

−
Ξ ∩ Σ+

Ξ = wΣ+
Ξ ∩ Σ+

Ξ . Moreover,

(wΣ−
Ξ ∩ Σ+

Ξ ) ∩ (wΣ+
Ξ ∩ Σ+

Ξ ) ⊂ wΣ−
Ξ ∩ wΣ+

Ξ = w(Σ−
Ξ ∩ Σ+

Ξ ) = ∅

and their union is Σ+
Ξ . �

Lemma 11.5. For any Ξ ⊂ Π the product ηΞ
∏

u∈WΞ
1

(bYu,u)
2 is an invertible element

in S.

Proof. We already know that this product is in S, since it is the determinant of the
matrix MX

Ξ whose coefficients are in S. Consider the R-linear involution u 7→ ū on
S = R[[Λ]]F induced by λ 7→ −λ, λ ∈ Λ. Observe that it is W -equivariant.

Set bv := bYv,v. For any α ∈ Ξ, we have

xΞ = sα(xΞ)x−αx
−1
α = sα(xΞ)b̄sαb

−1
sα

and, therefore, by induction xΞ = w(xΞ)b̄vb
−1
v for any v ∈ WΞ. In particular,

xΠ = w(xΠ)b̄wb
−1
w for any w ∈ W . Then

x
|WΞ|
Ξ =

∏

v∈WΞ

v(xΞ)b̄vb
−1
v and x

|W |
Π =

∏

w∈W

w(xΠ)b̄wb
−1
w .

If w = uv with ℓ(w) = ℓ(u) + ℓ(v), by (3.2), we see that

wΣ− ∩Σ+ = (uΣ− ∩ Σ+) ⊔ u(vΣ− ∩ Σ+),

so buv = buu(bv) and b̄uv = b̄uu(b̄v). Hence

x
|W |
Π =

∏

w∈W

w(xΠ)b̄wb
−1
w =

∏

u∈WΞ

∏

v∈WΞ

uv(xΠ/ΞxΞ)b̄uvb
−1
uv

5.2
=

∏

u∈WΞ

u
(

x
|WΞ|
Π/Ξ

)

∏

v∈WΞ

uv(xΞ)b̄uu(b̄v)b
−1
u u(b−1

v )

= η
|WΞ|
Ξ

∏

u∈WΞ

(

b̄ub
−1
u

)|WΞ|
u
(

∏

v∈WΞ

v(xΞ)b̄vb
−1
v

)

= η
|WΞ|
Ξ

∏

u∈WΞ

(

b̄ub
−1
u

)|WΞ|
u(xΞ)

|WΞ|

(11.1)

On the other hand, by Lemma 11.4,

x̄
|WΞ|
Ξ = wΞ

0 (xΞ)
|WΞ| =

∏

v∈WΞ

bvbvwΞ
0
=

∏

v∈WΞ

b2v

and, in particular, x̄
|W |
Ξ =

∏

w∈W b2w. So, we obtain

x̄
|W |
Π =

∏

w∈W

b2w =
∏

u∈WΞ

∏

v∈WΞ

b2uv =
∏

u∈WΞ

∏

v∈WΞ

b2uu(b
2
v)

=
(

∏

u∈WΞ

b2|WΞ|
u

)(

∏

u∈WΞ

u(
∏

v∈WΞ

b2v)
)

=
(

∏

u∈WΞ

b2u

)|WΞ|( ∏

u∈WΞ

u(x̄Ξ)
)|WΞ|

.

Combining this with equation (11.1), we obtain
(

η−1
Ξ

∏

u∈WΞ

b2u

)|WΞ|

= x̄
|W |
Π x

−|W |
Π

(

∏

u∈WΞ

u(x̄−1
Ξ xΞ)b̄ub

−1
u

)|WΞ|



24 BAPTISTE CALMÈS, KIRILL ZAINOULLINE, AND CHANGLONG ZHONG

which is an element of S, since it is a product of elements of the form xαx
−1
−α ∈ S.

Therefore ηΞ
∏

u∈WΞ
1
b2u

is invertible, since so is its |WΞ|-th power. �

Corollary 11.6. Given Ξ′ ⊆ Ξ ⊆ Π we have AΞ(D
⋆
F ) = (D⋆

F )
WΞ . For any set

of coset representatives WΞ/Ξ′ the operator AΞ/Ξ′ induces a surjection (D⋆
F )

W ′

Ξ →

(D⋆
F )

WΞ (independent of the choices of WΞ/Ξ′ by Lemma 6.4).

Proof. By Corollary 10.3 and Theorem 11.3, we obtain the first part. To prove the
second part, let σ ∈ (D⋆

F )
WΞ′ . By the first part, there exists σ′ ∈ D⋆

F such that
σ = AΞ′(σ′), so by Lemma 6.3 we have

AΞ/Ξ′(σ) = AΞ/Ξ′(AΞ′(σ′)) = AΞ(σ
′) ∈ (D⋆

F )
WΞ .

Hence, AΞ/Ξ′ restricts to AΞ/Ξ′ : (D⋆
F )

WΞ′ → (D⋆
F )

WΞ . Since AΞ(D
⋆
F ) = (D⋆

F )
WΞ ,

we also have AΞ/Ξ′((D⋆
F )

WΞ′ ) = (D⋆
F )

WΞ . �

Theorem 11.7. Assume that the set of reduced sequences {Iw}w∈W is Ξ-compatible.
If u ∈ WΞ, then AΠ/Ξ(X

∗
Iu
AΞ(B

rev
Iw

(xΠfe))) = δw,u1. Consequently, the pairing

(D⋆
F )

WΞ × (D⋆
F )

WΞ → (D⋆
F )

W ∼= S, (σ, σ′) 7→ AΠ/Ξ(σσ
′)

is non-degenerate, and {AΞ(BIrev
u

(xΠfe))}u∈WΞ , {X∗
Iu
}u∈WΞ are dual S-bases of

(D⋆
F )

WΞ .

Proof. By Corollary 11.6, the pairing is well-defined (i.e. it does map into S). By
Lemma 6.7, Lemma 6.3 and Theorem 10.7, we obtain

AΠ/Ξ(X
∗
IuAΞ(BIrev

w
(xΠfe))) = AΠ/Ξ(AΞ(X

∗
IuBIrev

w
(xΠfe)))

= AΠ(X
∗
IuBIrev

w
(xΠfe)) = δw,u1. �
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