THE VARIETY OF PAIRS OF NILPOTENT MATRICES
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JAN SCHROER

ABSTRACT. We solve a well-known problem of Kraft, the classification
of irreducible components of the variety

{(A, B) € Myn(k) x Mn(k) | AB= BA= A" = B" = 0}

1. INTRODUCTION

Let k be an algebraically closed field, and let M, (k) be the set of n x n
matrices with entries in k. The study of varieties given by matrices or pairs
of matrices, which satisfy certain relations, is a classical subject. One fun-
damental question is the decomposition of these varieties into irreducible
components. On the other hand, one is interested in classical groups oper-
ating on matrix varieties. For example, the variety

{A e My (k) | A" = 0}

of nilpotent n x n-matrices was studied by Gerstenhaber and Hesselink,
see [7] and [8]. They determined the orbit closures with respect to classical
groups acting via conjugation. This variety is irreducible of dimension n?—n.

Next, we look at the variety
{(A,B) € M, (k) x M, (k) | AB = BA =0}.

The group GL, (k) x GL,(k) is acting by simultaneous conjugation, that
is (91,92) - (A, B) = (g1A4g5 *,92Bg;*). By rk(M) we denote the rank of a
matrix M. One easily checks that there are only finitely many orbits with
respect to this operation. Determining the orbit closures is also straightfor-
ward. This yields that the irreducible components are

{(A, B) € My(k) x My(k) | AB = BA = 0,tk(A) < n — i,rk(B) < i}

for 0 < i < n. Each component has dimension n2.

The author received a one year Postdoctoral grant from the DAAD, Germany, for a
stay at the U.N.A.M. in Mexico City, where most of this work was done.
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Now, we take the product of the variety of nilpotent matrices with itself,
and intersect it with the variety of pairs of matrices annihilating each other.
In other words, we are interested in the variety

GP(n) = {(A, B) € Myp(k) x Myp(k) | AB = BA= A" = B" = 0}.

The reason for denoting this variety by GP(n) is the following: One can iden-
tify GP(n) with the variety of n-dimensional k[z,y]/(zy,z",y")-modules.
The indecomposable finite-dimensional modules over k[z, y]/(zy, ™, y™) were
classified by Gelfand and Ponomarev in [6], and their classification is used
throughout this article.

It is a well-known problem of Kraft to classify the irreducible components
of GP(n), see [9], p. 203, Problem 3. Our main result is the following.

Theorem 1.1. For n > 2 the irreducible components of GP(n) are
{(A, B) € GP(n) | rk(4) < n— i, 1k(B) < i}
for1 <i<n—1. Fach component has dimension n? —n+ 1.

In Section 2 we use Gelfand and Ponomarev’s classification of indecompos-
able k[z,y]/(zy,z",y™)-modules to show that the set

{(A, B) € GP(n) | tk(A) + 1k(B) = n}

is dense in GP(n).

Recently, Richmond introduced a new stratification of varieties of modules
over finite-dimensional algebras, see [13]. In Section 3 we show that this
stratification if finite for GP(n). Using our results from Section 2 and a
theorem of Richmond, we can control the closures of the strata yielding our
main result.

Acknowledgements. We thank R. Bautista, C. Geif}, L. Hille, C.M. Ringel
and D. Voessieck for interesting and helpful discussions.

2. GELFAND-PONOMAREV MODULES

2.1. Let A be a finite-dimensional k-algebra. Denote by mod4(n) the vari-
ety of n-dimensional A-modules. Recall that these are the k-algebra homo-
morphisms A — M, (k). For more details we refer to [5], [11] or the survey
articles [2] and [9]. Throughout, we use only the Zariski topology.

Let I' =Ty = k[z,y]/(zy, 29, y?) with ¢ > n and let M be in modr(n). The
map M +— (Mz, My) yields an isomorphism modr(n) — GP(n). In the
following we do not distinguish between these two varieties. Sometimes we
regard their points as modules and sometimes as pairs of matrices.



PAIRS OF NILPOTENT MATRICES ANNIHILATING EACH OTHER 3

Let G = GL,(k). The group G operates on modr(n) by simultaneous
conjugation, that is for an element g in G and (A4, B) in modr(n) we have
g-(A,B) = (gAg~t,gBg™'). We denote the G-orbit of M = (A, B) by
O(M). Recall that dim O(M) = n? — dim End(M). If the closure of an
orbit O(M) contains an orbit O(N), then we write M <go, N. The G-
orbits are in one to one correspondence with the isomorphism classes of
n-dimensional I'-modules. The classification of indecomposable I'-modules
is due to Gelfand and Ponomarev, see [6]. For convenience we recall their
result, using different notation which is more appropriate to our situation.

A word w of length I(w) = m > 1 is a sequence w = wy - -+ Wy, with w;
in {x,y} for all i.. The words w;---w; with 1 < i < j < m are called
subwords of w. A word w which does not contain x? or y¢ as a subword
is called a string. Let w = w;---wy, be a string. We define a I'-module
M(w) = (Mz, My) as follows. We fix a basis {21, - , z;,+1} and define two
linear maps Mz, My : k™1 — g+ by

w1 =z,2<1<m-+1;
otherwise

Mzx(z) = { Zifé

and

N oz w; =y, 1 <1< mg
My(z) = { 0 otherwise.
Additionally, we define a word e of length 0. We also call e a string and let
M (e) be the (unique) simple I'-module. Define we = ew = w and w’ = e
for all words w. Modules of the form M (w) for some string w are called
string modules.

A word which contains x and y as subwords is called mized. A word w is
periodic if it is mixed and w = wiw; for some word wy. A mixed string w is
called a band if it is not periodic. Let w = wy - - - w,, be a mixed string, let
[>1and for1 <i<llet\; € k*. We define a module M (w;A1,---,\) =

(Mz, My) as follows. Fix a basis {zi(j) |1<i<m,1<j<I}, and let

22@1 Cowim =2,2<i<m,1<j<l;
Ma(zl) = 0 G-D) A
)\jzm + Zm wmzﬁaZ:1’2§]§l’
0 : otherwise
and
Zzg—)l Pwp=y,l<i<m—-11<j<l
My(z9) = et wn=yi=mg =1
A G B e
J*1 2

otherwise.
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Observe that a module of the form M(w;A1,---,N\) = (Mz, My) always
has the property rk(Mz) + rk(My) = dim M (w; A1, -+, ).

If wis a band and A\; = X for all 4, then M (w; Ay, -+, ;) is called a band
module. In this case, we also write M (w, A, 1) instead of M (w;A1,---, \;).
It is useful to visualize modules M(w) or M (w;A1,---,A;) as weighted
graphs. Namely, let M = (Mx, My) be in modr(n) with basis {b1,--- ,b,}
and Mxz(b;) = 377_1 Aijbj and My(b;) = 377 pijbj for 1 <i < n. We define
a graph G(M) as follows. The vertices of G(M) are elements of {1,--- ,n},
and for each \;; # 0 or p;; # 0 we draw an arrow i — j with weight
(x, Aij) or (y, pij), respectively. If A;j =1 or p;; = 1, then we just draw an
arrow with weight = or y, respectively. For example, let w = zzyxy. Then

G(M (w)) looks as follows:
’yo\\y‘ %OY
70 [e] o

The graph G(M (w; A1, A2)) has the following form:

) x f
Y
o (y,Al) o T o
o= L o
o= x o

Let wy and we be mixed strings. We write wy ~ wy if w1 = ujue and we =
ugu for some strings uq and ug. Let B be the set of all bands. Note that
~ defines an equivalence relation on B. Let B., be a set of representatives
of equivalence classes of bands, and let & be the set of all strings. The
following theorem is proved in [6]. As a reference we also recommend the
generalizations in [3] or [16].

Theorem 2.1 (Gelfand, Ponomarev). The I'-modules
{Mw) |weSU{M(w,\I1)|weB.,l>1,\ek"}

are a complete set of representatives of isomorphism classes of indecompos-
able finite-dimensional I'-modules.
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Recall that according to the Theorem of Krull-Remak-Schmidt, each finite-
dimensional module over an algebra is a direct sum of indecomposable mod-
ules, and these are uniquely determined up to isomorphism.

2.2.  The following lemma is a direct consequence of the definition of string
and band modules and of the theorem of Gelfand and Ponomarev.

Lemma 2.2. Let M be in modr(n) and let s = n—rk(Mxz)—rk(My). Then
each direct sum decomposition of M into indecomposables contains exactly
s modules which are isomorphic to string modules.

Let M be an n-dimensional I'-module, which is isomorphic to

l m

D M(ui) & D M(wjs Ayjo- - - Mij5),

i=1 j=1

and let p = >>"" ; [;. The map

Ny G X (K*)P — modp(n)

with

I m
(9. (:uij)lgjgm,lﬁiglj) = g- (@ M (u;) @ @M(wj;/ilj, tee a,uljj))
i=1

=1

is a morphism of quasi-affine varieties. We denote the image of s by F(M).
By Chevalley’s Theorem we know that F (M) is constructible. We say that
F(M) is a p-parametric family.

Lemma 2.3. If a family F(M) is p-parametric, then F(M) has dimension
p+dim O(nar((pij)ij)) where (pij)ij € (K*)P with pairwise different p;;’s.

Proof.  In [10] the dimensions of homomorphism spaces between string
modules and band modules are computed. A special case can be found in
[4]. Note that string modules are a special kind of tree modules in the sense
of [4]. It follows that the orbits O(nar((1ij)ij)) with pairwise different ;s
are G-orbits of maximal dimension in F(M). The set of these orbits is
obviously dense. This yields the result. O

Lemma 2.4. Let w be a mized string. If A, # Apy1, then M(w; Ay, -+, )
is isomorphic to M(w; A1, -+, Ap) & M(w; Apg1,-- s Ap)-

Proof. Let {zgj) |1 <i<m,1<j<I} bethe basis of M(w; A, -+, N\) as
defined above. Assume A\, # \.;1 and define p = (A1 — \) . Without
loss of generality, we assume A\; = A, for all r +1 < i < [. The vectors

{ng) + ,uzz(s_l) |1 <i<m,r+1<s<I[} are then a basis of a submodule
isomorphic to M (w;Ay41,--+,;). On the other hand, {zi(s) |1 <i <
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m,1 < s < r} generates a submodule isomorphic to M (w; A1, - -+, A\). These
submodules have trivial intersection. This implies the result. [l

Corollary 2.5. If w is a mized string, then M(w;A1,---,N) is contained
in the closure of F(@L_; M(w;\;)).

Lemma 2.6. Let w = w1 ---wy, be a mized string with wj_1 # wj = wj41
for some j. Then the module M (e)®M (wy - - - wjwjyo - - - Wm; 1) is contained
in the closure of F(M (w; u)).

Proof.  Without loss of generality, assume w; = wjy1 = x. For pui,pus € k
we define an m-dimensional I-module M (puq, pu2) = (Mz, My) as follows.
Let {z1, -+, zm } be the basis of M (u1,us2). Let

Zic1 ot wimi=a,2<i<myi#Fj+1,j+2

Zm ¢ Wy =2,1=1;
Mz(z) = mzj+1+pezy @ i=7+2;
M1z 1= _7 + 1;
0 : otherwise

and

My(z;) =

21 Wy =Y, =Mm;

Zigr 2 wi=y,l1<i<m—1;
0 : otherwise.

If py1 is not zero, then one easily sees that M (uq, p2) is isomorphic to
M (w;u?). 1f po is not zero, but p; = 0, then M(uq,po) is isomorphic
to M(e) ® M (w1 ---wjwjqa- - Wm; i2). This finishes the proof. O

Lemma 2.7. Forn < q—1 let M be in mody(n) with tk(Mz) <n—s and
rk(My) < s for some 1 < s <n—1. Then M is contained in the closure of
some family F(N = @i~ M (w;; \;)) with tk(Nx) =n—s and rk(Ny) = s.

Proof. If tk(Mz) = n — s and rk(My) = s, then the statement follows
from Lemma 2.2 and Corollary 2.5. Without loss of generality, assume
rk(Mz) < n—s. Thus M is isomorphic to @~ M(w;) & C, where m > 1
and C is zero or a direct sum of band modules. If @;~; M(w;) = M(e),
then our lemma follows from Lemma 2.6. Thus assume that the length [ of
w1 - Wy, 18 at least two. Let dy, --- ,d,, be words of length one and define
w = widiwadsy - - - dpy—1Wmdm = f1--- fixm. Observe that this is a string
since n < g — 1. We choose the d;’s such that w # z!*™ and w # y!t™.
Now we define a I'-module N(\) = (Nz, Ny) as follows. As a basis we fix
{z1,**+ y2i4m}- For 1 <r <m —1 define i, =r+ > ;_; l(w;). Let

zic1 : fimi=2,2<i<l+m,i#1i, for all r;
N Azi—1 : fic1=2,2<i<l+m,i=1i, for some r;
Na(z) = Mjgm  dm=x,0=1;

0 : otherwise
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and
Ziv1 : fi=y, 1 <i<l+m—1,i#1, for all r;
N ) Az fi=y, 1 <i<Il+m—1,i=1, for some r;
Ny(z) = Az1 dm =y,i=1+m;
0 : otherwise.

Note that N(0) is isomorphic to @;~; M(w;). If X # 0, then N(A) is iso-
morphic to M (w; A™). The closure of F(M (w; p)) contains obviously N (0).
Note that we can choose the d;’s such that the rank conditions in our claim
are satisfied. This finishes the proof. O

As a main result of this section, we get the following.

Proposition 2.8. For 1 <i<n—1 the set
{(A, B) € GP(n) | k(4) < n — i,1k(B) < i}
s contained in the closure of

{(A, B) € GP(n) | tk(A) = n — i,1k(B) = i}.

3. RICHMOND’S STRATIFICATION

3.1. Let A be a finite-dimensional k-algebra of dimension d. For n > 1 let
Sa(n) be a set of representatives of isomorphism classes of submodules of
A™ which have dimension n(d — 1). For each L in S4(n) let moda(n) be
the points M in mod(n) such that there exists a short exact sequence

0—L—A"— M —0

of A-modules. Such a set is called a stratum. Note that mod4(n) is the
disjoint union of the mod 4(n)’s where L runs through S4(n). The following
two theorems can be found in [13], Theorems 2.6.2, 2.7.3 and 2.7.4.

Theorem 3.1 (Richmond). The set moda(n)r is irreducible and locally
closed in mod 4 (n) and has dimension dim Hom(L, A™) — dim End(L).

Theorem 3.2 (Richmond). Let L and L' be in Sa(n). If moda(n)r is
contained in the closure of moda(n)r, then L <geg L'. On the other hand,
if L <geg L' and dim Hom(L, A) = dim Hom(L', A), then moda(n)r is
contained in the closure of mod4(n)r.

In case Sa(n) is finite, then the closures of the strata, which are not con-
tained in the closures of other strata, are exactly the irreducible components
of mod4(n). Algebras where S4(n) is finite for every n are called subfinite,
see [13].
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3.2. Let M = @'_, M(w;) be a direct sum of string modules. We call M
biserial if w; = x%yb for all i and some a;,b; > 0.

For the rest of this section, let n > 2 and
I'= Fn+1 = k[x’y]/(xy’xn+l’yn+l)'

Note that the free I'module of rank 1, thus I' itself, is isomorphic to
M (z™y"™).

Lemma 3.3. The algebra I' is subfinite, and each submodule of any free
module I'™ s isomorphic to a biserial module.

Proof. The algebra I' belongs to the class of monomial algebras as defined
in [17]. If U is an m-dimensional submodule of a projective module over
I, then Uz(k™) N Uy(k™) = 0, see [17], Lemma 3. It follows from the
description of indecomposable I'-modules that the biserial modules are the
only modules which have this property. O

Lemma 3.4. If M is in modp(n)g, then L is isomorphic to a direct sum
of n indecomposable modules if and only if M is isomorphic to a direct sum
of band modules.

Proof. Let w = wy---w,, = x“lybl---x“Tbe with a;41,0; > 1 for 1 <
i <r—1and a;,b, > 0. The dimension of the top of M(w) is r. A
straightforward calculation shows that the kernel of the projective cover of
M (w) is isomorphic to M (z"~% =1 @ M (y" =01 @ @I_] M (z"—%+1yn=b),
Thus it has r 4+ 1 indecomposable direct summands. Next we assume that
w is mixed. Without loss of generality, let a;,b; > 1 for all 1 < ¢ < r.
The kernel U of the projective cover of M(wj;Aq,---,);) is isomorphic to
M (z" a1yt g @2t M (2= %+19y7=%)! Thus the dimension of the top
of M(w;A1,---, ;) and the number of indecomposable direct summands of
U coincide. This finishes the proof. O

Thus if a stratum modr(n)r contains a module M, which is a direct sum of
band modules, then it contains only modules which are isomorphic to direct
sums of band modules. Such strata are called string-free. A module L in
Sr(n) is called homogeneous if modp(n)y, is string-free. The next lemma is
a consequence of Proposition 2.8.

Lemma 3.5. The variety modr(n) is the union of the closures of the string-
free strata.

Let d = 2n + 1, the dimension of I'.

Lemma 3.6. The modules TP @& @F_; M(z%y") with p > 1, 1 < a;,b; <
n—1 and ¥ (a; + b;) = (2p — 1)n are exactly the homogeneous modules
in Sr(n).
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Proof. Note that the dimension of a module M (z%) is a + b+ 1. Oberve
also that a module M (z%y") with a =n and b < n, or a < n and b = n can
not be a submodule of some I'™. The condition >*_(a; + b;) = (2p — 1)n
ensures that the dimension of I"? @& @f_; M(2%y®) is n(d — 1). The
statement then follows from the proof of Lemma 3.4. O

For a homogeneous module L = TP ¢ @_, M(z%y%) in Sp(n) we have
P iai=(p—1)(n—1)+aforsome 1 <a<n—1. We call (p,a) the type
of L.

The modules in Sp(n) of the form
- p@M( n—1 n 1)p Q@M( a, n— 1)@M( n—1 b)

with p > 2 are denoted by L, ,). Note that L, .y has type (p, a) and observe

that b is uniquely determined by p and a. If a module L in Sr(n) is of type
(1,a), then define L(; 5y = L. Observe that this is well-defined.

Lemma 3.7. If a homogeneous module L in Sp(n) is of type (p,a), then
dim Hom(L,T') = n(d — 1) + p.

Proof. 1f X = M(z%®) and Y = M (2'y?) with a,b,i,j > 1, then
iti+l : a>ib>7;
dim Hom(X,Y)=¢ a+b+1 : a<ib<y;
i+b+1 : a>1,b<y.

This can be checked directly and follows also from [4] and [10]. Then the
lemma follows from the definition of Sp(n) and the definition of the type of
L. O

Next we study degenerations between modules in Sp(n).

Lemma 3.8. I[f0<a<i<nand0<b<j<n, then
M(a:iyb) &) M(xayj) <deg M(ﬂy]) &) M(:cayb).
Proof. One can construct a short exact sequence
0 — M(z'y)) — M(z'y") & M(z"y’) — M(z"y") — 0.
Thus the statement follows by [1], Lemma 1.1. O

Lemma 3.9. [f1<a<i<n-—1and0<b,j<n, then
M(z™y?) & M(a"1y’) aeg M(a'y’) & M(x"y).

Proof. Again, it is straightforward to construct a short exact sequence

0 — M(z"y") — M(a™y') & M(@"™y") — M('y’) — 0.
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Lemma 3.10. If L in Sp(n) is homogeneous of type (p,a), then we get
Lp,a) Sdeg L-

Proof. If p =1, then there is nothing to prove. Thus assume p > 2. Let
L=T""Pa@! | M(2%y") be in Sp(n). Assume that L is homogeneous of
type (p,a) and let m, = min{a; | 1 <i < p} and my, = min{b; | 1 < i < p}.
First assume that a, = m, and by = m, for some r # s. Applying Lemma,
3.9 several times we get L(pﬂ) <deg L. Next assume a, = m; and b, = m,,
for some r. Again, we use Lemma 3.9 and get

Iwnp@M(nlnl)p I@M( )SdegL-

Then the statement follows from applying Lemma 3.8 once. U

Corollary 3.11. If L in Sr(n) is homogeneous of type (p,a), then the stra-
tum modr(n)y, is contained in the closure of modr(n)L,, -
Proof. Let L be homogeneous of type (p,a). By the previous lemma
we get L, q) <deg L. It follows from Lemma 3.7 that the dimension of
Hom(L, ), T') and Hom(L,T') coincide. Now we apply the second part of
Richmond’s Theorem 3.2. O

Next we describe the generic structure of the modr(n)r, ,,’s. For L, 4) in

Sr(n) with p > 2 let G, ) = F(X) where

(p,a)

p—2
X = P M(zy; M) & M (" y; Ay 1) & M (x5 Ay).
i=1
For L1 4y € Sr(n) let G gy = F(M(z"~*y™"; A)). The next lemma is clear.
Lemma 3.12. For1 <i<n—1 we have
G(1,i) = {(A, B) € modr(n) | rk(A"") =1k(B") =1} = modr(n)r, , -

Lemma 3.13. The set G, q) is dense in modr(n)r, -
Proof. Let
L:L(p’) Iwnp@M(nlnl)pQ@M(anl)@M(nlb)

where p > 2. This impliesa =n —i+p —1 and b =i+ p — 1 for some
1<i<n-—1. From Lemma 3.7 we get

dim Hom(L,T') = n(d — 1) + p = 2n? + p.

Next we use the dimension formulas occuring in the proof of Lemma 3.7 and
get

dim End(L) = 2n3 — n® + n + np + p* — 2p.
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Theorem 3.1 yields

dim modr(n);, = n? —n —p? + 2p.
Now let
p_2 . .
X =@ M(zy; M) & M(a" Py 0, 1) & M(ay™ 7P
i=1

with pairwise different A;’s. Observe that X lies in modr(n)r. Using [10]
we get

dim End(X) = n +p® — p.
Thus by Lemma 2.3 we have
. 2 2
dim G, ) =n" —n —p° + 2p.

This implies that G, 5y is dense in modr(n)r. Finally, observe that the case
p = 1 is trivial, since G ,—s) = modr(n)r,, for all 1 <i <n—1. One

easily checks that the dimension of modp(n) is n? —n + 1. O

L)
Lemma 3.14. I[fa+i,b+ j <n, then

M (2" =M o) <aeg M(2y"5 A1) & M(z'y7; Mo).
Proof. Again, one constructs a short exact sequence

0 — M(z%"; \) — M (2T T X N\g) — M(z'y’; Ay) — 0.

O
We finally get our main result. For 1 <7 <n — 1 let C; be the closure of
{(A,B) € GP(n) | rk(A™™") = rk(B") = 1}.
Corollary 3.15. The sets C1,--- ,Cph—1 are the irreducible components of

GP(n). Each component has dimension n? —n + 1.

Proof. From Lemma 3.5 we know that the union of the string-free strata is
dense in modr(n). Corollary 3.11 yields that the union of the modr(n)r,, ,,’s
is dense. For each such modr(n) Lip.ay We defined a subset G, ;). By Lemma
3.13 we know that G, 4 is dense in modr(n)r,, . Finally, Lemma 3.14
yields that for p > 2 the set G, ,) is contained in the closure of G(,_1 4_1).
Thus the union of the strata modr(n)L(u) for 1 < i <n—1is dense in
modr(n). Since these n — 1 strata all have dimension n? —n + 1, we get that
their closures are the irreducible components of modyp(n). O
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Lemma 3.16. Let (A, B) be in GP(n). Ifrtk(A) > n—i or rk(B) > i, then
(A, B) is not contained in C;.

Proof. Let 1 < i < n—1. Since the function M — rk(M) is lower
semi-continuous, we know that

U = {(A,B) € C; | tk(A) > n — i} U{(A, B) € C; | tk(B) > i}

is open in C;. On the other hand, we know that G; ;) = modr(n)r, , is
non empty and open in C;. These sets have an empty intersection. Thus the
irreducibility of C; implies that U; is empty. (|

Corollary 3.17. For1 <i<n—1 we have
Ci={(A,B) € GP(n) | tk(A) < n —i,rk(B) <i}.

If mod4(n) is a variety of modules, then the union of G-orbits of maximal
dimension is called the open sheet of mod 4(n).

Corollary 3.18. The open sheet of GP(n) is dense in GP(n).
Proof.  Let M be in G, for some i. Recall that dim O(M) = n? —

dim End(M). Using [10] one shows that O(M) belongs to the open sheet of
GP(n). O

4. SOME REMARKS

4.1. Let Tg = k[x,y]/(zy, 2%, 9?). The irreducible components of modr, (n)
for any n are computed in [11]. The variety

modr, (6) = {(A, B) € Mg(k) x Mg(k) | AB=BA = A? = B?> =0}

has exactly three irreducible components. The closures of O(M (zy) &
M(zy)) and O(M ((yz) ® M (yx)) are both 24-dimensional irreducible com-
ponents. Note that the module M (xy) is projective and M (yz) is injective.
Additionally, the closure of the family F = F(M(zy, \1) & M(zy, \2) &
M (zy,A3)) is an irreducible component of dimension 27. Thus the variety
modr, (6) has irreducible components of different dimensions. Observe also
that F contains the set

{(A4, B) € modr, (6) | rk(A) = 3,rk(B) = 3},
but the closure of F does not contain

{(A, B) € modr, (6) | tk(A) < 3,1k(B) < 3}.
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4.2.  Gerstenhaber proved in [7] that the commuting variety
{(A, B) € My(k) x Mo(k) | AB = BA}

is irreducible, see also [12]. One might ask for the irreducible components
of the variety

{(A, B) € My(k) x My(k) | A = B" = 0, AB = BA).

In this case, the corresponding algebra k[x,y]/(z™, y™) is not subfinite. Thus
one can not use Richmond’s approach.

4.3. Richmond’s Theorem 3.2 gives some criteria when a stratum is con-
tained in the closure of another one. It is important to find a necessary and
sufficient condition. Maybe this would lead to a much shorter proof of our
main result.

4.4. Let @ be a quiver and p a set of relations in Q, for details see [15].
The associated algebra kQ/I (where kQ is the path algebra of @, and I is
the ideal generated by p) is called a string algebra if the following hold:

(1) Any vertex of @ is the starting point of at most two arrows and also
the endpoint of at most two arrows;

(2) The elements in p are zero relations;

(3) Given an arrow (3, there is at most one arrow o with o8 ¢ I and at
most one arrow v with 8y ¢ I;

(4) There exists some n such that each path of length greater than n
contains an element of p as a subpath.

Note that the algebra I'; = k[z, y]/(zy, x%, y?) is a string algebra. In this pa-
per we restricted our attention to the special case I'y, but one can prove that
all string algebras are subfinite. Thus one can use Richmond’s stratification
in this much more general setting. The indecomposable modules over string
algebras are also string modules or band modules. This generalization of [6]
was first proved in [16] and later revisited in [3], see also [14]. The varieties
of modules over string algebras provide many other interesting examples of
varieties, and it should be an important task to study them intensively.
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