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Introduction

Let P be a polyhedron in a hyperbolic space H?.
Definition 1. A polyhedron P is a Coxeter polyhedron if all dihedral angles of P are the integer parts of 7.

Definition 2. A polyhedron P admits a Coxeter decomposition if P can be tiled by N Cozeter polyhedra
Fi,....Fny (1 < N < 00), such that any two tiles F; and I; with a common face are symmetric with respect to this
face.

In this paper we classify all Coxeter decompositions of bounded convex pyramids and triangular prisms in
hyperbolic space H?.

Basic definitions

All polyhedra F; in a Coxeter decomposition are obviously congruent. We call these polyhedra fundamental and
denote by F. We say that P admits a Coxeter decomposition and that P is quasi-Coxeter polyhedron.
A plane containing a face of a fundamental polyhedron will be called a mirror if it contains no face of P.

Remark. A Coxeter decomposition of any polyhedron can be prolonged to the decomposition of the whole
hyperbolic space (to define a Coxeter decomposition of the space take definition 2 without the condition N < o0).

Any polyhedron in this paper is bounded by the mirrors of a Coxeter decomposition of some polyhedron or
the space.

Definition 3. Fix a Coxeter decomposition of a polyhedron P.
e A vertex of P is called fundamental if it does not belong to any mirror.

e A dihedral angle of P made up by faces o and ( is called fundamental if no mirror contains o N 3.
In this case the edge a N of P is called fundamental too.

e A face a of P is called fundamental if no mirror intersects the inner part of o.
Lemma 1. (Obvious).
(1) If P is a quasi-Cozeter polyhedron, then any polyhedron P’ inside P is quasi-Cozeter too.
(2) If all dikedral angles of a quasi-Cozeter polyhedron P are fundamental, then P is a Cozeter polyhedron.

(3) Let a be a mirror of a Coxeter decomposition of IH>. Then « is tiled by faces of fundamental polyhedron
(in general, this tiling is not a Cozeter decomposition).

The following lemma was proved in [3]:

Lemma 2. If ABCD is bounded hyperbolic quasi-Cozxeter tetrahedron, then ABCD is decomposed as shown in
one of the figures 1(a)-1(h).
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Figure 1: Coxeter decompositions of bounded tetrahedra.

1 Fundamental polyhedron

From now on a bounded quasi-Coxeter polyhedron P is a pyramid or a triangular prism in IH?>.

Notation. Denote by o N 3 an intersection of sets o and 3 in the inner part of H3.
If a is a face of a polyhedron, denote by @& a plane containing a.

Lemma 3. Let I be a Cozeter polyhedron.
Then either F is a tetrahedron or F has two faces o and 3 such that @n 3 = (.

Proof. 1t is well known that for any polyhedron without obtuse angles
anp=0 = anp=40.

Coxeter polyhedra have no obtuse angles. Thus, it is enough to prove that 7" has faces @ and 3 such that ang = 0.

Suppose that o N B # @ for any faces @ and 8 of F. Let A be an arbitrary vertex of F. Let ay,...,a; be
a complete set of faces of F' such that A € «;. Let 3 be any face of P such that A ¢ 3. By assumption,
a;NB#0Q Vi=1,.. k. Therefore, F' has no faces except o; and 3, i.e. F is a pyramid.

Suppose that the vertex A is not ideal vertex. It is well known that any non-ideal vertex of a Coxeter
polyhedron is trivalent. Thus, the pyramid F is a tetrahedron and everything is proved.

Suppose now that A is ideal vertex and the pyramid F is not a tetrahedron. Take two faces (say, oy and as)
having no common edges. Since A is not an inner point of H?, a; Naz = 0.

O

Lemma 4. If P is a pyramid then F is a tetrahedron.

Proof. Suppose that F is not a tetrahedron. By lemma 3, F has two faces a and 3 such that @n 3 = (. Take
any fundamental polyhedron Fy in P; let ag and [y be its disjoint faces. Consider a sequence of fundamental
polyhedra F; € P, i € Z, such that o; = 41, if 7 is odd, and §; = f;41, if 7 is even (see figure 2).

The sequence is finite, since P contains only finitely many fundamental polyhedra. Let Fj and F; be the
endpoints of the sequence. Then «y, or ;. belongs to some face v of P. Similarly, a, or 3, belongs to some face ¢
of P. Obviously, &; N ﬁj =( Vi,j. But v intersects ¢, since P is a pyramid. The contradiction shows that F' is
a tetrahedron.

O

Lemma 5. Let a be a mirror of a Cozeter decomposition of the triangular prism P. Then a goes as il is shown
in one of the figures 3.1-3.16.
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Figure 2: A sequence of the fundamental polyhedra.
Proof. 1t is easy to see that there are no other possibilities.
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Figure 3: Mirrors in the prism.

Definition 4. We say that a mirror is pentagonal if it goes as shown in figure 3.16.

Definition 5. We say that a triangular quasi-Cozxeter prism P is minimal if any prism P’ inside P is funda-
mental.

Lemma 6. Let P be a minimal prism and I be a fundamental polyhedron. Suppose that F is neither tetrahedron
nor triangular prism. Then any mirror is pentagonal and any dihedral angle of P is fundamental.

Proof. Suppose that the decomposition contains a tetrahedron or a pyramid. Then by lemma 4 F is a tetrahedron.
Hence P contains neither pyramid nor tetrahedron. Since P is minimal, PP contains no smaller triangular prisms.
Therefore any mirror is pentagonal (this follows from lemma 5). Clearly, all dihedral angles of P are fundamental.

O

Lemma 7. If P is a triangular prism then F is either tetrahedron or triangular prism.



Proof. 1t is sufficient to prove the lemma for a minimal prism P. Suppose that F is neither tetrahedron nor
triangular prism. Then by previous lemma any mirror is pentagonal and any dihedral angle of P is fundamental.

Let ABCDFE be any pentagonal mirror (see figure 4). This mirror separates the points My, Ny, N3 from the
points My, M3, Ns.
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Figure 4: A pentagonal mirror decomposes a prism into two combinatorially equivalent polyhedra.

We say that a polyhedron W is special if it contains the points My, M3, Ny and it can be cut out of P by
a single pentagonal mirror. Let W be a minimal special polyhedron (i.e. no polyhedron inside W is special).
The minimal polyhedron exists, since the decomposition contains finitely many mirrors. Suppose that W is
MyMsN, ABCDE (see figure 4).

Suppose that W has a non-fundamental dihedral angle. By lemma 6 this angle is formed by ABCDF and
some face of P. Let Il be a mirror decomposing this angle. Clearly, I does not separate the points My, N; and N3
one from another. Since Il is pentagonal, it separates all the points above from the points My, M3, Ny. Therefore
IT cut out of P a special polyhedron contained in W. This contradicts to the minimal property of W.

Therefore any dihedral angle of W is fundamental. By lemma 1 W is a Coxeter polyhedron. It is well known
property of the Coxeter polyhedra that the prolongations of two disjoint faces cannot intersect each other. This
property is broken in the polyhedron W (consider the faces AE'N; and C'DMs5 whose prolongations have a common
line N1N3). The contradiction shows that F' is either tetrahedron or triangular prism.

O

2 The decompositions of the pyramids.

This section describes how to classify all the Coxeter decompositions of the bounded hyperbolic pyramids.

At first suppose that a pyramid P has only five vertices OA; A Az Ay (where A1 A3A3A4 is a base). By
lemma 4 F is a tetrahedron. Suppose that any edge OA; is fundamental. Consider a small sphere centered in
O. lts intersection with the boundary of P is a spherical quadrilateral g. Any angle of ¢ is fundamental. This
contradicts to the fact that the sum of the angles for a spherical quadrilateral should be greater then 2.

Hence, we can assume that there is a mirror through OA;. This mirror decomposes the pyramid into two
smaller pyramids. One of the smaller pyramids is a tetrahedron and another is either tetrahedron or small
quadrangular pyramid. Thus, any minimal quadrangular pyramid consists of two tetrahedra (not necessary
fundamental). The decompositions of these tetrahedra are known from lemma 2. Therefore we can find all the
decompositions of the minimal quadrangular pyramids. Using the decompositions of the minimal pyramids we
can find the decompositions of the greater pyramids too. So, it is possible to find all the decompositions of
quadrangular pyramids.

Analogically, it is possible to classify the decompositions of the pyramids with a bigger number of vertices.
Any pyramid OA;...A,, has a decomposed edge O A;. So, the pyramid is decomposed into two smaller pyramids
whose possible decomposition we should enumerate at the previous steps.

Being realized by a computer, this procedure leads to a big list of the quadrangular pyramids, several pentagonal
pyramids and exactly one hexagonal pyramid. See the Table 2 for the result.
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3 Decompositions of the triangular prisms
whose fundamental polyhedron is a triangular prism

In this section both P and F are triangular prisms.
For any prism we say that a triangular face is a base and a quadrilateral face is a side.

Lemma 8. No base of I' belongs to a side of P.

Proof. Suppose that a side a of P contains a base of fundamental prism F;. Consider a sequence of the fundamental
prisms Fy, Fy,...,F,,..., such that F; € P and F; and F;4; has a common base. This chain is finite, since P contains
finitely many fundamental prisms. The prolongations of the two bases of F; have no common points, since F} is
a Coxeter prism. So, the prolongations of the bases of two different prisms F; have no common points. Therefore
the prisms Fy, F5,...,F,, cannot make a cycle and the sequence has an endpoint F},. One of the bases of F),, belongs
to some face § of P (otherwise the sequence has a prolongation). The face a cannot intersect the face [, since
these faces are prolongations of the bases of F;. This contradicts to the fact that a side « intersects each face of
P.

O

Lemma 9. No side of F belongs to a base of P.

Proof. Denote by a and 3 the bases of P. Suppose that a side «ag of a fundamental prism Fy belongs to a. As in
the previous lemma consider a sequence of fundamental prisms F_g,...,Fy,...F}, such that F; € P and F; and Fj4q
have a common base. Let a_; and §; be the bases of the endpoints F_; and F;. By lemma 8 the bases a_; and
01 belong to two different bases of P. If a_j belongs to the base o then the prolongations of a_j and ag have a
common point (see figure 5). This is impossible.
b
=)

Figure 5: A sequence of fundamental prisms.

O

Lemma 10. Let o be a base of P and oy and ay be the bases of F. Suppose that o is non-fundamental. Then a
tiling of o by the faces of I is a Cozeter decomposition. A fundamental triangle of this decomposition is a triangle
a1 OT Q9.

Proof. By previous lemma all the tiles are triangles. The adjacent tiles of the tiling are the faces of I’ having a
common edge. Thus, if one of the tiles is a base a; then the other tiles are the copies of this base. Clearly, this
tiling is a Coxeter decomposition.

O

By lemma 8 any side a of P is tiled by sides of F. This tiling is not necessary Coxeter decomposition, but
lemmas 11 and 12 show that this tiling is very simple.



Lemma 11. Let « be a side of P. Then the tiling of o (see figure 6a) satisfies the following properties:
(1) any vertex of the face o belongs to a unique tile;
(2) any point at the edge of the quadrilateral o belongs to one or two tiles;
(3) any point inside o belongs to one, two or four tiles.

T
LI
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Figure 6: Any side is tiled as shown in figure (a); (b) and (c) are impossible.

A N

level 1

level 2

Proof. We say that an edge AB of a tile is horizontal if AB belongs to a base of a fundamental prism; otherwise
we say that AB is vertical. Let ABC'D be any tile whose vertical edges are AB and C'D. Consider a sequence of
the tiles such that this sequence contains ABC'D and any two neighboring tiles have a common horizontal edge.
We say that this sequence is vertical. Analogically construct a horizontal sequence where the neighboring tiles
have a common vertical edge. Evidently, the vertical sequence ends on two different horizontal edges of « and a
horizontal sequence ends on two different vertical edges. Let us show that this condition is broken if the lemma
is false.

(1) Let A be a vertex of the face a. Suppose that A belongs to more then one tile (see figure 6b). Consider a
vertical sequence through the tile ABC'D. No pair of tiles from this sequence can be separated from each
other by the line AD. Therefore this sequence cannot reach a horizontal edge AN.

(2) Let A be an inner point of a horizontal edge M N. Suppose that A belongs to more then two tiles. Then one
of these tiles has no edges on M N (see figure 6¢). At least two lines through A are vertical edges of some
tiles. Consider a vertical sequence through the tile ABC'D. It is evident that the angle ZBAFE contains any
tile from this sequence. Thus, the sequence cannot reach a horizontal edge M N.

The same reason is good for the points on the vertical edges.
(3) Let A be an inner point of the tile a. Clearly, A cannot be incident with exactly three tiles (see the third
part of lemma 1). Suppose that A is a vertex of five or more tiles.

Let a; be any tile and ajq,...,ax be an upper part of vertical sequence (i.e. «ay is upper endpoint of the
sequence). We say that oy is a tile of level k. We say that a point A is a point of level k if A is an inner
point of a tile of level k. If A belongs to several tiles we define the level of A as a maximum.

The part (2) of this proof establishes the lemma for the points of level 1. The same reason as in part (2)
shows that if lemma is true for the tiles of level k then it is true for the tiles of level £ 4 1 (see figure 6d).
Therefore the lemma is true for any tile.

O
Lemma 12. Any side of P is decomposed as shown in figure 7.
Proof. Let a be a side of P and by, by, bs be the sides of F. Since F is a Coxeter polyhedron, no angle of b;

is obtuse. Therefore any horizontal line is perpendicular to any vertical line (where the word ”line” means an
intersection of o with some mirror). By the same reason the lines are perpendicular to the edges of a. At most
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Figure 7: Four possibilities for a tiling of a side.

one line may be perpendicular to a pair of opposite edges of a quadrilateral in JH?. Thus, there is at most one
vertical line and at most one horizontal line.

g

Lemma 13. The bases of P are tiled as shown in figure 8.

A AN A

1, (2k,1)

Figure 8: Five p0551b1ht1es for the tlhng of a base
(see the angles of the fundamental triangles under the decompositions).

Proof. Let a be a base of P. By lemma 10 « is either fundamental or quasi-Coxeter. The Coxeter decompositions
of the triangles are classified in [2] (see the list in figure 9). By lemma 12 no edge of the triangle @ may be
decomposed into more then two parts. The decompositions satisfying this condition are listed in figure 8.

AMAMWA

23k) 23k) (2,3,k)

(2.k,1) (2,3.,k)

(2,3,7)
(2,3,7) (2,3,8)

Figure 9: Coxeter decompositions of the triangles.

O

Theorem 1. Let P be a quasi-Cozxeter triangular prism such that F' is a triangular prism. Then the decomposition
is one of the decompositions listed in Table 1.

Proof. 1t follows from lemma 11 that two bases of P are decomposed in the same way. By lemma 13 there are
five possibilities for the decompositions of the bases. Consider two cases.
(1) Suppose that the bases are fundamental. Then the sides are either fundamental or decomposed like in

figure 7(c). Obviously all the sides of P are decomposed in the same way. This leads to a decomposition shown
in the left of Table 1.



(2) Suppose that the bases are decomposed. Each decomposition of the base corresponds to two possible
decompositions of the sides — with horizontal lines or without them. Thus, each decomposition of the base
corresponds to two decompositions of P. Some of the dihedral angles of I’ are uniquely determined by the
combinatorial structure of the decomposition. We need only to check if we can define the rest dihedral angles of
F to satisfy the Andreev theorem (see [1]). If the bases are decomposed as in figure 8(b) or 8(d) then it is possible
to satisfy the Andreev theorem. Otherwise, it is impossible.

O

4  Decompositions of the triangular prisms
whose fundamental polyhedron is a tetrahedron

In this section P is a triangular prism and F is a tetrahedron.

Any face of P is obviously tiled by the triangles, but in most part of cases this tiling is not a Coxeter
decomposition. At first we derive some information about the tilings of the bases.

Definition 6. An edge AB of a fundamental tetrahedron ABCD is called k-edge if a dihedral angle formed by
ABC and ABD equals .

Lemma 14. Let p be a base of P. If no flat angle of p is decomposed then the tiling of p consists of a unique
triangle. If p has a flat angle decomposed into three pars then p is bounded by 2-edge, 3-edge and 5-edge.

Proof. Let f be a face of F and f be a plane containing f. Obviously, f is tiled by the triangles congruent to the
faces of F. To find this tiling consider a face f and the adjacent to f triangles f;, f; and f3 at the plane f. These
triangles f; are congruent either to f or to the other faces of F' (we obtain the same face if the dihedral angle is
equal to T, where k is even, otherwise we obtain another face). Adding face by face we can prolong the tiling.
The only problem is how many triangles are incident with a fixed vertex.

To solve this problem suppose that A is a vertex of F incident with k-edge, [-edge and m-edge. Suppose that
f contains A. Then a decomposition of a small three-dimensional spherical neighborhood of A is similar to a
Coxeter decomposition of a sphere with fundamental triangle (7, 7, 7-). An intersection of the neighborhood with
f corresponds to a spherical line in the decomposition of the sphere. So, to find how many rays starting from A
belong to f, it is enough to count a number of the vertices incident with a corresponding spherical line.

Thus, for any face of any Coxeter tetrahedron we can find a tiling of the corresponding plane. In these tilings
any triangle with fundamental angles is a face of F. This proves the first part of the lemma. The triangle with
an angle decomposed into three parts was found only in one of these tilings. That was a tiling corresponding to a
face of the Coxeter tetrahedron having a number 8 in the Table 1. Such a triangle is bounded by 2-edge, 3-edge

and 5-edge and tiled as shown in figure 10.

Figure 10: The only triangle whose angle is decomposed into three parts.

g

Lemma 15. Let A be a non-fundamental vertex of P. Then there exists a non-fundamental edge incident with

A.

Proof. Suppose that any edge incident with A is fundamental (i.e. three dihedral angles incident with A are
fundamental). Consider a small sphere s centered in A. The decomposition of P restricted to s is a Coxeter
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Figure 11: If A is non-fundamental, but AB, AC and AD are fundamental,
then the neighborhood of A is decomposed as shown in figure (b).

decomposition of a spherical triangle p = s N P. Evidently, any angle of p is fundamental. It is easy to check (see
[3]) that in this condition p is decomposed as shown in figure 11(a). Any angle of p is a right angle.

Thus the neighborhood of A is decomposed as shown in figure 11(b). Any edge of P incident with A is a
2-edge. Consider a base ABC of the prism P. The angle A of this triangle is decomposed into three parts by the
lines AN and AM. It follows from lemma 14 that the sides of ABC should be 2-edge, 3-edge and 5-edge. This
contradicts to a fact that AB and AC are 2-edges.

O

Lemma 16. Let P be a triangular prism admitting a Cozeter decomposition into tetrahedra. Then P has a
non-fundamental dihedral angle.

Proof. Suppose that any dihedral angle of P is fundamental. Then any vertex of P is fundamental and by
lemma 14 any base of P is congruent to a single face of . Consider a fundamental tetrahedron Fy containing a
base a. Since any dihedral angle of P is fundamental, the sides of P are the faces of Fy. This is impossible.

O

The procedure classifying the decompositions

We have already proved that any prism has a non-fundamental dihedral angle. It follows from figure 3(1)-
3(4) that any prism consists of a tetrahedron and either smaller prism or quadrangular pyramid. If we know a
decompositions of the smaller parts we can find a decomposition of the whole prism.

Recall that a prism P is minimal if P is non-fundamental and any prism inside P is fundamental.

Definition 7. We say that a minimal prism is a prism of level 0. A non-fundamental prism P is a prism of
level &+ 1 if P contains a prism of level k but any prism inside P contains no prism of level k.

At first we will classify the decompositions of the minimal prisms. Evidently, minimal prism contains no mirrors
shown in figures 3(2)-3(4). Thus, it contains a mirror shown in figure 3(1). By lemma 15 any minimal prism has
at least two non-fundamental dihedral angles (see figure 12 where A; Ay and By Bs are non-fundamental edges).
Therefore the prism is decomposed into three tetrahedra. The decompositions of the tetrahedra are classified, so
we can classify the decompositions of the minimal prisms.

Suppose that we know the classification of decompositions for the prisms of levels smaller than &£+ 1. Show
the we can find a classification for the prisms of level £ 4+ 1. Suppose that P has a dihedral angle decomposed
as in figure 3(2)-3(4). By the definition any prismatic part is a prism of level smaller than k£ + 1. So, we know
a list of possible decompositions of the prismatic parts. The decompositions of the tetrahedral parts are known
too. Therefore we can classify all possible decompositions of P. Suppose now that P has no mirrors shown in
figures 3(2)-3(4). Then P has at least two mirrors shown in figure 3(1) and these mirrors decompose P into three
tetrahedra (we use lemma 15 again). Combining the decompositions of these tetrahedra we can find all possible
decompositions of P.
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Figure 12: Any minimal prism consists of three (possibly non-fundamental) tetrahedra.

Thus, we can classify the decompositions of the prisms whose level is smaller then any fixed number. In fact
there is no prism of level eight; hence, there cannot be prism of greater level. Therefore this algorithm classifies
all the decompositions of the triangular prisms. See Table 2 for the classification.
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Tables

Table 1 contains a list of the decompositions for the triangular prisms whose fundamental polyhedron is a triangular
prism. Table 2 contains all the decompositions of the convex bounded pyramids and triangular prisms whose
fundamental polyhedron is a tetrahedron. Here we describe the structure of Table 2.

e The horizontal lines separate the polyhedra with different fundamental tetrahedra. For any fundamental
tetrahedron the table contains three columns. The left column contains a list of the decompositions for
the bounded tetrahedra (the tetrahedron number 0 is a fundamental one). The right column lists the
decompositions of the bounded triangular prisms. The column in the middle contains the bounded pyramids.
At first we list the quadrangular pyramids which can be combined from two (possibly non-fundamental)
tetrahedra. Then, after a dotted line, we list the rest quadrangular pyramids. After a new dotted line we list
the pentagonal pyramids and at last we list the hexagonal pyramids. (There is no Coxeter decomposition
of the heptagonal pyramid).

The polyhedra and their decompositions are represented in Table 2 as described below.

e A tetrahedron with the dihedral angles (;—“ ¢t = 1,...,6 is represented by the following diagram: take a
Coxeter diagram of the tetrahedron whose dihedral angles equals to qﬂ ¢ = 1,...,6 and subdivide the edges

corresponding to the dihedral angles of the size (;— into k; parts.
The faces of the tetrahedron are numbered by the following way: the nodes of the scheme have numbers
0,1,2,3 from left to right. (The numeration will be used below).

o A quadrangular pyramld OA1A2A3A4 with a base AjA;A3A4 is represented by eight dihedral angles
(A Ag,A2A3,A3A4,A4A1,OA1,OA2,OA3,OA4) where a numerator ¢ means that a corresponding dihe-
dral angle is decomposed into ¢ parts (we always omit a multiple 7). For example, a fraction % denotes a
right angle decomposed into two parts. A triangular face OA;A;41 has a number 7.

e In the same way we represent the pentagonal and hexagonal pyramids (we use ten and twelve angles corre-
spondingly).

o A trlangulal pI‘lSHl A1A2A3B1B2B3 (Where A1A2A3 and B1 B2B3 are bases) is represented by nine dihedral
angles (A3B3,A1B1, AQBQ, A1A2, A2A3, A3A1,B1B2, Bng, B3B1) A nominator is a number of the parts in
the dihedral angle; the multiple 7 is omitted. The faces are numbered in the following way: A; A3As has
number 0, By By B has number 1, and A;A;41 B;+1B; has number 7+ 1.

Remark. In this notation each pyramid or triangular prism can be written by several ways (for instance, the
order of the angles changes while we rotate the polyhedron). To unify the notation we choose a record which
stands first in the alphabetical order.

e For any polyhedron except fundamental tetrahedra we need some way to reconstruct the decomposition.
For this aim we put some numbers under the symbol of the polyhedron. These seven numbers (denoted by
t,k,l and m,n,p,q) shows the following:

t is a number of the polyhedron (for each fundamental tetrahedron we start a new numeration);
k is a quantity of fundamental tetrahedra in the decomposition;
[ is a quantity of glueings used to obtain this decomposition (if the decomposition was obtained by
a gluing together of two polyhedra with /; and Iz, then [ = 1 4+ max{l1,/2});
o m and n are numbers of the polyhedra which should be glued together to obtain the decomposition;
o pand ¢ are numbers of the glued faces of the polyhedra m and n respectively.

The numbers m and n are accompanied with the labels: we write "tet”, ”pyr” or "pri” to show that
a corresponding polyhedron is a tetrahedron, a quadrangular pyramid or a triangular prism. (Any
quasi-Coxeter tetrahedron consists of two smaller tetrahedra, so we omit the label ”tet” in the left
column.)
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Table 1: Coxeter decompositions of the prisms into prisms.
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Table 2. Coxeter decompositions of the pyramids and prisms
where a fundamental polyhedron is a tetrahedron

tetrahedra pyramids triangular prisms
(llll 2121) (lll 211.121) (lll 121.121)
3344'3232 334'342'432 334'243'432
1, 2,2, tetO, tet0,0,0 1, 3,3, tetO,pyrl, 0,1 3, 4,3, tetO,pril, 1,0
(1;11.1212) (lll 112.121) (lll 121.211)
@ 3333'2321% 334°233°223 334'243°423
2, 2,2, tetO,tetO, 1,1 2, 3,3, tetO,pyrl, 1,3 4, 5,3, tetO, pri3, 1,1
(1;11.2121) (;11.211 121) (lll 121.121)
33553232 335'352'532 335'253'532
1, 2,2, tetO, tet0,0,0 1, 3,3, tetO,pyrl, 0,1 3, 4,3, tetO,pril, 1,0
(1;11.1212) (lll 112.121) (lll 121.211)
@ 3333'2325 335'233°253 335'253'523
2, 2,2, tetO,tetO, 1,1 2, 3,3, tetO,pyrl, 1,3 4, 5,3, tetO,pri3, 1,1
(1;11.2121) (lll 112.121)
33444232 344’234’2423
@ 17 2, 2, tetO, tetO, 07 0 17 3, 37 tetO, pyrl, 07 3
(;;11.2121)
3355'4232
1, 2,2, tetO, tet0,0,0 (lll llg,lgl)
325°234°253
(llllglzl) 17 3,3, tetO,pyrl,l,S
@ 33425232
2, 2,2, tet0, tet0, 1,1
(1;11.2121) (lll 112.121)
3355'5232 355°235'253
@ 1, 2,2, tetO, tet0,0,0 1, 3,3, tetO, pyrl, 0,3
(1;11.2121)
2255'5232
1, 2,2, tetO, tet0, 1,1
(3311312 (111,112,121 (Ll2,112.111)
9 3.3 tetl. tet0. 0. 1 255°225°252 555'225'232
v 99, tetd, tetl, b 1, 3,3, tet0,pyrl, 1,3 5, 7,4, opril,pri2, 3,3
—
(1;114121)
2255'5333
3, 4,3, tetl, tetl, 0,0 (lll 112 lél) (lll llé.zll)
255'225'352 255'325'335
_____________________ 2, 4,4, tet0,pyr2,1,3 6, 7,4, tetl,pri3, 0,0
(llll 1221)
@ 25552333
4, 5,4, tetl, pyr2,0,1 (lll.llé lél) (112 lll.llé)
255'325'352 555'232'335
21 0,0,0,0 | Tmrmmmmmmmmmmmm s m e 3, 5,4, tetl,pyr2, 0,3 7, 9,5, tetl, pri5, 2,0
(lllll élzzl)
52
| arpessEisn (Lll,112.211) (Lli.211.211)
) ) 4 Leth, pyrs, 4, 2552257335 255'335'353
4, 6,4, tetl,pri2, 0,1 8, 9,6, tetl,pri6, 0,0
11111,22222
42 1,1,2,2 (5555555533
2, 10, 5, pyr4, pyr4, 1,1
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tetrahedra pyramids triangular prisms
(1111.2121)
2244°5232
1, 2,2, tetO,tet0, 1,1
1111.2121
(225553532)
2, 2,2, tetO, tet0, 2,2 (111112.121) (llllélzll)
24522242252 245°352°352
(llll~§lzl) 1, 3,3, tetO, pyrl, 2,3 17, 6,4, tetO, pri5, 2,0
2244°5233
3, 3,3, tetl, tet0,0, 1 (L1l.112.131) (111.113.211,
245’224°352 245°’324°334
(llll~élzl) 2, 4,4, tetO, pyr3, 2,3 18, 7,4, tetl,pri5, 0,1
2244°5333
4, 4,3, tetl, tetl, 0,0 (Lil.121.113) (112.111.113)
245°252’324 445°232°334
(llll~§lzl) 3, 4,4, tetO, pyr5,1,3 19, 9,4, pri3, pri5, 3,3
225574233
[ =— =0 )
5, 3,3, tet2,tet0,0, 2 (lll l;g.;g;) (211.211.211)
235’224’2565 455522522
(1111.2222) 4, 7,5, tetO, pyr7, 2, 2 20, 12,5, tet2, pri6, 2,0
3333’3535
6, 84, tet3, tet3,0,0 (L11.113.131, (211,211,311,
245’324’352 455’522’533
(1211.1212) 5, 5,4, tetl, pyr5,0,3 21, 14,5, tet3, pri6, 1,0
24352325
@ 7, 6,4, tetd, tet2, 0,2 (211,122,211, (2L1.311.311,
455533522 455533533
2,1 0,0,0,0 (lzll.lzlé) 6, 10,5, tet2, pyr9, 2,1 22, 16,5, tet3,pri7, 1,0
34353325
8, 8,4, tetd, tet3,0,1 (211.122.211) (111.112.112)
455'533’533 335235325
(llll~2222) 7, 12,5, tet3, pyr9, 1,1 23, 32,6, teth, pril0,0,1
555573333
Faa 9, 84, tetd,tetd, 1, 1 (L11.112.122) (Ll2,111.221)
335'235°’334 555222552
8 16, 6 tet3, pyrl0, 1, 1 24 12,6 pril2, pril2, 2, 2
1111.22l§ ’ » ’ L ’ » ’ ) A
21 0,0,3,3 (555373525)
10, 12,5, tet5, tet4, 0, 2 111.112.221 111.121.121
(355335553 (2351357253
(llll.lélé) 9, 20,6, tet4,pyrl3,2,3 25, 6,2, tetO,pril6, 1,1
353522525
11, 16,5, tet5, tet5, 0,0 (lll,llg,lgl) (;;;;z;.1§1)
@ 335235255 2452252352
(1122.2121) 10, 24,6, tet5, pyrll, 0,2 26, 7,3, tetl,pril6,0, 1
4,2 1,1,2,2 555573252
12, 16,5, tetd, tet5, 1,1 (112,221,221, (Lil.211.211,
555552552 245°334°352
(llll-zlil) 11, 24,6, teth5,pyrl2, 1,1 27, 8,3, tetl,pril7,0,0
33555252
13, 16,5, tet5, tet5, 3,3 (2LL.111.211, (L11.131.131,
_____________________ 4557222522 245352352
@ 12, 6,3, pril,pril, 2,2 28, 8,3, tetl,pril7,0,1
1111.1221
42 2,2,0,0 (337772333) (111,112,211 (11i,121.211)
14, 5,5, tetl, pyr3, 0, 1 245’224’33:4 245’252’33.4
13, 6,3, tetl,pri2, 0,1 29, 9,3, tetl,pri27,0,1
(1111.1221)
2555123332 (;12.112.111) (;;z lll.lll)
15, 4, 4, tet0, pyr5, 2, 1 445’224"23? 445’23?’32?
@ 14, 7,3, pril,pri2, 3, 3 30, 14,1, pri27, pri27,3,3
211,111,311 111,131,211
83 4,4,0,0 1111 41991 (155:352/553) (335:552:553)
(55437'53553) 15, 8,3, pri2,pri2, 2, 2 31, 10,3, tetl, pri28,0,1
1, 4,2, tetO,pyr3, 1,1
(111,121,211 (112,111,111
245’252’352 445232232
(12111.22111) 16, 5,4, tetO, pri3, 2,1 32, 14,1, pri26, pri29, 3, 3
3435533252
2, 12,4, tet4,pyr8, 0,1
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tetrahedra

pyramids

triangular prisms

2,1 0,0,0,0

3,2 1,0,0,1

4,2 1,1,2,2

53 2,1,0,0

6,3 2,2,1,1

(111,112.221y
255’235°53 2
11, 6, tetl, pyr7,1,3

,_.
o
ot
-+
@
-+
o
el
<
=
Tt
w
w

255’235°’523
12,6, tet2, pyr7,3,3

13,6, tet2, pyrg, 3,3

10,

11,

(111.212.321
255’355’355
13,6, tet3, pyr7,0, 2

o
- W
ot
w
V)
w

5V
- W
ot
w
ot
ot
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tetrahedra

pyramids

triangular prisms

1, 4,3, tetl, tetl, 1,1
9 (L111.1212)
22352325 (Lil.122.211 (Ll2,221.221)
2, 3,3, tet2, tet0,0,0 2555335232 555'552'552
0 @ 1, 5,4, tetO,pyr4,0,1 6, 12,5, tet3, pyr7, 1,1
(L111.1312)
2353'3523
3, 4,3, tet2,tetl, 0,0
111.122.311 111,211,211
(1i1l,2222) (2557555533 (35575227533
4, 4,3, tet, tet2, 1,1 2, 6,4, tetl, pyr4,0,1 7, 6,4, tetO,pril, 0,0
@ (llll~221§)
333573525
1 21 0,011
5, 6,4, tet3, tet2, 0, 2 (L11.112.131) (L1l,211.311
3352357332 2555522533
(llll,lQlé) 3, 8,5, tetl, pyr5,0,1 8, 7,4, tetl,pril, 0,0
35352525
6, 8,4, tet3,tet3, 0,0
@ (1iz2.2121)
55553252 (Lil112.231 (L11,311.311,
2 21 0,022 7, 8,4, tet3, tet3, 1,1 335'235'353 255533/533
4, 10,5, tet2, pyr8,2,3 9, &,4, tetl,pri2, 0,0
(111121&1)
335555252
8, 8,4, tet3,tet3, 3,3
_____________________ (lll 112 lél) (lll 112.112)
@ 335'235'255 335'235'325
11111 21&12) 5, 12,5, tet3, pyr6,0, 2 10, 16,5, tet3, pri5, 0, 1
3 42 2,2,0,0 23553'32523
1, 6,3, tet2, pyr3,0, 2
References

[1] E.M.Andreev, On convex polyhedra in Lobachevskii space, Math. USSR, Sbornik, 10 (1970), 413-440.

[2] A.Felikson, Coxeter decompositions of hyperbolic polygons. European J. of Combinatorics. 1998.

[3] A.Felikson, Coxeter decompositions of hyperbolic tetrahedra. Preprint,1998.

16




