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Abstract

It is shown that two totally decomposable algebras with involution of
orthogonal type over a field of characteristic two are isomorphic if and
only if they are chain equivalent.

1 Introduction

The chain equivalence theorem for bilinear Pfister forms describes the isometry
class of n-fold Pfister forms in terms of the isometry class of 2-fold Pfister forms
(see [6, (3.2)] and [1, (A.1)]). There exist some related results in the literature
for certain classes of central simple algebras over a field. In [11], the chain
equivalence theorem for biquaternion algebras over a field of characteristic not
two was proved (see [2] for the corresponding result in characteristic two). Also,
the chain equivalence theorem for tensor products of quaternion algebras over
a field of arbitrary characteristic was recently obtained in [3].

Let F be a field of characteristic 2. An algebra with involution (A, o) over F
is called totally decomposable if it decomposes as tensor products of quaternion
F-algebras with involution. In [4], a bilinear Pfister form Bf(A4, o), called the
Pfister invariant, was associated to every totally decomposable algebra with
orthogonal involution (A4, o) over F. In [9, (6.5)], it was shown that the Pfister
invariant can be used to classify totally decomposable algebras with orthogonal
involution over F. Regarding this result, an analogue chain equivalence for
these algebras was defined in [9, (6.7)]. A relevant problem then is whether
the isomorphism of such algebras with involution implies that they are chain
equivalent (see [9, (6.8)]). In this work we present a solution to this problem.

2 Preliminaries

In this paper, F is a field of characteristic 2.

Let V be a finite dimensional vector space over F'. A bilinear form b : VxV — F
is called anisotropic if b(v,v) # 0 for every nonzero vector v € V. The form b is
called metabolic if V has a subspace W with dim W = % dim V and b|w xw = 0.
For A1, -+, Ay € FX, the form (A1, -+, A\n) = Qi (1, \i) is called a bilinear
Pfister form, where (1,);) is the diagonal form b((x1,z2), (y1,¥2)) = T1y1 +
Aixay2. By [5, (6.3)], a bilinear Pfister form is either metabolic or anisotropic.
We say that b = {1, ,ap)) and b’ = {(B1,---, By)) are simply P-equivalent,



if either n = 1 and a1 F*2 = B1F*2 or n > 2 and there exist 1 < i < j < n
such that {(a;, a;)) ~ (5, 5;) and ax = B for all other k. We say that b and
b’ are chain P-equivalent, if there exist bilinear Pfister forms bg, - - - , b, such
that by = b, b, = b’ and every b; is simply P-equivalent to b;_;.

A quaternion algebra over F is a central simple F-algebra of degree 2. Every
quaternion algebra @ has a quaternion basis, i.e., a basis {1, u, v, w} satisfying
w4+ u € F,v? € F* and wv = w = vu + v. It is easily seen that every element
v € Q\ F with v2 € F* extends to a quaternion basis {1,u,v,uv} of Q. A
tensor product of two quaternion algebras is called a biquaternion algebra.

An involution on a central simple F-algebra A is an antiautomorphism of A
of period 2. Involutions which restrict to the identity on F are said to be of the
first kind. An involution of the first kind is either symplectic or orthogonal (see
[7, (2.5)]). The discriminant of an orthogonal involution o is denoted by disc o
(see [7, (7.2)]). If K/F is a field extension, the scalar extension of (A4,0) to K
is denoted by (A, o) k. We also use the notation Alt(A, o) = {a—o(a) | a € A}.

Let (A,0) be a totally decomposable algebra of degree 2™ with orthogo-
nal involution over F. In [9], it was shown that there exists a unique, up to
isomorphism, subalgebra S C F + Alt(A,0) such that (i) 22 € F for z € S;
(ii) dimp S = degp A = 27; (iii) S is self-centralizing; (iv) S is generated as an
F-algebra by n elements. Also, S has a set of alternating generators, i.e., a set
{u1,- -+ ,un} consisting of units such that S ~ Fluy, - ,u,] and w; - -u;, €
Alt(A,0) forevery 1 <l <mand 1<i; <--- <4 <n. We denote the isomor-
phism class of the subalgebra S by ®(A, o). Note that ®(A, o) is commutative
by [9, (3.2 (i))]. Also, if degp A < 4, then ®(A, o) is unique as a set. In fact if
A is a quaternion algebra, then ®(A, o) = F 4+ Alt(A, o) by dimension count. If
A is a biquaternion algebra, then ®(A,c) = F + Alt(A, o), where Alt(A,o)*
is the set of square-central elements in Alt(A, o) (see [10, (4.4)] and [10, (3.9)]).

Let (A,0) = Q;_;(Qi,04) be a decomposition of (A, o) and choose o; € F*
such that disc o; = a; F*2,i =1,--- ,n. Asin [4], we call the form (a1, -, )
the Pfister invariant of (A, o) and we denote it by PBf(A, o). Note that by [4,
(7.2)], the Pfister invariant is independent of the decomposition of (A4, o).

With the above notations, we have the following results.

Theorem 2.1. ([9, (5.7)]) For a totally decomposable algebra of degree 2™ with
orthogonal involution (A,o) over F, the following conditions are equivalent:
(1) (A,0) ~ (Man(F),t), where t is the transpose involution. (ii) Pf(A, o) ~
(1,---,1). (i) 2® € F? for every x € ®(A, o).

Theorem 2.2. ([9, (6.5)]) Let (A4, 0) and (A’,0") be two totally decomposable al-
gebras with orthogonal involution over F. If A~ A" and Bf(A4, o) ~ Pf(A',0'),
then (A,0) ~ (4',0").

3 The chain lemma

Our first result, which strengthens [9, (5.6)], gives a natural description of the
Pfister invariant.

Lemma 3.1. Let (A,0) be a totally decomposable algebra of degree 2™ with

orthogonal involution over F. If Pf(A, o) ~ (a1, -+ ,an)) for some aq, -+ ,a, €
F>, then there exists a decomposition (A,0) ~ Q;_(Qi,0;) into quaternion F -
algebras with involution such that disco; = o F*2,i=1,--- ,n.



Proof. By 19, (5.5)] and [9, (5.6)] there exists a set of alternating generators
{u1, -+ ,un} of ®(A, o) such that u? =y, i =1,--- ,n. If a; € F? for every i,
the result follows from (2.1). Thus (by re-indexing if necessary) we may assume
that oy, ¢ F2. Tt is enough to prove that there exists a decomposition (4,0) ~
R, (Qi,0;) such that u; € Alt(Q;,04), i =1,--- ,n. We use induction on n.
The case n = 1 is evident, so suppose that n > 1. Let B = Cyu(u,) be the
centralizer of u,, in A and set K = Flu,] = F(y/a,,). By [9, (6.3)] and [9, (6.4)],
(B,o|p) is a totally decomposable algebra with orthogonal involution over K
and {uy,- -+ ,up—_1} is a set of alternating generators of ®(B, o|p). By induction
hypothesis there exists a decomposition

(B,O'|B) =K (Qllvoll) K - QK (Q{nflvo-;fl)v

into quaternion K-algebras with involution such that u; € Alt(Q}, o)) for i =

1,---,n—1. By dimension count we have ®(Q’,0!) = K + Ku;. Since K* C F

and u? € F, we get 2% € F for every z € ®(Q’,0l). By [9, (6.1)] there exists
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a quaternion F-algebra Q; C @} such that (Q},0}) ~k (Qi,0|g,) ® (K,id) and

u; € Alt(Qi,0lg,), i =1,---,n—1. Set @, = C4(Q1 ® - ® Qn—1). Then
@ is a quaternion F-algebra and (A4,0) ~ (Q1,0]0,) @ -+ ® (Qn,0|q, ). Since
up € K =Z(B) CCaA(Q1® - ®Qn_1) = Qn, we obtain u, € Q,. Finally [8,
(3.5)] implies that u, € Alt(Qn,0lq, ). This completes the proof. O

Lemma 3.2. Let K/F be a field extension satisfying K?> C F. Let Q and Q' be
quaternion algebras over F and let v' € Q' \ F with v'> € F*. If there exists an
isomorphism of K -algebras f : Q' ~ Qk such that f(v'®1) € QRF, then there
exists n € K such that f(Q' ® F) C Q ® F[n]. In addition, if {1,u,v,uv} and
{1, v, u'v'} are respective quaternion bases of Q and Q' and f(v'®1) = v®1,
then f(u/ @ 1) =13 A+u®14+v®n for some X\ € F.

Proof. The first statement follows from the second, since f(u'®1) and f(v' ®1)
generate f(Q' ® F) as an F-algebra. To prove the second statement write
fWel)=1@m +u®n +v®ns +uv ®ny for some ny,---,nm4 € K. Since
vel=f'el)=f((uv+v'v)®1)
= fWowel)+wel)f(W®1)=v®n + 0> @ n,
weget gy =0and e =1,1e., f(t/®1)=10m +u®1+v®ns. Hence
F?+u)@1) = fu'®1)* + f(u' ®1)
=1 +u*®1+v2 @13 + (uv + vu) ® 13
+1l1dm+u®l+ov®ns
=1+ W +u)l+v*0n; +1@mn.

As f(W? +4')®1) € F and K2 C F, the above relations imply that n; € F,
proving the result. |

The following definition was given in [9, (6.7)].

Definition 3.3. Let (4,0) = @ (Qi,04) and (A", 0') = Q;_,(Q}, o) be two
totally decomposable algebras with orthogonal involution over F'. We say that
(A,0) and (A',0') are simply equivalent if either n = 1 and (Q1,01) ~ (Q},0})



or n > 2 and there exist 1 < ¢ < j < n such that (Q;,0,) @ (Qj,0;) ~ (Q},00)®

(Q},05) and (Qk,0%) ~ (Qy,0%) for k # i,5. We say that (4,0) and (4’,0")
are chain equivalent if there exist totally decomposable algebras with involution
(Ao, 70),+* , (Am, Tm) such that (4,0) = (Ao, 70), (A',0") = (Am,Tm) and for
everyi =0,--- ,m—1, (4;,7;) and (A;41,Ti+1) are simply equivalent. We write
(A,0) = (A,0') if (A,0) and (A’,0’) are chain equivalent.

Since the symmetric group is generated by transpositions, for every isometry
pof {1,--- ,n} we have

®?:1 (Qi,0i) ~ ®?:1(Qp(i)v Tp(i))-

Lemma 3.4. Let (A,0) = ®’_,(Qi,0:) and (A',0") = Q>_,(Q}, 7} be totally
decomposable algebras with orthogonal involution over F. Let a; € F* (resp.
ol € F*) be a representative of the class disco; (resp. disco}), i = 1,2,3. Sup-
pose that A ~ A', (a1, a2)) ~ (o), ab)) and ag = of. If (a1, aq)) is metabolic,

then (A, o) and (A’,0’) are chain equivalent.

Proof. By [1, (A.5)] there exists 8 € F such that (a1, a2)) ~ (1,5)). Thus,
according to (3.1) and (2.1), one can write

(Ql) Ul) ® (QQa 02) =~ (MQ(F)) t) ® (QO) UO))
(Q&,O’i)@(Qé,O’é) (MQ(F)at)®(Q6506)’
where (Qo, 00) and (Qy, o(,) are quaternion algebras with orthogonal involution
over F and discog = discofy = BF*2. Tt follows that A ~ M(F) ® Qo ® Q3

and A" ~ My(F) @ Q) ® Q4. Since A ~ A’, we get Qo ® Q3 ~ Q{ ® Q. We
also have
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mf(QO ® Q3; [efs] & 03) = <<6) Oég» = mf(@:) & Q{.?,a 06 & Ué)a

which implies that (Qo, 00) ® (Q3,03) ~ (Qf,,04) ® (Q5,0%) by (2.2). Thus,

(A,0) = ®§:1(Qi70i) ~ (Ma(F'),t) ® (Qo,00) ® (Q3,03)
~ (My(F),t) @ (Qf, 0h) ® (Qf, 0%) = @7, (@}, o)) = (A',0"). O

Lemma 3.5. (]9, (6.3)]) Let (A, o) be a totally decomposable algebra with ortho-
gonal involution over F. For every v € ®(A, o) with v? € F*\ F*2, there exists
a o-invariant quaternion F-algebra Q C A such that v € (Q,0lq).

Proof. By [9, (6.3)], there exists a o-invariant quaternion F-algebra @ C A
containing v. Write v = A + w for some A € F and w € Alt(A4,0). Then w €
Alt(Q, 0lg) by [8, (3.5)], hence v =A+w € F + Alt(Q,0lg) = ®(Q,0lg). O
Lemma 3.6. Let (A,0) = ®°_,(Qi,0) and (A',0") = ®>_,(Q}, a%) be two
totally decomposable algebras with orthogonal involution over F. If PBf(A, o)
and Pf(A’, o’) are simply P-equivalent and A ~ A’, then (A, o) and (A’,d’) are
chain equivalent.

Proof. Choose invertible elements v; € Alt(Q;,0;) and v, € Alt(Q},00), i =

1,2,3. Set a; = v? € F* and o = v[? € F*. Then Pf(A,0) ~ (a1, az, az))
and PBf(A',0') ~ (o], b, as). By re-indexing if necessary, we may assume



that ag = of and (o1, a2) ~ (o, ab). In view of (3.4), it suffices to consider
the case where (a1, as)) is anisotropic. Set K = F[vy,vs] and K’ = F[v], vh].
Then K ~ K' ~ F(\/a;,\/a,), because (a1, o)) is anisotropic. Consider
Ca(K) ~k Qs ®p K and Ca/(K') ~ Q5 @p K'. As K ~ K’, one may
consider Q% ®p K’ as a quaternion algebra over K, which is isomorphic to
Q3 ®r K. Since disc(o3 ®id) = disc(of ®id) = azK*2, by [7, (7.4)] there exists
an isomorphism of K-algebras with involution

f1(Q30 K o3®1d) = (Q3 ® K,03 ®1id). (1)

Dimension count shows that Alt(Qs ® K,03 ® id) = v3 ® K and Alt(Q5 ®
K' o ®id) = v§ ® K', hence f(vi®1) =v3 ® S for some € K. The relations
v3 = v = az then imply that f =1, ie., f(0h®1) =v3®1 € Q3 ® F. By
(3.2) there exists n € K such that f(Q5 ® F) C Q3 ® F[n].

If n € F, then Q% ~ Q3. Hence (Q5,0%) ~ (Q3,03) by [7, (7.4)]. The isomor-
phism A ~ A’ then implies that Q1 ® Q2 ~ Q| ®Q%. Thus, (Q1,01)®(Q2,02) =~
(Q1,01) ® (@Y, 04) by (2.2), i.e., (4,0) and (A’,¢’) are simply equivalent. Sup-
pose that n ¢ F, hence n> € FX\ F*2. Asn € K ~ ®(Q1 ® Q2,01 ® 02),
by (3.5) there exists a o-invariant quaternion algebra Q4 C @1 ® Q2 such that
n € ®(Qu4,0lq,). Let Q5 be the centralizer of Q4 in Q1 ® Q2. Then

(Q1,01) ® (Q2,02) ~ (Qu,0]q,) @ (@5,0]q;), (2)

which implies that

‘Bf(@zl ®Q5;J|Q4 ®U|Q5) = <<a17a2>>ﬂ (3)

by [4, (72)]. Since £(Q4® F) C Qs ® Flg] and 5 € Qu, we get f(Q}® F) C
Q3 ® Q4. Let Qg be the centralizer of f(Q% ® F) in Q3 ® Q4. Then

(Q3,03) @ (Qu,0lqQ,) = (Qs,0]q,) @ f(Q3 ® F 05 @id). (4)
By (2) and (4) we have
(A,0) = (Q1,01) ® (Q2,02) ® (Q3,03)
~ (Q450|Q4) Y (Q5aU|Q5) ® (Q3a03)
~ (Qs,0]Qs) ® (Q3,03) ® (Q4,0|q,)
~ (@s5,0]q,) ® (Qs,0]qs) ® (Q3,03). (5)

We claim that disco|g, = disco|g,. If this is true, then
q}f(Q5 ® QG; J|Q5 ® J|Q6) = ‘Bf(@s ® Q47 U|Q5 ® U|Q4)'

Thus, using (3) we obtain

Pi(Qs ® Qs, 0los @ olos) = (o, a2)) ~ Pf(Q) © Q5,01 @ 03).  (6)

The chain equivalence (5) together with A ~ A’ yields A’ ~ Q5 ® Qs ® Q%,
hence Q5 ® Q¢ ~ Q) ® Q4. By (6) and (2.2) we have (Qs5,0]0;) ® (Qs;0|Qq) =

(Q,01)®(Q%,0h). This, together with (5) yields the desired chain equivalence:
(Av U) ~ (QS, U|Q5) ® (QG; J|Q6) ® (ng, OJB)
~ (Q1,01) ® (Q),03) @ (@3, 05) = (A, ).



We now proceed to prove the claim. Let vs € Alt(Qs,0]g;) € Q3 ® Q4 and
v € Alt(Qu, 0|q,) be two units. It is enough to show that v = p(1 ® v4) for
some p € F. The element

ve € Alt(Qs,0]q,;) € Alt(Q3 ® Q4,03 ® 0lg,)

is square-central. Hence v € ®(Q3 ® Q4,03 ® 0|g,) = Flvs ® 1,1 ® v4] by [10,
(4.4)], i.e., there exist a,b, c,d € F such that

ve = a(v3 ®1) +b(1 ®@vy) + c(vs @ vy) + d.

Since 03 ® 0|, is orthogonal, by [7, (2.6)] we have 1 ¢ Alt(Q3 ® Q4,03 0|, ),
hence d = 0. On the other hand by extending {vs} and {v5} to quaternion
bases {us, vs, uzvs} of Q3 and {uj, v, usvi} of Q% and using (3.2) for the map
fin (1), we get

Juwsy®1l)=10A+us®1+v390n0 € Q3R F[n] C Q3 @ Qu,
for some A € F. Thus,

vef (us® 1) + f(us® 1)ve = a(vsus + usvs) ® 1+ bus @ (var) + nva)
+ c(vsus + ugvs) @ v + cas @ (van + nvs)
=avs® 1 + (bvg + caz) @ (van + nua) + cvs@vq. (7)

As vg,m € ®(Qu,0|q,), we have nus = van. Also, vs € Q¢ commutes with
flwtb®l) e f(QERF), ie., vsf(us®1)+ f(us ®1)vg = 0. Therefore, (7) leads
to a = ¢ =0, hence vg = b(1 ® vy4), proving the claim. O

Remark 3.7. Let K = F(y/a) be a quadratic field extension. Consider a
bilinear Pfister form b over F' and let b be the scalar extension of b to K. If
by is metabolic then b ® {(«)) is also metabolic. In fact if b is itself metabolic,
the conclusion is evident. Otherwise, b is anisotropic and the result follows form
[5, (34.29 (2))] and [5, (34.7)]. Note that this implies that if bx ~ b’ for some
bilinear Pfister form b’ over F', then b ® {a)) ~ b’ @ {(a).
The following result gives a solution to [9, (6.8)].

Theorem 3.8. Let (A,0) ~ Q. ,(Qi,0:) and (A',0') ~ @, (Q},0}) be two
totally decomposable algebras with orthogonal involution over F. Then (A,0) ~
(A’,0") if and only if (A,0) and (A’,0’) are chain equivalent.

Proof. The “if” part is evident. To prove the converse, let degr A = 2". The
case n < 2 is trivial, so suppose that n > 3. By [4, (7.2)] we have Pf(A, o) ~
PBf(A’,0’). Hence by [1, (A. 1)], there exist bilinear Pfister forms bg,--- , by,
such that by = Pf(A4,0), b, = Pf(A',0’) and for i =0,--- ,;m — 1, b; is simply
P-equivalent to b;11. Set (Ao, 70) = (A4,0) and (Ap, 7m) = (A’,0’). By (3.1)

every b;, i = 1,--- ;m — 1, can be realised as the Pfister invariant of a totally
decomposable algebra with orthogonal involution (A4;,7;) over F with A; ~ A.
We show that fori = 0,--- ,m—1, (A;, ;) and (A;41, Ti+1) are chain equivalent.

By induction, it suffices to consider the case where m =1 (i.e., we may assume
that Pf(A, o) and PF(A’, 0’) are simply P-equivalent). If n = 3 the result follows
from (3.6). So suppose that n > 4.



For i = 1,---,n, choose invertible elements v; € Alt(Q;,0;) and v, €
Alt(Q}, o)) and set oy = v} € F* and o = v*> € F*. Then PBf(A4,0) ~
(a1, ,ap) and Pf(A',0') ~ (o), -+ ,a,)). By re-indexing if necessary, we
may assume that

{on,a0)) = (), a5) and «;=a) for i=3,--- n. (8)

Suppose first that a,, € F*?. Then (Qn,04) ~ (Qh,, 7)) =~ (Ma(F),t) by (2.1).

Set C' = ®?:_11 Q; and C' = ®?:_11 L so that C ~ Ca(Q,) ~ Ca (Q,) ~ C".
Using (8) we have

’W(Ca Ulc) = mf(cla Ullc’) = <<O‘1a U ’an—1>>’

hence (C,o|c) =~ (C',0'|c/) by (2.2). By induction hypothesis, (C,o|c) and
(C’,0'|¢r) are chain equivalent. Thus, (4, 0) ~ (C, o|c)Q(Ma(F),t) and (4',0")
~ (C',0'|cr) ® (Ma(F),t) are also chain equivalent.

Suppose now that a,, ¢ F*2. Set B = Ca(vy,), B’ = Ca/(v),), K = Flvy)]
and K’ = F[v]] ~ F(y/o,,) ~ K. Then

(B,olp) 2k - (Qi,o0)x and (B',o'|p) ~x Q- (Q}, 1)k,

are totally decomposable algebras with orthogonal involution over K and K’
respectively. Since A ~p A’ we have B ~j B’. Also, using (8) we get

(Bf(Ba(ﬂB) = <<041, U aanfl»K = <<0/17 T ,044171»1( = ‘Bf(Bla(ﬂB')-

Thus, (B,o|g) ~k (B’,0'|5’) by (2.2). By induction hypothesis we get (B, o|g)
~ (B',o'|p/). Again, using induction, it suffices to consider the case where
(B,o|p) and (B’,¢’|p/) are simply equivalent (note that every totally decom-
posable algebra with involution (B”,c") over K with (B”,¢") ~ (B,o|g) has

a decomposition of the form ®7,"(Q/, /) k, where every (Q/,a/) is a quater-
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nion algebra with orthogonal involution over F'). By re-indexing, we may assume
that (Qn—2,0n—2)k ® (Qn-1,0n-1)k ~k (@,_2,0,,_2)k ®(Q),_1,0,_1)k and

(Qi7ai)K ~K (Q{MUE)KU for i= 1) ,’I’L—S, (9)
In particular, ®;:21 (Qi,0i) K & ®?;21( %, 0l) K+, which implies that

<<a27"' ao‘/'nfl»K2 <<O/27 ;04;1_1>>K- (10)

Since n — 3 > 1, (9) gives an isomorphism of K-algebras with involution

f : (leal) ® (Ka ld) = (Qllvall) ® (K/aid)'

The element 1 ® v, lies in the center of Q1 ® K. Thus, there exist a,b € F' such
that f(1®v,) = 1® (a+bv),). Squaring both sides implies that a,, = a® +b?c,.
The assumption o, ¢ F? then yieldsa = 0and b = 1, i.e., f(1Qv,) = 1®v/,. As
(K’,id) C (Q!,,0},), the isomorphism f induces a monomorphism of F-algebras

with involution

g: (Qlagl) ® (Ka ld) — (Qllagll) ® (Q;zao—;z)a



with g(1 ® v,) = 1 ® vl,. Let Q) be the centralizer of g(Q1 ® F) in Q] ® Q..
Then

(Q/laa’i) ® (Q;Laa':z) =F (Q/anj|Q6) ® (Ql,Ul)- (11)

Since the element 1 ® v, € @1 ® K commutes with Q1 ® F, we get 1 ® v, =
9(1 ®v,) € Qp, which implies that 1 ® vy, € Alt(Qp,0’|q;) by [8, (3.5)]. Thus,

disco’|q) = an F** € F* [F*?, (12)
Using (11) we have

(Ala OJ) ~ (Ql27 Ué) @ ® (Q{nflv 0',271) ® (QB) O—/|Q/g) ® (le 01)' (13)

This, together with A ~ A’ implies that

Q@ @Qn~Qy®--®Q,_; ®Q. (14)

The isometry (10) and (3.7) show that

<<0525' o 7an717an>> = <<O/27" : aa;—lvan»a

hence, thanks to (12), the Pfister invariants of (D, 7) := (Q2,02)®- - @ (Qn,0p)
and (D', 7') == (Q3,0%) ® -+ @ (Q),_1,0,,_1) ® (Qp,0'| ;) are isometric. Using

(14) and (2.2) we obtain (D, 7) ~ (D', 7). By induction hypothesis, (D, 7) and
(D', 7") are chain equivalent. Thus, by (13) we have

(A", 0") = (Q5,05) @ @ (Qr_1,0,,_1) @ (Qp,0'|qy) @ (Q1,01)
= (D', 7)®(Q1,01) = (D,7) ® (Q1,01)
= (Q2,02) ® - ® (Qn,0p) ® (Q1,01) = (A, 0). O
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