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A generalized triangle group (g.t.g.) is a group I" with a fixed presentation
of the form

Fz(x,y|$k:yl:W(x,y)m:1>, (1)
where k, [, m > 2 and
W (z,y) =gk yll a2 le ks yls (2)

with 0 <k; <k, 0<I; <l, s>1.1Itis also required that the word W
should not be a power of a shorter word.

G.t.g. were introduced in [FR] and [BMS]. They have been intensively
studied by many authors ( see [HMT] and references there). In particular,
all finite g.t.g. were found in [HMT] and [LRS].

One of the main tools for studying g.t.g. is constructing their essential

homomorphisms to PSLy(C). A homomorphism ¢ : I' — G is called essential,
if

ord p(z) =k, ordp(y) =1, orde(W(z,y))=m.

It was proved in [BMS] and [FHR] that any g.t.g. admits an essential homo-
morphism to PSLy(C) .

Most of g.t.g. admit an essential homomorphism to PSLy(C) with an
infinite image. This is a key step in the classification of finite g.t.g. There
are, however, infinite g.t.g. that do not admit such a homomorphism. Let
us call a g.t.g. I' pseudo-finite if the image of any essential homomorphisms
¢ : ' — PSLy(C) is finite.

In this work we present some partial results on the classification of pseudo-
finite g.t.g. This problem was originally motivated by the classification prob-
lem for finite groups defined by periodic paired relations ( see the definition
in [V1]). It seems, however, that it is interesting in its own right.



Our results cover the following cases:
1) m > 3 (see Propositions 4 and 5 );

2) s < 3 (see Propositions 4 and 7 - 10 ).

The work was completed during our stay at Bielefeld University in August
of 1999. We thank this university for its hospitality. The work of the first
author was supported by the Humboldt Foundation and by RFBR Grant
98-01-00598.

1 Preliminaries

A pair of matrices X, Y € SLy(C) is called irreducible, if they do not have a
common eigenvector, or, equivalently, if they generate an irreducible linear

group.

The following facts can be found , e.g., in [VMH, Appendix| and [V2].

An irreducible pair (X,Y) is defined up to conjugacy by the numbers
tr X, trY, tr XY. Moreover, for any complex numbers a, b, ¢ there are
matrices X, Y € SLy(C) such that tr X =a, trY =0, tr XY =c.

A pair (X,Y) is irreducible if and only if the matrix

2 tr X trY
< tr X 2 tr XY ) (3)
trY tr XY 2

is non-degenerate. An irreducible pair is conjugate to a pair of matrices of
SUs, if and only if tr X, trY, tr XY € R and the (symmetric) matrix (3) is
positive definite. The latter means that

trX =2cosa, trY =2cosf (a,08€(0,m)),
tr XY € (2cos(a+ ), 2cos(a —f)). (4)

The boundary cases tr XY = 2cos(a £ ) are realized for the pairs of
diagonal matrices

e 0 et 0
X_< 0 ez’a>7 Y_< 0 eq:i,@)a (5)

but also for the pairs of non-commuting matrices

e 0 =~ |
X:< 0 e—ia>a YZ( 0 eq:i,@)‘ (6)



In particular, if X, Y generate an irreducible finite subgroup of SLy(C),
the conditions (4) hold.
Since

trX '=trX, trY !l=trY, tr X 'V !l=trYX =trXY,

any irreducible pair (X,Y") is conjugate to the pair (X=1 Y1),

For any matrix X € SLy(C) we shall denote by [X] the corresponding
element {£X} of PSLy(C) = SLy(C)/ {£E}. The element [X] has order
n > 2 if and only if the eigenvalues of X have the form e*™" with (u,n) =1
or, equivalently, if

™
tr X = 2cos —.
n

A pair of elements [X], [Y] € PSLy(C) is called irreducible, if the pair
(X,Y) is irreducible in the above sense. An irreducible pair ([X],[Y]) is
still defined up to conjugacy by the numbers tr X, trY, tr XY, but these
numbers are defined by the elements [X|, [Y] only up to multiplying any
two of them by —1.

This can be applied to constructing essential homomorphisms ¢ : I' —
PSLy(C), where T' is the g.t.g. defined by (1). Set

ple) = [X], ¢y) =[] (X,Y €SLy(C)). (7)

We are to choose X and Y satisfying the conditions
trX:QCOS%, trYchos%, (8)
tI‘W(X,Y)ZQCOS%, 9)

where u is prime to k, v is prime to [, and w is prime to m. Since multiplying
X (resp. Y') by —1 leads to replacing u (resp. v ) with k —u (resp. | —v),
we may assume that

k l
< — < -. 1
0<u_27 O<v_2 (10)
For any matrix Z € SLy(C), the Hamilton - Cayley equation gives
7*=(tr72)7Z - E.
It follows that

Z" =P, (& Z)Z — P, 1 (tr Z) E,
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where Pi(z), Pa(z), ... are the polynomials defined by
Pi(2)=1, Pyz)=2, Pu(2)=2P.,(z) — P_1(2).

(These are the Chebyshev polynomials of second kind up to a linear substi-
tution.)

Making use of this formula, one can express tr W(X,Y') as a polynomial
in tr X, trY, tr XY (with integral coefficients). Substituting the values of
tr X and trY from (8) and tr XY = ¢, we obtain a polynomial f of degree
s in ¢t [BMS]. For any (complex) root A of the algebraic equation

Tw
f(t) ZQCOSE (11)

there exists an essential homomorphism ¢ : I' — PSLy(C) satisfying (8) and
(9) such that tr XY = X. Moreover, if A # 2cos(%* £ %), the pair (X,Y)
is irreducible, so this homomorphism is uniquely defined up to conjugacy.
If A= 2cos(5* £ 7¥), there is an essential homomorphism of I' to a
cyclic group of diagonal matrices. This situation will be investigated in the
following section.
Another way to find the polynomial f is as follows.

Set
et 1 e’ 0

with a = 2%, =7 . Then
trX =2cosa, trY =2cosf, trXY =7+ 2cos(a+f).

Making use of the formulas

1 sin pa iqf3
P — b et ye_ e \ 0
0 e W |7 —Sslﬁlqﬁ T e B |

one can express tr W(X,Y) as a polynomial in 7. Substituting
7 =1-—2cos(a+ 3)

we obtain the polynomial f(t).

Sometimes we shall extend the notation [X] to any X € GLy(C). More
precisely, for any X € GLy(C) we shall denote by [X] the set {AX : A € C*}
as an element of the group PGLy(C) = PSLy(C).
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2 G.t.g. admitting an essential homomor-
phism to a cyclic group.
Any finite subgroup of PSLy(C) is one of the following groups:

the cyclic group of order n;

the dihedral group of order 2n;
the tetrahedral group of order 12;
the octahedral group of order 24;
, the icosahedral group of order 60.

~9ﬂ§§

In this section, we consider g.t.g. admitting an essential homomorphism
to C),.
Let I' be the g.t.g. defined by (1).

Proposition 1 ([BMS]) If there exists an essential homomorphism ¢ :
I' — C,, then there exists an essential homomorphism @ : I' — PSLy(C)
with an infinite tmage.

Proof. One can interpret ¢ as a homomorphism of T' to PSLy(C), taking
z to [X] and y to [Y], where

e 0 e’ 0

with some «, 5 € (0, 7). Replacing Y with

we obtain the required homomorphism. O

Let us find a criterion for I' to admit an essential homomorphism to a
cyclic group.

For any prime p and non-zero integer n, set
vp(n) =max{a €Zy: p*|n}.

Let nq1, ny, nz be three divisors of n.



Lemma 1 The congruence
nyu; +ngus +nguz3 =0 (mod n) (12)

has a solution with uy, us, usz prime to n if and only if the following conditions
are satisfied:

(BY') for any odd prime p, at least two of the numbers v,(ny), vy(ng),
vp(ns) are minimal among them;

(B2") exactly two of the numbers vo(ny), va(ng), va(ns) are minimal among
them, unless they all equal ve(n).

Proof. Decomposing n into primes, we reduce to the case, when n is a power
of a prime p. Then, cancelling the congruence (12) by a power of p, we reduce
to the case, when

win v, (1), v, (na). vy(ns) } =0,

i.e. one of the numbers n, ny, n3 equals 1.

If exactly one of these numbers equals 1 ( and two others are non-trivial
powers of p ), then the congruence (12) has no solutions with uy, us, uz prime
to p. If at least two of them equal 1, one can easily find a solution of (4)
with wq,ug, uz prime to p , except for the case, when p = 2, ny = ny =
ng =1, n > 1. This proves the lemma. a

Let us call a triple of non-zero integers {n, ny, ng} balanced , if it satisfies
the following conditions:

(B1) for any odd prime p, at least two of the numbers v,(n1), v,(n2),
vp(ng) are maximal among them;

(B2) exactly two of the numbers 15(n;), 12(ns), v2(n3) are maximal among
them, unless they all equal 0.

Set

K=k +...+k,, L=0L+...+1,. (13)

Proposition 2 The group I admits an essential homomorphism to a cyclic
group if and only if the triple

k l
{(k:,K)’ (I, L)’

m }

18 balanced.



Proof. 1f p : I — C), is an essential homomorphism, then o(I') = (p(z), ©(y))
is a cyclic group , whose order is the least common multiple [k, [] of k and [.
This shows that we may assume n to be any common multiple of k and [.

Let us try to construct an essential homomorphism ¢ : I' — Z,, = Z / nZ,
where n is a common multiple of k, [, m.

We shall denote a coset r + nZ by [r],.

If ¢(x) =aand p(y) = b, then ¢ (W(z,y)) = Ka + Lb. When a runs
over all elements of order k of Z,,, Ka runs over all elements of order ﬁ,
i.e. the elements of the form [@ u ], where u is prime to n.

In an analogous way, when b runs over all the elements of order [, Lb runs
over all the elements of the form | M v |, where v is prime to n. The order
of an element of Z,, equals m if and only if it has the form [ w],, where w
is prime to n. Thus, the group I' admits an essential homomorphism to 7,
if and only if the congruence

n (k, K) n (I, L)

u + V=

k [

w  (mod n)

Ss

has a solution with u, v, w prime to n. According to Lemma 1, this takes
place if and only if the triple

n(k,K) n(l,L) n
L T m)

satisfies the conditions (B1’) and (B2') or , equivalently, if the triple

2 l
{(k;,K)’ (,L) m}

satisfies the conditions (B1) and (B2). O

3 Generating pairs of irreducible finite sub-
groups of PSLy(C)

Let I' be the g.t.g. defined by (1) and ¢ : [' — PSLy(C) an essential homo-
morphism, whose image is an irreducible finite group F' C PSLy(C) , i.e. one
of the groups D,,, T, O, I. Then

ordp(z) =k, ordep(y) =1,

and (), p(y) generate F.



It is not difficult to enumerate all generating pairs of each group £ of the

above list up to conjugacy in PSLy(C) or, equivalently, in the normalizer
N(F) of F in PSLy(C). Note that

N(D,) = Dy,, N(T)=N(O)=0, N()=I

In order to simplify the task, let us for any generating pair ([X], [Y]) of
a subgroup F' C PSLy(C) consider the element [Z] € F', where Z € SLy(C),
satisfying the condition

XYZ=1. (14)

Then ([X],[Y]) and ([Z], [X]) will also be generating pairs of F. So any
generating triple ([X], [Y],[Z]) of F satisfying the condition (14), gives rise
to 3 generating pairs. ( Of course, some of them may be conjugate. )

Note that the pair ([Y], [X]) is conjugate to the pair ([Y]7}, [X]7!), which
is obtained from the "inverse” triple ([Z]7', [Y]7!, [X]7!) still satisfying
the condition (14).

Thus, the problem reduces to a classification of generating triples of irre-
ducible subgroups F' C PSILy(C), satisfying the condition (14), up to conju-
gacy, cyclic permutations and inversion. Below is a table of all such triples.

We use the following presentation for D,,:

D,={ab | a*=b"=(ab)?=1),

and we identify the groups T, O, I with Ay, Sy, As. respectively, via
well-known isomorphisms.
Note that

1++5 or  —1++/5
, 2c08— = ———.
2 5} 2

QCOSE =
5

In the column " Type” we provide a notation for each type of triples which
includes the notation of the corresponding group F'. In the column ”Orders”
the orders of [X], [Y], [Z] are indicated.

For ' = D,,, the number u is prime to n, and one may assume that
O<u<3.

Table 1



Type [X] Y] A Orders | trX | trY | tr7
D, (u) a” b a"b n,2,2 | 2cos™ | 0 0
T(1) | (123) | (234) | (12)(34) | 3, 3,2 1 1 0
T(2) | (123) | (243) | (142) | 3,3,3 1 1 1
O(1) | (1234) | (132) | (14) |4,3,2| 2 1 0
O(2) | (1234) | (1243) | (123) | 4,4,3 | 2 V2 | 0
I(1) | (12345) | (142) | (15)(34) | 5,3,2 | /5 1 0
1(2) | (12354) | (152) | (14)(35) | 5,3,2 | =5 | 1 0
I(3) | (12345) | (132) | (154) |5,3,3| =5 | 1 1
I(4) | (12354) | (132) | (145) |5,3,3 | 1505 1 1
I(5) | (12345) | (12354) | (13)(24) | 5,5,2 | 5 |15 0
I(6) | (12345) | (14352) | (135) | 5,5,3 | £ |16 | g
I(7) | (12354) | (15342) | (134) |5,5,3 | 256 |15 1
I(8) | (12345) | (14532) | (145) | 5,5,3 | 6 |16
1(9) | (12345) | (12534) | (12453) | 5,5,5 | 145 | 145 | 1445
I(10) | (12354) | (12435) | (12543) | 5,5,5 | 15058 |15 | 146

It is clear from the very beginning, and it is seen from the table, that the
set of all unordered triples { tr X, trY, tr Z } considered up to multiplying by
—1 of any two members, is invariant under the Galois group (of a sufficiently
large algebraic number field including all the involved numbers).
For any generating pair ([X], [Y]) of a finite subgroup F' C PSLy(C) and
for any d|ord [X], e|ord[Y] it isimportant to know the subgroup generated
by [X]? and [Y]¢, and the type of the corresponding triple ([X]¢, [Y]e, [Y] ¢ [X] 7).
There are only few non-trivial cases, which are presented in the following ta-
ble.

Table 2.



Type of the Generators Their | Type of the
original triple | of the subgroup | orders | obtained triple
Dy (u) (X]%, Y] 5 2 Dy ja(w)
O(1) (X2, Y] 2,3 (1)
o(1) X1 2] | 2.2 Di(1)
0(2) X Y] | 24 | D)
0(2) (X2, 7] 2,3 (1)
0(2) X YR | 22 D, (1)

4 Admissible transformations.
Imprimitive pseudo-finite g.t.g.

Some obvious transformations of the data defining a g.t.g. I' lead to iso-
morphic g.t.g. which are, in particular, pseudo-finite if and only if I' is
pseudo-finite.

First, one can multiply modulo k& the exponents ki,..., ks, by a factor
prime to k and, in a similar way, multiply modulo [ the exponents [y,... , [
by a factor prime to [. These transformations can be interpreted as changes
of the generators of the cyclic groups (x) and (y).

Second, one can cyclically shift the sequence (ky, (1, ... , ks, [5) by an even
number. This replaces the relation W (z,y)™ = 1 with an equivalent
one.

Third, one can interchange k and [ and simultaneously shift the sequence

(k1,l1,. .., ks, 1) by an odd number. This can be interpreted as interchanging
x and .

Fourth, one can replace the sequence ( ky, Iy, ..., kg, l5) with
(‘ksy ls—1, ks—1, ..., l1, k1, ls ). This replaces the relation W(z,y)™ =1

with (W (z=!y=')7')™ = 1 , which can be interpreted as replacing the
relation (W(z,y))™ =1 with the equivalent relation (W (x,y) )™ =1,
combined with changing the generators z and y for 27! and y~*.
Transformations of these four types and their combinations are called
admissible. G.t.g. obtained from each other by admissible transformations
are called equivalent. It is reasonable to classify pseudo-finite g.t.g. up to

equivalence.
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A g.t.g. is called primitive if

(k1,... ks, k) =1, (l,...,1ls, 1) =1.
In the general case, set

(k1,... ks, K)=d, (l1,...,1l5, 1) =e,

and consider the primitive g.t.g.

F=(z,ylzF=¢g' =W(z.p"=1),
where k =k/d, [=1/e and W(z,y) =z" yh ... 2% y= with
k; = k;/d, 1; =1;/e. There is a natural homomorphism

7 : [ —T,

taking z to z¢ and g to y°. If ¢ : I' — G is an essential homomorphism,
then ¢ = ¢m : T — G s also an essential homomorphism, and
o(F) = (o), o(y)°) € p(T).

Conversely, let ¢ : I' — PSLy(C) be an essential homomorphism. Let
[X] be any d-th root of @(z) and [Y] any e-th root of @(g). Then there is
a homomorphism ¢ : I' — PSLy(C), taking « to [X] and y to [Y]. Obviously,
© is essential and ¢ = @ .

It follows that if T' is pseudo-finite, then T' is also pseudo-finite.

Let us call a g.t.g. T pseudo-dihedral ( resp. pseudo-tetrahedral) if the
image of any essential homomorphism ¢ : I' — PSLy(C) is a dihedral (resp.
tetrahedral ) group.

Proposition 3 . Imprimitive pseudo-finite g.t.g. are (up to equivalence)
exactly the groups of the following six types :

() T=(z,y | af=y>=(ahy...ay)?=1),
where d > 1 and the group 1" is pseudo-dihedral;

(12) P=(=z,y | at=y'=0@"y* .. aby’)?=1)
where not all of the exponents kq, ... , ks are even and the group I" is pseudo-
dihedral;

(B)T=(z,y | at=y'=(2%y’)?=1);

(14) T'=(z,y | ?=y*=(xMy? ... 2k y?)3 =1),

where the group T is pseudo-tetrahedral;
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(5)T=(,y | @ =y =(@g?... a2 =1),
where the group T is pseudo-tetrahedral;

(I6)T=(z,y | 2>=y'=(@y’)’=1).

Proof. If an imprimitive g.t.g. ' is pseudo-finite, then for any essen-
tial homomorphism ¢ : I' — PSLy(C) mnot only the group ¢ (') =
( p(x), p(y) ) is finite, but the group, generated by a d-th root of ¢(z) and
a e-th root of ©(y), is still finite. All such possibilities are enumerated in
Table 2. Consider them case-by-case. We shall use the notation (7) and set
X = x4 v —vye,

If d>2 or k>4,then [ =2, i.e.

P=(a,y | df=y’=(ahy.. .2ty =1),
and tr XY = 0 for any @. But if m > 2, there are at least two possibilities
for tr W(X,Y) and, thereby, at least 2 possibilities for the equation (11) for
[, which differ only by constant term. At least one of these polynomials
does not vanish at 0. Hence, m = 2, and we come to the case ( I1 ).

The cases, when e > 2 or [ > 4, are obtained by interchanging x and y.
In all the other cases d, e < 2 and k, | < 4. By symmetry, we may (and
shall) assume that e = 2 and | = 4.

Under these conditions, if £ =4 and d = 1, then again tr XY = 0 for
any ¢. Reasoning as above, we can conclude that m = 2 | which gives the
case (12 ).

If k=4 and d =2, we obtain the case (I3).

If k=3, then d=1and @(T') must be a tetrahedral group. It follows
that m < 3, so we obtain the case (I4) or (I5).

Finally, if k£ = 2, we obtain the case (16). O

Note that any imprimitive g.t.g. is infinite as a non-trivial amalgamated
product.

Now we are able to describe all pseudo-finite g.t.g. with s = 1.

Proposition 4 . All the pseudo-finite g.t.g. with s = 1 are, up to equiva-
lence, the usual triangle groups

(z,y | a¥=y' =(@ym=1)
with % + % + % > 1 and the following imprimitive g.t.g. :

1) (z,y | F=y*=(y)?=1), (d[k d>1);
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2)(z,y | a*=y'=(zy?)’=1 );

8
I

3)(x,y | at=y'= (2"} =1);

)z y | P=y'=(xy?’)P=1 );

8
I

S)(x,y | *=y'=@y*)P=1 ).

Proof. Changing the generators of the cyclic groups (z) and (y), we may
assume that

k1:d|k, llze\l.

If T'is primitive, i.e. d =e =1, then I' is a usual triangle group and, as
it well-known, it is embedded into PSLy(C). Therefore, it is pseudo-finite if
and only if it is finite, which take place if and only if % + % + % > 1.

If T is imprimitive, it belongs to one of the types ( 11 ) - ( 16 ) of

Proposition 3. The type ( I5 ) is not realized, because the group I' in this
case is the dihedral group Ds3. The other types constitute the above list. O

5 Case m >3

Constructing an essential homomorphism of a g.t.g. I" to PSLy(C) , we can
vary the parameters u, v, w in (8) and (9). Let us fix u, v and vary w. We
shall obtain ¢(m) different algebraic equations of the form (11) with one and
the same polynomial f of degree s in the left hand side. Obviously, they do
not have common roots. Let N be the total number of their different roots.
Then the total number of their roots with multiplicities, which is surely equal
to s (m), does not exceed N plus the number of roots ( with multiplicities
) of f", whence

s(p(m)—1)< N —1. (15)

On the other hand, assuming the group I' to be pseudo-finite, one can
extract from Table 1 all possible values of tr XY for any fixed values of tr X
and trY . They are presented in the following table. It contains all possible
values of tr X and trY up to interchanging them, multiplying by —1 , and
acting by the Galois group.

Table 3.
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k l tr X trY tr XY
>6| 2 2COS% 0 0

NG N NG
5 5 1+2 5 1+2 5 1 1+2 5

V6 | —14v5
5 5 1+2 5 1; 5 0~1

NG VB —14v5
5 3 1+2 5 1 07 17 1+2 5’ 142- 5

NG —V5
5 | 2 | 8 0 0, £1, £152
4 | 4 V2 V2 1
4 | 3 V2 1 0, v2
4 | 2 V2 0 0, +1

N e

313 1 1 0, 1, Ly 10
3| 2 1 0 |0, £1, £v2, £ 4175
2 2 0 0 2cos ™, (u,m) =

In the last case
F=(z,y | *=y"=(@y)"=1),

so s = 1 and I' is a dihedral group.
In all the other cases N < 9 and for m > 3 the inequality (15) gives an
upper bound for s. This bound can be slightly improved with help of

Lemma 2 ([HMT], the proof of Theorem 6.4). If a g.t.g. I' admits essential
homomorphisms onto D3 and T, it admits an essential homomorphism onto
Ce and, hence, is not pseudo-finite.

Proof. Tet ¢ : I' — D3 and ¥ : ' — T be essential homomorphisms.
Then the homomorphism

I' = (D3/C3) x (T/Ds) ~ Cg,

v = (@(7)Cs, ¥(v)Ds),

is also essential. O
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Proposition 5 All the pseudo-finite g.t.g. with m > 3 and s > 2 are, up to
equivalence, the following two groups:

Dz, y | 2*=y’=(zya?y)?’=1);

2)(x,y | 2*=y*=(zyayaty)’ =1).

The first of these groups is pseudo-tetrahedral. It gives rise to the follow-
ing imprimitive pseudo-finite g.t.g. according to the case (I4) of Proposition
3:

(z,y | 2=y'=(zy’2®y*)° =1).

As it follows from the classification of finite g.t.g., the first of these groups
is infinite, while the second one is finite.

Proof. Under our restrictions, the inequality (15) can be satisfied only in
five cases of Table 3. In all these cases, the group ¢(I") is one of the groups
D3, Dy, D5, T, O, I. The orders of elements of these groups do not exceed
5. It follows that m < 5. More precisely, all possible cases are presented in
the following table.

Table 4.

k | 1 | The possible groups ¢ (I') | m s

53 I 31 2.3
512 I 31234
4 ]2 Dy, O 4 2

3|3 T, 1 31 2.3
302 D3, T,0,1 31 2-7

The case k =4, | = 2, m = 3 is impossible, since in this case ()
cannot be the group Dy, which leaves only two possibilities for tr XY. The
case k = 3, [ = 2, m = 4 is impossible, since in this case ¢(I') can be only
the group O, which again leaves only two possibilities for tr XY'.

In all the cases, enumerated in Table 4, and all, up to admissible transfor-
mations, exponents ki,..., ks li,...,ls, we explicitly wrote the equations
(11) and found out if all their roots are among the admissible numbers in-
dicated in Table 3. This turned to be true only in the two cases of the
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proposition. O

6 Case m=2, k/I[>3
For m =2 the equation (11) takes the form
f(t)=0.

If the group I' is pseudo-finite, all the roots of the polynomial f (for any
u, v) must be real and lie in the interval

( 2COS(7T—ku + WTU), 2COS(7T—kU — 7rTU) )
(see (4)), whence
SgIlf(2COS(%u + 7rTU)) f(2COS(7r—; — WTU)) = (=1)°.

We deduce from this

Proposition 6 If T is a pseudo-finite g.t.g. with m = 2, then

2r K 2L
sgn ( cos Wk Y4 cos Wl v )= (-1)° (16)
for any u prime to k and v prime to .
(For the notation K and L see (13).)
Proof. Set a = ¢, 3 = %¢. Then the commuting matrices X and Y
from (5) satisfy the conditions
tr X = QCOSH, try = QCOSE, tr XY = 2(:08(ﬂ + @),
k [ k [
and, hence,
K L
f (QCos(W—ku + ?)) =trW(X,Y)= QCos(Wku + %)
It follows that
f (2cos(Z= + T2) f (2¢os(T — 72)) =
rKu wlv rKu wlov 2nKu 2m Ly
4 cos( k: + T)cos( P T) = 2(cos k‘ + cos l ).



Corollary. If k=1=05, then s is even.
Proof. Suppose s is odd. Then
2nKu 2nLv
+
5
for any u,v € {1,2,3,4}. If K is divisible by 5, then the first summand is
equal to 1 and the inequality (17) cannot hold. Hence, K is not divisible by

5. In the same way, L is not divisible by 5. Consequently, one can choose
u, v so that

COS

<0 (17)

Ku =Lv =1 (mod5)
Then (17) does not hold. O

If one of the numbers k, [ equals 2 and I" does not admit an essential ho-
momorphism to a cyclic group, then the condition (16) holds automatically.
However, if k,1 > 3, it gives rise to some restrictions on K and L for given
k,l and s. They are collected in the following table, containing all possible
values of k and [ (up to permutation).

Table 5.

E | s Restrictions on K and L

5 | 5 | even K =0 (modb5) or L =0 (mod?5)

5 | 3 |even K =0 (mod5) or L =0 (mod3)

4 | 4 |even| K =0 (mod4)or L =0 (mod4); K,L#* 2 (mod4)
4 | 3|even| K =0 (mod4)orL =0 (mod3); K== 2 (mod4)
3 | 3 |even K =0 (mod3) or L =0 (mod3)

5 | 3| odd K # 0 (mod5) and L # 0 (mod 3)

4 |4 |odd | KL% 0 (mod4); K=2 (mod4) or L= 2 (mod4)
4 | 3 | odd K # 0 (mod4) and L # 0 (mod 3)

3 | 3| odd K, L # 0 (mod 3)

For m = 2 we did not get an apriori upper bound for s, so we restricted
ourselves with the cases s = 2,3. Under this restriction there are only few
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cases to be checked, taking into account Table 5. The result is contained in
the following two propositions.

Proposition 7 All the primitive pseudo-finite g.t.g. with m =2, k, 1 > 3
and s = 2 are, up to equivalence, the following 7 groups:

Dz, y | 2®=y’=(zya®y*)>=1);

2)(z,y | 2®=y’=(zyaty)?=1);
3)<x,’y ’ $4:y4:($y$2y3)2:1>;
Ple,y | o=y’ =(zya®y? ) =1);
o) (x,y | a*=y’=(zya’y)’=1);
6)<$,y | x3:y3:(a:ya:2y2)2:1>;

Nz, y | 2*=y*=(zya?y)*=1).

As it follows from the classification of finite g.t.g., the last two groups are
finite, while all the others are infinite.

Remark 1. It follows from Proposition 3 and Proposition 9 below, that
there are, up to equivalence, exactly two imprimitive pseudo-finite g.t.g. with
m =2, k,l >3 and s = 2, namely, the groups

(z,y | a*=yt=(zy?2®y?)? =1);

(z,y | ?=y'=(zy’2?y?)?=1).

Proposition 8 All the primitive pseudo-finite ¢.t.q. with m = 2, k,1 > 3
and s =3 are, up to equivalence, the following 4 groups:

Dz, y | 2°=y’=(zyzya*y?)?=1);
2)(x,y | 2 =y*=(zya®y’Py)?=1);
3)(x,y | 2t=y'=(zyPyay®)?=1);

)z, y | 2=y’ =(zyzyz®y®)*=1).

18



As it follows from the classification of finite g.t.g., all these groups are
infinite.

Remark 2. It follows from Proposition 3 and Proposition 10 below, that
there are no imprimitive pseudo-finite g.t.g. with m = 2, k, [ > 3 and
s =3.

7 Case [=m=2

For [ =2 we have
Wi(x,y) = M yzkey . zhy.

One may assume that k£ > 3, otherwise s =1 and the group I' is dihedral.

Admissible transformations in this case reduce to multiplying modulo k
the exponents ki, ..., ks by a factor prime to k, cyclic permutations of
them, and reversing their order.

If, moreover, m = 2, the action of the Galois group allows us to restrict
the consideration to the case u = 1.

Set

27i

g:gk:eT

and choose matrices X, Y € SLy(C) as follows:

et 0 _xi [ e 0 . T 1l-—7
XZ(@ e—%’>:€k<o 1>’ Y__’<1+T 7 )

Then
trX = QCOS%, trY =0,
tl‘XYZQTSiD%, (18)
and
trW(X,Y) = e ™43 g(7),
where
9(7)



Note that multiplying Y by —1 affects tr X, trY and tr XY in the
same way as multiplying 7 by —1. Obviously,

tr W (X, -Y) = (=) tr W(X, Y).

Hence,

SO

() = h(7?) for s even,
I Th(7?) for s odd,

where h is a polynomial of degree [3].
As it follows from Table 3 and (18), the group I' is pseudo-finite if and
only if all the roots of the polynomial A are among the numbers indicated in

the following table.

Table 6.

k | Admissible roots of h

>61|0

1+V5 —1+v5
5 O’ 2\/5 ) 2\/5
4 10

1
’ 2
1 2 3+vE  3—V5
3 07 3 3

Let us find the polynomial A explicitly.
The polynomial g(7) is the sum of all the products of entries of the ma-
trices

gk T 1—-7 gz T 1-—7
o 1 )0 \V14+7 —71 ’ O 1 )0\ 1+7 -1 T
ghs () T 1—7
-;( 0 1>7(1+7— —T >7 (19)

chosen so that the column number of the entry of each matrix equals the row
number of the entry of the subsequent matrix, if considering the matrices
(19) ordered cyclically.
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Clearly, one can take only diagonal entries of the matrices

k0 k() k0
(V) () e

Every time, when we retain the number of the diagonal entry passing to the

subsequent matrix (20), we have to take an entry £7 of the intermediate
1— . .
factor 1 _T_ - _TT . Every time, when we switch to another number,
we have to take an entry 1+ 7 of the intermediate factor.
It follows that each product has the form

(=1)s7 T ghutFhis 5720 (] _ 72)4,

where 1 <i; < ... <1, <s and the number ¢ is defined as follows:
1) if the set {1, ...,14,} is a proper subset of {1,...,s}, then ¢
is equal to the number of its ”"connected components”, where a connected

component is a maximal subset of {4y, ..., 4.} consisting of consecutive
elements of the set {1, ..., s} considered cyclically ordered;

2)if {iy, ..., }={1,...,s}, then ¢g=0.

Thus , the polynomial h has the form

3]
h(o)=) (-1)"hyola 7 (1~ a)", (21)

(MY

where

and, for ¢ > 0,

hy = > (—1)7r ghin bt (23)
1<i<...<i,,<s

{i1,... i} hasq
connected components

In particular, for s = 2 we have

ho)=(EE+ Do+ (P +e) (1 —0)= (" =12 1) o+ M + M
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Proposition 9 All the primitive pseudo-finite g.t.g. with | = m = 2 and
s =2 are, up to equivalence, the following groups:

Dz, y | e =y*=(zyz"y)?=1) (n>2);
2)(x,y | 2 =y*=(zya®y)?=1);

) (x,y | a*=y*=(zya®y)?=1).

The groups of the first type are pseudo-dihedral. They give rise to some
imprimitive pseudo-finite g.t.g. according to the cases (I1) and (I12) of Propo-
sition 3.

The last group is pseudo-tetrahedral. It gives rise to an imprimitive
pseudo-finite g.t.g. according to the case (I5) of Proposition 3.

As it follows from the classification of finite g.t.g., the groups of the first
type are infinite, while the last two groups are finite.

Proof. The root of h equals 0 if and only if €% + 2 = 0, which means
that k is even and
k
ki —ky = B (mod k)

Under this condition, if I' is primitive, at least one of the integers kq, ks
must be prime to k, and we may assume that it is equal to 1. In this way
we obtain the groups of the first type.

In all the other cases £ < 5. Only 5 such cases are to be tried. This gives
the two last groups of the proposition. a

For s =3 we have

h(U) — (5K . 1)0.+ (5k2+k3 +€k3+k1 +€/€1+/€2 . €k1 _5162 _ gks) (1 _ 0-) —

(€k1 _1)(€k2 _1) (€k3_1)0+€k2+k3+5k3+k1 _|_€k1+k2 _Ekl _€k2 _5163.

Proposition 10 All the primitive pseudo-finite g.t.g. with | = m = 2 and
s =3 are, up to equivalence, the following groups:

D{z,y | e =y>=(zyz"ya"Py)P=1) (n>3);

2)<x’y ’ $3n:y2:($y$n+1yx2n+1y)2:1> (7’L22),
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) (x,y | 2" =y’=(aya"yz™y)’=1) (d[6, (d, n)=1);
Wiz, y | 2=y =(Pylya®y)P=1);

5)(a,y | °=y*=(zyaPya’y)?=1);

6)(z,y | 2°=y’"=(ayzyaty)’ =1)

Nz, y | at=y*=(zya?ys’y)’=1);

8)(z,y | a*=y*=(zyzya®y)>=1);

9)(z,y | 2*=y>=(zyzya®y)®*=1).

The groups of the first three types and the group no. 4 are pseudo-
dihedral. They give rise to some imprimitive pseudo-finite g.t.g. according
to the case (I1) of Proposition 3.

As it follows from the classification of finite g.t.g. the groups of the first
three types and the groups nos. 4, 7 are infinite, while the groups nos. 5, 6,
8, 9 are finite.

To prove the proposition, we need some lemmas.

Lemma 3 Let 21, zo, ... be complex numbers with modulus 1. Then

a) 21+ 20+ 23 =0 if and only if z1, zo, z3 divide the unit circle into
equal parts;

b) 21+ 20+ 23+ 2, =0 if and only if 2z, 2o, 23, 24 decompose into
two pairs of opposite numbers.

The lemma is easily proved by a geometrical reasoning.

Let ¢, = e as above, and let ¢ be a Laurent polynomial with rational
coefficients. The following lemma provides an algorithm for finding out if

@(Ek) =0.
Let p be a prime divisor of k.

Lemma 4 a) If p*|k, write the polynomial ¢ in the form
0(2) = po(27) + p1(2P) 2 + 2(2") 2° + ...+ ppo1(2P) 2770,

where o, ©1, ... ,0p—1 are Laurent polynomials (with rational coefficients).
Then ¢(er) =0 if and only if

vo(ersp) = P1(ersp) = -+ = wp-1(ersp) = 0. (24)
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b) If p* t k, write the polynomial @ in the form

(p=Dk
@(2) = Uo(2F) +Un(") 25 + a() 25 + .+ ()2
where Yo, Yn, ... ,P,—1 are Laurent polynomials (with rational coefficients).
Then p(e) = 0 if and only if
wO(gk/p) = 77b1(5k/p) == wp—l(gk/p)- (25)

Proof. a) It p? |k, then [Q(cx) : Q(ersp) | =p, and 1,6p,67,... 607"
constitute a basis of Q(ey) over Q(exp) -
2k (p=Dk

b)If p? ¢ k , then [ Q(ex) : Qegsp) | =p—1,and 1,e5,67,... 6 »

linearly span Q(ex) over Q(eg/,) with the only linear dependence
(p—1)k

I3 2k
l+er+e? +...4+ 7 =0. O

The conditions (24) can be interpreted as follows. Decompose the set of
exponents of the polynomial ¢ into congruence classes modulo p. Then the
equalities (24) mean that the sum of terms of ¢ corresponding to each class
vanishes at &y.

In the case b), if not all the residues modulo p are represented by the
exponents of non-zero terms of ¢ (e.g. if the number of these terms is less
then p ), at least one of the polynomials g, ¢1,...,9,_1 is (identically)
equal to 0, and the conditions (25) turn to be equivalent to the conditions
(24).

Corollary. Assume that among the exponents of non-zero terms of
there is one that is not congruent modulo p to any of the others. Let, more-
over, p*|k or the number of non-zero terms of ¢ is less than p. Then

p(ex) # 0.

Proof of the proposition. The root of the polynomial h equals 0 if and
only if

gkl + €k2 + €k3 _ €k2+k3 =+ €k3+k’1 + €k1+k2. (26)

Let p be a prime divisor of k. Assume that p*|k or p > 7. Due to the
preceding corollary the equality (26) can hold only if each of the integers

kla k27 k37 k2+k37 k3+k1: kl +k2 (27)

is congruent modulo p to some of the others. It is easy to see that such

a situation takes place only in the following cases, up to permutation of
klv k27 k3 :
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1) ki = ko (mod p), ks = ki + ko (mod p);
2) k1 = ky = ks (mod p);

3) kg = ks =0 (mod p);

4) k3 = k1 +ky = 0 (mod p).

Consider all these cases.

Case 1. In this case, if p # 2, the decomposition of the set of integers
(27) into congruence classes modulo p looks as follows:

{k1, ko} U{ks, k1 + ka} U {ky + ks, ko + k3}.
By Lemma 4, the equality (26) holds only if
by ghe = ghs _ ghitke _ _ kiths _ chatks _ ()
which means that k is even and

kl—k2zg (mod k), ks3=k + ks (modk).

If the group T is primitive, at least one of the integers ki, ks must be prime
to k, and we may assume that it is equal to 1. This gives case 1) of the
proposition.

If p = 2, two of the above congruence classes must glue together. It is
easy to see that these are the first and the third classes. We get

gkl + €k2 _ €k1+]€3 o €k2+k3 — 8/63 - €k1+k2 — 0
Since
gkl + €k2 o €k1+k3 . €k2+k'3 — (Ekl + €k2) (1 . gks)

and €% #£ 1, we come to the same result as above.

Case 2. The decomposition of the set (27) into congruence classes is
{k1, ko, ks} U {ks + ks, ks + k1, k1 + ka},
whence

€k1 + gkz + €k3 _ _€k2+/€3 _ €k3+k1 . €k1+k2 = 0.

Due to Lemma 3, it follows that k is divisible by 3 and &1, &2, k3 divide
the unit circle into equals parts. At least one of the integers ki, ko, k3 must
be prime to k, and we may assume that it is equal to 1. This gives case 2)
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of the proposition.

Case 3. The decomposition of the set (27) into congruence classes is
{ k1, ki + ko, kv + ks FU{ ko, ks, ko + ks },

whence

k1 ki+ka €k1+k3 _ €k2 + 5k3 _ €k2+k3 =0

g =&

It follows that
€k2 + 5k3 — €k2+k3 — 17

which means that £ is divisible by 6 and, up to interchanging ko and ks,

k ok
ky = G (mod k), k3= " (mod k).

Multiplying ki, ko, k3 modulo k£ by an integer prime to k, one may assume
that ki | k. But, if I' is primitive, ( ki, £ ) =1, whence ki | 6 . This
gives case 3) of the proposition.

Case 4. If ki = ko (mod p) , we come to Case 1. Otherwise, the
decomposition of the set (27) into congruence classes is

{ ki, k1 + ks }U{ ko, ko + ks }U{ ks, k1 + ko },

whence

k1 kit+ks 5k2 _ ckatks 5k3 _ ckitke 0
)

g —¢€ € 9

which is impossible.

If £ has no prime divisors satisfying the above conditions, then & | 30 .
For all such k and all, up to admissible transformations, ki, ks, k3 we tried
the equality (26) with help of a computer. It turned out that it held, beyond
the series 1) - 3), only in case 4) of the proposition.

Finally, if T" is pseudo-finite, but the root of h does not equal 0, then
k <5 and the root of h must belong to the numbers indicated in Table 6.
There are only few cases to be tried. This gives the remaining 5 cases of the
proposition. O
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8 Two families of pseudo-dihedral g.t.g.

Finite g.t.g. exist only for s < 8. The following propositions show that
pseudo-finite g.t.g. exist for any s.

Proposition 11 The group

sn 2

[(s,n,c)=(z,y | "=y :(xcyx"+cyx2”+c

y ... glehnte y)?2=1)
is pseudo-dihedral (and thereby pseudo-finite) for any s, n, ¢ with 0 < ¢ < n.

Proof. One has to prove that all the roots of the polynomial h (see (21))

equal 0, ie. that hy =0 for ¢=1,..., [3].
We have ( see (23))
hq _ Z (_1)571” E(i1+...+i,~fr)n+cr

1< <...<1,,<s

{i1,... i} hasq
connected components

We shall prove that the sum h,, of terms of h, with a fixed r vanishes for
each r.

Consider the transformation i +— i+ 1 of the set {1, 2,..., s}
(where s+ 1 is taken modulo s). It does not change the number of connected
components of a subset of {1, 2,..., s}, so h,, is invariant under this
transformation. But, on the other hand, each term of h,, is multiplied by
™ # 1. Hence, h,, =0. O

Proposition 12 The group

2sn

A(s,nyc)={( 2,y | 2*"=y*=
(l,n y x3n ... w(sz)n yCEC yx(s+2)n ... x(2873)n y x(2871)n y )2 -1 >

1s pseudo-dihedral for any s, n, ¢ with s odd and 0 < ¢ < 2sn .

Proof. Onme has to prove that h, = 0 for ¢ =1,...,[5] . Obviously,
hy = hie®+ hy , where h; and h; do not depend on c. Hence, it suffices
to prove that h, =0 for ¢ =0 (when ¢°=1) and for ¢ = sn (when
ef=—1).

For ¢ = sn we have

A (s, n,c)=T{(s, 2n, n),
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so h, =0 by Proposition 11.
For ¢ = 0 we have W (z,y) =y, so trW(X,Y)=1tY
(identically).

Note that the above two families cover the series 1) of Proposition 9 and
the series 2) and 3) of Proposition 10. Moreover, they cover all the series

that we know for s =4, 5.
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