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Abstract
We consider the local process level large deviations principle for the shape
of random Young diagrams with different distribution This is the survey of
the results which contained in three theorems, obtaining by the author

To the problem of establishing the process level large deviations principle
devoted a lot of recent works. Arising from the minimum action principle
in physics and from the large deviations problems in probability theory the
process level large deviations theory nowdays spread its influence to other
branches of mathematics such as number theory, theory of representations.
The detailed description of the large deviations theory can be found in
monographs [1], [2], [3]. The main idea of the process level large deviations
theory (LDP) in discrete space is as follows: for every natural n we have the
finite number of curves k, which for every n belong to the same metric space
L and we have some the distribution on the Borel ¢ — algebra on L. Then
we find the probability

Po(kn € By(c.y)),

where B, (e,y) = {z € L: p(z,y) < €} is the open ball of radius ¢ with the
center at y € L. Then the local LDP (LLDP) is the statement that there
exists functional I : L — [0, 00| and sequence A, — oo such that I # 0, 00

and P B
1) = — lim lim 2L2 0 € Bulery))

e—0 n—o0 A,

(1)

Roughly to say the last relation means that
P, (rn € Bu(e,y)) ~ e W),

In some cases it is possible to prove the global LDP (or simply LDP). It
establish the existence of the functional / : L — [0, 00| and the sequence



A, — oo such that I # 0, co and for the every Borel set B C L the following
relations are valid

In P,(k, € B) In P,(k, € B)

— inf [ < liminf <l
R IW) = Tt = s ey
yeEB

where B°, B is the open kernel and closure of the set B correspondingly.
Usually (2) follows from (1) and the exponential compactness of the distribution
P, on L. However in many cases P, does not satisfy the exponential
compactness, but (1) is still valid. Moreover we should like to mention the
interesting phenomena that the relation (1) has very weak dependence on
choice the metric on L. It means that (1) is true whith the same functional
for different metrics p on L. And usually the exponential compactness is
valid for given distribution P, only for one choosing of metrics on L.

Usually it is necessary to normalize (to scale) the linear sizes of the curves
Yn in order to make the proper definition of the set {x, : p(y,kn) < €},
where k,, is the scaled shape. In many cases the scailing factor follows from
the formulation of the problem and some intuitive considerations about the
behaviour of the asymptotics of the linear sizes of the curves k,. We will
show that in some cases it is necessary to scale the ‘time’ axis and the values
of the shape 7, in some cases by the same factor and in some cases by the
different factor. Moreover there exist examples (and we will introduce one
of them) when to obtain the proper solution it is necessary not to divide the
linear sizes by some factor ¢(n) but to make some nonlinear transformation
as taking log,,.

We should like to introduce here three examples of formulation of LLDP.
We will consider three different distributions on the set of Young diagrams
of weight n and we will consider L' spaces. In L' metrics the exponential
compactness is not valid and as we mentioned above the global LDP is not
valid in this case.

Let’s make some definitions. We remind that the Young diagram of weight
n is the diagram which we suppose is drawing in the positive quater of the
plane, such, that its shape is the piecewise constant nonincreasing functions
with integer lengths and heights of steps and area of this diagram is equal
to n. Without loosing of generality we suppose that the shapes of Young
diagrams are continuous from the right.



First consider the case, when the heights of the steps of the shapes take
values from the set A C {1,2,...} and the lengths of the steps take values
from the set B C {1,2,...}. In other words we consider the case when
the values of heights and lengths of the steps belong to some (in general
different) subsets of natural numbers. Then for given n we consider the
uniform distribution on the set of such diagrams of weight n. The proper
scailing in this case is to divide the linear sizes of the diagrams by /n.
Then the area of the diagrams become unit. We call the diagrams with
the corresponding restrictions the (A, B), — diagrams. Let’s define the set
C C L'([0,00)) of functions f such that for an arbitrary f € C' the following
conditions are true: ||f|| = 1, for every f € C there exists f = f a.s., such
that f > 0 and f is nonincreasing continuous from the right function.

Next we define the functional L(z) and the value L, as follows

Li(2) =  sup [ inf (hz +¢In <Z e—ih))

£<min{l,z} heR?! icA
+ inf <h+€1n (Zeih)ﬂ
heR! ieB
Ly = 2 [ hy(x)da, (3)
0

where hy(x) satisfies the equality

Z e*iCCE ZefihQ =1

€A i€B
and in turn the constant C' satisfies the relation
/Ooo ho(z)dz = C.
By the simple analytic considerations one can rewrite formula (3) as follows:
Li(z) = zh' (2) + h?(2),
where hl, h? satisfy the equality

Z e—hli Ze—hzi =1

ieA 1€B



and h'(z) satisfies the relation
dh?(hY)
dht

We also consider one additional property of the functions f € C. For an
arbitary 0 < x; < x5 < oo the following relation is valid

z=—

A A

I <M) S (4)

To — 1

From the definition of the set C' and (4) it follows that if [A| < oo, [B] < oo
then f is continuous and
. N i
min - < f'< max - a.s.
i€A, jEB ) i€A, jEB )

1

The following theorem is valid.

Theorem 1 For the sequence K, of the scaled shapes of the Young diagrams
the LLDP 1s valid with the rate function N satisfying the relation

N(y) — { fg,_ fooo Ll(_gl(aj))dajv ?Zj ; g (5)

Note 1. Values Lo and [;° L1(—9'(z))dz are symmetric under changing A <
B (it means only that we change the axis OX < OY).

Note 2. In the case of absence of any restrictions i.e. A=8B=1{1,2,...}
formula (5) reduces to the following relation

N(y) = { ZO\/% - I 1 () da. ?; ;g (6)

where H(§) = £Iné — (1 — &) In(1 — &) is the binary entropy. This result
was published in [4] [5], see also [9], where it was obtained using some other
method. The case when (6) is valid has transparent combinatorial structure.
For given continuous function y(z) we consider the partition of the interval
[a, b] into consecutive subintervals [a;, a;11] the maximal length of which tends
to zero. Consider the spline

Tr — a;
e(x) = y(al) + y(ai+1)’ T e [aia ai+1]a

Qj41 — G
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then ((z) — y(x) for every x € [a,b]. and the number of scaled shapes k,
such, that for all ¢

Kn(ai) — yla;)| < e (7)
is approximately equal to

( vn(y(a:) —y(b:)) )20(e)+o(ﬁ)
vi(y(ai) = y(ait1) + ai — a;) — 1
Then the rough logarithmic asymptotics of the number of the whole number

of shapes of diagrams for which for all i the relation (7) is valid approximate
the value

v nll <ﬁ<y<ai)¢—ﬁ;?g>_+y$ﬁ)— a;) - 1) ~ [ (1__ny,> de+Ole+oll).

Then we put a — 0; b — oo and obtain the rough logarithmic asymptotics of
the number of shapes x,, which belong to the e— neighborhood of the curve
y. To prove the Theorem 1 it is necessary instead of the simple combinatorial
arguments make the Cramer — type considerations about the probability of
large deviations of the sum of independent random variables taking values in
B and the numbers of these variables in the sum taking values from 1,2,... N
also randomly in such a way that if ;. &;,,....&, is such sequence, then
i;+1 —1; € A. The case when A = {1,2,...} was considered in [7].

It is interesting using functional N(y) and variational mathods find the
unique curve ¢ for which N(y) = 0. In the case of absence of the restrictions
(A= B=1{1,2,...}) such a curve was known long time ago. It satisfies the

relation
e um/V6 + e /e 1

and was obtained by using as we think less transparent method in the
work [10]. In the general case of an arbitrary A, B it is not possible to
write the equation for extremal of N(y) in such a compact form. It can be
written in the parametrical form and we omit here detailes.

In the above example we introduce the case when the functional N(y)
actually depends on ¢ and scailing of the diagrams is uniform (we divide the
linear sizes of the diagrams by factor \/n). In the next example we apply
the different scailing in OX and OY directions. Such different scailing used
before. More essential is that the functional N(y) in the following example
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depends only on y but not on ¢. This example is quite natural for those
who knows from physics that in general the action functional N(y) depends
at the same time on y and 7. It is so because the most evaluation in the
probability is delivered by the only one shape near the curve y and this shape
‘try’ to be constant on the as large as possible intervals.

Now we introduce the distribution (so called Bell distribution) on the set
of diagrams Y/,

n!

B, TTr—, (K!)ikdg !

where 75 is the number of columns of length 75 in the diagram Y;, and

1(Yn)

gl
e = k!
is the Bell number. This distribution is generated by the mapping ¢ :
{(k1, ke, ..., kn)} — Y, of the set of partitions of the set of n elements to the
set of Young diagrams and the uniform distribution on the set of partitions
{(k1, ko. ..., k,)}. This distribution is rather sensitive on the choosing of the
partition (ki, ks, ..., k,). This leads to the unusial for such kind of problems
dependens of the rate function N(y). Considering the same as before L' —
metrics we establish the LLDP in this case. To achieve the proper results
it is necessary to make the following scaling: we divide the linear sizes of
the Young diagrams of weight n in the OX direction by n/Inn and in the
OY direction by Inn. Once more the scaled Young diagrams have unit area.
As before we consider the special class of functions C; C L!([0,00)): y € (4
iff there exists § = y a.s. which is nonegative nonincreasing sunction and
|ly|| = 1. then the following theorem is valid.

Theorem 2 For the sequence of probabilistic spaces, described above the
LLDP is valid with A,, = n and the rate function N(y) satisfying the relation

fOOO(]-—i_y]ng_y)dma yecl;
N —
) { 3 Vel

In this problem functional N(y) depends on y, but not on ¢'. It is so because
the real evaluation to the probability P(p(y, k) < €) is from the most ‘heavy’
shape whose behaviour is to be piecewise constant with as long as possible
steps.



Note, that the unique curve g, such that N(y) = 0 (up to the choosing
values in the point of discontinuity) is the step function

|1, z€]0,1),
§(z) _{ 0, z¢10,1).

Next problem we introduce here is the problem of establishing LLDP for the
random shape of Young diagram with distribution

n!

po(Yn) = . ik
00 +1)...(0+n—1)TIr, ix! (%)

(8)

When 6 = 1 this distribution generated by the uniform distribution on the
symmetric group S, and mapping ¢ : S, — (ki,ks,...,k,). We establish
the proper LLDP in the case of slightly different distribution

o
pon(V) =[] ——— (9)
k=1 Tf-
In this case it is necessary to choose the special changing of scale. It
is not right way here to divide the linear sizes of the diagrams by the
fixed factor, but it is necessary to apply the logarithmic scale. Let’s make
some preliminary notes. Consider the sequence of Poisson random variables
Xntts Xntt41s -« > Xntz With Ex; = %, 6 > 0. Then paying into account
the Cramer — type considerations (see[11]) we can state the following large

t
deviations lemma for the sum x;,1, = 3.2 ., Xi/Inn

Lemma 1 The following relation is valid:

P o=
lim 1im WX =l <9 (blngw—b), (10)

e—0n—0o0 Inn

where b= a/(ty — t1) and a > 0.

Omitting the detailes of the proof of this lemma we note that the expression
in the rhs of relation (10) follows from the consideration that the moment
generating function of the sum yy,;, satisfies the following asymptotic relation

In BeMute = (e" —1) Y Q TR (e = 1) (ty — t1)0Inn. (11)

i=nt1



The rhs of (10) is the Legendre transform of the rhs of (11) (divided by Inn).

Next as before we define the ‘proper’ set Cy C L(]0,1]) in the following
way: y € Cy iff there exists § > 0 such that § = y a.s. and ¢ is nonincreasing
absolutely continuous bounded function. We will choose the following
scailing: we make the transformation x — log, = in the OX direction and
linear size in the OY direction we divide by (Inn)/0. Also let’s attract your
attention to the following property:

/01 (B)dn' ~ 0", n = oo, (12)

The relation (12) is equivalent to the condition that the initial (nonscaled)
Young diagram Y,, has the area equal to nf. It follows from the relation

)dz = 1 / tydnt ~ 13
| 9@y =1 n o~ (13)
where ¢ is the function y after back scaling. The last relation is local. It
means that it depends on behavour of function y only near the point ¢t = 1,
ie.

1 /1 n

Z t\dnt ~ —.
0 kay( Jn Inn

From here it follows that (1) = 0 and if there exists the derivation ¢'(1),
then §(t) = (#'(1) + 8)(t — 1), where 8=’ 0 and from the relation

9/ (7'(1) + B) t—1)nlnndtwli

nn

and the condition that the value  can be chosen an arbitrary small it follows
that §'(1) = —6. If there exists §'(1), then the conditions y(1) = 0,7/(1) = —0
are equivalent to (13).

Next if there exists at least one point x, € (0,1) such that g(x, — 0) —
J(x, +0) =7 >0 (we set §(0) = 5(0+0)), then

N(y) = oo.
Indeed in this case for some a;,b;, 0 < a; <z, <b; <1

Kn(@i) — kn(bi)| > — 2¢



and from (10) we have

lim lim lnP(’{n : Hn(ai) =X, |’{n(bz) - X + ’7| < 6)

e—0 —00 Inn
b 7—0
= —T bln§+9—b — —00,
b = l, T:bi—ai.
T

Because the last expression is the upper bound for the value —N(y) we have
N(y) = oco. Hence it is necessary to consider the function y such that g is
continuous. Moreover it can be shown that if § is not absolutely continuous
then also N(y) = oo (we omit detailes of the proof). At last if § = oo, then
N(y) = oo. So we propose for the functions y € Cy the condition § < oc.

Next theorem establish the LLDP for random Young diagram with the
distribution (9).

Theorem 3 There exists the following limit

lim lim PG,n(Hn S B(ya 6))
e—0 n—00 Inn

= —N(y),

where

/

- { B0 vecr

Probability Py .+s) generated by the distribution (8) and string n(1 + )
means that actually we consider Young diagrams of weight not only n but
the weights from the interval [n(1 — §),n(1 + )]

Note. We can rewrite

/01 (—@’m (—%) +e+g'> dt = —0 lh(p) n @ _ 11 |

1
Mm=—/pth
0
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