SUSLIN'S CONJECTURE ON THE REDUCED WHITEHEAD GROUP OF A SIMPLE ALGEBRA

ALEXANDER MERKURJEV

Abstract

In 1991, A. Suslin conjectured that if the index of a central simple algebra A is not square-free, then the reduced Whitehead group of A is nontrivial generically. We prove this conjecture in the present paper.

1. Introduction

Let A be a central simple algebra over a field F. The reduced norm homomorphism $A^{\times} \rightarrow F^{\times}$yields a homomorphism

$$
\text { Nrd : } K_{1}(A) \rightarrow F^{\times}=K_{1}(F) .
$$

The kernel $\mathrm{SK}_{1}(A)$ of Nrd is the reduced Whitehead group of A. Wang proved in [25] that if $\operatorname{ind}(A)$ is a square-free integer, then $\mathrm{SK}_{1}(A)=0$. He also proved that the reduced Whitehead group is always trivial if F is a number field. Platonov found examples of A with nontrivial $\mathrm{SK}_{1}(A)$ (see [17]).

In 1991, Suslin conjectured in [23] that if ind (A) is not square-free, then the reduced Whitehead group $\mathrm{SK}_{1}(A)$ of A is generically nontrivial, i.e., there is a field extension L / F such that $\operatorname{SK}_{1}\left(A \otimes_{F} L\right) \neq 0$.

Suslin's Conjecture was proved in the case when $\operatorname{ind}(A)$ is divisible by 4 (see [13] and [15]).

In this paper we prove Suslin's Conjecture (Theorem 8.1):
Theorem. Let A be a central simple F-algebra. If $\operatorname{ind}(A)$ is not square-free, then there is a field extension L / F such that $\operatorname{SK}_{1}\left(A \otimes_{F} L\right) \neq 0$.

Note that the group $\mathrm{SK}_{1}(A)$ coincides with the group of R-equivalence classes in the special linear group $\mathbf{S L}_{1}(A)$. In particular, generic non-triviality of the reduced Whitehead group of A implies that $\mathbf{S L}_{1}(A)$ is not a retract rational variety (Corollary 8.2).

2. Cycle modules and spectral sequences

Let Z be a variety over a field F and let M_{*} be a cycle module over Z (see $[20, \S 2]$). This is a collection of group $M_{n}(z)$ for $n \in \mathbb{Z}$ and a point $z: L \rightarrow Z$

[^0]over F having certain compatibility properties. We write K_{*} for the cycle module over Spec F given by (Quillen's) K-groups (see [20, Remark 2.5]).

For every integer $r \geq 0$, denote by $Z^{(r)}$ the set of points of Z of codimension r. We write $A^{r}\left(Z, M_{n}\right)$ for the homology group of the complex [20, §5]

$$
\coprod_{z \in Z^{(r-1)}} M_{n-r+1} F(z) \xrightarrow{\partial} \coprod_{z \in Z^{(r)}} M_{n-r} F(z) \xrightarrow{\partial} \coprod_{z \in Z^{(r+1)}} M_{n-r-1} F(z) .
$$

For example, $A^{r}\left(Z, K_{r}\right)$ is the Chow group $\mathrm{CH}^{r}(Z)$ of classes of codimension r algebraic cycles on Z. If Z is smooth, $A^{*}\left(Z, K_{*}\right)$ is a bi-graded commutative ring.

If $f: Y \rightarrow Z$ is a flat morphism of equidimensional varieties and M a cycle module over Y, for every $n \in \mathbb{Z}$, there is a spectral sequence [20, Corollary 8.2]

$$
E_{1}^{r, s}(f, n)=\coprod_{z \in Z^{(r)}} A^{s}\left(f^{-1}(z), M_{n-r}\right) \Rightarrow A^{r+s}\left(Y, M_{n}\right)
$$

where $f^{-1}(z)$ is the fiber of f over $z \in Z$.
Very often we will be considering the projections $f: W \times Z \rightarrow Z$ with Z and W smooth varieties. In this case $f^{-1}(z)=W_{F(z)}$. The associated spectral sequences have the following functorial properties. A morphism $h: W \rightarrow W^{\prime}$ of smooth varieties yields a pull-back morphism of spectral sequences

$$
h^{*}: E_{*}^{*, *}\left(f^{\prime}, n\right) \rightarrow E_{*}^{* *}(f, n)
$$

for every n (here $f^{\prime}: W^{\prime} \times Z \rightarrow Z$ is the projection). If h is a closed embedding of codimension c, we have a push-forward morphism of spectral sequences

$$
h_{*}: E_{*}^{*, *}(f, n) \rightarrow E_{*}^{*, *+c}\left(f^{\prime}, n+c\right) .
$$

More generally, every correspondence λ between W and W^{\prime} of degree d (see [3, §63]) yields a morphism

$$
\lambda^{*}: h^{*}: E_{*}^{*, *}\left(f^{\prime}, n\right) \rightarrow E_{*}^{* *-d}(f, n-d)
$$

This is because the four basic maps of complexes of $W \times Z$ and $W^{\prime} \times Z$ respect the filtration when projected to Z (see $[20, \S 3]$).

3. Chern classes

Let X be a smooth variety. There are Chern classes (see [7]):

$$
c_{i, n}: K_{n}(X) \rightarrow A^{i-n}\left(X, K_{i}\right)
$$

for $i \geq n \geq 0$. We will only need the classes

$$
c_{i}:=c_{i+1,1}: K_{1}(X) \rightarrow A^{i}\left(X, K_{i+1}\right) .
$$

There is the following product formula (see [21]):
Proposition 3.1. If $x \in K_{0}(X)$ is the class of a line bundle L and $y \in K_{1}(X)$, we have

$$
c_{i}(x y)=\sum_{j=0}^{i}(-1)^{j}\binom{i}{j} h^{j} \cup c_{i-j}(y),
$$

where h is the first (classical) Chern class of L in $A^{1}\left(X, K_{1}\right)=\mathrm{CH}^{1}(X)$.
Let $E \rightarrow X$ be a vector bundle of rank n and $\mathbf{S L}(E)$ the group scheme over Z of determinant 1 automorphisms of E. We will be using the following result due to Suslin [22, Th. 4.2].
Proposition 3.2. If X is a smooth variety, the ring $A^{*}\left(\mathbf{S L}(E), K_{*}\right)$ is almost exterior algebra over $A^{*}\left(X, K_{*}\right)$ with generators $c_{1}(\beta), c_{2}(\beta), \ldots, c_{n-1}(\beta)$, where $\beta \in K_{1}(\mathbf{S L}(E))$ is the generic element. In particular,

$$
\mathrm{CH}(\mathrm{SL}(E)) \simeq \mathrm{CH}(X) .
$$

4. Severi-Brauer varieties

Let A be a central simple algebra of degree n over $F, X=\mathrm{SB}(A)$ the SeveriBrauer variety of rank n right ideals of A. If A is split, i.e., $A=\operatorname{End}(V)$ for a vector space of dimension n, the variety X is isomorphic to the projective space $\mathbb{P}(V)$.

The variety X has a point over a field extension L / F if and only if A is split over L, i.e., $A_{L}:=A \otimes_{F} L \simeq M_{n}(L)$.

Write h for the class of a hyperplane section in $\mathrm{CH}^{1}\left(\mathbb{P}^{n-1}\right)$. The Chow group $\mathrm{CH}^{i}\left(\mathbb{P}^{n-1}\right)$ for $i=0,1, \ldots, n-1$ is infinite cyclic generated by h^{i}.

In the general case, the kernel of the degree homomorphism

$$
\operatorname{deg}: \mathrm{CH}^{i}(X) \rightarrow \mathrm{CH}^{i}\left(X_{\text {sep }}\right)=\mathbb{Z} h^{i}
$$

coincides with the torsion part of $\mathrm{CH}^{i}(X)$. The group $\mathrm{CH}_{0}(X)$ is torsion free (see [16] or [1, Corollary 7.3]). Therefore, the classes in $\mathrm{CH}_{0}(X)$ of every two points of the same degree are equal.

If $A=M_{m}(B)$ for a central simple algebra B over F and $S=\mathrm{SB}(B)$, then S is a closed subvariety of $X=\mathrm{SB}(A)$. Moreover, the Chow motive $M(X)$ of X is isomorphic to the direct sum $M(S) \oplus M(S)\{k\} \oplus \cdots \oplus M(S)\{(m-1) k\}$, where $k=n / m$.

Let $I \rightarrow X$ be the tautological rank n vector bundle. The fiber of this bundle over a right ideal in A, a point of X, is the ideal itself. In the split case $A=\operatorname{End}(V)$, where V is a vector space of dimension n, a line $l \subset V$ as a point of $X=\mathbb{P}(V)$ corresponds to the right ideal $\operatorname{Hom}(V, l)=V^{\vee} \otimes l$. Therefore, $I=V^{\vee} \otimes L_{t}$, where L_{t} is the tautological line bundle over $\mathbb{P}(V)$. The canonical bundle J over X, the dual of I, is equal then to $V \otimes L_{c}$, where L_{c} is the canonical line bundle, dual of L_{t}. We have in the split case

$$
X \times X=X \times \mathbb{P}(V)=\mathbb{P}_{X}(V)=\mathbb{P}_{X}\left(V \otimes L_{c}\right)=\mathbb{P}_{X}(J) .
$$

Note that the projective linear group $\mathbf{P G L}(V)$ acts on $\mathbb{P}(V)$ and the vector bundles I and J. In the general case, twisting by the $\mathbf{P G L}(V)$-torsor corresponding to the algebra A, we get an isomorphism

$$
X \times X \simeq \mathbb{P}_{X}(J),
$$

i.e., $X \times X$ is a projective vector bundle of J over X (with respect to the first of the two projections $\left.q_{1}, q_{2}: X \times X \rightarrow X\right)$.

The tautological line bundle \mathcal{L}_{t} over $X \times X=\mathbb{P}_{X}(J)$ is the sub-bundle $q_{1}^{*}\left(L_{t}\right) \otimes q_{2}^{*}\left(L_{c}\right)$ of the bundle $q_{1}^{*}(J)=V \otimes q_{2}^{*}\left(L_{c}\right)$ in the split case. Therefore,

$$
\begin{equation*}
\mathcal{L}_{c}=q_{1}^{*}\left(L_{c}\right) \otimes q_{2}^{*}\left(L_{t}\right), \tag{4.1}
\end{equation*}
$$

where \mathcal{L}_{c} is the canonical bundle over over $X \times X$.
Lemma 4.2. Let $x \in X$ be a closed point. Then the push-forward homomorphism $\mathbb{Z}=\mathrm{CH}\left(X_{F(x)}\right) \rightarrow \mathrm{CH}(X \times X)$ for the closed embedding

$$
i: X_{F(x)}=X \times \operatorname{Spec} F(x) \hookrightarrow X \times X
$$

depends only on the degree of x.
Proof. The canonical line bundle L over the projective space is the pull-back of the canonical bundle \mathcal{L} on $X \times X$. Hence the class $h_{1}=c_{1}(L)$ is equal to $i^{*}(h)$, where $h=c_{1}(\mathcal{L})$. By the projection formula,

$$
i_{*}\left(h_{1}^{i}\right)=i_{*}\left(i^{*}\left(h^{i}\right)\right)=i_{*}(1) \cdot h^{i}=\left[X_{F(x)}\right] \cdot h^{i} .
$$

The class of $X_{F(x)}$ in $\mathrm{CH}(X \times X)$ is the image of $[X] \times[x]$ under the exterior product map

$$
\mathrm{CH}(X) \otimes \mathrm{CH}_{0}(X) \rightarrow \mathrm{CH}(X \times X) .
$$

Finally, the class of x in $\mathrm{CH}_{0}(X)$ depends only on the degree of x.
Choose a splitting field extension L / F of the smallest degree $\operatorname{ind}(A)$. We have $X_{L} \simeq \mathbb{P}_{L}^{n-1}$. Let $l_{i} \in \mathrm{CH}_{i}\left(X_{L}\right)$ be the class of a projective linear subspace of dimension i and $e_{i}=e_{i}(A)$ the image of l_{i} under the norm homomorphism

$$
N_{L / F}: \mathrm{CH}_{i}\left(X_{L}\right) \rightarrow \mathrm{CH}_{i}(X)
$$

Then e_{i} is independent of the choice of L. Indeed, choose a closed point $x \in X$ such that $F(x) \simeq L$. Then e_{i} is the image of l_{i} under the composition

$$
\mathrm{CH}_{i}\left(X_{L}\right)=\mathrm{CH}_{i}\left(X_{F(x)}\right) \rightarrow \mathrm{CH}_{i}(X \times X) \rightarrow \mathrm{CH}_{i}(X),
$$

where the last map is induced by the first projection. By Lemma 4.2, the composition does not depend on the choice of x.

The proof of Lemma 4.2 shows that for every closed point $x \in X$, we have

$$
\begin{equation*}
N_{F(x) / F}\left(l_{i}\right)=\frac{\operatorname{deg}(x)}{\operatorname{ind}(A)} e_{i}(A) . \tag{4.3}
\end{equation*}
$$

Lemma 4.4. If K / F is a finite extension, then

$$
N_{K / F}\left(e_{i}\left(A_{K}\right)\right)=\frac{[K: F] \operatorname{ind}\left(A_{K}\right)}{\operatorname{ind}(A)} e_{i}(A) .
$$

Proof. Let L / K be a splitting field of A_{K} of degree $\operatorname{ind}\left(A_{K}\right)$. Choose an L point $\operatorname{Spec}(L) \rightarrow X$. Let $\{x\}$ be the image of this morphism. We have by (4.3),

$$
\begin{align*}
& N_{K / F}\left(e_{i}\left(A_{K}\right)\right)=N_{L / F}\left(e_{i}\left(A_{L}\right)\right)=[L: F(x)] \cdot N_{F(x) / F}\left(e_{i}\left(A_{L}\right)\right) \tag{4.5}\\
&=\frac{[L: F]}{\operatorname{ind}(A)} e_{i}(A)=\frac{[K: F] \operatorname{ind}\left(A_{K}\right)}{\operatorname{ind}(A)} e_{i}(A) .
\end{align*}
$$

Proposition 4.6. Let p be a prime integer and A a central simple F-algebra of p-primary degree, $X=\mathrm{SB}(A)$ the Severi-Brauer variety of A. Then $\mathrm{CH}_{i}(X)=$ $\mathbb{Z} e_{i}$ for $i=0,1, \ldots, p-2$. In particular, these groups have no torsion.

Proof. If D is a division algebra Brauer equivalent to A, the Severi-Brauer variety $Y=\mathrm{SB}(D)$ is a closed subscheme of X. The push-forward map $\mathrm{CH}_{i}(Y) \rightarrow \mathrm{CH}_{i}(X)$ is an isomorphism for $i \leq \operatorname{dim}(Y)$ taking $e_{i}(D)$ to $e_{i}(A)$. Thus, in the proof of the proposition it suffices to assume that A is a division algebra.

We prove the proposition by induction on $\operatorname{ind}(A)$. The case $\operatorname{ind}(A)=p$ was considered in [12, Corollary 8.7.2]. A standard restriction-corestriction argument reduces the proof to the case when F is a p-special field, i.e., the degree of every finite field extension of F is a power of p.

Let A be a central division algebra of p-primary degree n and $L \subset A$ a maximal subfield (of degree n over F). The torus $T=R_{L / F}\left(\mathbb{G}_{m}\right) / \mathbb{G}_{m}$ acts naturally on X making X a toric variety. Write U for the open T-invariant orbit and Z for $X \backslash U$. Thus, U is a T-torsor over $\operatorname{Spec}(F)$.

Conversely, let U be a T-torsor over $\operatorname{Spec}(F)$ and let A be a central simple algebra degree n over F with class in the relative Brauer group $\operatorname{Br}(L / F)=$ $H^{1}(F, T)$ corresponding to the class of U. Then U is the open orbit of the T-action on $\mathrm{SB}(A)$.

In the split case, $X=\mathbb{P}^{n-1}$ and T is the torus of invertible diagonal matrices modulo the scalar matrices. Then U consists of all points in \mathbb{P}^{n-1} with all coordinates $\neq 0$. The T-orbits are the subsets in \mathbb{P}^{n-1} with zeros on the fixed set of coordinates.

Let Σ be the set of all n primitive idempotents of $L \otimes_{F} F_{\text {sep }}=F_{\text {sep }} \times \cdots \times F_{\text {sep }}$. Every $\sigma \in \Sigma$ yields a co-character $\chi_{\sigma}: \mathbb{G}_{m, F_{\text {sep }}} \rightarrow T_{\text {sep }}$ which belongs to an edge (1-dimensional cone) in the fan of the toric variety $X_{\text {sep }}$. Moreover, the correspondence $\sigma \mapsto \chi_{\sigma}$ yields a bijection between the set of nonempty subsets in Σ and the set of cones in the fan (or the set of T-orbits in $X_{\text {sep }}$). The absolute Galois group $\Gamma=\operatorname{Gal}\left(F_{\text {sep }} / F\right)$ of F acts transitively on the set Σ.

Lemma 4.7. We have $\mathrm{CH}_{i}(U)=0$ for $i=0,1, \ldots, p-2$.
Proof. If $\operatorname{ind}(A)=p$, every cycle c in $\mathrm{CH}_{i}(U)$ comes by restriction from $\mathrm{CH}_{i}(X)=p \mathbb{Z}$ and therefore, by the norm, comes from $\mathrm{CH}_{i}\left(X_{L}\right)$. Hence c comes by the norm from $\mathrm{CH}_{i}\left(U_{L}\right)$. But $U_{L} \simeq T_{L}$, hence $\mathrm{CH}_{i}\left(U_{L}\right)=0$.

In the general case, since F is a p-special field, there is a subfield $K \subset L$ of degree p over F. Consider the subtorus $S:=R_{K / F}\left(\mathbb{G}_{m}\right) / \mathbb{G}_{m}$ of T, the S-torsor

$$
f: U \rightarrow X:=U / S
$$

and Rost's spectral sequence for f converging to $\mathrm{CH}_{i}(U)$. On the zero diagonal, we have the groups $\coprod_{x \in X_{(j)}} \mathrm{CH}_{k}\left(f^{-1}(x)\right)$ with $j+k=i$. Note that $f^{-1}(x)$ is an S-torsor over Spec $F(x)$. Since $k \leq i \leq p-2$, by the first part of the proof, $\mathrm{CH}_{k}\left(f^{-1}(x)\right)=0$.

The T-orbits in $Z_{\text {sep }}$ correspond to proper subsets of the set of Σ. No such subset is fixed by Γ, hence no orbit in $Z_{\text {sep }}$ is fixed by Γ.

We have a sequence of closed T-invariant subsets

$$
\begin{equation*}
Z=Z_{0} \supset Z_{1} \supset \cdots \supset Z_{m} \supset Z_{m+1}=\emptyset \tag{4.8}
\end{equation*}
$$

such that every variety $\left(Z_{j} \backslash Z_{j+1}\right)_{\text {sep }}$ is the disjoint union of T-orbits of the same dimension which are permuted by Γ. It follows that each $Z_{j} \backslash Z_{j+1}$ is a disjoint union of varieties defined over finite separable field extensions K / F corresponding to the stabilizers $\Gamma^{\prime} \subset \Gamma$ of T-orbits. The group Γ^{\prime} does not act transitively on the set Σ, hence $L \otimes_{F} K$ is not a field and therefore, A_{K} is not a division algebra, i.e., $\operatorname{ind}\left(A_{K}\right)<\operatorname{ind}(A)$.

If W is a scheme over a finite separable field extension K / F, the norm map $\mathrm{CH}\left(W \otimes_{F} K\right) \rightarrow \mathrm{CH}(W)$ is surjective, since K is a direct factor of $K \otimes_{F} K$.

Fix an integer $i=0,1, \ldots, p-2$. We say that a variety W over F satisfies the condition $(*)$ if $\mathrm{CH}_{i}(W)$ is generated by the images of the norm maps $\mathrm{CH}_{i}\left(W \otimes_{F} K\right) \rightarrow \mathrm{CH}_{i}(W)$ over finite field extensions K / F with $\operatorname{ind}\left(A_{K}\right)<$ $\operatorname{ind}(A)$. We have proved that all the differences $Z_{j} \backslash Z_{j+1}$ satisfy $(*)$.

Let W^{\prime} be a closed subvariety of W. The exactness of the localization sequence

$$
\mathrm{CH}_{i}\left(W^{\prime}\right) \rightarrow \mathrm{CH}_{i}(W) \rightarrow \mathrm{CH}_{i}\left(W \backslash W^{\prime}\right) \rightarrow 0
$$

shows that if W^{\prime} and $W \backslash W^{\prime}$ satisfy $(*)$, then so does W. It follows from (4.8) that Z satisfies (*). By Lemma 4.7, U satisfies $(*)$, hence so does X.

By the induction hypothesis, $\mathrm{CH}_{i}\left(X_{K}\right)$ for K as above, is generated by $e_{i}\left(A_{K}\right)$. By Lemma 4.4, $\mathrm{CH}_{i}(X)$ is generated by $e_{i}(A)$.
Corollary 4.9. The degree map $\mathrm{CH}_{i}(X) \rightarrow \mathrm{CH}_{i}\left(X_{\text {sep }}\right)=\mathbb{Z} l_{i}$ is injective, it takes e_{i} to $\operatorname{ind}(A) l_{i}$. Thus, $\mathrm{CH}_{i}(X)$ is identified with the subgroup $\operatorname{ind}(A) \mathbb{Z} l_{i}$ in $\mathbb{Z} l_{i}$.

By the Projective Bundle Theorem, for every $j \geq 0$, we have

$$
\mathrm{CH}^{d-j}(X \times X) \simeq \mathrm{CH}^{d-j}(X) \oplus \mathrm{CH}^{d-j-1}(X) h \oplus \cdots \oplus \mathrm{CH}^{0}(X) h^{d-j},
$$

where $h \in \mathrm{CH}^{1}(X \times X)$ is the first Chern class of the canonical line bundle \mathcal{L}_{c} over $X \times X$. The element $\lambda_{j}:=h^{d-j}$ can be viewed as a degree j correspondence from X to itself and hence λ_{j} yields the homomorphism (see Section 2):

$$
\lambda_{j}^{*}: \mathrm{CH}_{0}(X) \rightarrow \mathrm{CH}_{j}(X)
$$

Lemma 4.10. The maps λ_{j}^{*} are isomorphisms for $j=0,1, \ldots, p-2$, taking $e_{0}(A)$ to $e_{j}(A)$.
Proof. By (4.1), in the split case, $h=h_{2}-h_{1}$, where h_{i} are the pull-backs to $X \times X$ of the classes of the hyperplanes in X, hence $\lambda_{j}=\left(h_{2}-h_{1}\right)^{d-j}$. Therefore, λ_{j}^{*} takes the generator l_{0} of the infinite cyclic group $\mathrm{CH}_{0}(X)$ to the generator l_{j} of $\mathrm{CH}_{j}(X)$.

By Proposition 4.6, in the general case, the degree map $\mathrm{CH}_{j}(X) \rightarrow \mathrm{CH}\left(X_{\text {sep }}\right)=$ $\mathbb{Z} l_{j}$ identifies the group $\mathrm{CH}_{j}(X)$ with ind $(A) l_{j}$ by Corollary 4.9. The result follows.

5. Two CyCle modules

Let A be a central simple algebra over F. The first cycle module $K_{*}^{Q A}$ is defined by

$$
K_{n}^{Q A}(L)=K_{n}\left(A_{L}\right)
$$

for a field extension L / F. The reduced norm map Nrd : $K_{n}\left(A_{L}\right) \rightarrow K_{n}(L)$ is defined for $n=0,1,2$ (see $[12, \S 6]$).

Let $G=\mathbf{S L}_{1}(A)$ be the algebraic group of reduced norm 1 elements in A. There is a canonical isomorphism (see [6, Proposition 7.3])

$$
A^{1}\left(G, K_{2}\right) \simeq \mathbb{Z}
$$

The group $A^{1}\left(G, K_{2}\right)$ does not change under field extensions.
In particular, we have a homomorphism

$$
\operatorname{Nrd}^{Q A}: A^{1}\left(G, K_{2}^{Q A}\right) \rightarrow A^{1}\left(G, K_{2}\right)=\mathbb{Z}
$$

Let X be the Severi-Brauer variety of A of dimension d. We will be using another cycle module K_{*}^{A} over F defined by

$$
K_{n}^{A}(L)=A^{d}\left(X_{L}, K_{d+n}\right) .
$$

The push-forward homomorphism for the morphism $X_{L} \rightarrow \operatorname{Spec}(L)$ yields a map $A^{d}\left(X_{L}, K_{d+n}\right) \rightarrow K_{n}(L)$ and therefore, a morphism of cycle modules $K_{*}^{A} \rightarrow K_{*}$. In particular, we have a homomorphism

$$
\operatorname{Nrd}^{A}: A^{1}\left(G, K_{2}^{A}\right) \rightarrow A^{1}\left(G, K_{2}\right)=\mathbb{Z}
$$

There is a natural homomorphism $A^{d}\left(X_{L}, K_{d+n}\right) \rightarrow K_{n}\left(A_{L}\right)$ which is an isomorphism for $n=0$ and 1 (see [14]). Thus, we have a morphism of cycle modules $K_{*}^{A} \rightarrow K_{*}^{Q A}$ that is isomorphism in degree 0 and 1 . It follows that the images of the maps $\mathrm{Nrd}^{Q A}$ and Nrd^{A} coincide.

If A is split, $K_{*}^{Q A}=K_{*}^{A}=K_{*}$.

6. A Reduction

Recall that $G=\mathbf{S L}_{1}(A)$ for a central simple algebra A of degree n over F. For every commutative F-algebra R there is a natural composition

$$
G(R) \hookrightarrow A_{R}^{\times} \rightarrow K_{1}\left(A_{R}\right),
$$

where $A_{R}=A \otimes_{F} R$.
Consider the generic point $\xi \in G(F[G])$ and its image $\xi_{F(G)}$ in $G(F(G))$. Let α be the image of ξ under the map

$$
G(F[G]) \rightarrow K_{1}\left(A_{F[G]}\right),
$$

and let $\alpha_{F(G)}$ be the image of $\xi_{F(G)}$ under the map

$$
G(F(G)) \rightarrow K_{1}\left(A_{F(G)}\right) .
$$

We will prove that $\alpha_{F(G)}$ is nontrivial in $K_{1}\left(A_{F(G)}\right)$ when A is a central simple algebra with $\operatorname{ind}(A)$ not square-free.

Filtering the category of coherent $A \otimes_{F} \mathcal{O}_{G}$-modules by codimension of support as in $[18, \S 7.5]$, we get the Brown-Gersten-Quillen spectral sequence (see $[18, \S 7])$

$$
E_{1}^{r, s}=\coprod_{g \in G^{(r)}} K_{-r-s}\left(A_{F(g)}\right) \Rightarrow K_{-r-s}\left(A_{F[G]}\right),
$$

where the limit is the K-group of the category of coherent $A \otimes_{F} \mathcal{O}_{G}$-modules equipped with the topological filtration (by codimension of support). In particular,

$$
E_{2}^{r, s}=A^{r}\left(G, K_{-s}^{Q A}\right)
$$

and the first term of the topological filtration on $K_{1}\left(A_{F[G]}\right)$ is equal to

$$
K_{1}\left(A_{F[G]}\right)^{(1)}=\operatorname{Ker}\left(K_{1}\left(A_{F[G]}\right) \rightarrow K_{1}\left(A_{F(G)}\right)\right)
$$

The spectral sequence gives then a homomorphism

$$
\varepsilon: K_{1}\left(A_{F[G]}\right)^{(1)} \rightarrow A^{1}\left(G, K_{2}^{Q A}\right) .
$$

If $\alpha_{F(G)}$ is trivial in $K_{1}\left(A_{F(G)}\right)$, then $\alpha \in K_{1}\left(A_{F[G]}\right)^{(1)}$. Therefore, we have an element $\varepsilon(\alpha) \in A^{1}\left(G, K_{2}^{Q A}\right)$.

We compute $\varepsilon(\alpha)$ in the split case. We have $G=\mathbf{S L}_{n}$ and

$$
\alpha \in K_{1}\left(A_{F[G]}\right)=K_{1}(F[G])=K_{1}(G) .
$$

By [22, Th. 2.7], the first Chern class $c_{1}(\alpha)$ of α generates the group $A^{1}\left(G, K_{2}^{Q A}\right)=$ $A^{1}\left(G, K_{2}\right)=\mathbb{Z}$.

Lemma 6.1. In the split case, $\varepsilon(\alpha)=c_{1}(\alpha)$.
Proof. Let $H:=\mathbf{G L}_{n}$ and $\beta \in K_{1}(H)$ be the element given by the generic matrix. By [22, Th. 3.10], $\gamma_{i+1}(\beta) \in K_{1}(H)^{(i)}$ for all $i \geq 0$, where γ is the gamma operation, and the image of $-\gamma_{2}(\beta)$ under the canonical homomorphism

$$
K_{1}(H)^{(1)} \rightarrow A^{1}\left(H, K_{2}\right)
$$

is equal to $c_{1}(\beta)$. On the other hand, the sum of $\gamma_{i}(\beta)$ for all $i \geq 1$ coincides with $\Lambda^{n}(\beta)=\operatorname{det}(\beta)$ by [22, p. 65]. Hence $-\gamma_{2}(\beta) \equiv \beta-\operatorname{det}(\beta)$ modulo $K_{1}(H)^{(2)}$.

Pulling back with respect to the embedding of G into H we have $-\gamma_{2}(\alpha) \equiv \alpha$ modulo $K_{1}(G)^{(2)}$ since $\operatorname{det}(\alpha)$ is trivial and therefore, the image of α under the homomorphism $K_{1}(G)^{(1)} \rightarrow A^{1}\left(G, K_{2}\right)$ is equal to $c_{1}(\alpha)$.

Let L / F be a splitting field of A. We have a commutative diagram

The right vertical homomorphism factors as follows:

$$
A^{1}\left(G, K_{2}^{Q A}\right) \xrightarrow{\operatorname{Nrd} Q A} A^{1}\left(G, K_{2}\right) \xrightarrow{\sim} A^{1}\left(G_{L}, K_{2}\right)=A^{1}\left(G_{L}, K_{2}^{Q A}\right) .
$$

Assume that $\alpha_{F(G)}$ is trivial in $K_{1}\left(A_{F(G)}\right)$, hence $\alpha \in K_{1}\left(A_{F[G]}\right)^{(1)}$. By Lemma 6.1, $\varepsilon(\alpha)_{L}$ in $A^{1}\left(G_{L}, K_{2}^{Q A}\right)=\mathbb{Z}$ is a generator. It follows that the image of $\varepsilon(\alpha)$ under the map $\operatorname{Nrd}^{Q A}: A^{1}\left(G, K_{2}^{Q A}\right) \rightarrow A^{1}\left(G, K_{2}\right)=\mathbb{Z}$ is equal to ± 1, hence $\mathrm{Nrd}^{Q A}$ is surjective.

We have proved:
Proposition 6.2. Suppose that the map $\mathrm{Nrd}^{Q A}: A^{1}\left(G, K_{2}^{Q A}\right) \rightarrow A^{1}\left(G, K_{2}\right)=$ \mathbb{Z} is not surjective. Then Suslin's Conjecture holds for A.

Let A be a central simple F-algebra such that $\operatorname{ind}(A)$ is not square-free, i.e., $\operatorname{ind}(A)$ is divisible by p^{2} for a prime integer p. We want to prove that $\mathrm{SK}_{1}(A)$ is nontrivial generically. Replacing F by a field extension over which A has index exactly p^{2} and replacing A by a Brauer equivalent division algebra, we may assume that A is a division algebra of degree p^{2}. Moreover, an application of the index reduction formula shows that we may assume that A is decomposable, i.e., A is a tensor product of two algebras of degree p (see [19, Theorem 1.20]).

We will prove that if A is a decomposable division algebra of degree p^{2}, then the map $\mathrm{Nrd}^{Q A}$ is not surjective. Recall that the maps $\mathrm{Nrd}^{Q A}$ and Nrd^{A} have the same images. Therefore, it suffices to prove that the map Nrd^{A} : $A^{1}\left(G, K_{2}^{A}\right) \rightarrow A^{1}\left(G, K_{2}\right)=\mathbb{Z}$ is not surjective.

7. A spectral SEQUENCE

Let A be a central simple F-algebra of degree p^{2} and X the Severi-Brauer variety of A with $\operatorname{dim}(X)=d=p^{2}-1$. We would like to find a reasonable description the group $A^{1}\left(G, K_{2}^{A}\right)$ via algebraic cycles on $G \times X$.

Consider the spectral sequence associated with the projection $q: G \times X \rightarrow G$ (see Section 2):

$$
\begin{equation*}
E_{1}^{r, s}=E_{1}^{r, s}(q, d+2)=\coprod_{g \in G^{(r)}} A^{s}\left(X_{F(g)}, K_{d+2-r}\right) \Rightarrow A^{r+s}\left(G \times X, K_{d+2}\right) . \tag{7.1}
\end{equation*}
$$

We have $E_{1}^{r, s}=0$ if $s>d$ and

$$
E_{2}^{r, d}=A^{r}\left(G, K_{2}^{A}\right)
$$

There are no nontrivial differentials arriving at $E_{*}^{r, d}$.
Proposition 7.2. We have $E_{2}^{i, d+2-i}=0$ for $i=2,3, \ldots, p$. In particular,

$$
A^{1}\left(G, K_{2}^{A}\right)=E_{2}^{1, d}=E_{3}^{1, d}=\cdots=E_{p}^{1, d}
$$

Proof. Let $j=i-2$ and λ_{j} be the correspondence on $X \times X$ of degree j considered in Section 4. By Lemma 4.10, the maps

$$
\lambda_{j}^{*}: \mathrm{CH}_{0}\left(X_{L}\right) \rightarrow \mathrm{CH}_{j}\left(X_{L}\right) .
$$

are isomorphisms for $j=0,1, \ldots, p-2$ and every field extension L / F.

Consider the spectral sequence

$$
\begin{equation*}
\widehat{E}_{1}^{r, s}:=E_{1}^{r, s}(q, d+i)=\coprod_{g \in G^{(r)}} A^{s}\left(X_{F(g)}, K_{d+i-r}\right) \Rightarrow A^{r+s}\left(G \times X, K_{d+i}\right) . \tag{7.3}
\end{equation*}
$$

The edge homomorphism

$$
\mathrm{CH}^{d+i}(G \times X)=A^{d+i}\left(G \times X, K_{d+i}\right) \rightarrow \widehat{E}_{2}^{i, d}
$$

is surjective. By Proposition 3.2,

$$
\mathrm{CH}^{d+i}(G \times X)=\mathrm{CH}^{d+i}(X)=0
$$

since $d+i>\operatorname{dim}(X)$. It follows that $\widehat{E}_{2}^{i, d}=0$.
The correspondence λ_{j} yields a morphism between the spectral sequences (7.1) and (7.3). In particular, we have a homomorphism

$$
\tilde{\lambda}_{j}: \widehat{E}_{2}^{i, d} \rightarrow E_{2}^{i, d-i+2}
$$

Since λ_{j}^{*} is an isomorphism for X_{L} for every field extension L / F, the map $\tilde{\lambda}_{j}$ is surjective. As $\widehat{E}_{2}^{i, d}=0$, we have $E_{2}^{i, d+2-i}=0$.

By Proposition 7.2, we have a differential

$$
A^{1}\left(G, K_{2}^{A}\right)=E_{p}^{1, d} \xrightarrow{\delta} E_{p}^{p+1, d+1-p} .
$$

Proposition 7.4. If $\operatorname{ind}(A)=p$, the image of $\operatorname{Ker}(\delta)$ under the homomorphism

$$
\operatorname{Nrd}^{A}: A^{1}\left(G, K_{2}^{A}\right) \rightarrow A^{1}\left(G, K_{2}\right)=\mathbb{Z}
$$

is equal to $p \mathbb{Z}$.
We will prove this proposition in Section 10.
Let A be a division algebra of degree ${\underset{\sim}{p}}^{2}$ over F. Choose a field extension K / F such that $\operatorname{ind}\left(A_{K}\right)=p$ and set $\widetilde{A}=A_{K}, \widetilde{X}=X_{K}, \widetilde{G}=G_{K}$ and write $\widetilde{E}_{*}^{r, s}$ for the terms of the spectral sequence associated with the projection $\widetilde{G} \times \widetilde{X} \rightarrow \widetilde{G}$. We have the following commutative diagram

where δ and $\widetilde{\delta}$ are the differentials in the p-th pages of the spectral sequences.
Proposition 7.5. If A is decomposable degree p^{2} division algebra, then κ : $E_{p}^{p+1, d+1-p} \rightarrow \widetilde{E}_{p}^{p+1, d+1-p}$ is the zero map.

We will prove this proposition in Section 11.

8. MAIN THEOREM

We deduce the following theorem from Propositions 7.4 and 7.5.
Theorem 8.1. Let A be a central simple F-algebra. If $\operatorname{ind}(A)$ is not squarefree, then there is a field extension L / F such that $\mathrm{SK}_{1}\left(A_{L}\right) \neq 0$.

Proof. We may assume that A is a decomposable division algebra of degree p^{2} for a prime integer p. Note that $\operatorname{ind}(\widetilde{A})=p$.

By Propositions 7.4 (applied to the algebra \widetilde{A}) and 7.5 , the image of the composition

$$
E_{p}^{1, d} \rightarrow \widetilde{E}_{p}^{1, d}=A^{1}\left(\widetilde{G}, K_{2}^{\widetilde{A}}\right) \xrightarrow{\operatorname{Nrd}^{\widetilde{A}}} A^{1}\left(\widetilde{G}, K_{2}\right)=\mathbb{Z}
$$

is contained in $p \mathbb{Z}$. On the other hand, this composition coincides with

$$
E_{p}^{1, d}=A^{1}\left(G, K_{2}^{A}\right) \xrightarrow{\mathrm{Nrd}^{A}} A^{1}\left(G, K_{2}\right)=\mathbb{Z} .
$$

Therefore, the norm homomorphism $\operatorname{Nrd}^{A}: A^{1}\left(G, K_{2}^{A}\right) \rightarrow A^{1}\left(G, K_{2}\right)$ is not surjective and this finishes the proof by Proposition 6.2 since $\operatorname{Im}\left(\mathrm{Nrd}^{Q A}\right)=$ $\operatorname{Im}\left(\operatorname{Nrd}^{A}\right)$.

An irreducible variety Z over F is called a retract rational variety if there exist rational morphisms $\alpha: Z \xrightarrow{\rightarrow} \mathbb{P}^{m}$ and $\beta: \mathbb{P}^{m} \rightarrow Z$ for some m such that the composition $\beta \circ \alpha$ is defined and equal to the identity of Z.

Corollary 8.2. Let A be a central simple algebra over F. Then the following are equivalent:
(1) The group $\mathbf{S L}_{1}(A)$ is a retract rational variety;
(2) $\mathrm{SK}_{1}\left(A_{L}\right)=0$ for every field extension L / F;
(3) The index $\operatorname{ind}(A)$ is square-free.

Proof. (1) \Rightarrow (2): If $G:=\mathbf{S L}_{1}(A)$ is a retract rational variety, then G_{L} is so for every field extension L / F. By [2, Proposition 11], the group of R-equivalence classes $G(L) / R$ is trivial. But $G(L) / R$ is isomorphic to $\mathrm{SK}_{1}\left(A_{L}\right)$ by [24, $\left.\S 18.2\right]$.
$(2) \Rightarrow(1)$: This is proved in [5, Proposition 2.4] and [10, Proposition 5.1].
$(2) \Leftrightarrow(3)$: This is Theorem 8.1.

9. Chow ring of G

Let $G=\mathbf{S L}_{1}(A)$ for a central simple algebra A of p-primary degree.
Lemma 9.1. The Chow groups $\mathrm{CH}^{i}(G)$ are trivial for $i=1,2, \ldots, p$ and $p \cdot \mathrm{CH}^{p+1}(G)=0$.

Proof. Since $\mathrm{CH}\left(G_{\text {sep }}\right)=\mathbb{Z}$ by [22, Theorem 2.7], the groups $\mathrm{CH}^{i}(G)$ are p primary torsion if $i>0$. As $K_{0}(G)=\mathbb{Z}$ (see [22, Theorem 4.1]), by [4, Example 15.3.6], we have $(i-1)!\mathrm{CH}^{i}(G)=0$ for $i>0$. The result follows.

Consider the Brown-Gersten-Quillen spectral sequence

$$
E_{2}^{r, s}=A^{r}\left(G, K_{-s}\right) \Rightarrow K_{-r-s}(G) .
$$

It follows from Lemma 9.1 that

$$
A^{1}\left(G, K_{2}\right)=E_{2}^{1,-2}=E_{3}^{1,-2}=\cdots=E_{p}^{1,-2}
$$

Moreover, by $[8, \S 3]$,

$$
\mathrm{CH}^{p+1}(G)=E_{2}^{p+1,-p-1}=E_{3}^{p+1,-p-1}=\cdots=E_{p}^{p+1,-p-1} .
$$

We have then a differential

$$
\delta: A^{1}\left(G, K_{2}\right)=E_{p}^{1,-2} \rightarrow E_{p}^{p+1,-p-1}=\mathrm{CH}^{p+1}(G)
$$

Write $h \in \mathrm{CH}^{p+1}(G)$ for the image under δ of the canonical generator of the group $A^{1}\left(G, K_{2}\right)=\mathbb{Z}$.

Proposition 9.2. Suppose that $\operatorname{ind}(A)=p$, i.e., $A=M_{n}(B)$ and $G=$ $\mathbf{S L}_{n}(B)$ for some n and a central division algebra B of degree p. Then

$$
\mathrm{CH}^{*}(G)=\mathbb{Z} \oplus(\mathbb{Z} / p \mathbb{Z}) h \oplus(\mathbb{Z} / p \mathbb{Z}) h^{2} \oplus \cdots \oplus(\mathbb{Z} / p \mathbb{Z}) h^{p-1}
$$

Proof. Induction on n. The case $n=1$ is done in [8, Theorem 9.7].
Let $H=\mathbf{S L}_{n-1}(B)$. We view H as a subgroup of G with respect to the embedding $x \mapsto \operatorname{diag}(1, x)$. Consider the closed subvariety V of the affine space $B^{2 n}$ consisting of tuples $\left(b_{1}, \ldots, b_{n}, c_{1}, \ldots, c_{n}\right)$ such that $\sum b_{i} c_{i}=1$. Define the morphism

$$
f: G \rightarrow V, \quad a=\left(a_{i j}\right) \mapsto\left(a_{11}, \ldots, a_{1 n}, a_{11}^{\prime}, \ldots, a_{n 1}^{\prime}\right),
$$

where $\left(a_{i j}^{\prime}\right)=a^{-1}$. Clearly, f is an H-torsor over V. For any field extension L / F, in the exact sequence of Galois cohomology

$$
G(L) \xrightarrow{f(L)} V(L) \rightarrow H^{1}(L, H) \xrightarrow{r} H^{1}(L, G)
$$

the map r is a bijection (both sets are identified with $L^{\times} / \operatorname{Nrd}\left(B_{L}^{\times}\right)$and r is the identity map by [11, Cor. 2.9.4]). Hence f is surjective on L-points.

Let W be the open subset of the affine space B^{n} consisting of all tuples $\left(b_{1}, \ldots, b_{n}\right)$ such that $\sum b_{i} B=B$. We have $\mathrm{CH}^{i}(W)=0$ for $i>0$. The obvious projection $V \rightarrow W$ is an affine bundle, hence by the homotopy invariance property,

$$
\begin{equation*}
\mathrm{CH}^{i}(V) \simeq \mathrm{CH}^{i}(W)=0 \tag{9.3}
\end{equation*}
$$

for every $i>0$.
For every m, consider the spectral sequence associated with the morphism f :

$$
E_{1}^{r, s}=E_{1}^{r, s}(f, m)=\coprod_{v \in V^{(r)}} A^{s}\left(f^{-1}(v), K_{m-r}\right) \Rightarrow A^{r+s}\left(G, K_{m}\right) .
$$

Since f is surjective on L-points, $f^{-1}(v) \simeq H_{F(v)}$.
We claim that $E_{2}^{r, s}=0$ if $r+s=m$ and $r>0$. By induction, the group $A^{s}\left(G_{v}, K_{s}\right)=\mathrm{CH}^{s}\left(G_{v}\right)$ is trivial unless $s=(p+1) i$ for $i=0,1, \ldots, p-1$. In
the latter case the map $\mathrm{CH}^{r}(V) \rightarrow E_{2}^{r, s}$ of multiplication by h^{i} is surjective by the induction hypothesis. The claim follows from the triviality of $\mathrm{CH}^{r}(V)$ for $r>0$.

By the claim, $\mathrm{CH}(G) \simeq \mathrm{CH}\left(H_{F(V)}\right)$. The statement of the proposition follows by induction.

Corollary 9.4. Let A be a central simple algebra of degree p^{2}. Then for every field extension L / F such that $\operatorname{ind}\left(A_{L}\right) \leq p$, the map

$$
\mathrm{CH}(G) \rightarrow \mathrm{CH}\left(G_{L}\right)
$$

is surjective.
Proof. The element h belongs to $\mathrm{CH}^{l+1}(G)$. As ind $\left(A_{L}\right) \leq p$, by Proposition 9.2, the element h_{L} generates the ring $\mathrm{CH}\left(G_{L}\right)$, whence the result.

10. Proof of Proposition 7.4

In this section, A is a central simple algebra of degree p^{2} and index p, so that $A=M_{p}(B)$, where B is a division algebra of degree p. We write S for the Severi-Brauer variety $\mathrm{SB}(B)$ of dimension $p-1$. Recall that the variety S can be viewed as a closed subvariety of X. Moreover, the Chow motive $M(X)$ of X is isomorphic to $M(S) \oplus M(S)\{p\} \oplus \cdots \oplus M(S)\{(p-1) p\}$.

Consider the spectral sequence associated with the projection $t: G \times S \rightarrow G$:

$$
\begin{equation*}
\hat{E}_{1}^{r, s}:=E_{1}^{r, s}(t, p+1)=\coprod_{g \in G^{(r)}} A^{s}\left(S_{F(g)}, K_{p+1-r}\right) \Rightarrow A^{p+q}\left(G \times S, K_{p+1}\right) \tag{10.1}
\end{equation*}
$$

The embedding of S into X induces the push-forward morphisms between the spectral sequences (10.1) and (7.1). Moreover, (10.1) is a direct summand of (7.1). More precisely, the maps

$$
\hat{E}_{*}^{r, s} \rightarrow E_{*}^{r, s+d+1-p}
$$

are isomorphisms for $s=0,1, \ldots, p-1$.
By Proposition 7.2, we have $E_{2}^{i, d+2-i}=0$ for $i=2,3, \ldots, p$. It follows that $\hat{E}_{2}^{i, p+1-i}=0$ for $i=2,3, \ldots, p$, i.e., all the terms but $\hat{E}_{2}^{p+1,0}$ on the diagonal $r+s=p+1$ on page $\hat{E}_{2}^{*, *}$ are zero. Moreover,

$$
\begin{equation*}
E_{2}^{p+1, d+1-p}=\hat{E}_{2}^{p+1,0}=\mathrm{CH}^{p+1}(G) \tag{10.2}
\end{equation*}
$$

It follows that

$$
A^{1}\left(G, K_{2}^{A}\right)=\hat{E}_{2}^{1, p-1}=\hat{E}_{3}^{1, p-1}=\cdots=\hat{E}_{p}^{1, p-1}
$$

and the only potentially nonzero differential starting in $\hat{E}_{\geq 2}^{1, p-1}$ appears on page p :

$$
A^{1}\left(G, K_{2}^{A}\right)=\hat{E}_{p}^{1, p-1} \xrightarrow{\hat{\delta}} \hat{E}_{p}^{p+1,0}
$$

The spectral sequence (10.1) yields then an exact sequence

$$
\begin{equation*}
A^{l}\left(G \times S, K_{p+1}\right) \rightarrow \hat{E}_{p}^{1, p-1} \xrightarrow{\hat{s}} \hat{E}_{p}^{p+1,0} . \tag{10.3}
\end{equation*}
$$

The differential $\delta: E_{p}^{1, d} \rightarrow E_{p}^{p+1, d+1-p}$ in (10.1) is identified with the differential $\hat{\delta}: \hat{E}_{p}^{1, p-1} \rightarrow \hat{E}_{p}^{p+1,0}$ in (7.1). Thus, to prove the proposition, it suffices to show that the image of the composition

$$
A^{p}\left(G \times S, K_{p+1}\right) \rightarrow \hat{E}_{p}^{1, p-1}=A^{1}\left(G, K_{2}^{A}\right) \xrightarrow{\mathrm{Nrd}^{A}} A^{1}\left(G, K_{2}\right)=\mathbb{Z}
$$

is equal to $p \mathbb{Z}$.
This composition is the push-forward homomorphism

$$
t_{*}: A^{p}\left(G \times S, K_{p+1}\right) \rightarrow A^{1}\left(G, K_{2}\right)=\mathbb{Z}
$$

with respect to the projection $t: G \times S \rightarrow G$.
Over S, the algebra A is isomorphic to $\mathcal{E} n d_{\mathcal{O}_{S}}\left(J^{p}\right)$, where J is the canonical vector bundle over S of rank p. By Proposition 3.2,
$A^{p}\left(G \times S, K_{p+1}\right)=\mathrm{CH}^{p-1}(S) \cdot c_{1}(\beta) \oplus \mathrm{CH}^{p-2}(S) \cdot c_{2}(\beta) \oplus \cdots \oplus \mathrm{CH}^{0}(S) \cdot c_{p}(\beta)$, where $\beta \in K_{1}(G \times S)$ is the generic element.

Since the group $A^{1}\left(G, K_{2}\right)$ does not change under field extensions, it is sufficient to compute the image over a field extension L / F splitting A. Over such a field extension the group G_{L} is isomorphic to $\mathbf{S L}_{p^{2}}$. Let $\beta^{\prime} \in K_{1}\left(G_{L}\right)$ be the class of the generic matrix, so that $\beta=\left[L_{c}\right] \cdot t^{*}\left(\beta^{\prime}\right)$, where L_{c} is the canonical line bundle over X. By Proposition 3.1,

$$
c_{i}(\beta)=\sum_{j=0}^{i}(-1)^{j}\binom{i}{j} h^{j} c_{i-j}\left(t^{*} \beta^{\prime}\right)
$$

for every $i=1,2, \ldots, p$, where $h \in \mathrm{CH}^{1}\left(S_{L}\right)$ is the first Chern class of L_{c}. Note that $c_{1}\left(\beta^{\prime}\right)$ is the canonical generator of $A^{1}\left(G_{L}, K_{2}\right)$. By the projection formula, the image of t_{*} is the sum of the subgroups

$$
\binom{i}{j} \cdot t_{*}\left[\mathrm{CH}^{p-i}(S) \cdot h^{j}\right] \cdot c_{i-j}\left(\beta^{\prime}\right)
$$

over all $i=1,2, \ldots, p$ and $j=0,1, \ldots, i$. By dimension consideration, the subgroup is trivial if $j \neq i-1$. Consider the case $j=i-1$. If $p-i>0$, then the image of $\mathrm{CH}^{p-i}(S)$ in \mathbb{Z} (when splitting S) is equal to $p \mathbb{Z}$. Finally, if $i=p$, the multiple $\binom{i}{j}$ is equal to p. The proposition is proved.

11. Proof of Proposition 7.5

In this section we assume that A is a decomposable division algebra of degree p^{2}.

Since for every i and j with $i+j=d+2$ the natural homomorphism $E_{2}^{i, j} \rightarrow E_{p}^{i, j}$ is surjective, it is sufficient to prove that the homomorphism

$$
E_{2}^{p+1, d+1-p} \rightarrow \widetilde{E}_{2}^{p+1, d+1-p}
$$

is trivial.

Let L / F be a field extension. Considering X over a separable closure of L we get the homomorphisms

$$
A^{i}\left(X_{L}, K_{i+n}\right) \rightarrow A^{i}\left(X_{L_{\mathrm{sep}}}, K_{i+n}\right)=K_{n}(L)
$$

for $i=d+1-p$ and $n=0,1$. These homomorphisms induce the vertical maps in the following commutative diagram

Since $\operatorname{ind}(\widetilde{A})=p$, it follows from (10.2) (applied to $\widetilde{A})$ that $\widetilde{\varphi}$ is an isomorphism. Thus, it is sufficient to prove that $\varphi=0$.

Recall that A is a decomposable algebra. By a theorem of Karpenko [9, Th. 1],

$$
\operatorname{Im}\left(\mathrm{CH}^{d+1-p}\left(X_{F(g)}\right) \xrightarrow{\operatorname{deg}} \mathbb{Z}\right)= \begin{cases}p \mathbb{Z}, & \text { if ind } A_{F(g)}=p^{2} ; \tag{11.1}\\ \mathbb{Z}, & \text { if ind } A_{F(g)} \leq p\end{cases}
$$

Let $Y=\mathrm{SB}(p, A)$ be the generalized Severi-Brauer variety and set $m:=$ $\operatorname{dim}(Y)=p^{3}-p^{2}$. Consider the cycle module M_{*} over F defined by

$$
M_{n}(L)=A^{m}\left(Y_{L}, K_{n+m}\right)
$$

There is the norm morphism $N: M_{*} \rightarrow K_{*}$ well defined. The variety Y has a point over a field extension L / F if and only if $\operatorname{ind}\left(A_{L}\right) \leq p$. It follows that

$$
\operatorname{Im}\left(A^{m}\left(Y_{L}, K_{m}\right) \xrightarrow{N} \mathbb{Z}\right)= \begin{cases}p \mathbb{Z}, & \text { if ind } A_{L}=p^{2} \\ \mathbb{Z}, & \text { if ind } A_{L} \leq p\end{cases}
$$

Therefore the image of φ coincide with the image of the map

$$
\psi: A^{p+1}\left(G, M_{p+1}\right) \rightarrow A^{p+1}\left(G, K_{p+1}\right)=\mathrm{CH}^{p+1}(G)
$$

induced by the norm map N. It is sufficient to prove that $\psi=0$.
The spectral sequence for the projection $G \times Y \rightarrow G$,

$$
E_{1}^{r, s}=\coprod_{g \in G^{(r)}} A^{s}\left(Y_{F(g)}, K_{m+p+1-r}\right) \Rightarrow A^{r+s}\left(G \times Y, K_{m+p+1}\right)
$$

yields a surjective homomorphism $\mathrm{CH}^{m+p+1}(G \times Y) \rightarrow A^{p+1}\left(G, M_{p+1}\right)$. The composition

$$
\mathrm{CH}^{m+p+1}(G \times Y) \rightarrow A^{p+1}\left(G, M_{p+1}\right) \xrightarrow{\psi} A^{p+1}\left(G, K_{p+1}\right)=\mathrm{CH}^{p+1}(G)
$$

is the push-forward homomorphism with respect to the projection $G \times Y \rightarrow G$. Thus, it is sufficient to show that the push-forward homomorphism

$$
\mathrm{CH}^{m+p+1}(G \times Y) \rightarrow \mathrm{CH}^{p+1}(G)
$$

is zero.

Since $\operatorname{ind}\left(A_{F(y)}\right) \leq p$ for every $y \in Y$, it follows from Corollary 9.4 that the map $\mathrm{CH}(G) \rightarrow \mathrm{CH}\left(G_{F(y)}\right)$ is surjective. Then the proof of [3, Lemma 88.5] yields the following lemma.

Lemma 11.2. The product homomorphism

$$
\mathrm{CH}(G) \otimes \mathrm{CH}(Y) \rightarrow \mathrm{CH}(G \times Y)
$$

is surjective.
Lemma 11.3. For every closed point $y \in Y$, the norm homomorphism

$$
N_{F(y)}: \mathrm{CH}^{p+1}\left(G_{F(y)}\right) \rightarrow \mathrm{CH}^{p+1}(G)
$$

is trivial.
Proof. The first map in the composition

$$
\mathrm{CH}^{p+1}(G) \rightarrow \mathrm{CH}^{p+1}\left(G_{F(y)}\right) \xrightarrow{N_{F(y) / F}} \mathrm{CH}^{p+1}(G)
$$

is surjective by Corollary 9.4 since $\operatorname{ind}\left(A_{F(y)}\right) \leq p$. The composition is multiplication by $\operatorname{deg}(y)$. Note that $\operatorname{deg}(y)$ is divisible by p since $\operatorname{ind}(A)=p^{2}$. The result follows from Lemma 9.1.

Proposition 11.4. If A is a division algebra, the push-forward homomorphism

$$
\mathrm{CH}^{m+p+1}(G \times Y) \rightarrow \mathrm{CH}^{p+1}(G)
$$

is trivial.
Proof. By Lemma 11.2, it is sufficient to show that for every closed point $y \in Y$ the norm homomorphism $\mathrm{CH}^{p+1}\left(G_{F(y)}\right) \rightarrow \mathrm{CH}^{p+1}(G)$ is trivial. This is proved in Lemma 11.3.

References

[1] V. Chernousov and A. Merkurjev, Connectedness of classes of fields and zero-cycles on projective homogeneous varieties, Compos. Math. 142 (2006), no. 6, 1522-1548.
[2] J-L. Colliot-Thélène and Jean-Jacques Sansuc, La R-équivalence sur les tores, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 2, 175-229.
[3] R. Elman, N. Karpenko, and Alexander Merkurjev, The algebraic and geometric theory of quadratic forms, American Mathematical Society Colloquium Publications, vol. 56, American Mathematical Society, Providence, RI, 2008.
[4] W. Fulton, Intersection theory, Springer-Verlag, Berlin, 1984.
[5] Ph. Gille, Le problème de Kneser-Tits, Astérisque (2009), no. 326, Exp. No. 983, vii, 39-81 (2010), Séminaire Bourbaki. Vol. 2007/2008.
[6] R. Garibaldi, A. Merkurjev, and Serre J.-P., Cohomological invariants in Galois cohomology, American Mathematical Society, Providence, RI, 2003.
[7] H. Gillet, Riemann-Roch theorems for higher algebraic K-theory, Adv. in Math. 40 (1981), no. 3, 203-289.
[8] N. Karpenko and A. Merkurjev, Motivic decomposition of compactifications of certain group varieties, arXiv:1402.5520 (2014).
[9] N. Karpenko, On topological filtration for Severi-Brauer varieties. II, 174 (1996), 45-48.
[10] N. Karpenko and A. Merkurjev, On standard norm varieties, Ann. Sci. Éc. Norm. Supér. (4) 46 (2013), no. 1, 175-214 (2013).
[11] M.-A. Knus, A. Merkurjev, M. Rost, and J.-P. Tignol, The book of involutions, American Mathematical Society, Providence, RI, 1998, With a preface in French by J. Tits.
[12] A. S. Merkurjev and A. A. Suslin, K-cohomology of Severi-Brauer varieties and the norm residue homomorphism, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), no. 5, 10111046, 1135-1136.
[13] A. S. Merkurjev, Generic element in $S K_{1}$ for simple algebras, K-Theory 7 (1993), no. 1, 1-3.
[14] A. S. Merkurjev and A. A. Suslin, The group of K_{1}-zero-cycles on Severi-Brauer varieties, Nova J. Algebra Geom. 1 (1992), no. 3, 297-315.
[15] A. Merkurjev, The group $S K_{1}$ for simple algebras, K-Theory 37 (2006), no. 3, 311-319.
[16] I. Panin, Application of K-theory in algebraic geometry, Thesis, LOMI, Leningrad, 1984.
[17] V. Platonov, On the Tannaka-Artin problem, Dokl. Akad. Nauk SSSR 221 (1975), no. 5, 1038-1041.
[18] D. Quillen, Higher algebraic K-theory. I, (1973), 85-147. Lecture Notes in Math., Vol. 341.
[19] U. Reman, S. V. Tikhonov, and V. I. Yanchevskiĭ, Symbol algebras and the cyclicity of algebras after a scalar extension, Fundam. Prikl. Mat. 14 (2008), no. 6, 193-209.
[20] M. Rost, Chow groups with coefficients, Doc. Math. 1 (1996), No. 16, 319-393 (electronic).
[21] E. Shinder, On the motive of the group of units of a division algebra, J. K-Theory 13 (2014), no. 3, 533-561.
[22] A. A. Suslin, K-theory and K-cohomology of certain group varieties, in Algebraic K theory, Advances in Soviet Mathematics, vol. 4, Providence, RI, American Mathematical Society, 1991, pp. 53-74.
[23] A. A. Suslin, $S K_{1}$ of division algebras and Galois cohomology, in Algebraic K-theory, Advances in Soviet Mathematics, vol. 4, Providence, RI, American Mathematical Society, 1991, pp. 75-99.
[24] V. E. Voskresenskiǐ, Algebraic groups and their birational invariants, Translations of Mathematical Monographs, vol. 179, American Mathematical Society, Providence, RI, 1998, Translated from the Russian manuscript by Boris Kunyavski [Boris È. Kunyavskiī].
[25] S. Wang, On the commutator group of a simple algebra, Amer. J. Math. 72 (1950), 323-334.

Department of Mathematics, University of California, Los Angeles, CA 90095-1555, USA

E-mail address: merkurev@math.ucla.edu

[^0]: Date: November, 2014.
 Key words and phrases. simple algebras; reduced Whitehead group; algebraic K-theory; algebraic cycles. 2010 Mathematical Subject Classifications: 19B99, 14C25.

 The work has been supported by the NSF grant DMS \#1160206 and the Guggenheim Fellowship. The author thanks the Max Planck Institute (Bonn) for hospitality.

