ON THE LOCATION OF THE ZEROS
OF FABER POLYNOMIALS

Jorg Liesen

Abstract. We present non-convex sets for which the zeros of the corresponding
Faber polynomials are outside the convex hull of the sets. Unlike the sets that
have been used for this purpose before, our sets have nonempty interiors and
analytic boundaries.
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1. Introduction

Suppose that 2 C C is a compact set containing more than one point. Further
suppose that its complement Q¢ := C \ Q is simply connected in the extended
plane € := CU {oc}. Let E := {z : |z| < 1} denote the closed unit disk with
boundary OE. Then there exists a unique conformal map ¥ : E¢ — Q¢ which
satisfies U(00) = 0o and ¥/ (00) =: ¢ > 0. ¥ and its inverse can be expanded as

a z
W)=t (wrao+ L) amd =24+ 20 )
The part in the expansion of [#='(2)]", n > 0, which contains only the nonneg-
ative powers of z is called the nth Faber polynomial F,(z) for Q. Obviously,
Fy(z) =1 and F),(#) is of exact degree n with leading term (z/t)". The Faber
polynomials have the determinant representation t" F,, (z) = det(zI— H,,), where

2a1 ao 1
H, = 3as ay ao o0 | = thtlag, k>0 (2)
1
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(see e.g. [4]). Thus, the zeros of F,(z), n > 1, are the eigenvalues of the matrix
H,,. For more information on Faber polynomials see e.g. [1, §].

The zeros of Faber polynomials have been the subject of active research in
the last decades [2, 3, 4, 5, 7, 10]. Here we are concerned with a conjecture on
their location: Koévari and Pommerenke [7] show that the zeros of the Faber
polynomials for a convex set which has nonempty interior are located in the
interior of that set. It was later conjectured that the zeros of the Faber poly-
nomials for any set are always in the convex hull of that set (cf. [10]). This
conjecture is shown to be false by examples of Goodman [3].
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Goodman’s example sets are circular arcs and thus have empty interiors
and nonanalytic boundaries. In this paper we use results of [6] to present non-
convex sets with nonempty interiors and analytic boundaries for which the above
mentioned conjecture is false. So far we are not aware of such examples in the
literature.

2. The ’bratwurst’ shape sets revisited

The examples we are going to construct are derived from the class of non-convex
"bratwurst’ shape sets B(\,,,, ¢) introduced in [6].

DEFINITION 1 Suppose that A, € OE and ¢ € (0,27) are given. Define

—1
€Emaz ‘= tan% (1 + tan g) , P:= tan% + <cos %) , (3)
and, for each € € [0, €maz),
(2= AN (2 = A\ M)
U (w) =t ——c , (4)
where
1 P 1 1 21
Nez——< +j>, Me::L, (5)
2\1+e r 2tan%(1—|—e)
1 1— N.M.
te = m, and Se = m (6)

Then the class of sets B(A\y,, @) is defined by
B(Am: @) i= {Q + Q= (T(E), ¢ € [0,emaa) } - (7)

Examples of sets Q. € B(—1, ¢) for different ¢ and ¢ are shown in Figures 1
and 3. We recall some results from [6]:

The elements of B(\,,, ¢) are compact and simply connected in C. There-
fore the Faber polynomials for each Q. € B(\,;,¢) are well-defined. For
€ € (0, €maz), the boundary 99, = U (JE) is an analytic Jordan curve. Each
Q. € B(\,¢) contains the circular arc {\,e? : ¢/2< 3 <2r—¢/2}, and
{0, \n} & Qe. For € € (0, €maz), the set ¢ has a nonempty interior (in partic-
ular the arc lies in the interior of €).), while g is identical to the arc. Using
results of [6, Section 4], the relation

0<M.<S.<1<N, for all € €[0,€naz) (8)

can be derived by elementary means.
To construct our examples, we need the following proposition, which reveals
further properties of the elements of B(\y,, ¢).
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PROPOSITION 2 Suppose that A\, € OE and ¢ € (0,27) are given. Define
€mazs Pe(w) and M. as in Definition 1. Then for each € € [0, €maz),

1— M. 1+ M.
, < = U (- _
[T (Am)| = YA < | T (w)] < L [Ue(=Am)|, for all we€ OE. (9)

Hence, Q. € B(Ap, @) is contained in an annulus with inner radius (1—M,)/(1+
M) and outer radius (1 + M.)/(1 — M,).

Proof. Without loss of generality we can assume that \,, = 1. We denote
fx = f(Xe0) =1+ X2 —2X_cosp, and compute ’\Ife (ei‘P) ’2 =t2fnfu/fs.
Since fg =t2 (1 + Mc)*fx + 2Mc(1 + Ne)*(cos p — 1)), we get

|‘ij (e“")ﬁ _ InSfu
(1 + M) f + 2M (1 + No2(cos o — 1)
Obviously, g(p) is periodic with respect to 27 and differentiable for all ¢ € R.
Note that (9) is satisfied for e = 0, since this implies M, = 0 and g(¢) =1 for
all . Tt remains to show the assertion for € € (0, €;q2)-
The two equalities in (9) follow directly from evaluating ¢(0) and g(w). It
therefore suffices to show that ¢ = 0,7, 27 are the only zeros of ¢’(¢) in [0, 27].
g’ () = 0 is equivalent to 2Mh(¢) sin ¢ = 0, where

h(@) = (1 +M6)2f12\7 + (1 +N€)2foM +2(1 +N€)2[N6fM +MefN](COS‘zD_ 1)'

Hence ¢'(¢) = 0 if and only if either ¢ = kn, k € Z, or h(p) = 0. To complete
the proof we show that h(p) > 0 for all ¢ € [0, 27].
We first compute

h(2km) = (1+ M:)*(1 — No)* + (1 4+ N2)(1 — No)?(1 — M,)?

= 9(p).

and
h((2k + 1)m) =2 (1 + Ne + 4NZ2 + N2 + N2)(1 + M?2) — 2N M(1 — N.)?),
for k € Z. h(2kw) > 0 and h((2k 4+ 1)7) > 0 are both obvious from (8). Next,
W () =4Nesing ((1+ N2)(1+MZ2) — 2 (Ne(1 + M.)® — Me(1+ N?)) cos )
shows that h'(¢) = 0 if either ¢ = km, k € Z, or

(1+N2)(1 + M2)
2 (Ne(1+ M.)2 — Mc(1+ N2))’

Since Se = (1 — N.M.)/(Ne — M) > 0 (cf. (8)),
N.(14 M)? = M (1 + N?) = (1 — N-M)(N. — M,) + 2N .M, > 0.

cosp =

From
(L+N2)(1+M2) —2(Ne(1+ M)* = Mc(1+N?)) =
(1= NeMe) = (Ne — M) > 0,
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it then follows that h'(¢) # 0 for ¢ # kn, k € Z. Thus h(y) > 0 for all ¢ € R,
which completes the proof.

3. The examples

In this section we show that two of the three zeros of F5(z) for certain sets
Q. € B(—1,¢) are outside co(€2), the convex hull of Q.. Considering only the
case A, = —1 is no restriction: It is easy to see that if z;, 1 < 7 < 3, are the
zeros of F3(z) for Q. € B(—1,¢), then —\,,2;, 1 < j < 3, are the zeros of F3(z)
for Q. € B(\p,, ¢). Hence, if for fixed € and ¢, zeros of F3(z) for Q. € B(—1,¢)
are outside co(£.), the same holds for all F5(z) for Q. € B(Ay, 0).

Expanding the function ¥.(w) as in (1) and using the determinant relation
shows that the Faber polynomial F5(z) of each Q2. € B(—1, ¢) satisfies

t3F3(2) = (2 — ao)® — 3(z — ag)ar — 3as,

where ag = t.(N. + M. — S.), a1 = t2(Se — N.)(Se — M) and ay = —t.S.a;.
Since a1 < 0 (cf. (8)), it is easy to see that F3(z) has exactly one real zero z;
and two complex conjugate zeros zs and zs.

Note that Goodman’s example sets in [3] are elements of the class B(\,,, ¢).
In our notation, Goodman shows that when ¢ > 4arccos3~/2 a 3.8213, then
zo and z3, the two complex conjugate zeros of F3(z) for the circular arc Qq €
B(—1, ¢), have moduli larger than one, and therefore {z3,23} ¢ co(Qc). We
next point out that the eigenvalues of the matrix Hs in (2), i.e. the zeros of
F5(z), depend continuously on the parameters e and ¢. Thus, for each ¢ €
(4arccos371/2,27), there exist some €; > 0, so that zp and 23 of F5(z) for each
set Qe € B(=1,¢1), 0 < € < €, are outside co(£2¢). By construction, each set
Q. with positive € has a nonempty interior and an analytic boundary.

To check if a certain choice of parameters leads to zeros outside co(€.), we
computed the eigenvalues of Hz using MATLAB 5.3 [9], and compared their
moduli with the upper bound given in Proposition 2. We remark that |z2| >
(14 M.)/(1— M,) is sufficient but not necessary for {z2, 23} ¢ co(€2). Here are
two examples for which zeros are outside co(£2,):

€ 10} 21 22,23 | 22| = |z3] %
0.001 | 37/2 | 0.99310 | 0.78402 + 0.62416¢ | 1.00213 1.00083
0.001 | 57/4 | 0.96751 | 0.55364 4 0.83508i | 1.00194 1.00134

A picture of the first example is shown in Figure 1. The close-up in Figure 2
reveals the distance between z5 and 0€g go1- In general we noted that zeros are
outside co(€2.) only for very small e. A typical example for a larger € is shown
in Figure 3.

We were unsuccessful in proving analytic expressions for the ranges of ¢ and
¢ for which {zq, 23} Z co(£2.). However, we derived the following lower bound
on |zz|:

|22| > \/-3&1 + Gg + teSevag + (tese'\/)za

4
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Figure 1: Qg.001 € B(—1,37/2), zeros  Figure 2: Close-up of the small box in
of F3(z) (pluses), and the origin (star).  Figure 1.

-0.2 0 0.2 0.4 0.6 0.8 1 12 14

Figure 3: Q0.1 € B(—1,37/2), zeros of F3(z) (pluses), and the origin (star).

where vy := 1 — 52/(3N.M, — 3S:(N. + M,)). Our bound is usually very sharp.
For the above two examples the bound is |zz| > 1.00211 and |z3| > 1.00186,
respectively. In both cases the bound detects that |z2| > (1 + M)/(1 — M),
and thus shows {22, 23} Z co(Q).

Acknowledgments

This work was supported by the SFB 343 at the University of Bielefeld, Ger-
many. Thanks to Prof. Ludwig Elsner, Dr. Tino Koch and Prof. Richard S.
Varga for helpful comments.



Liesen

References

1]

2]

[10]

Curriss, J. Faber polynomials and the Faber series. American Math.
Monthly 78 (1971), 577-596.

EIERMANN, M., AND VARCA, R. S. Zeros and local extreme points of
Faber polynomials associated with hypocycloidal domains. Electron. Trans.
Numer. Anal. 1, Sept. (1993), 49-71 (electronic only).

GOODMAN, A. W. A note on the zeros of Faber polynomials. Proc. Amer.
Math. Soc. 49 (1975), 407-410.

HE, M. Numerical results on the zeros of Faber polynomials for m-fold
symmetric domains. In Ezploiting symmetry in applied and numerical anal-
ysis (Fort Collins, CO, 1992), vol. 29 of Lectures in Appl. Math. Amer.
Math. Soc., Providence, RI, 1993, pp. 229-240.

He, M. X., AND SAFF, E. B. The zeros of Faber polynomials for an
m-~cusped hypocycloid. J. Approz. Theory 78, 3 (1994), 410-432.

Kocn, T., AND LIESEN, J. The conformal 'bratwurst’ maps and associated
Faber polynomials. to appear in Numerische Mathematik (1999).

KoOvaRri, T., AND POMMERENKE, C. On Faber polynomials and Faber
expansions. Math. Z. 99 (1967), 193-206.

SUETIN, P. K. Series of Faber polynomials. Gordon and Breach Science
Publishers, Amsterdam, 1998.

THE MATHWORKS. Using MATLAB (December 1996). The MathWorks
Inc., Natick, 1996.

ULLMAN, J. L. The location of the zeros of the derivatives of Faber poly-
nomials. Proc. Amer. Math. Soc. 84 (1972), 422-424.

Fakultat fiir Mathematik, Universitat Bielefeld, 33501 Bielefeld, Germany,
liesen@mathematik.uni-bielefeld.de.



