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Abstract. We determine which simple algebraic groups of type 3D4 over
arbitrary fields of characteristic different from 2 admit outer automorphisms
of order 3, and classify these automorphisms up to conjugation. The criterion
is formulated in terms of a representation of the group by automorphisms of
a trialitarian algebra: outer automorphisms of order 3 exist if and only if the
algebra is the endomorphism algebra of an induced cyclic composition; their
conjugacy classes are in one-to-one correspondence with isomorphism classes
of symmetric compositions from which the induced cyclic composition stems.

1. Introduction

Let G0 be an adjoint Chevalley group of type D4 over a field F . Since the auto-
morphism group of the Dynkin diagram of type D4 is isomorphic to the symmetric
group S3, there is a split exact sequence of algebraic groups

(1) 1 //G0
Int

//Aut(G0)
π

//S3
//1.

Thus, Aut(G0) ∼= G0 ⋊S3; in particular G0 admits outer automorphisms of order
3, which we call trialitarian automorphisms. Adjoint algebraic groups of type D4

over F are classified by the Galois cohomology set H1(F,G0 ⋊ S3) and the map
induced by π in cohomology

π∗ : H
1(F,G0 ⋊S3) → H1(F,S3)

associates to any group G of type D4 the isomorphism class of a cubic étale F -
algebra L. The groupG is said to be of type 1

D4 if L is split, of type 2
D4 if L ∼= F×∆

for some quadratic separable field extension ∆/F , of type 3
D4 if L is a cyclic field

extension of F and of type 6
D4 if L is a non-cyclic field extension. An easy argument

given in Theorem 4.1 below shows that groups of type 2
D4 and 6

D4 do not admit
trialitarian automorphisms defined over the base field. Trialitarian automorphisms
of groups of type 1

D4 were classified in [3], and by a different method in [2]: the
adjoint groups of type 1

D4 that admit trialitarian automorphisms are the groups
of proper projective similitudes of 3-fold Pfister quadratic spaces; their trialitarian
automorphisms are shown in [3, Th. 5.8] to be in one-to-one correspondence with
the symmetric composition structures on the quadratic space. In the present paper,
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we determine the simple groups of type 3
D4 that admit trialitarian automorphisms,

and we classify those automorphisms up to conjugation.
Our main tool is the notion of a trialitarian algebra, as introduced in [7, Ch. X].

Since these algebras are only defined in characteristic different from 2, we assume
throughout (unless specifically mentioned) that the characteristic of the base field
F is different from 2. In view of [7, Th. (44.8)], every adjoint simple group G of
type D4 can be represented as the automorphism group of a trialitarian algebra
T = (E,L, σ, α). In the datum defining T , L is the cubic étale F -algebra given
by the map π∗ above, E is a central simple L-algebra with orthogonal involution
σ, known as the Allen invariant of G (see [1]), and α is an isomorphism relating
(E, σ) with its Clifford algebra C(E, σ) (we refer to [7, §43] for details). We show
in Theorem 4.1 that if G admits an outer automorphism of order 3 modulo inner
automorphisms, then L is either split (i.e., isomorphic to F × F × F ), or it is a
cyclic field extension of F (so G is of type 1

D4 or 3
D4), and the Allen invariant E

of G is a split central simple L-algebra. This implies that T has the special form
T = EndΓ for some cyclic composition Γ. We further show in Theorem 4.2 that
if G carries a trialitarian automorphism, then the cyclic composition Γ is induced,
which means that it is built from some symmetric composition over F , and we
establish a one-to-one correspondence between trialitarian automorphisms of G up
to conjugation and isomorphism classes of symmetric compositions over F from
which Γ is built.

The notions of symmetric and cyclic compositions are recalled in §2. Trialitarian
algebras are discussed in §3, which contains the most substantial part of the argu-
ment: we determine the trialitarian algebras that have semilinear automorphisms
of order 3 (Theorem 3.1) and we classify these automorphisms up to conjugation
(Theorem 3.5). The group-theoretic results follow easily in §4 by using the corre-
spondence between groups of type D4 and trialitarian algebras.

Notation is generally as in the Book of Involutions [7], which is our main ref-
erence. For an algebraic structure S defined over a field F , we let Aut(S) denote
the group of automorphisms of S, and write Aut(S) for the corresponding group
scheme over F .

We gratefully thank Vladimir Chernousov and Alberto Elduque for their help
during the preparation of this paper.

2. Cyclic and symmetric compositions

Cyclic compositions were introduced by Springer in his 1963 Göttingen lecture
notes ([8], [9]) to get new descriptions of Albert algebras. We recall their definition
from [9]1 and [7, §36.B], restricting to the case of dimension 8.

Let F be an arbitrary field (of any characteristic). A cyclic composition (of
dimension 8) over F is a 5-tuple Γ = (V, L,Q, ρ, ∗) consisting of

• a cubic étale F -algebra L;
• a free L-module V of rank 8;
• a quadratic form Q : V → L with nondegenerate polar bilinear form bQ;
• an F -automorphism ρ of L of order 3;

1A cyclic composition is called a normal twisted composition in [8] and [9].
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• an F -bilinear map ∗ : V × V → V with the following properties: for all x,
y, z ∈ V and λ ∈ L,

(λx) ∗ y = ρ(λ)(x ∗ y), x ∗ (yλ) = (x ∗ y)ρ2(λ),

Q(x ∗ y) = ρ
(
Q(x)

)
· ρ2

(
Q(y)

)
,

bQ(x ∗ y, z) = ρ
(
bQ(y ∗ z, x)

)
= ρ2

(
bQ(z ∗ x, y)

)
.

These properties imply the following (see [7, §36.B] or [9, Lemma 4.1.3]): for all x,
y ∈ V ,

(2) (x ∗ y) ∗ x = ρ2
(
Q(x)

)
y and x ∗ (y ∗ x) = ρ

(
Q(x)

)
y.

Since the cubic étale F -algebraL has an automorphism of order 3, L is either a cyclic
cubic field extension of F , and ρ is a generator of the Galois group, or we may
identify L with F × F × F and assume ρ permutes the components cyclically. We
will almost exclusively restrict to the case where L is a field; see however Remark 2.3
below.

Let Γ′ = (V ′, L′, Q′, ρ′, ∗′) be also a cyclic composition over F . An isotopy2

Γ → Γ′ is defined to be a pair (ν, f) where ν : (L, ρ)
∼
→ (L′, ρ′) is an isomorphism of

F -algebras with automorphisms (i.e., ν ◦ρ = ρ′◦ν) and f : V
∼
→ V ′ is a ν-semilinear

isomorphism for which there exists µ ∈ L× such that

Q′
(
f(x)

)
= ν

(
ρ(µ)ρ2(µ) ·Q(x)

)
and f(x) ∗′ f(y) = ν(µ)f(x ∗ y)

for x, y ∈ V . The scalar µ is called the multiplier of the isotopy. Isotopies with
multiplier 1 are isomorphisms. When the map ν is clear from the context, we write
simply f for the pair (ν, f), and refer to f as a ν-semilinear isotopy.

Examples of cyclic compositions can be obtained by scalar extension from sym-
metric compositions over F , as we now show. Recall from [7, §34] that a symmetric
composition (of dimension 8) over F is a triple Σ = (S, n, ⋆) where (S, n) is an
8-dimensional F -quadratic space (with nondegenerate polar bilinear form bn) and
⋆ : S × S → S is a bilinear map such that for all x, y, z ∈ S

n(x ⋆ y) = n(x)n(y) and bn(x ⋆ y, z) = bn(x, y ⋆ z).

If Σ′ = (S′, n′, ⋆′) is also a symmetric composition over F , an isotopy Σ → Σ′ is a
linear map f : S → S′ for which there exists λ ∈ F× (called the multiplier) such
that

n′
(
f(x)

)
= λ2n(x) and f(x) ⋆′ f(y) = λf(x ⋆ y) for x, y ∈ S.

Note that if f : Σ → Σ′ is an isotopy with multiplier λ, then λ−1f : Σ → Σ′ is an
isomorphism. Thus, symmetric compositions are isotopic if and only if they are
isomorphic. For an explicit example of a symmetric composition, take a Cayley
(octonion) algebra (C, ·) with norm n and conjugation map . Letting x ⋆ y = x · y

for x, y ∈ C yields a symmetric composition C̃ = (C, n, ⋆), which is called a para-
Cayley composition (see [7, §34.A]).

Given a symmetric composition Σ = (S, n, ⋆) and a cubic étale F -algebra L with
an automorphism ρ of order 3, we define a cyclic composition Σ⊗ (L, ρ) as follows:

Σ⊗ (L, ρ) = (S ⊗F L,L, nL, ρ, ∗)

2The term used in [7, p. 490] is similarity.
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where nL is the scalar extension of n to L and ∗ is defined by extending ⋆ linearly
to S ⊗F L and then setting

x ∗ y = (IdS ⊗ρ)(x) ⋆ (IdS ⊗ρ
2)(y) for x, y ∈ S ⊗F L.

(See [7, (36.11)].) Clearly, every isotopy f : Σ → Σ′ of symmetric compositions
extends to an isotopy of cyclic compositions (IdL, f) : Σ ⊗ (L, ρ) → Σ′ ⊗ (L, ρ).
Observe for later use that the map ρ̂ = IdS ⊗ρ ∈ EndF (S ⊗F L) defines a ρ-
semilinear automorphism

(3) ρ̂ : Σ⊗ (L, ρ)
∼
→ Σ⊗ (L, ρ)

such that ρ̂3 = Id.
We call a cyclic composition that is isotopic to Σ ⊗ (L, ρ) for some symmetric

composition Σ induced. Cyclic compositions induced from para-Cayley symmetric
compositions are called reduced in [9].

Remark 2.1. Induced cyclic compositions are not necessarily reduced. This can be
shown by using the following cohomological argument. We assume for simplicity
that the field F contains a primitive cube root of unity ω. There is a cohomological
invariant g3(Γ) ∈ H3(F,Z/3Z) attached to any cyclic composition Γ. The cyclic
composition Γ is reduced if and only if g3(Γ) = 0 (we refer to [9, §8.3] or [7, §40]
for details). We construct an induced cyclic composition Γ with g3(Γ) 6= 0. Let
a, b ∈ F× and let A(a, b) be the F -algebra with generators α, β and relations
α3 = a, β3 = b, βα = ωαβ. The algebra A(a, b) is central simple of dimension 9
and the space A0 of elements of A(a, b) of reduced trace zero admits the structure
of a symmetric composition Σ(a, b) = (A0, n, ⋆) (see [7, (34.19)]). Such symmetric
compositions are called Okubo symmetric compositions. From the Elduque–Myung
classification of symmetric compositions [4, p. 2487] (see also [7, (34.37)]), it follows
that symmetric compositions are either para-Cayley or Okubo. Let L = F (γ)
with γ3 = c ∈ F× be a cubic cyclic field extension of F , and let ρ be the F -
automorphism of L such that γ 7→ ωγ. We may then consider the induced cyclic
composition Γ(a, b, c) = Σ(a, b) ⊗ (L, ρ). Its cohomological invariant g3

(
Γ(a, b, c)

)

can be computed by the construction in [9, §8.3]: Using ω, we identify the group
µ3 of cube roots of unity in F with Z/3Z, and for any u ∈ F× we write [u] for the
cohomology class in H1(F,Z/3Z) corresponding to the cube class uF×3 under the
isomorphism F×/F×3 ∼= H1(F, µ3) arising from the Kummer exact sequence (see
[7, p. 413]). Then g3

(
Γ(a, b, c)

)
is the cup-product [a] ∪ [b] ∪ [c] ∈ H3(F,Z/3Z).

Thus any cyclic composition Γ(a, b, c) with [a] ∪ [b] ∪ [c] 6= 0 is induced but not
reduced.

Another cohomological argument can be used to show that there exist cyclic
compositions that are not induced. We still assume that F contains a primitive cube
root of unity ω. There is a further cohomological invariant of cyclic compositions
f3(Γ) ∈ H3(F,Z/2Z) which is zero for any cyclic composition induced by an Okubo
symmetric composition3 and is given by the class in H3(F,Z/2Z) of the 3-fold

Pfister form which is the norm of C̃ if Γ is induced from the para-Cayley C̃ (see
for example [7, §40]). Thus a cyclic composition Γ with f3(Γ) 6= 0 and g3(Γ) 6= 0 is
not induced. Such examples can be given with the help of the Tits process used for
constructing Albert algebras (see [7, §39 and §40]). However, for example, cyclic

3The fact that F contains a primitive cubic root of unity is relevant for this claim.
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compositions over finite fields, p-adic fields or algebraic number fields are reduced,
see [9, p. 108].

Examples 2.2. (i) Let F = Fq be the field with q elements, where q is odd and
q ≡ 1 mod 3. Thus F contains a primitive cube root of unity and we are in the
situation of Remark 2.1. Let L = Fq3 be the (unique, cyclic) cubic field extension
of F , and let ρ be the Frobenius automorphism of L/F . Because H3(F,Z/3Z) = 0,
every cyclic composition over F is reduced; moreover every 3-fold Pfister form
is hyperbolic, hence every Cayley algebra is split. Therefore, up to isomorphism
there is a unique cyclic composition over F with cubic algebra (L, ρ), namely Γ =

C̃ ⊗ (L, ρ) where C̃ is the split para-Cayley symmetric composition. If Σ denotes
the Okubo symmetric composition on 3 × 3 matrices of trace zero with entries
in F , we thus have Γ ∼= Σ ⊗ (L, ρ), which means that Γ is also induced by Σ.
By the Elduque–Myung classification of symmetric compositions, every symmetric
composition over F is isomorphic either to the Okubo composition Σ or to the split

para-Cayley composition C̃. Therefore, Γ is induced by exactly two symmetric
compositions over F up to isomorphism.

(ii) Assume that F contains a primitive cube root of unity and that F carries an
anisotropic 3-fold Pfister form n. Let C be the non-split Cayley algebra with norm n

and let C̃ be the associated para-Cayley algebra. For any cubic cyclic field extension

(L, ρ) the norm nL of the cyclic composition C̃ ⊗ (L, ρ) is anisotropic. Thus it
follows from the Elduque–Myung classification that any symmetric composition Σ

such that Σ⊗ (L, ρ) is isotopic to C̃ ⊗ (L, ρ) must be isomorphic to C̃.

(iii) Finally, we observe that the cyclic compositions of type Γ(a, b, c), described
in Remark 2.1, have invariant g3 equal to zero if c = a. Since the f3-invariant
is also zero, they are all isotopic to the cyclic composition induced by the split
para-Cayley algebra. Thus we can get (over suitable fields) examples of many
mutually non-isomorphic symmetric compositions Σ(a, b) that induce isomorphic
cyclic compositions Γ(a, b, c).

Of course, besides this construction of cyclic compositions by induction from
symmetric compositions, we can also extend scalars of a cyclic composition: if
Γ = (V, L,Q, ρ, ∗) is a cyclic composition over F and K is any field extension of F ,
then ΓK = (V ⊗F K,L⊗F K,QK , ρ⊗ IdK , ∗K) is a cyclic composition over K.

Remark 2.3. Let Γ = (V, L,Q, ρ, ∗) be an arbitrary cyclic composition over F with
L a field. Write θ for ρ2. We have an isomorphism of L-algebras

ν : L⊗F L
∼
→ L× L× L given by ℓ1 ⊗ ℓ2 7→ (ℓ1ℓ2, ρ(ℓ1)ℓ2, θ(ℓ1)ℓ2).

Therefore, the extended cyclic composition ΓL over L has a split cubic étale algebra.
To give an explicit description of ΓL, note first that under the isomorphism ν
the automorphism ρ ⊗ IdL is identified with the map ρ̃ defined by ρ̃(ℓ1, ℓ2, ℓ3) =
(ℓ2, ℓ3, ℓ1). Consider the twisted L-vector spaces ρV , θV defined by

ρV = {ρx | x ∈ V }, θV = {θx | x ∈ V }

with the operations
ρ(x+ y) = ρx+ ρy, θ(x+ y) = θx+ θy, and ρ(xλ) = (ρx)ρ(λ), θ(xλ) = (θx)θ(λ)

for x, y ∈ V and λ ∈ L. Define quadratic forms ρQ : ρV → L and θQ : θV → L by
ρQ(ρx) = ρ

(
Q(x)

)
and θQ(θx) = θ

(
Q(x)

)
for x ∈ V ,



6 MAX-ALBERT KNUS AND JEAN-PIERRE TIGNOL

and L-bilinear maps

∗Id :
ρV × θV → V, ∗ρ :

θV × V → ρV, ∗θ : V × ρV → θV

by
ρx ∗Id

θy = x ∗ y, θx ∗ρ y = ρ(x ∗ y), x ∗θ
ρy = θ(x ∗ y) for x, y ∈ V .

We may then consider the quadratic form

Q× ρQ× θQ : V × ρV × θV → L× L× L

and the product ⋄ : (V × ρV × θV )× (V × ρV × θV ) → (V × ρV × θV ) defined by

(x, ρx, θx) ⋄ (y, ρy, θy) = (ρx ∗Id
θy, θx ∗ρ y, x ∗θ

ρy).

Straightforward calculations show that the F -vector space isomorphism f : V ⊗F
L→ V × ρV × θV given by

f(x⊗ ℓ) = (xℓ, (ρx)ℓ, (θx)ℓ) for x ∈ V and ℓ ∈ L

defines with ν an isomorphism of cyclic compositions

ΓL
∼
→ (V × ρV × θV, L× L× L, Q× ρQ × θQ, ρ̃, ⋄).

3. Trialitarian algebras

In this section, we assume that the characteristic of the base field F is different
from 2. Trialitarian algebras are defined in [7, §43] as 4-tuples T = (E,L, σ, α)
where L is a cubic étale F -algebra, (E, σ) is a central simple L-algebra of degree 8
with an orthogonal involution, and α is an isomorphism from the Clifford algebra
C(E, σ) to a certain twisted scalar extension of E. We just recall in detail the
special case of trialitarian algebras of the form EndΓ for Γ a cyclic composition,
because this is the main case for the purposes of this paper.

Let Γ = (V, L,Q, ρ, ∗) be a cyclic composition (of dimension 8) over F , with L a
field, and let θ = ρ2. Let also σQ denote the orthogonal involution on EndL V
adjoint to Q. We will use the product ∗ to see that the Clifford algebra C(V,Q)
is split and the even Clifford algebra C0(V,Q) decomposes into a direct product of
two split central simple L-algebras of degree 8. Using the notation of Remark 2.3,
to any x ∈ V we associate L-linear maps

ℓx :
ρV → θV and rx :

θV → ρV

defined by

ℓx(
ρy) = x ∗θ

ρy = θ(x ∗ y) and rx(
θz) = θz ∗ρ x = ρ(z ∗ x)

for y, z ∈ V . From (2) it follows that for x ∈ V the L-linear map

α∗(x) =
(

0 rx
ℓx 0

)
: ρV ⊕ θV → ρV ⊕ θV given by (ρy, θz) 7→

(
rx(

θz), ℓx(
ρy)

)

satisfies α∗(x)
2 = Q(x) Id. Therefore, there is an induced L-algebra homomorphism

(4) α∗ : C(V,Q) → EndL(
ρV ⊕ θV ).

This homomorphism is injective because C(V,Q) is a simple algebra, hence it is an
isomorphism by dimension count. It restricts to an L-algebra isomorphism

α∗0 : C0(V,Q)
∼
→ EndL(

ρV )× EndL(
θV ),

see [7, (36.16)]. Note that we may identify EndL(
ρV ) with the twisted algebra

ρ(EndL V ) (where multiplication is defined by ρf1 ·
ρf2 = ρ(f1 ◦ f2)) as follows: for
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f ∈ EndL V , we identify ρf with the map ρV → ρV such that ρf(ρx) = ρ(f(x))
for x ∈ V . On the other hand, let σQ be the orthogonal involution on EndL V
adjoint to Q. The algebra C0(V,Q) is canonically isomorphic to the Clifford algebra
C(EndL V, σQ) (see [7, (8.8)]), hence it depends only on EndL V and σQ. We may
regard α∗0 as an isomorphism of L-algebras

α∗0 : C(EndL V, σQ)
∼
→ ρ(EndL V )× θ(EndL V ).

Thus, α∗0 depends only on EndL V and σQ. The trialitarian algebra EndΓ is the
4-tuple

EndΓ = (EndL V, L, σQ, α∗0).

An isomorphism of trialitarian algebras EndΓ
∼
→ EndΓ′, for Γ′ = (V ′, L′, Q′, ρ′, ∗′)

a cyclic composition, is defined to be an isomorphism of F -algebras with involution
ϕ : (EndL V, σQ)

∼
→ (EndL′ V ′, σQ′) subject to the following conditions:

(i) the restriction of ϕ to the center of EndL V is an isomorphism ϕ|L : (L, ρ)
∼
→

(L′, ρ′), and

(ii) the following diagram (where θ′ = ρ′
2
) commutes:

C(EndL V, σQ)
α∗0

//

C(ϕ)

��

ρ(EndL V )× θ(EndL V )

ρϕ×θϕ
��

C(EndL′ V ′, σQ′)
α

∗
′0

// ρ
′

(EndL′ V ′)× θ′(EndL′ V ′)

For example, it is straightforward to check that every isotopy (ν, f) : Γ → Γ′ induces
an isomorphism EndΓ → EndΓ′ mapping g ∈ EndL V to f ◦ g ◦ f−1 ∈ EndL′ V ′.
As part of the proof of the main theorem below, we show that every isomorphism
EndΓ

∼
→ EndΓ′ is induced by an isotopy; see Lemma 3.4. (A cohomological proof

that the trialitarian algebras EndΓ, EndΓ′ are isomorphic if and only if the cyclic
compositions Γ, Γ′ are isotopic is given in [7, (44.16)].)

We show that the trialitarian algebra EndΓ admits a ρ-semilinear automorphism
of order 3 if and only if Γ is reduced. More precisely:

Theorem 3.1. Let Γ = (V, L,Q, ρ, ∗) be a cyclic composition over F , with L a
field.

(i) If Σ is a symmetric composition over F and f : Σ ⊗ (L, ρ) → Γ is an L-
linear isotopy, then the automorphism τ(Σ,f) = Int(f ◦ ρ̂ ◦ f−1)|EndL V of

EndΓ, where ρ̂ is defined in (3), is such that τ3(Σ,f) = Id and τ(Σ,f)|L= ρ.

The automorphism τ(Σ,f) only depends, up to conjugation in AutF (EndΓ),
on the isomorphism class of Σ.

(ii) If EndΓ carries an F -automorphism τ such that τ |L = ρ and τ3 = Id, then
Γ is reduced. More precisely, there exists a symmetric composition Σ over
F and an L-linear isotopy f : Σ⊗ (L, ρ) → Γ such that τ = τ(Σ,f).

Proof. (i) It is clear that τ3(Σ,f) = Id and τ(Σ,f)|L= ρ. For the last claim, note that

if g : Σ ⊗ (L, ρ) → Γ is another L-linear isotopy, then f ◦ g−1 is an isotopy of Γ,
hence Int(f ◦ g−1) is an automorphism of EndΓ, and

τ(Σ,f) = Int(f ◦ g−1) ◦ τ(Σ,g) ◦ Int(f ◦ g−1)−1.

The proof of claim (ii) relies on three lemmas. Until the end of this section, we fix
a cyclic composition Γ = (V, L,Q, ρ, ∗), with L a field. We start with some general
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observations on ρ-semilinear automorphisms of EndL V . For this, we consider the
inclusions

L →֒ EndL V →֒ EndF V.

The field L is the center of EndL V , hence every automorphism of EndL V restricts
to an automorphism of L.

Lemma 3.2. Let ν ∈ {IdL, ρ, θ} be an arbitrary element in the Galois group
Gal(L/F ). For every F -linear automorphism ϕ of EndL V such that ϕ|L = ν,
there exists an invertible transformation u ∈ EndF V such that ϕ(f) = u ◦ f ◦ u−1

for all f ∈ EndL V . The map u is uniquely determined up to a factor in L×; it
is ν-semilinear, i.e., u(xλ) = u(x)ν(λ) for all x ∈ V and λ ∈ L. Moreover, if
ϕ ◦ σQ = σQ ◦ ϕ, then there exists µ ∈ L× such that

Q
(
u(x)

)
= ν

(
µ ·Q(x)

)
for all x ∈ V .

Proof. The existence of u is a consequence of the Skolem–Noether theorem, since
EndL V is a simple subalgebra of the simple algebra EndF V : the automorphism
ϕ extends to an inner automorphism Int(u) of EndF V for some invertible u ∈
EndF V . Uniqueness of u up to a factor in L× is clear because L is the centralizer
of EndL V in EndF V , and the ν-semilinearity of u follows from the equation ϕ(f) =
u ◦ f ◦ u−1 applied with f the scalar multiplication by an element in L.

Now, suppose ϕ commutes with σQ, hence for all f ∈ EndL V

(5) u ◦ σQ(f) ◦ u
−1 = σQ(u ◦ f ◦ u−1).

Let Tr∗(Q) denote the transfer of Q along the trace map TrL/F , so Tr∗(Q) : V → F

is the quadratic form defined by Tr∗(Q)(x) = TrL/F
(
Q(x)

)
. The adjoint involution

σTr∗(Q) coincides on EndL V with σQ, hence from (5) it follows that σTr∗(Q)(u)u
centralizes EndL V . Therefore, σTr∗(Q)(u)u = µ for some µ ∈ L×. We then have

bTr∗(Q)

(
u(x), u(y)

)
= bTr∗(Q)(x, yµ) for all x, y ∈ V , which means that

(6) TrL/F
(
bQ(u(x), u(y))

)
= TrL/F

(
µbQ(x, y)

)
.

Now, observe that since u is ν-semilinear, the map c : V × V → L defined by
c(x, y) = ν−1

(
bQ(u(x), u(y))

)
is L-bilinear. From (6), it follows that c − µbQ is a

bilinear map on V that takes its values in the kernel of the trace map. But the
value domain of an L-bilinear form is either L or {0}, and the trace map is not the
zero map. Therefore, c− µbQ = 0, which means that

ν−1
(
bQ(u(x), u(y))

)
= µbQ(x, y) for all x, y ∈ V ,

hence Q
(
u(x)

)
= ν

(
µ ·Q(x)

)
for all x ∈ V . �

Note that the arguments in the preceding proof apply to any quadratic space
(V,Q) over L. By contrast, the next lemma uses the full cyclic composition struc-
ture: Let again ν ∈ {IdL, ρ, θ}. Given an invertible element u ∈ EndF V and
µ ∈ L× such that for all x ∈ V and λ ∈ L

u(xλ) = u(x)ν(λ) and Q
(
u(x)

)
= ν

(
µ ·Q(x)

)
,

we define an L-linear map βu :
νV → EndL(

ρV ⊕ θV ) by

βu(
νx) =

(
0 ν(µ)−1ru(x)

ℓu(x) 0

)
∈ EndL(

ρV ⊕ θV ) for x ∈ V .
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Then from (2) we get βu(x)
2 = ν

(
Q(x)

)
= νQ(νx). Therefore, the map βu extends

to an L-algebra homomorphism

βu : C(
νV, νQ) → EndL(

ρV ⊕ θV ).

Just like α∗ in (4), the homomorphism βu is an isomorphism. We also have an
isomorphism of F -algebras C(ν ·) : C(V,Q) → C(νV, νQ) induced by the F -linear
map x 7→ νx for x ∈ V , so we may consider the F -automorphism ψu of EndL(

ρV ⊕
θV ) that makes the following diagram commute:

C(V,Q)
α∗

//

C(ν ·)

��

EndL(
ρV ⊕ θV )

ψu

��

C(νV, νQ)
βu

// EndL(
ρV ⊕ θV )

(7)

Lemma 3.3. The F -algebra automorphism ψu restricts to an F -algebra automor-
phism ψu0 of EndL(

ρV )×EndL(
θV ). The restriction of ψu0 to the center L×L is

either ν × ν or (ν × ν) ◦ ε where ε is the switch map (ℓ1, ℓ2) 7→ (ℓ2, ℓ1). Moreover,
if ψu0|L×L = ν × ν, then there exist invertible ν-semilinear transformations u1,
u2 ∈ EndF V such that

ψu(f) =
( ρu1 0

0 θu2

)
◦ f ◦

( ρu−1
1 0

0 θu−1
2

)
for all f ∈ EndL(

ρV ⊕ θV ).

For any pair (u1, u2) satisfying this condition, we have

u2(x ∗ y) = u(x) ∗ u1(y) and u1(x ∗ y) = θν(µ)−1
(
u2(x) ∗ u(y)

)
for all x, y ∈ V .

Proof. The maps α∗ and βu are isomorphisms of graded L-algebras for the usual
(Z/2Z)-gradings of C(V,Q) and C(νV, νQ), and for the “checker-board” grading of
EndL(

ρV ⊕ θV ) defined by

EndL(
ρV ⊕ θV )0 = EndL(

ρV )× EndL(
θV )

and

EndL(
ρV ⊕ θV )1 =

(
0 HomL(

θV, ρV )
HomL(

ρV, θV ) 0

)
.

Therefore, ψu also preserves the grading, and it restricts to an automorphism ψu0
of the degree 0 component. Because the map C(ν ·) is ν-semilinear, the map ψu
also is ν-semilinear, hence its restriction to the center of the degree 0 component is
either ν × ν or (ν × ν) ◦ ε.

Suppose ψu0|L×L = ν × ν. By Lemma 3.2 (applied with ρV ⊕ θV instead of V ),
there exists an invertible ν-semilinear transformation v ∈ EndF (

ρV ⊕ θV ) such that
ψu(f) = v◦f ◦v−1 for all f ∈ EndF (

ρV ⊕θV ). Since ψu0 fixes
(
IdρV 0
0 0

)
, the element

v centralizes
(
IdρV 0
0 0

)
, hence v =

( ρu1 0

0 θu2

)
for some invertible u1, u2 ∈ EndF V .

The transformations u1 and u2 are ν-semilinear because v is ν-semilinear. From
the commutativity of (7) we have v ◦ α∗(x) = βu(

νx) ◦ v = α∗

(
u(x)

)
◦ v for all

x ∈ V . By the definition of α∗, it follows that

u1(z ∗ x) = θν−1(µ)
(
u2(z) ∗ u(x)

)
and u2(x ∗ y) = u(x) ∗ u1(y) for all y, z ∈ V .

�
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Lemma 3.4. Let ν ∈ {IdL, ρ, θ}. For every F -linear automorphism ϕ of EndΓ
such that ϕ|L = ν, there exists an invertible transformation u ∈ EndF V , uniquely
determined up to a factor in L×, such that ϕ(f) = u ◦ f ◦ u−1 for all f ∈ EndL V .
Every such u is a ν-semilinear isotopy Γ → Γ.

Proof. The existence of u, its uniqueness up to a factor in L×, and its ν-semilinearity,
were established in Lemma 3.2. It only remains to show that u is an isotopy.

Since ϕ is an automorphism of EndΓ, it commutes with σQ, hence Lemma 3.2
yields µ ∈ L× such that Q

(
u(x)

)
= ν(µ · Q(x)

)
for all x ∈ V . We may therefore

consider the maps βu and ψu of Lemma 3.3. Now, recall from [7, (8.8)] that
C0(V,Q) = C(EndL V, σQ) by identifying x · y for x, y ∈ V with the image in
C(EndL V, σQ) of the linear transformation x ⊗ y defined by z 7→ x · bQ(y, z) for
z ∈ V . We have

ϕ(x⊗ y) = u ◦ (x⊗ y) ◦ u−1 : z 7→ u
(
x · bQ(y, u

−1(z))
)

for x, y, z ∈ V .

Since u is ν-semilinear and Q
(
u(x)

)
= ν

(
µ ·Q(x)

)
for all x ∈ V , it follows that

u
(
x · bQ(y, u

−1(z))
)
= u(x) · ν

(
bQ(y, u

−1(z))
)
= u(x) · ν(µ)−1bQ(u(y), z).

Therefore, ϕ(x⊗ y) = ν(µ)−1u(x)⊗u(y) for x, y ∈ V , hence the following diagram
(where βu and C(ν ·) are as in (7)) is commutative:

C0(V,Q)
C(ν ·)|C0(V,Q)

//

C(ϕ)

��

C0(
νV, νQ)

βu|C0(νV,νQ)

��

C0(V,Q)
α∗0

// EndL(
ρV )× EndL(

θV )

On the other hand, the following diagram is commutative because ϕ is an auto-
morphism of EndΓ:

C0(V,Q)
α∗0

//

C(ϕ)

��

EndL(
ρV )× EndL(

θV )

ρϕ×θϕ

��

C0(V,Q)
α∗0

// EndL(
ρV )× EndL(

θV )

Therefore, βu|C0(νV,νQ)◦C(
ν ·)|C0(V,Q) = (ρϕ×θϕ)◦α∗0. By comparing with (7), we

see that ψu0 = ρϕ×θϕ, hence ψu0|L×L = ν×ν. Lemma 3.3 then yields ν-semilinear
transformations u1, u2 ∈ EndF V such that

ψu(f) =
( ρu1 0

0 θu2

)
◦ f ◦

( ρu−1
1 0

0 θu−1
2

)
for all f ∈ EndL(

ρV ⊕ θV ),

hence ψu0 = Int(ρu1)× Int(θu2). But we have ψu0 = ρϕ× θϕ = Int(ρu)× Int(θu).
Therefore, multiplying (u1, u2) by a scalar in L×, we may assume u = u1 and
u2 = ζu for some ζ ∈ L×. Lemma 3.3 then gives

ζu(x ∗ y) = u(x) ∗ u(y) and u(x ∗ y) = θν(µ)−1
(
(ζu(x)) ∗ u(y)

)
for all x, y ∈ V .

The second equation implies that u(x ∗ y) = ρ(ζ)θν(µ)−1
(
u(x) ∗ u(y)

)
. By com-

paring with the first equation, we get ρ(ζ)θν(µ)−1 = ζ−1, hence ν(µ) = ρ(ζ)θ(ζ).
Therefore, (ν, u) is an isotopy Γ → Γ with multiplier ν−1(ζ). �



TRIALITY AND ALGEBRAIC GROUPS OF TYPE 3
D4 11

We start with the proof of claim (ii) of Theorem 3.1. Suppose τ is an F -
automorphism of EndΓ such that τ |L = ρ and τ3 = Id. By Lemma 3.4, we may find
an invertible ρ-semilinear transformation t ∈ EndF V such that τ(f) = t◦f ◦t−1 for
all f ∈ EndL V , and every such t is an isotopy of Γ. Since τ3 = Id, it follows that
t3 lies in the centralizer of EndL V in EndF V , which is L. Let t3 = ξ ∈ L×. We
have ρ(ξ) = tξt−1 = ν, hence ξ ∈ F×. The F -subalgebra of EndF V generated by
L and t is a crossed product (L, ρ, ξ); its centralizer is the F -subalgebra (EndL V )τ

fixed under τ , and we have

EndF V ∼= (L, ρ, ξ)⊗F (EndL V )τ .

Now, deg(L, ρ, ξ) = 3 and deg(EndL V )τ = 8, hence (L, ρ, ξ) is split. Therefore
ξ = NL/F (η) for some η ∈ L×. Substituting η−1t for t, we get t3 = IdV , and t is

still a ρ-linear isotopy of Γ. Let µ ∈ L× be the corresponding multiplier, so that
for all x, y ∈ V

(8) Q
(
t(x)

)
= ρ

(
ρ(µ)θ(µ)Q(x)

)
and t(x) ∗ t(y) = ρ(µ)t(x ∗ y).

From the second equation we deduce that t3(x) ∗ t3(y) = NL/F (µ)t
3(x ∗ y) for all

x, y ∈ V , hence NL/F (µ) = 1 because t3 = IdV . By Hilbert’s Theorem 90, we may

find ζ ∈ L× such that µ = ζθ(ζ)−1. Define Q′ = ρ(ζ)θ(ζ)Q and let x ∗′ y = ζ(x ∗ y)
for x, y ∈ V . Then IdV is an isotopy Γ → Γ′ = (V, L,Q′, ρ, ∗′) with multiplier ζ,
and (8) implies that

Q′
(
t(x)

)
= ρ

(
Q′(x)

)
and t(x) ∗′ t(y) = t(x ∗′ y) for all x, y ∈ V .

Now, observe that because t is ρ-semilinear and t3 = IdV , the Galois group of L/F
acts by semilinear automorphisms on V , hence we have a Galois descent (see [7,
(18.1)]): the fixed point set S = {x ∈ V | t(x) = x} is an F -vector space such that
V = S ⊗F L. Moreover, since Q′

(
t(x)

)
= ρ

(
Q′(x)

)
for all x ∈ V , the restriction

of Q′ to S is a quadratic form n : S → F , and we have Q′ = nL. Also, because
t(x ∗′ y) = t(x) ∗′ t(y) for all x, y ∈ V , the product ∗′ restricts to a product ⋆ on
S, and Σ = (S, n, ⋆) is a symmetric composition because Γ′ is a cyclic composition.
The canonical map f : S ⊗F L → V yields an isomorphism of cyclic compositions
f : Σ⊗(L, ρ)

∼
→ Γ′, hence also an isotopy f : Σ⊗(L, ρ) → Γ. We have t = f ◦ ρ̂◦f−1,

hence τ is conjugation by f ◦ ρ̂ ◦ f−1. �

Theorem 3.5. The assignment Σ 7→ τ(Σ,f) induces a bijection between the iso-
morphism classes of symmetric compositions Σ for which there exists an L-linear
isotopy f : Σ⊗ (L, ρ) → Γ and conjugacy classes in AutF (EndΓ) of automorphisms
τ of EndΓ such that τ3 = Id and τ |L = ρ.

Proof. We already know by Theorem 3.1 that the map induced by Σ 7→ τ(Σ,f) is
onto. Therefore, it suffices to show that if the automorphisms τ(Σ,f) and τ(Σ′,f ′)

associated to symmetric compositions Σ and Σ′ are conjugate, then Σ and Σ′ are
isomorphic. Assume τ(Σ′,f ′) = ϕ ◦ τ(Σ,f) ◦ ϕ

−1 for some ϕ ∈ AutF (EndΓ), and

let t = f ◦ ρ̂ ◦ f−1, t′ = f ′ ◦ ρ̂ ◦ f ′−1 ∈ EndΓ be the ρ-semilinear transformations
such that τ(Σ,f) = Int(t)|EndL V and τ(Σ′,f ′) = Int(t′)|EndL V . By Lemma 3.4 we
may find an isotopy (ν, u) : Γ → Γ such that ϕ = Int(u)|EndL V . The equation
τ(Σ′,f ′) = ϕ ◦ τ(Σ,f) ◦ ϕ

−1 then yields Int(t′)|EndL V = Int(u ◦ t ◦ u−1)|EndL V , hence

there exists ξ ∈ L× such that u ◦ t ◦ u−1 = ξt′. Because t3 = t′
3
= IdV , we have

NL/F (ξ) = 1, hence Hilbert’s Theorem 90 yields η ∈ L× such that ξ = ρ(η)η−1.
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Then η−1u : Γ → Γ is a ν-semilinear isotopy such that (η−1u) ◦ t ◦ (η−1u)−1 = ξt′,
and we have a commutative diagram

Σ⊗ (L, ρ)

ρ̂

��

f ′−1◦(η−1u)◦f
// Σ′ ⊗ (L, ρ)

ρ̂

��

Σ⊗ (L, ρ)
f ′−1◦(η−1u)◦f

// Σ′ ⊗ (L, ρ)

The restriction of f ′−1
◦ (η−1u) ◦ f to Σ is an isotopy of symmetric compositions

Σ → Σ′; a scalar multiple of this map is an isomorphism Σ
∼
→ Σ′. �

4. Trialitarian automorphisms of groups of type D4

Let F be a field of characteristic different from 2. By [7, (44.8)], for every adjoint
simple groupG of type D4 over F there is a trialitarian algebra T = (E,L, σ, α) such
that G is isomorphic to AutL(T ). Since the correspondence between trialitarian
algebras and adjoint simple groups of type D4 is actually shown in [7, (44.8)] to be
an equivalence of groupoids, we have Aut(G) ∼= AutF (T ) if G = AutL(T ). We
then have a commutative diagram with exact rows:

1 // AutL(T ) // AutF (T ) //

Φ

��

AutF (L) // 1

1 // G // Aut(G)
π

// (S3)L // 1

(9)

where Φ maps every F -automorphism τ of T to conjugation by τ , and (S3)L is a
(non-constant) twisted form of the symmetric group S3. Here AutF (L) is the
group scheme given by AutF (L)(R) = AutR-alg(L ⊗F R) for any commutative F -
algebra R. Thus, the type of the group G is related as follows to the type of L and
to AutF (L):

(i) type 1
D4: L ∼= F × F × F and AutF (L)(F ) ∼= S3;

(ii) type 2
D4: L ∼= F × ∆ (with ∆ a quadratic field extension of F ) and

AutF (L)(F ) ∼= S2;
(iii) type 3

D4: L a cyclic cubic field extension of F and AutF (L)(F ) ∼= Z/3Z;
(iv) type 6

D4: L a non-cyclic cubic field extension of F and AutF (L)(F ) = 1.

Theorem 4.1. Let G be an adjoint simple group of type D4 over F . If Aut(G)(F )
contains an outer automorphism ϕ such that ϕ3 is inner, then G is of type 1

D4 or
3
D4, and in the trialitarian algebra T = (E,L, σ, α) such that G ∼= AutL(T ), the
central simple L-algebra E is split.

Proof. Since the image π(ϕ) ∈ (S3)L(F ) has order 3, it is clear from the char-
acterization of the various types above that G cannot be of type 2

D4. If G is of
type 6

D4, then after extending scalars from F to L we get as new cubic algebra
L ⊗F L ∼= L × (∆ ⊗F L), where ∆, the discriminant of L, is a quadratic field
extension. Thus, the group GL has type 2

D4; but the outer automorphism ϕ ex-
tends to an outer automorphism of GL such that ϕ3 is inner, in contradiction to
the preceding case. Therefore, the type of G is 1

D4 or 3
D4. If G is of type 1

D4,
then the algebra E is split by [5, Example 15] or by [2, Theorem 13.1]. If G is of
type 3

D4, then after scalar extension to L the group GL has type 1
D4, so E ⊗F L

is split. Therefore, the Brauer class of E has 3-torsion since it is split by a cubic
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extension. But it also has 2-torsion since E carries an orthogonal involution, hence
E is split. �

For the rest of this section, we focus on trialitarian automorphisms (i.e., outer
automorphisms of order 3) of groups of type 3

D4. Let G be an adjoint simple group
of type 3

D4 over F , and let L be its associated cyclic cubic field extension of F .
Thus,

(S3)L(F ) = Gal(L/F ) ∼= Z/3Z.

If G carries a trialitarian automorphism ϕ defined over F , then π : Aut(G)(F ) →
Gal(L/F ) is a split surjection, hence Aut(G)(F ) ∼= G(F )⋊(Z/3Z). Therefore, it is
easy to see that for any other trialitarian automorphism ϕ′ of G defined over F , the
elements ϕ and ϕ′ are conjugate in Aut(G)(F ) if and only if there exists g ∈ G(F )
such that ϕ′ = Int(g) ◦ ϕ ◦ Int(g)−1. When this occurs, we have π(ϕ) = π(ϕ′).

Theorem 4.2. (i) Let G be an adjoint simple group of type 3
D4 over F . The

group G carries a trialitarian automorphism defined over F if and only if the
trialitarian algebra T = (E,L, σ, α) (unique up to isomorphism) such that
G ∼= AutL(T ) has the form T ∼= EndΓ for some reduced cyclic composition
Γ.

(ii) Let G = AutL(EndΓ) for some reduced cyclic composition Γ. Every trial-
itarian automorphism ϕ of G has the form ϕ = Int(τ) for some uniquely
determined F -automorphism τ of EndΓ such that τ3 = Id and τ |L = π(ϕ).
For a given nontrivial ρ ∈ Gal(L/F ), the assignment Σ 7→ Int(τ(Σ,f)) de-
fines a bijection between the isomorphism classes of symmetric compositions
for which there exists an L-linear isotopy f : Σ ⊗ (L, ρ) → Γ and conju-
gacy classes in Aut(G)(F ) of trialitarian automorphisms ϕ of G such that
π(ϕ) = ρ.

Proof. Suppose first that ϕ is a trialitarian automorphism of G, and let G =
AutL(T ) for some trialitarian algebra T = (E,L, σ, α). Theorem 4.1 shows that
the central simple L-algebra E is split, hence T = EndΓ for some cyclic com-
position Γ = (V, L,Q, ρ, ∗) over F . Substituting ϕ2 for ϕ if necessary, we may

assume π(ϕ) = ρ. The preimage of ϕ under the isomorphism ΦF : AutF (T )(F )
∼
→

Aut(G)(F ) (from (9)) is an F -automorphism τ of T such that ϕ = Int(τ), τ3 = Id,
and τ |L = ρ. Since ΦF is a bijection, τ is uniquely determined by ϕ. By Theo-
rem 3.1(ii), the existence of τ implies that the cyclic composition Γ is reduced.

Conversely, if Γ is reduced, then by Theorem 3.1(i), the trialitarian algebra
EndΓ carries automorphisms τ such that τ3 = Id and τ |L 6= IdL. For any such τ ,
conjugation by τ is a trialitarian automorphism of G.

The last statement in (ii) readily follows from Theorem 3.5 because trialitarian
automorphisms Int(τ), Int(τ ′) are conjugate in Aut(G)(F ) if and only if τ , τ ′ are
conjugate in AutF (EndΓ). �

The following proposition shows that the algebraic subgroup of fixed points under
a trialitarian automorphism of the form Int(τ(Σ,f)) is isomorphic to Aut(Σ), hence
in characteristic different from 2 and 3 it is a simple adjoint group of type G2 or
A2, in view of the classification of symmetric compositions (see [3, §9]).

Proposition 4.3. Let G = AutL
(
End(Σ⊗ (L, ρ))

)
for some symmetric composi-

tion Σ = (S, n, ⋆) over F and some cyclic cubic field extension L/F with nontrivial
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automorphism ρ. The subgroup of G fixed under the trialitarian automorphism
Int(ρ̂) is canonically isomorphic to Aut(Σ).

Proof (Sketch). Mimicking the construction of the map α∗ in (4), we may use the
product ⋆ to construct an F -algebra isomorphism

α⋆ : C(S, n)
∼
→ EndF (S ⊕ S)

such that α⋆(x)(y, z) = (z ⋆ x, x ⋆ y) for x, y, z ∈ S. This isomorphism restricts to
an isomorphism

α⋆0 : C0(S, n)
∼
→ (EndF S)× (EndF S).

Let Aut(EndΣ) be the group scheme whose rational points are the F -algebra
automorphisms ϕ of (EndF S, σn) that make the following diagram commute:

C(EndF S, σn)
α⋆0

//

C(ϕ)

��

(EndF S)× (EndF S)

ϕ×ϕ

��

C(EndF S, σn)
α⋆0

// (EndF S)× (EndF S)

Arguing as in Lemma 3.4, one proves that every such automorphism has the form
Int(u) for some isotopy u of Σ. But if u is an isotopy of Σ with multiplier µ, then
µ−1u is an automorphism of Σ. Therefore, mapping every automorphism u of Σ
to Int(u) yields an isomorphism Aut(Σ)

∼
→ Aut(EndΣ). The extension of scalars

from F to L yields an isomorphism

PGL(S)
∼
→ RL/F

(
PGL(S ⊗F L)

)Int(ρ̂)
,

which carries the subgroup Aut(EndΣ) to GInt(ρ̂). �

To conclude, we briefly mention without proof the analogue of Theorem 4.2 for
simply connected groups, which we could have considered instead of adjoint groups.
(Among simple algebraic groups of type D4, only adjoint and simply connected
groups may admit trialitarian automorphisms.)

Theorem 4.4. (i) For any cyclic composition Γ = (V, L,Q, ρ, ∗) over F , the
group AutL(Γ) is simple simply connected of type 3

D4, and there is an
exact sequence of algebraic groups

1 //µ
2
2

//AutL(Γ)
Int

//AutL(EndΓ) //1.

(ii) A simple simply connected group of type 3
D4 admits trialitarian automor-

phisms defined over F if and only if it is isomorphic to the automorphism
group of a reduced symmetric composition Γ = (V, L,Q, ρ, ∗). Conjugacy
classes of trialitarian automorphisms of AutL(Γ) defined over F are in
bijection with isomorphism classes of symmetric compositions Σ for which
there is an isotopy Σ⊗ (L, ρ) → Γ.

Corollary 4.5. Every simple adjoint or simply connected group of type 3
D4 over

a finite field admits trialitarian automorphisms.

Proof. The Allen invariant is trivial, and cyclic compositions are reduced, see [9,
§4.8]. �
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Examples 4.6. (i) Let F = Fq be the field with q elements, where q is odd and
q ≡ 1 mod 3. As observed in Example 2.2(i), every symmetric composition over F

is isomorphic either to the Okubo composition Σ or to the split para-Cayley

composition C̃, and (up to isomorphism) there is a unique cyclic composition Γ ∼=

C̃ ⊗ (L, ρ) ∼= Σ⊗ (L, ρ) with cubic algebra (L, ρ). Therefore, the simply connected
group AutL(Γ) and the adjoint group AutL(EndΓ) have exactly two conjugacy
classes of trialitarian automorphisms defined over F . See also [6, (9.1)].

(ii) Example 2.2(ii) describes a cyclic composition induced by a unique (up to
isomorphism) symmetric composition. Its automorphism group is a group of type
3
D4 admitting a unique conjugacy class of trialitarian automorphisms.

(iii) In contrast to (i) and (ii) we get from Example 2.2(iii) examples of groups of
type 3

D4 with many conjugacy classes of trialitarian automorphisms.
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