BLOCK REPRESENTATION TYPE OF REDUCED
ENVELOPING ALGEBRAS

TAIN GORDON AND ALEXANDER PREMET

ABSTRACT. Let K be an algebraically closed field of chracterictic p, G
a connected, reductive K-group, g = Lie(G), x € g* and U, the reduced
enveloping algebra of g associated with y. Assume that GW s simply-
connected, p is good for G and g has a non-degenerate G-invariant bi-
linear form. All blocks of U, having finite and tame representation type

are determined.

1. INTRODUCTION

Let G be a connected, reductive algebraic group over an algebraically
closed field of characteristic p and g = Lie(G). The Lie algebra g carries a
natural restriction map = — z[?!. We assume that the derived group GOV of
G is simply-connected, p is a good prime for the root system of GG, and g has
a non-degenerate G-invariant bilinear form. Given a linear function x € g*
we denote by U, (g) the reduced enveloping algebra of g associated with x.
Let x = xs + xn be the Jordan decomposition of y. We fix a triangular
decomposition g = n_ @ h @ ny and, without loss of generality, assume that
x vanishes on ny and xs vanishes on ny. Then the blocks By \ of Uy(g)
are parametrised by the set WA, /W where W = Ng()/Za(h) is the Weyl
group of g and A, is the set of all A € h* satisfying A\(h)? — A(hPP)) = x,(h)?
for all h € b, [3].

In this paper, we show that the rank variety of B, ) coincides with the
intersection of the rank variety of B,, » with the p-nilpotent cone of the
coadjoint stabiliser 34(x), see Theorem 4.2. This result implies that the rank
variety of Uy (g) is equal to the p-nilpotent cone of 34(x), hence generalises
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in our class of Lie algebras the main theorem of [35]. In proving Theorem
4.2 we use a deformation argument and some tools from [35]. In particular,
we employ the Mil'ner map 5 : U(g) — S(g) and its analogue 3, : Uy (g) —
Sy (g) constructed in [35].

According to [8], [10] the dimension of the rank variety of a finite di-
mensional By y-module M equals the rate of growth of a minimal projective
resolution of M. So Theorem 4.2 enables us to compute the maximum value
of the rate of growth of minimal projective resolutions in the category of
finite dimensional B, »-modules, hence provides valuable information on the
homological complexity of the blocks of U, (g), see our analysis in Section
8. Combined with the results of Section 3 on block degeneration and our
determination of partial coinvariant algebras of tame representation type in
Section 7 this information turns out to be almost sufficient for detecting all
blocks of U, (g) having finite and tame representation type. For G almost
simple and x nilpotent the only case where we have to look closely at the
basic algebra of B, ), apart from the relatively easy regular case, is the case
where x is subregular, G has type A,, and the stabiliser of A in W has type
A,—1 as a Coxeter group. This case, which came as a surprise, might have
been anticipated due to the fact that 0 is the subregular nilpotent element
in sly and the restricted enveloping algebra of sly is tame.

The subregular blocks B of type (A4, A,—1) are studied in detail in Section
9. It is shown there that any such B is Morita equivalent to a quiver with
relations of “special biserial type” hence tame. Notably the quiver of any
subregular tame block has the same shape as in the sly-case and n, the rank
of GU, appears in the relations only. It is known that any indecomposable
non-projective U] (sl2)-module is up to isomorphism either a Weyl module
or a dual Weyl module or a maximal submodule of a Weyl module, see [31].
It would be interesting to obtain a purely Lie theoretic description of all
indecomposable representations of the subregular tame blocks.

The classification of all blocks B,y of finite and tame representation type
is given in Theorems 5.2 and 5.3. This should be combined with Proposition
2.7.
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2. GENERALITIES

2.1. Let GG be a connected, reductive algebraic group over K, an alge-
braically closed field of characteristic p, and let g = Lie(G). We assume the
following hypotheses are satisfied:

(A) the derived group G of G is simply-connected;

(B) pis a good prime for G;

(C) g has a non-degenerate G-invariant bilinear form.

We will denote the bilinear form on g by
B(,):gxg— K.

Let T' be a maximal torus of G and let h = Lie(T). Let ® be the root system
of G with respect to T'. For each a € ® let U, denote the corresponding
root subgroup of G and let g, = Lie(U,) be its Lie algebra, a root subspace
of g. We will abuse notation by considering o € h* rather than its proper
designation da. Choose a system ®7 of positive roots and set n* equal to
the sum of all g, with o > 0. The subalgebra n~ is similarly defined on 7,

the negative roots. We have the triangular decomposition
g=n" ohont.

Let b = h & n*, the Lie algebra of a Borel subgroup of G containing 7.
Let A ={a1,...,a,} denote the simple roots associated with the choice of
positive roots ®+.

Let X = X(T) be the character group of T'. This contains the root lattice,
Q = 7Z®, as a subgroup. For a € ®T, there exists hy € [ga, g_o] such that
A ha) = (A, aY)(p) for all A € X(T). Let W be the Weyl group of G. Then
W is generated by the simple reflections s, for all & € A. There is an action
of W on both X(7T) and h*, given by s,(A\) = A — A(hq)a.

2.2.  We write g.x for the adjoint action of an element g € G on an element
xr € g. Similarly we will write g.x for the coadjoint action of G on g*,
defined by g.x(z) = x(¢7.z). Let 0 : g — g* send x € g to the functional
0(z) defined by 0(z)(y) = B(x,y) for all y € g. By Hypothesis (C) € is a
G-equivariant isomorphism.

Recall there is a Jordan decomposition in g: each element = € g can

be written uniquely as r = x5 + x, with x5 semisimple, z,, nilpotent and
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[s, 7] = 0. Given z € g we can always find g € G such that g.x € bt [2,
Proposition 14.25]. Let 34(x) = {y € g : [z,y] = 0} and Zg(z) = {g € G :
g.x = x}. If x is semisimple then Zg(x) is a connected, reductive algebraic
group satisfying Hypotheses (A), (B) and (C), and Lie(Zg(x)) = 34(x), [18,
Theorem 3.10], [40, 11.3.19] and [23, 6.5].

Using 0 we can transfer the Jordan decomposition to g*. In particular
any element of g* is conjugate to x € g* such that y(n*) = 0. For x € g*
let 3o(x) = {v € g x([g,9]) = 0} and Za(x) = {9 € G : g.x = g}. Then
Zg(x) = Za(0(x)) and j4(z) = 34(0(x)).

2.3.  Being the Lie algebra of G, g has a restriction map 2 — zl. The
p-centre Z, = K[zP — 2Pl : 2 € g is a central subalgebra of U = U(g), the
enveloping algebra of g. By the PBW theorem 7, is a polynomial ring in
dim g variables and U(g) is free over Z, of rank pme,

Given x € g* define I, as the ideal of U(g) generated by the elements
a? — zlPl — y(2)P for x € g. Set Uy = Uy (g) = U(g)/Iy, a reduced enveloping
algebra. This is an algebra of dimension p™8. As the isomorphism class of
Uy depends only on the G-orbit of x € g*, [23, 2.9], it suffices, by Section
2.2, to look at x satisfying x(n™) = 0. In this case if x = xs + Xxn is the
Jordan decomposition then, possibly after further conjugation, we also have

Xs(n7) =0 and x,(h) = 0 and so in particular we can consider s € h*.

2.4. Let x = xs + Xn € g* with x(n") = 0, and set
Ay, = {A € 5" 1 A(R)P — A(AIPl) = x4 (h)” for all b € b}

By Hypothesis (A) the elements h, for a simple are linearly independent,
S0, since h[(f] = hq, we can find p € Ag such that p(h,) = 1 for all simple
a. Fix once and for all such a p. Note that W acts on Ag. For each A € Ag
let W(A\) ={w € W : w(\) = A}, a parabolic subgroup, [28, Lemma 7]. In
general we will only be interested in A up to W-conjugacy so we may assume
without loss of generality that W ()\) is a standard parabolic subgroup, that

is it is generated by simple reflections.

2.5. For each A € A, one defines a baby Verma module

Zy(A) = Uyx(8) v, (6+) Kn—ps
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where b™ = n" @ § and K, _, is the one dimensional U, (b™)-module defined
by A — p. Every irreducible U, (g)-module is a factor of a baby Verma mod-
ule, although in general a baby Verma module can have several irreducible

images, and different choices of A can yield the same module [23, 6.7, 6.9)].

2.6. Let Z = Z(U(g)), Z1 = U(g)¢ C Z. By [28, Theorem 2] and [3,

Theorem 3.5] there is a K-algebra isomorphism
(1) 7 =27 ®anzl Zp.

We have a natural map Z ®z, K,, — U, sending z ® 1 to z + I,.. By [28,
Theorem 10] the primary components of Z®z, K, are labelled by elements
of the orbits of W on the set WA,,, denoted by WA,,/W. Thanks to (1)

we have an isomorphism
(2) zZ ®Zp KXS = Zl ®anZ1 KXS'

Let {e5 € Z; : A€ WA,,/W} be a set of elements such that {es®1: \e
WA, /W} correspond to a set of primitive idempotents of Z®z, K, under
(2). By [3, Theorem 3.18] the elements e5 + I, € U, give a complete list of
central primitive idempotents of U, as A runs through WA,,/W. In other

words we have a block decomposition of U, (g)

(3) U= €D Bl
AEW Ay /W
where B, 5(g) = e;Uy(g). By [23, 10.11] the baby Verma module Z,(})

belongs to B, 5(g) where ) is a representative for the orbit of .

Remarks. 1. The reference [3, Theorem 3.5] requires the assumption p # 2.
If p = 2 then the block decomposition of U, (g) remains valid thanks to
[15, Theorem 3.6]. Moreover, if G = SL,(K) or GL,(K) then [3, Theorem
3.5] continues to hold and the results of this section go through. Thanks to
Proposition 6.5 this is sufficient for our applications.

2. If no confusion can occur we will write B, y when really we mean BX;\(Q)

for some Lie algebra g and some representative X of the orbit of \ € Ay,

2.7. The following is an easy consequence of [42, Theorem 2] and [10,
Theorem 3.2].
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Proposition. Let x = xs+xn € g% and let W' be the Weyl group of Zg(xs).

Then there is a bijection
T WA /W — Ao/ W',
such that for any A € WA, /W we have an algebra isomorphism

Bx,/\(g) = Matpd (an,ﬂ'()\) (59(Xs))) s
where d = §(dim G.x,).

Proof. We may assume that x(n*t) = 0. Let &, = {a € ® : x5(ha) = 0}.
Then 34(x) is the algebra generated by h and the root spaces g, for a € ¢,
23, 7.4].

Choose an element v € A, such that v(h,) = 0 for all « € &,. We have
a W'-equivariant bijection between Ay and A,, sending p to g+ v. Thus
Ao /W' is isomorphic to WA, /W’. Moreover, the inclusion A,, — WA,
induces an isomorphism between WA, /W' and WA, /W. Combining
these isomorphisms yields 7~ 1.

By [42, Theorem 2] and [10, Theorem 3.2], there is an isomorphism

U (g) = Mat,a (Uy (34(xs))) -

Let o, be the winding automorphism of U(34(xs)) which sends h to h—v(h)
for h € h and is the identity on the root spaces of 34(xs). Then o, induces
an isomorphism between U, (34(xs)) and Uy (34(Xs)) which sends the baby
Verma module Z,,, (1) to Z,(pu + v). The proposition follows. O

Remarks. 1. Let N = {z € g : x nilpotent} be the nilpotent cone of g. The
image of N under 6 is the set {x € g* : x nilpotent}. We will denote this
by N also. Proposition 2.7 shows that it is sufficient to consider only blocks
By.a with x € N and X € Ag/W.

2. To ease notation we write A for the F,-space Ag. That is
A={xeh*: Ah)P = ARP) =0 for all X € p}.

It is clear that A is W-invariant.
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3. BLOCK DEGENERATION

3.1.  We intend to study the behaviour of B, ) as we vary x € N. Let
A : N X A — A be the projection map.

Lemma. The function ¢ : N x A — N defined by sending (x, A) to dim B, »

s constant on the fibres of my.

Proof. Let x(z) = B(z,e) for some e € N. There exists ¢/ € N such that
er =e+7e € N for all 7 € K and such that e; = e+ ¢’ is regular nilpotent,
[41, Section 5]. Let x, € g* be defined by x,(z) = B(z,e;). For A € A/W

the function
Ay : K — Maty(K)
sending 7 to the matrix of left multiplication in U, by e) is, by construction,
a morphism of varieties. Thus the set
Oy = {7 € K :rank A\(7) > rank A5 (0)}
is open and dense in K. Let O = [\ ¢y O By (3) the rank of A(7)
equals the dimension of B, ). We deduce that

O ={r e K:dimB,, y =dimB, ) for all A € A/W}.

Since the set of regular nilpotent elements, Nieg, is dense in N, we deduce
that ONMNeg is dense in O. The lemma now follows since the restriction of ¢
t0 Mg X A is constant along the fibres of 7y, see for example [3, Proposition
3.16]. O

3.2.  Werecall the following definitions from the theory of finite dimensional
algebras, [12] and [26, Chapter I1]. Let

Bil(n) = {bilinear maps m : K" x K" — K"} = A"
and
Alg(n) = {associative, bilinear m which have an identity} C Bil(n).

As discussed in [12] Alg(n) is an affine variety, locally closed in Bil(n).
The group GL(n) acts on Alg(n), the orbits being isomorphism classes of
n dimensional algebras. We let O4 denote the orbit in Alg(n) of algebras
isomorphic to A. We say that A’ is a degeneration of A if O C Oy, the

closure of Q4.
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Theorem. Let x,x' € N be such that x is in the closure of the orbit G.x'.
Then for any X € AJW the algebra B, x is a degeneration of By x.

Proof. Let d = pM™9 and let w1, ... ,wg be a free basis of the Zp-module U.
Then the cosets w; + I form a K-basis of U for all ¢ € g*.
Fix A€ A/W. Let uy,... ,u, € U be such that {eyu; + I, : 1 <i <r}is

a basis of By \. We have a morphism
G.x" — Mat,«q(K),

sending ¢ to M¢, the matrix expressing the elements eyu; + I in terms of
the basis elements {w; + I-}. The set

0/\ = {C S GXI : rankMC = r}

is a dense open subset of G.x’ and includes x. Now Lemma 2.1 says that
for all ¢ € O, the block B¢ ) has a basis {e u; + I : 1 < i < r} and so, by

definition, we have a morphism
Oy — Alg(r)
sending ¢ to B¢ x. Since G.x’ is open in its closure the theorem follows. O

3.3. A finite dimensional K-algebra A is said to have wild representation
type, or be wild for short, if for any finite dimensional K-algebra B, there is
a representation embedding of the module category of B into that of A, so
that A-mod contains B-mod although not necessarily as a full subcategory.
The algebra A has finite representation type or has finite type if it has finitely
many isomorphism classes of indecomposable modules. Finally, A has tame
representation type or is tame if it is neither wild nor of finite type.

Thanks to Theorem 3.2 we can compare the representation type of two

blocks.

Corollary. Let x,Xx' € N be such that x is in the closure of the orbit G.x'.
Let X e A/W.

1. If By A has finite representation type then Bys x has finite representation
type.
2. If B, has tame representation type then By x has either finite or tame

representation type.
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Proof. By Theorem 3.2 B,  is a degeneration of B,/ ). The first assertion
follows since the algebras in Alg(d) having finite representation type form
an open set, [12, Theorem 4.2]. The second assertion is a consequence of

the main result in [13] which states that a degeneration of a wild algebra is

wild. O

4. RANK VARIETIES
4.1. Let £ be a finite dimensional restricted Lie algebra over K and define
Ny(L) ={z e L: 2P =0},

a Zariski closed, conical subset of £, called the p-nilpotent cone of L. Let
M be a finite dimensional U¢(£)-module. We define the rank variety of M
to be

Ve(M) = {z € Np(L) : M|,y is not free}

where (z) denotes the subalgebra of U¢(L) generated by .

Let x € g* and A € WA,,/W. Let Si,...,S, be a list of the simple
By, x-modules (up to isomorphism). We define the rank variety of the block
B, to be

Vo(x: A) = [ Va(S:).
=1
By [10, Section 7] the rank variety of any B, -module is contained in
VQ(X7 )‘)

Remark. For GO of type A, the variety V4(0, A) is described in [22, Propo-
sition 2.6]. This is recently generalised to all types in [30, Theorem 6.1]

under the assumption that p > h, the Coxeter number.
4.2.  The rest of this section is devoted to a proof of the following result.
Theorem. Let x = x5+ Xxn € ¢° and X € WA, /W. Then

Va(x; A) = Vy(xs, A) Nag(x)-

Remark. 1f S1,...,S5; is a complete list of the simple Uy,-modules up to

isomorphism, we define
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Suppose x € N. By [20, Satz 2.14] we have V(0) = N,(g) so we deduce the

principal result of [35], namely

Vo(x) = Np(3g(x))-

Our class of Lie algebras, however, is smaller than that considered in [35]

(the latter includes for example sl,,(K)).

4.3.  We recall the Mil'ner map, introduced in [27]. The algebra U has a
natural increasing filtration {U*} where U* denotes the span of all products
of at most k elements of g.

Given a vector space V, we let S(V) be the symmetric algebra of V.
The algebra S(V) also has a natural increasing filtration {S<F(V)} where
S<F(V) denotes the sum of the homogeneous components S (V) with i < k.

Let z = (z1,... ,2,) € g. For I ={i; < ... <1} C{1,...,r} we set

Ty =T ... T €U. Let

gbr(g) = Zl‘[l ... T, € S(U),
where the summation runs through all decompositions

LU...Ul, ={1,...,r}

of {1,... ,7} into non-empty disjoint subsets. By [9, Section 1.1] there exists
a unique linear map ¢ : U — S(U) such that ¢(1) =1 and ¢(z1...2,) =
or((x1,... ,xp)) forall zy,... ,z, € g. Let m: U — g be an ad g-equivariant

projection, which exists by [35, Section 3.3]. This induces a map S(7) :
S(U) — S(g). Welet 5= S(m)o¢p:U — S(g).

Given x = xs + xn € g* let J, be the two-sided ideal of S(g) generated
by the elements 2 — x(x)?P for all x € g. We let S, = S(g)/Jy. There
is a natural action of g on S, induced by the adjoint action on g C S,.
The filtration {U*} (respectively {S<F(g)}) induces a natural increasing
filtration on U, (respectively Sy ).

Lemma. [35, Lemma 3.2] The map 5: U — S(g) induces a g-equivariant

filtration preserving isomorphism By : Uy, — Sy.
4.4. We define the map

Yx 1S — Sxs
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by sending x € g C Sy to x + xn(z) € S,,, and extending algebraically.
Since 34(x) C 34(xs) the map v, is a 34(x)-equivariant isomorphism. This
allows us to construct a 3 g(x)—equivariant isomorphism
by = ﬂ;j oYy 0 By 1 Uy — Uy,

4.5. It will be important for us to vary x. To this end we let ¢ be a
indeterminate. We define g; = g ®x KJ[t]. We can consider the alge-
bras Uy, +tyn (8t): Uye (8t), Syettxn (8) and Sy (g¢), all of which are free K[t]-
modules of rank p1™8, We define a map

/ng+tXn : st+txn (Qt) — st+txn (Elt),

which, for z1,... ,2, € g C g, sends z1...2, to Y w(zy)...w(xr,), where
the summation runs through all decompositions I1U. ..Ul of {1,... ,r} into
non-empty disjoint subsets, and is extended to Uy, 44y, (g¢) by K[t]-linearity.
As before, it can be shown that this is a gi-equivariant isomorphism of K[t]-

modules. Moreover, (., 1y, preserves the natural filtrations on Uy 14y, (9¢)

and SXs+tXn (gt)'
4.6.  Similarly we have a 34, (x)-equivariant isomorphism of K |t]-algebras

Yxsttxn | Oxs+txn (9¢) — Ss (9¢).

sending = € g C g; to  + txn(z) € Sy, (g¢). This allows us to construct a

3g: (x)-equivariant isomorphism of K[t]-modules

Oxsttxn = (ﬂxs);l © Vattxn © Bxattxn * Uxattxn (9¢) — Uy, (9¢)-

4.7. By definition we have that, as elements of S, (g:),

(Fxattxn  © Brattxn) (@10 21)
= Y (w(en) + txaln(zn) - - (w(zp, + txaln(zr,))),
for x1,... ,x, € g C g;. This expression is equal to
Bys(x1...2,) +t- (linear combination of y; ...yg with y; € g, and d < 7).

Since the Mil'ner map (8, ): is a filtration preserving isomorphism of K|t]-
modules we see that all y;...yy’s are contained in (By,):(Uy,(g:)%). We
deduce that the map ¢y 41y, : Uysttyn (8t) — Uy, (g¢) is such that

Grartxn(T1- 2p) = 21z mod Uy, (g))" ).
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4.8. It follows from [32, Theorem 2.5] that one can find a one-dimensional
torus h(7) in Zg(xs) such that h(7).x, = 7%x, for all 7 € K*. Since the
elements ey are G-invariant the isomorphism between U, and U, for g € G
restricts to an isomorphism between B, ) and B, x. In particular we can
find weight vectors for h(7), say u1,... ,u, € U, such that {e u; +I,, : 1 <
i < r} is a basis for By, . Arguing as in the proof of Theorem 3.2 we find
a dense open subset O of K such that {exu; + Iy ,qvy, : 1 <@ < 7r}isa
basis of By, 1uy,,a for all v € O. Conjugating by h(7) shows that the set
{exu; + I, : 1 <i <r}is a basis of B, .

4.9. For 1 <1i<r we have
¢xs+txn (BAUi) =e)u; +itmy; + t2m2’i + ...

where m;; € Uy, (g) C Uy,(ge). Let m\ : Uy, (g) = By, x be projection, a

g-invariant homomorphism. We find that
Ty O ¢Xs+tXn (e/\ui) = e)\u; + tnl,i + t2n2’i +...

where n;; = m\(m;,;). It follows that the matrix expressing my o ¢y tty, it

terms of the basis {eyu; : 1 <i < r} has the form

1+ taqq taio ce tay,
tasy 14+ tayy ... tas
Cr = '
ta,1 taro oo 14+tap,

for some a;; € K[t]. Thus, for almost all v € K, we have that det(C,)
is non-zero and, from 4.8, that {e u; + Iy 4y, : 1 < ¢ < 7} is a basis
of By, tvyn,n- Thus, for almost all v € K, restriction of ¢, 4.y, yields a

3a(Xs + vXn)-equivariant isomorphism
BX5+UXn7/\ - BX57/\'
In particular, for almost all v € K*, we have an equality

(4) Vzg (xstvxn) (Bxs ,>\) = Vzg (xs+vxn) (Bxs +vxn,>\) >

where B, \ and B, .y, » are modules for the adjoint action of the stabiliser

3g(Xs +vxn) = 3g(Xs) N3g(vxn) = 3g(X)-
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4.10. Let L = Zg(xs), a Levi subgroup of G, and Ni(34(x)) = {9 €
L : gz € 34(x) forall z € 34(x)}. Let N be the identity component of
Nr(39(x)). Recall that L, and hence N, acts on U,,. Moreover, if we decom-
pose Uy, as a direct sum of ad 34(x)-modules, say @M;, then by definition
N permutes the modules M;. Since, however, N is the minimal normal sub-
group of finite index in N7,(34(X)), we deduce by the Krull-Remak-Schmidt
theorem that N fixes the isomorphism class of the modules M;. This implies
that the rank variety of M; is N-invariant for any 3.

It can be deduced from [32, Theorem 2.5], that given v € K* there exists
g € N such that g.x = xs +vxn- As a result we deduce from the above that

() Voo B = 4d(9) (Vigo(Bi)) = Vigteronen) Bt

4.11. By [34, Theorem 1.1] and [35, Theorem 2.4] we have that for any
Uy-module M, V(M) C 34(x). Since V; () (M) = 34(x) N Vy(M) for any
U,-module M, we deduce that

(6) Va(x, A) € 3g(x)-
4.12.  Arguing as in [35, Proposition 2.2] we have

(7) VB(Xv A) = Vg(Bx,/\)-

The required equality Vg(x, A) = Vg(xs: A) N3g(x) now follows by combining

(7), (6), (5) and (4).

5. REPRESENTATION TYPE

5.1.  We come to the description of the representation type of a block,
B, x, of the reduced enveloping algebra U,. By Proposition 2.7 we can
assume without loss of generality that y is nilpotent and A € A/W. Let
G1,... ,Gy, be the simple (simply-connected) normal subgroups of GW and
let g’ = LieGM and gj = LieGj for 1 < j < m. Let e = 6~ (x) be the
nilpotent element in g corresponding to x. By [33, Section 2.9] e € ¢’ so
we can decompose x = X1 + ...+ Xm Where x; € g;f is the restriction of
X to g;. The Weyl group W can be identified with Wy x --- x W), where
W; is the Weyl group of G;. Under this identification W () decomposes as
Wi(A) x -« x Wi (X) for any A € A. We will retain this notation throughout

this section.



14 IAIN GORDON AND ALEXANDER PREMET

5.2.  We first classify the blocks of finite representation type, completing
work begun in [29].

Theorem. Recall the notation of 5.1. Let x € N and A\ € A/W. Then the
block By, ) has finite representation type if and only if one of the following
0CCurTs.
L. W\ =W.
2. There exists an integer j, 1 < j < m, such that x; is reqular, W;(\) =
W; for i #£ j and one of the following conditions holds:
(a) Wj is of type Ay, and W;(X) is of type Ap—1;
(b) W;j is of type By, (or Cy,) and W;(X) is of type By,—1 (or Cp—_1);
(c) Wj is of type Ga and W;(X) is of type Aj.
(Here we take Ag = () and By = A;.)

5.3.  We come to the classification of blocks of tame representation type.

Theorem. Recall the notation of 5.1. Let x € N and X € A/W. The block
B, has tame representation type if and only if one of the following occurs.
1. There exists j, 1 < j < m, such that x; is reqular, W;(X) = W; for
1 % j and one of the following holds:
(a) W; has rank 2;
(b) W;j is of type Az and W;(X) is of type A1 x Ay;
(c) Wj is of type Bz (or C3) and W;(X) has type Ag;
(d) W;j is of type Dy, and W;(X) is of type Dp_1.

2. There exists j, 1 < j <'m, such that x; is subregular, W;(X) = W; for
i # 3, Wj is of type Ay, and W;(X) is of type Ap_1.

3. There exists ji,72, 1 < j1 < jo < m, such that both x;, and x;, are
reqular, Wi(A) = W; for i # ji,jo and W, x W, is of type Ay x A;
whilst Wi, (A) x Wj,(X) is trivial.

(Here we take Ag = and D3 = As.)

5.4. Finally, we describe the representation type of a reduced enveloping

algebra U,,.

Theorem. Let xy € N.

1. The algebra Uy, has finite representation type if x is reqular and one of
the following holds:
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(e) p=5 and W has type Gs.

2. The algebra U, has tame representation type if one of the following
holds:
(a) x =0 and W has type Aq;

3. In all other cases U, has wild representation type.

Remark. In [35, Proposition 5.2] a list of possible tame U, was given. This
list, however, was incomplete and should have also included case 2(f) above.
(Indeed the proof of [35, Proposition 5.2] should be adjusted on p.278, line 7
from “If the number of blocks is > 1 ...” to “If the number of blocks of size
> 14s > 1 ...”. Then one must consider Ay and Az with y subregular and
p = 2. A calculation shows that the support variety in the A3 case is three
dimensional, implying wildness.) Of course, Part 2 of the above theorem

refines the (corrected) list in [35, Proposition 5.2].

5.5.  Theorem 5.2 will be proved in 8.16 and Theorem 5.4 in 8.18. Most of

the rest of the paper is concerned with proving Theorem 5.3.

6. A REDUCTION

6.1. Let G be the derived subgroup of G and let g’ = Lie(G())). Then
go C ¢ for all @« € ®. Let Gy,...,G,, be the simple (simply-connected)
normal subgroups of G and let g; = Lie(G;) for 1 < i < m. Then
01D...0g;, =g Cgand[g,g] =0if i #j.
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For 1 < i < m, define G; by setting

o GL(V;), if G; 2 SL(V;) and p|dim V},

G, otherwise.

Put G = Gy X -+ X G, §; = Lie(G;) and g = Lie(G). We have § =
91D - D gm and either g; = g; or g; = sl(V;) and g; = gl(V;) and p| dim V;.

We identify each g; with an ideal of codimension at most one in g;.

6.2. Recall a restricted Lie algebra is called toral if it has a basis consisting
of toral elements, that is a basis consisting of elements which satisfy ¢! = ¢.
Thanks to [35, Lemma 4.1] there is a toral Lie algebra ty and an embedding

of restricted Lie algebras
7/] g g @ th

such that 9(g;) = g; € § and 1(h) C h P to, where b is a Cartan subalgebra
of § satisfying hNg’ =hNg. Set §=§®ty and h = h B .

Lemma. There exists a toral subalgebra t; C 6 such that § = g® t; and
[t1,8] = 0.

Proof. Let ¢ denote the centraliser of g’ in g. Since g’ is invariant under the
adjoint action of G(M) so is ¢. Now g, C g’ for any root o and [ga, g—a] 3
ha # 0. Therefore the maximal torus 7' N GW of G acts trivially on ¢
implying ¢ C 6 Since g = 6—{—9’ and 6 is abelian we deduce that ¢ is a central
toral subalgebra of §. Let ¢'" denote the F,-subspace of toral elements of c.
Identify b with 1(h) C h. Let h € b and let a; = o;(h) where 1 < i < n.
Let e1q,; be root vectors such that [eq,,e—q,] = hq,. It follows from the
T-invariance of B that B(eqs,;,e_qa;) # 0. Since hq,, ... , hqa, € h are linearly
independent and the restriction of B to b is non-degenerate there is h € b
such that B(ha,,h) = a;B(eq,;,e_q,;) for all i. By the g-invariance of B,

aiB(eaia e*ai) - B([eawefai]v h) - B(e*ai? [ha eai]) - O‘i(h)B(eaw B*Dti)

yielding «;(h) = a; for all i. As a consequence, h — h centralises the Lie
subalgebra generated by all e4,,. The latter coincides with g’, because GO
is simply-connected, see [25, 1.2] for example. Thus for any h € b there
is h € b such that h — h € ¢. In other words § = ¢+ g. Now ¢ g is a

restricted subalgebra of ¢ hence is spanned by its Fy-subspace (¢ N g)'" of
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toral elements. The latter has a complement in ¢**, say t!°*. The K-span

t; of ti is a central toral subalgebra of g satisfying g = g @ t;. O

6.3. Let Ty be an algebraic torus over K such that ty = Lie(7j) and let
T = T x Ty be a maximal torus of G x Ty such that b = Lie(T). There is
a decomposition T = T} x - x T}, where T; is a maximal torus of éj for
1 <j<m. Let h; = Lie(T}) for 1 < j < m. Define

A={xep*: Ah)? = AP =0 for all h e h}.

Any element of A can be uniquely decomposed into (Ayei s Amy o) €07 @
... @b, @ t;. There is an isomorphism between W, the Weyl group of G
with respect to T or of G x Ty with respect to T, and W7 x -« x W, where
W; is the Weyl group of C~¥j with respect to T} for 1 < j < m. Under this
isomorphism W ()) is identified with Wy(A\1) x -+ X W, (A\p).

6.4. Since ¢ : h — 6 is an embedding of restricted Lie algebras the in-
duced map ¥* : 6* — Bh* is surjective and sends A onto A. Recall that g’
contains all root spaces of g. Therefore we can consider any root a as an

element of h* and as an element of 6* We have
P (5aA) = (A = AM¢p(ha))a) = P(A) = 7 (A) (ha)a = sa(7X),
showing that ¢* is W-equivariant. Hence we have a surjective map
7 AJW — AJW.

Given ¢ € g* we denote by ¢ the functional on § whose restriction to g
(respectively to t;) equals £ (respectively 0). If ¢ vanishes on b™ then ¢

vanishes on 6 + b™. In particular, f is nilpotent in this case.

Lemma. Keep the above notation and suppose that x vanishes on b*. Let

A€ f\/W Then there is an isomorphism of algebras
(8) By a(8) = By =1 (9)-

Proof. Since h = h ® t; each p € A decomposes into (V*u,p1) € b* @ .
Clearly A;(h)? = A1 (hP)) for all h € t;. Let Ky, denote the one-dimensional
Up(t;)-module corresponding to A;. Thanks to Lemma 6.2 and the PBW

theorem there exists an algebra isomorphism

¢ 1 Ug(8) — Uy(g) ® Uo(tr)



18 IAIN GORDON AND ALEXANDER PREMET

such that ¢(u) = v ® 1 for any u € U,(g) C Uy(g). Since Up(t) is a
commutative semisimple algebra there is a primitive idempotent e € Up(t;)

such that e(Ky,) # 0 and

¢(B)2,/\(g)) = Bx,u(g) ®e= BX,TK‘(V) (g)

for some v € A/ W. It is straightforward to see that ¢ sends the U, (g) ®
Up(t1)-module Z,(¢¥*\) ® Ky, to the baby Verma module Zy()). It fol-
lows that B, ()
required. O

acts non-trivially on Z, (¢*A). Therefore n(v) = 7(\) as

6.5. Let x be as above an define x; = X|5,. Since g = g1 ® ... ® gm D to We

have

Bya(@) = By, 2, (81) © -+ @ By, 2, (8m) @ Bo g (to)-

Since ty is toral By ), (to) = K. Combining this with 6.3 and Lemma 6.4 we

have the following result.

Proposition. Keep the above notation. There is an isomorphism of alge-

bras

BXl)\l (gl) Q- ® BXm)\m (gm) = BX,TF(/\) (g)u

such that x = x1+ ...+ Xm (considered as functionals on g') and W(\) =
Wi(A1) X o X Wi(Ap)-

7. REGULAR ALGEBRAS

7.1.  We assume throughout this section that G = G and GV is simple.
We determine the representation type of the blocks B, ) for x € g* regular
nilpotent and A € A/W. Thanks to [28, Theorem 12| and [3, Proposition

3.16] the block B, , is Morita equivalent to the partial coinvariant algebra
9) Cr=SH)" N @gpw K,

where W () is defined as in 2.4. So we only need to calculate the repre-
sentation type of Cy. If p = 2 then g = sl(V) (respectively g = gl(V)) if
dim V' is odd (respectively even). It is straightforward to check that in these

situations the same analysis applies.
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7.2. The partial coinvariant algebras of finite representation type are de-

scribed in [3, Corollary 3.19]. They are as follows.

Theorem. Let A € A/W. The algebra C has finite representation type if
and only if one of the following cases occurs:

LW =W ;

2. W is of type Ay, and W (A) is of type Ap—1;

3. W is of type By, (or Cy) and W () is of type Bp—1 (or Cp—1) ;

4. W is of type Go and W () is of type A;.
In all these cases O\ = K[X]/(X") where r = [W : W()\)].

7.3.  We spend the rest of the section proving the following result.

Theorem. Let A € A/W. The algebra C has tame representation type if

and only if one of the following cases occurs:

1. W has rank 2 and W(\) =1 ;

2. W is of type As and W () is of type A1 X Ay;

3. W is of type Bs (or C3) and W () is of type As;
4. W is of type Dy, and W () is of type Dy_1.

We prove this by case-by-case analysis after making several general ob-

servations and simplifications.

7.4. Let A € A/W. By [3, 3.8] the partial coinvariant algebra C) is a
local, symmetric, commutative algebra of dimension [WW : W(X)]. Let W)y
be the subset of W consisting of minimal length coset representatives for
the subgroup W () in W, [17, 1.10]. It is shown in [3, Lemma 3.19] that C

admits a N-grading such that its Poincaré series is

(10) P(Cyt) = Y t'™.

weWy
7.5. Tame, local, symmetric, commutative algebras are classified in [5,
Theorem I11.1] (the proof follows the ideas in [37]). They have the form
K[X,Y]/I where I is an ideal of the following type:

1. I=(X"—-Y" XY) where m >n > 2 and m +n > 4;
2. I =(X2Y?);
3. I =(X2Y%2 - XY) where char K = 2.
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In particular any algebra with minimal number of generators greater than

two is wild. Note that the first type of algebra has dimension m + n > 4.

7.6.  As a consequence of 7.4 and 7.5 if A € A/W is such that C) is tame
then the rank of W and the rank of W(\) as Coxeter groups must differ by
either one or two. Indeed, if the ranks differ by more than two then C' has

at least three generators by (10), implying wildness.

7.7. The following lemma gives a useful criterion for the wildness of a

partial coinvariant algebra.
Lemma. Suppose A € A/W is such that
P(Cyx,t) = (14t + ...+ ) + 20t 4 £72) 4 " HIN[t],
for some i > 1, or
P(Cy,t) =1+t + 3t + N[t].
Then C, is wild.

Proof. Since C'y is local it admits a minimal generating set consisting of
elements homogeneous with respect to the grading of 7.4.

We consider the first Poincaré series. We have a generator X in degree
one. If Y is a new generator in degree j < i then X7 = 0. Therefore
the algebra generated by X and Y has only one dimensional homogeneous
components. Since dim(C));+1 > 2 we deduce that C) requires a third
generator, implying wildness. Similarly if X! = 0 or X**2 = 0 then C)
requires at least three generators, so is wild.

Assume X2 £ 0. Let Y be any element in (Cy);1, linearly independent
from X?*1. Then, since i > 1, either C'\ requires a third generator in degree
i+ 2, implying wildness, or X**? and XY are linearly independent. In this
last situation the non-vanishing of XY implies that C'y cannot be an algebra
of Type 7.5.1. Since dim C'y > 4 we deduce from 7.5 that C) is indeed wild.

For the second Poincaré series we need a generator in degree one and at

least two new generators in degree two, implying wildness. U
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7.8.  We also have a sufficient criterion for the tameness of a partial coin-

variant algebra.

Lemma. Let A € A/W be such that Cy is generated in degree one with

Poincaré series
P(Cy\t) =142t + 12+ ...+ " 1) 417,

for some r > 3. Assume that the unique quadratic relation in C) is square-

free. Then C'y is tame.

Proof. Since the quadratic relation in C) is square-free we can find linearly
independent elements X,Y € (C)); such that XY = 0. By hypothesis
these elements generate Cy. We deduce from the Poincaré series that the
elements X* and Y’ for 1 < i < r — 1 are linearly independent. Since
dim(Cy), = 1 we see that X" and Y" are linearly dependent. Therefore
either exactly one of X", Y is zero or 0 # X" = ¢Y" for some ¢ € K*. If
X" = 0 (respectively Y” = 0) then both X"~! (respectively Y"~1) and Y
(respectively X") belong to the socle of C, contradicting symmetry. So,
possibly after rescaling, we have an algebra isomorphism

K[X.,Y]

o) i ot R
AT XY, X — YT

implying that C' has tame representation type, by 7.5. O

7.9. Let A € A/W be such that the rank of W (\) is two less than the rank
of W. Consider the following part of a Dynkin diagram

Here (and for the rest of this section) the coloured nodes indicate the simple
reflections of W not contained in W(\). Using the grading from (10) we
see that C'y has two elements of degree one, namely those corresponding to
si+1 and s;12, and at least three elements of degree two, corresponding to
SiSit+1s Sixt1Si+2 and s;108,11. It follows from Lemma 7.7 that C) is wild in
this case.

Now consider the following diagram
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By (10) the algebra C) has two elements of degree one, corresponding to s;
and s;j;1, and at least three of degree two, corresponding to s;s;ji1, Siy15;

and s;s;41. It follows from Lemma 7.7 that C is wild.

7.10. So, in the case W () has rank two less than W, the only possibility
for C) to be tame is if W has rank two, so is one of Ay, By or (G3. In case
As (respectively By and G3) a straightforward calculation shows that the
hypotheses of Lemma 7.8 are satisfied with » = 3 (respectively r = 4 and

r = 6) and hence C) is tame.

7.11. Type A,. Assume that the rank of W(\) is one less than the rank
of W. We know by Theorem 7.2.2 that if W(\) has type A,_1 then C) has

finite representation type. Suppose we have the following diagram,

(]_1) +-+0 O [ ] Q+--

Then C) has a unique element of degree one corresponding to s;y2, whilst
there are two elements of degree two corresponding to s;415;12 and s;438;42.
In degree three we have at least the elements corresponding to s;s;+15;42

and s;418;438;+2, S0 C) is wild by Lemma 7.7.

7.12.  'We have only the following case to consider in type As,

e} [ ] o}

Here C' is isomorphic to the algebra with generators A = X7 + X5, B =
X3+ Xy, C = XX and D = X3X, subject to the relations A + B = 0,
AB+C+ D =0, AD+ BC =0 and CD = 0. This is a six-dimensional
algebra. Calculation shows that this algebra is generated by X = A and
Y = A% — 2C and that XY = 0 and X* = Y2. We deduce that C) is
isomorphic to the algebra K[X,Y]/(X*—Y?2,XY) of Type 7.5.1, and hence

tame.

7.13. Types B,, and C,,. We assume that W () has rank one less than .
If W(X) has type By,—1 (or C,,_1) then we know by Theorem 7.2.3 that C)

has finite representation type. Consider the following diagram,

(¢]

(12) -.-0

Then C'\ has one element of degree one corresponding to s;+1, two ele-

ments of degree two corresponding to s;s;41 and s;118;49 and elements of
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degree three corresponding to s;125;8;+1 and at least one of s;438;128;41 or
Si+18i+28i+1 (which occurs if i = n — 2). Therefore C) is wild by Lemma
7.7.

Consider the following diagram

Then C'y has one element of degree one corresponding to s,, and one element
of degree two corresponding to s,_15,. In degree three we have the elements
corresponding to s,,_28,_1S, and s,,$,_1S,, whilst in degree four we have the
elements corresponding to S,,_358,,_95,_15, and S;,_28,8,_15,. This implies
that C) is wild by Lemma 7.7.

7.14. The only remaining case is the following diagram,

In this case it can be checked that C) is the algebra generated by elements
A=X1+ Xo+ X3, B=X1Xo+ X1 X3+ X9X3 and C = X; X2 X3 subject
to the relations induced by X? + X3 + X2 = 0, X? X3 + X? X2 + X3X2 =0
and X 12X22X§ = 0. This is an eight dimensional algebra. Calculation shows
that A2 = 2B and B? = 2AC and A* = 8AC and C? = 0. This implies
that A7 = 0. Since charK # 2 (this is a bad prime) we deduce that C is a
quotient of K[A,C]/(A7,C?, A* — 8AC). Making the substitution X = nA
and Y = A% — 8C we find that Cy is the algebra K[X,Y]/(X% — Y2 XY)
of Type 7.5.1, and so tame.

7.15. Type D,,. We assume that the rank of W () is one less than the rank
of W. Consider the following diagram

(13) .

o -

In degree one (respectively two) C) has a unique element corresponding

to s, (respectively s,_9s,). In degree three it has elements corresponding
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t0 Sp_18n_28n, and s, 38, _95,, whilst in degree four it has elements corre-
sponding to $,_3S,_1Sp—25, and S;,_48,_35,_25,. This implies that C) is
wild by Lemma 7.7.

Consider the following diagram,

(14) o

Then C'y has an element in degree one corresponding to s,_s whilst in degree
two we have elements corresponding to $,S,_92, Spn_1Sn—2 and S,_3S,_o.
Therefore C'y is wild by Lemma 7.7.

7.16. Thanks to (11) the only remaining case is the following diagram,

Let 0; € K[X1,... X, (respectively o/ € K[Xa,...,X,]) be the i elemen-
tary symmetric polynomial in n (respectively n—1) variables. Then the alge-
bra Cl, is generated by the polynomials X1, o/(X3,... , X2) for 1 <i <n—2
and Xs...X, subject to the relations induced by o;(X%,...,X2) = 0 for
1<i<n-1and X;...X,, = 0. This is a 2n dimensional algebra. Let
A=X; and B = X5...X,. The formula

Ui(X127 SR an) = Xlzagfl(Xga e 7X1%) + a;(X227 s 7X72L):
shows by induction that A and B generate this algebra. In fact we find that

ol = (—A?)" for 1 <i <n—1. It follows that B> = (—A?)""! and it is clear
that AB = 0. Thus C, is a tame algebra of Type 7.5.1.
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7.17. Type E. We assume that the rank of W () is one less than the rank
of W. Consider the following diagram,

(e]

@ - e} le) Q-

Arguing as in the previous subsections we find that Cy has a Poincaré series
of the form described in Lemma 7.7, and is therefore wild. Other possibilities
for diagrams are dealt with in (11), (13) and (14).

7.18. Type Fj. Suppose the rank of W () is three. Consider the following

diagram

Then in degrees one, two and three respectively C) has elements corre-
sponding to s1, sos1 and sgsosy respectively, whilst in degree four we have
elements corresponding to s9s38981 and s4838281. In degree five C) has ele-
ments corresponding to s159538081 and s954838281. It follows from Lemma
7.7 that C) is wild. The case (12) finishes type Fy, and therefore the proof
of Theorem 7.3.

8. COMPLEXITY

8.1.  The purpose of this section is to find a necessary condition on x € g*
and A € A/W for B, ) to be tame, and to prove Theorems 5.2 and 5.4 (we
continue assuming that x vanishes on b*). Our principal tools will be the

results of Sections 3 and 4.

8.2.  We assume until 8.14 that G = G and that GU) is simple. In the next
lemma we do not assume that the parabolic subgroup W (\) is standard in
w.

Lemma. Let A € A/W.

1. Suppose that W () does not contain simple reflections Si(1)s- -+ » Si(d)
such that i(j) and i(k) are not adjacent on the Dynkin diagram of A
for j # k. Then G.(ea;) + -+ €ayq) C Vg(0,A).

2. If W(X) # W then G.eq C Vy4(0,X) for some short root o € A.
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Proof. 1. There exists v € X(T') such that 0 < (v,«)) < p for all i and
dv = X. Let V denote the Weyl module for G with highest weight v — p.
Differentiating the action of G on V' gives V' a natural By y-module structure.
Let Gg denote the subgroup of G generated by all Ustaypy and go = Lie(G)).
Obviously e := €ayqy T+ €ayy € Go- Let V denote the subspace of V'
spanned by all weight spaces V,, with v — p — u € Zay) @ ... & Zayg). By
construction Vy is a direct summand of the gg-module V. It is well-known
(and easy to see) that dimVp = [[; v(hay,,)- Since s;x) € W(A) we have
that Z/(hai(k)) < p—1 for all k. Therefore p { dimV{. In particular Vj is

not a free (e)-module. Since all e, commute we also have that e € N;(g).

k
Using our discussion in 4.1 we now zieduce that e € V4(0, A).

2. Since the short roots in ® span the root lattice () and p is a good prime
for G there is a short root 8 € ® such that (\,3Y) # 0(p), for otherwise
W(\) = W contradicting our assumption. Since G() is simple all short
roots in @ are conjugate under W. Replacing A by its W-conjugate we
can assume that there exists a short root @ € A such that (\,a) # 0(p).
Then s, ¢ W(A). Applying the first part of this lemma (with d = 1) we now
deduce that e, € V4(0, A). Since this set is G-invariant the result follows. O

8.3. In the following subsections we give lower bounds for dim Vg4(x, A) in
a number of important cases. We let e = 0 *(x) € N be the element of
g corresponding to x. Recall that by 2.2 and Theorem 4.2 dim Vy4(x, ) =
dim Vg(0, A) N 34(e).

Given a subset J C A we denote by u; the Lie algebra of the unipotent
radical of the standard parabolic of type J in G.

8.4. Type A,. For a = a; +...+a; € ® we choose as a root vector e, the
matrix £ j1q1 whose (4, j )t entry equals 1 and all other entries are zero and
set e_q = EiT,j+1- Assume that W(X) # W. First we consider the subregular
case.

Assume n > 2. Let e = €4, + ... + €4, , and J = {2,... ,n}. The orbit
G.eq, is minimal in A and so is the Richardson class corresponding to u,

that is it intersects densely with u;. Thus G.e,, = G.uy. We have
Kea1+---+an71 + K6a1+---+an - G'uj N 39(6),

so it follows that dim Vg(0, X) N 34(e) > 2.



BLOCK REPRESENTATION TYPE OF REDUCED ENVELOPING ALGEBRAS 27

Now assume n = 1. Then zero is the subregular orbit and the closure of
the minimal orbit is the nilpotent cone. It is immediate that dim Vg(0,X) N

3g(e) = 2 in this situation.

8.5.  The closure ordering of conjugacy classes in type A, is given by the
dominanace ordering on partitions of n, [18, 7.19]. It can be checked that for
n > 2 there is a unique maximal non-regular, non-subregular class. If n > 3
this corresponds to the partition (n —1,2). Let e =eqy, + ...+ €q, » + €a,

be a representative of this orbit. The element e is centralised by the set
Kea1+...+...an,2 + Kea1+...+an + Kefanfl + Kean C Np-

The orbit G.e,, is characterised as those matrices of rank one whose square
is zero. We deduce that the set

{T1€01 4. +an_o + T2€01 4.+, + T3€—q,_, + Ta€q, : T1T4 — Tox3 = 0}

is contained in G.eq, N j3g(e). Therefore dim Vy(0,A) Nzq(e) > 3.
Now assume n = 2. We have to consider the zero orbit. We have

G.eq, = G.upgy. Since any element in ug, has square zero we deduce that
ding(O, A) ﬂjg(O) > dim G.u{g} =4.

8.6. Suppose n = 3 and W(A) = ¥ x Xy. Adopt the notation of [22,
Proposition 2.6]. It is easy to see that the subsystem R) of ® has type
A; x Ay and the partition ‘() of n + 1 = 4 introduced in [22, 2.6] equals
(2,2). Combining [22, Proposition 2.6] with our discussion in 4.1 we derive
that en, +eaq, € Vg(0,1). As a consequence, Vg(0, A) contains all matrices in
g of rank two whose square is zero. Let e = e, + €q,, a subregular nilpotent
element in g. The element e is centralised by en;, + €nys €01 +ag: €a1+astas

and e_q,. The set
2
{xl(ecu + 6042) + T2€a;+as T T3€a1+aztas T T4€—qay * T1 + T3T4 = 0}

is a three dimensional subvariety of G.(eq, + €a;) N 3g(e). It follows that
dim Vg(0, A) N 34(e) > 3.

8.7. Suppose n = 2 and that W(A) = 1. Then A is a regular weight. Hence

p is greater than or equal to 3, the Coxeter number, and N,, = N. Moreover,



28 IAIN GORDON AND ALEXANDER PREMET

Vy(0,X) = N, by [22, Proposition 2.6]. Let e = e,,, a subregular element.
We have

Keq, + Keqytar + Ke_q, TN Njgle),
showing that dim Vg(0, X) N 34(e) > 3.

8.8. Type B,. We begin by identifying the orbit G.e,,,. Since a, is a short
root the closure of G.e,, contains the minimal nilpotent orbit strictly, so
we deduce that dimG.ey, > 4(n — 1) +2. Let J = {2,... ,n}. We have
G.auy O G.ey,. Moreover, by [18, Theorem 5.3], dimG.u; = 2dimu; =
2(n%? — (n — 1)?) = 4n — 2. We deduce that G.e,, = G.uy, the closure of
the Richardson class of g corresponding to J. Since egi = (0 we must have
zlPl = 0 for all z € G.e,,. In particular u?] =0.

Now let e = eq, + ... + €aq,, a subregular element [25, 3.2]. We men-
tion for a further reference that e is conjugate under Ng(T') to e,, +
...+ eq, 5 + €, 1+an- The centraliser of e includes the elements e_,,,
€ay+209+.. 420, ANA €nyt205+.. 424, (f 1 = 2 take e_q,, €q, and eq,424,)-
Applying a preimage of s; in Ng(7T') to these elements yields non-zero multi-
ples of en,, €ay+200+..42a, AN €0 +ay+205+...+2a, (TesPectively eq,, €y +as
and €4, 424, ), all of which lie in u;. Therefore dim Vg(0,A) N 34(e) > 3.

8.9. Type C,. We can assume that n > 3. Let us describe G.e,, ,. To
this end let

B = 5283...8,-15182 ... Spn—2Sn(Qp_1),

a short root. We have

1 if i = 2,
(o, 87) =

0 otherwise.
By [40, 1V.2.2.8] the dimension of the orbit is independent of p. Using the
grading on g induced by the above we therefore calculate that dimG.eg =
dn — 2. Let J = {2,...,n}. Then, by [18, Theorem 5.3], dimG.u; =
2dimuy = 4n — 2. Since eg € u; we deduce that G.—eg = (G.uy, the closure
of the Richardson class corresponding to J.

Let e = eqy+. . .+eq,+€20, 4. 20,1 +an- 1t is easily seen that e is conjugate

under Ng(T') to eq, + ...+ €a,_» + €an, + €2a,_1+an, & Richardson element

in ug, 13. It follows that e is a subregular nilpotent element of g. The
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centraliser of e includes the elements exq,+.. 420, 1 +an> €a1+209+...42a, 1+an

and €2, 4. 4+20, ;+a,- 1t is straightforward to check that the set

Ufal -(K€a1+2a2+...+2an,1+an + K€2a1+...+2an,1+an) CGuyn 59(6):

is three dimensional. We deduce that dim Vy4(0,A) N 34(e) > 3.

8.10. Type D,,. The present assumption on G implies that G = G, As-
sume that W () is a standard parabolic subgroup of W of type D,,_1. Then
A = rwy for some r € Fj. Adopt Bourbaki’s notation for the root system
of type D,,. Since w; = €; we can find w € W such that w\ = re, 1. Set
w=rey_1. For k =n —1,n we have

2r(en—1l€n—1 L €)

ﬂ(hak) - =r #0.

(€n—1 L €nlen—1 £ €)
Therefore we can assume in what follows that A is such that s,,—1, s, &€ W(X).
Then, by Lemma 8.2, G.(eq, , + €a, ) C V4(0,A). The present assumption
on G implies that G = G,

8.11. Let o denote the outer involution of the algebraic group G induced
by the nontrivial symmetry of A. It induces an automorphism of g, also
denoted by o, which swaps e+,, , and et,, and fixes et,, for i <n — 2.
Let G° denote the connected component of the fixed point group G° and
g” the fixed point subalgebra of o. It is well-known (and not hard to see)
that g° = Lie(G°) has type B,_1 and is generated by e+a,;-- . ,€+qa,_, and
€tan 1 T €tan- Moreover, the elements ey, with i < n — 2 together with
€a,_ 1 +€a, generate a maximal nilpotent subalgebra of g7 and can be viewed
as simple root vectors for g7 with respect to h7 = g Nh. Let Bi,..., Bn-1
denote the corresponding simple roots, so that eg, = e, for i <n — 2 and

€8, 1 = €an_1 T €an- Note that (,_; is a short root of g7.

8.12. The element e = ey, + ... + €q,_3 + €ap_st+an_o + €an_s+an_1 +
€an_s+ans fixed by o, is Richardson in ug, o, hence subregular in g. There
exist root vectors in g7 such that e = eg, + ... +eg, ; + €35, 348, o +
€8,_o+8n_1- Lhisis conjugate under Ug, , = U,,_, to eg, +... +eg, , +
€8, _o+Bn_1, & subregular nilpotent element of g7 (see 8.8). Since eg,_, is a

short root vector in g% we have, by 8.8, that

dimGY.eg, |, N3go(e) > 3.
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Since 3q40(€) C 34(e) and eg, | = €a, , + €q, our discussion in 8.10 yields
dim Vg4(0,A) N 34(e) > 3.

8.13. Type Ga. The element e = eq, + €4, 424, i conjugate under Ng(T)
t0 €ai+as T €a1+2a9, & Richardson element in Ufoy. Hence e is subreg-
ular in g. Then 34(e) has a basis consisting of e_n,, €a;+3a2: €2a1+3a2
and e. It is easily seen that Uy, 4+20,U—a —aq(Keq,) is a dense subset of
Keo, D Ke_o, B Keq,+3a,- From this it is immediate that the Zariski
closure, Y, of Uy, +ayUn;+2asU—ay—as (K €q,) is an irreducible, conical hy-

persurface in
. 5
X = K6a2 D Ke_al &, K6a1+2a2 S5, Ka1+3a2 &, K62a1+3a2 = A°.

Since 3g4(e) is a hyperplane in X all irreducible components of ¥ Nj34(e) must

be at least three dimensional. As a consequence, dim Vg(0, ) N 34(e) > 3.

8.14. Let us return to general G satisfying the hypotheses of 2.1. Recall
the complexity of module over a finite dimensional algebra is the rate of
growth of its minimal projective resolution. If we consider a U, (g)-module
M, then the complexity of M equals dim Vy(M), see [8, Proposition 3.2] and
[10, Section 6]. Thus the following lemma provides the link between rank

varieties and representation type.

Lemma. Let x € N and A € A/W.

1. The algebra By x is simple if and only if Vg(x, A) = 0.

2. [6, Theorem 3.2] The algebra By x has finite representation type if and
only if dim Vy(x, A) < 1.

3. [36, Theorem 2| If By x has tame representation type then Vg(x, ) is

two dimensional.

8.15. Thanks to Proposition 6.5, in order to prove the results of Section
5, we may assume that G = G = Gy X - X Gs § = 81D -+ D G,
X=X1+.--+xmand A = (A1,... ,\p). In this situation

By A(9) = By a (81) © -+ @ By arn (Gm)-
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As in [34, p.242] we have Vg(x,A) = Vg (x1, A1) X -+ X Vg, (X, Am)- In

particular

(15) dim Vy(x, A) = > dim Vg, (x5, A))-

j=1
Let us remark that thanks to [11, Theorem 4.2] if W;()\;) = W; then B, A(g:)
is simple (this also follows from Theorem 4.2 combined with the irreducibility

and projectivity of the restricted Steinberg module).

8.16. Proof of Theorem 5.2. It follows from Theorem 7.2 that the blocks
considered in Theorem 5.2 have finite representation type.

Thanks to 8.14.2 B, , has finite representation type if and only if V4(x, A)
has dimension at most 1. So by (15) B, ) has finite representation type if
and only if there exists j, 1 < j < m such that V5, (x;, i) = 0 for ¢ # j and
dim Vg, (xj, Aj) < 1.

Suppose Vg, (0,A) is non-zero. Since it is a closed G-invariant variety it
contains eg, where & is the longest root of §;. Since x(nt N ;) = 0 we see
that es € V5,(0,X) N 35 (xi). We deduce that Vg (0,A) = 0 for all i # j,
implying W (A;) = W for all such i by Lemma 8.2.2. By Lemma 8.14.1 we
have By, »,(gi) is a simple algebra for all such i.

Suppose B, » is of a type not considered in Theorem 5.2. By Theorem
7.2 x; is not regular. If &; is regular nilpotent then B¢, ».(g;) has finite
representation type by Corollary 3.3. Thus the pair (W;, W;(};)) must be
of the type described in Theorem 7.2. Since x; is not regular, however,
the calculations of 8.4, 8.8, 8.9 and 8.13 show that dim Vg, (x;, ;) > 2, a

contradiction.

8.17. We give a necessary condition for tame representation type.

Proposition. Let x € N and A € A/W. If By x has tame representation
type, then x and X satisfy one of the conditions of Theorem 5.3.

Proof. Suppose B, is tame. By Lemma 8.14.3 we must have dim Vy(x, A) =
2. By (15) there are two cases to consider.

1. There exist j1,jo, 1 < j1 < jo < m, such that dim V@l (Xi, )\Z) = 6ij1 +5ij2-
2. There exists j, 1 < j < m, such that dim Vg, (xi, Ai) = 20;;.
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In Case 1, arguing as in 8.16, the blocks By, »,(g:) are simple and W;(\;) =
W; for i # j1, jo. By Lemma 8.14.2, Theorem 5.2 and Theorem 7.2 the block
By, Ay, (8j,,) is isomorphic to K[X]/(X™) where k = 1,2 and r, = [W;
W, (A)]. By 7.5 the tensor product of these algebras is tame if and only if
(Wj, « Wi (V)] = [Wj, : Wi, (X)] = 2. This is equivalent to Condition 3 in
Theorem 5.3.

In Case 2 the blocks By, x,(gi) are simple and W (\;) = W for i # j. By
Corollary 3.3 if §; is regular then the block B, »,(g;) has either finite or tame
representation type. Thus the pair (W;, W;();)) belongs to one of the cases
of Theorem 7.2 and Theorem 7.3. Suppose Y; is itself not regular. Then
applying Corollary 3.3 once again we deduce that B; »; (g;) has finite or tame
representation type for subregular ¢;. In particular dim Vg, (¢j, Aj) < 2. The
calculations in 8.6 - 8.13 show that W is of type of A, and W;(},) is of type
Ap—1. If x; is not itself subregular then 8.5 shows that dim Vg, (xj:Aj) >3,

contradicting tameness. ]

As a consequence it only remains to show that Condition 2 of Theorem 5.3

yields a tame block. This will be done in Section 9.

8.18. Proof of Theorem 5.4. We assume that Theorem 5.3 has been
proved. It is proved in [35, Proposition 5.3] that U, has finite represen-
tation type if and only if one of the conditions of Part 1 is satisfied. It is
also a consequence of Theorem 5.2, see [29, 4.3].

We want to describe x for which all blocks B, ) are tame. It is straightfor-
ward to check using Theorems 5.2 and 5.3 that all the algebras mentioned in
Theorem 5.4.2 are tame. We need to discount all other possibilities. It fol-
lows from Theorems 5.2 and 5.3 that if B, ) is tame then x must be regular
or subregular.

Suppose first x; is subregular and assume p # 2. Then g; is of type
A, by Theorem 5.3.2 and rank W;(A;) > rank W; — 1 for all A € A/W. If
n > 3 then the parabolic subgroup of W corresponding to any weight whose
restriction to TNGM equals @, _1 +w, contains at least rank W —2 simple
reflections. If p = 2 and n > 3 then the parabolic subgroup corresponding
to 0 is reducible as a Coxeter group. But then U, has a wild block by
Theorem 5.3. The only case remaining (apart from A;) is A,. Since the
Coxeter number is 3, for p > 3 there are A such that W (A) = 1, by [21,
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11.6.2]. We deduce that g; is of type A; (any p) or Ay (p = 2). In both cases
dim Vg, (x5, Aj) = 2 is achieved and so by (15) Vg, (x4, Ai) = 0 for all all \;
and all 4 # j. This implies W;(\;) = W; for all ¢ # j and all ;. Therefore
W; is trivial for all ¢ # j. This yields cases 2(a) and 2(b).

Suppose that x; is regular for 1 < j < m. If g; is of type A, then the
argument of the previous paragraph shows that either n < 2 or n = 3 and
p =2 (and if n = 1 then we have finite representation type). If g; has type
B, or C), then G; = Gg.l) and the parabolic subgroup of W corresponding
to wy, is of type A,,_1. Therefore n < 3. If n = 3 the Coxeter number is 6
so for p > 7 there exists A such that Wj(\;) = 1. If p = 5 then the weight
wo + ws provides a wild block, whilst if p = 3 the weight ws yields a wild
block. If g; has type D,, then again G; = Gg-l) and the weight w,, yields a
parabolic subgroup of type A,,_1, and so yields a wild block unless n = 4. In
case D, the Coxeter number is 6 so we need to consider the cases p = 3 and
p = 5 only. In both cases the weight ws yields a wild block. By Theorem
5.3 there are no tame blocks in types E and Fy. If G has more than
two simple components then (15) shows that dim Vy(x,A) > 3 for some A,
implying wildness. If there are two simple components then dim Vg(x, A) > 3
for some \ unless the components belong to the finite representation list of
Theorem 5.4. It follows from 7.5 and Theorem 7.2 that both components
must be of type Aj. The theorem follows.

9. THE SUBREGULAR TAME CASE

9.1. In this section we show that the blocks occurring in Theorem 5.3.2
have tame representation type. Thanks to Theorem 7.3 and Proposition
8.17 this completes the proof of Theorem 5.3. The proof relies heavily on
the results of [25].

9.2. Let G = SL,4+1(K) if char K = p does not divide n + 1 and G =
GLy+1(K) if char K = p divides n+1. Let g = Lie(G), so that g = sl,,41(K),
respectively g = gl,,,1(K). Let B : g x g — K be the non-degenerate G-
invariant bilinear form defined by B(z,y) = tr(xy) for z,y € g. Choose
root vectors e, as in 8.4 and let x € g* be the subregular nilpotent element
defined by x(z) = B(x,e), where e =eq, + ...+ €4, ;-
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Let A € A/W be such that the group W(\) is the standard parabolic

subgroup of W generated by the simple reflections si1,... ,s,_1.

9.3. We will be concerned with the category of finite dimensional U,-
modules, U, -mod, or more specifically the subcategory of B, y-modules.
These categories have graded analogues which we introduce now.

If G=8L,11(K) let

n—1
(16) Ty = () ker(a),
=1
whilst if G = GLps1(K) let
(17) To = {TELI +...+ TEn,n + En-l—l,n—!—l 1T E K*}

Thus, in either case, Ty is a one-parameter subgroup of the torus T' C G
such that x(Ad(t)x) = x(z) for all x € g and ¢ € Tj. As a result the adjoint
action of T on U passes to an action on the quotient U, .

We define a U,-Tp-module to be a finite dimensional vector space V' over
K that has a structure both as a U,-module and as a rational Tj-module

such that the following compatibility conditions hold:

1. We have t(zv) = (Ad(t)x)tv for all z € g,t € Tp and v € V;
2. The restriction of the g-action on V' to Lie(Ty) C b is equal to the

derivative of the Ty-action on V.

We obtain the category, U,-Tp-mod, with objects the U,-Tp-modules and
morphisms Tp-equivariant U,-module homomorphisms. Since B, \ = e U,
for some G-invariant element ey, the full subcategory B, x-1-mod of the
category U,-Tp-mod is well-defined. Its objects are B, y-modules with a

compatible rational Ty-action.

Remark. In [25] the case G = SL,+1(K) where p does not divide n + 1 is
considered and the category U,-Tp-mod is studied where Tj is as in (16).
The results of [25, Section 2] continue to hold for G = GL,+1(K) where
p divides n + 1, if we choose Ty as in (17). The proofs can be repeated
almost verbatim. The only difference occurs in character formulae where
appearances of (n+1) in [25] should be replaced by 1. This is due essentially
to the following fact: if ¢ is the cocharacter of T' corresponding to Tj in (16)
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(respectively (17)) then (a,,¢) = n + 1 (respectively (o, ¢) = 1). From

now on we will use the results in [25] in both cases without further comment.

9.4. Let I': Uy-To-mod — U, -mod denote the functor which forgets the
Ty-structure. The objects of Uy -mod which are in the image of F" are called
gradable. Suppose M is gradable, that is there exists a U,-Tp-module V' such
that F (V) = M. Then, by [24, Remark 1.5], we have F(soc V') = soc M and
F(radV) =rad M.

It follows from [16, Corollary 3.4] and [24, Corollary 1.4.1] that the simple
U,-modules and their projective covers are gradable. Moreover any lift of
a simple Uy-module is simple in U,-Tp-mod and any lift of a projective

indecomposable U,-module is projective indecomposable in U,-Tj-mod.

9.5. The category U,-Tp-mod has shift functors [+1] : U,-Tj-mod —
U,-Th-mod. These send a given U,-Tp-module V' to the object having the
same U,-module structure but with ¢ € Ty acting by t.v = (£pay,)(t)tv
for all v € V. Given ¢ € N we write [i| (respectively [—i]) for the i-fold
composition of [1] (respectively [—1]).

Given U,-Tp-modules Vj and V7 we have a natural isomorphism

(18) €D Homy, 1, (Voli], Vi) = Homy, (F(Vo), F(V2)).
1€Z
Moreover, if Vj = Vi then the left hand side of (18) acquires an algebra

structure through the identification
HOH’IUX_TO (‘/O[Z + .7]’ Vi []]) = HOH’IUX_TO (VEJ[Z]’ ‘/1)7

for all 4,7 € Z. With this (18) becomes an isomorphism of algebras.

9.6. Thanks to [25, Theorem 2.6] there are exactly two non-isomorphic
simple B, y-modules. We let Sp and S be lifts of these to B, x-Tp-mod and
let P(Sp) and P(S1) be lifts of their projective covers, projecting onto Sy and
Sj respectively. By [16, Theorem 4.1] and [24, Theorem 1.4.2] we have that
{So[i], S1[i] : i € Z} is a complete set of representatives of mutually non-
isomorphic simple By, x\-Tp-modules. Then P(Sy)[i| (respectively P(S1)[i]) is
the projective cover of Syli] (respectively Si[i]) in B, z-Tp-mod.
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9.7.  The category U,-Ty-mod admits a contravariant self-equivalence, D,
whose square is the identity functor. By [25, Proposition 2.16] we have for
all i € Z

(19) D(Soli]) = Soli],  D(S1[i]) = Sili].

Since U, is a symmetric algebra, [39] and [10, 1.2], P(Sp) and P(Sy) are

both projective and injective. So we deduce from (19) that
(20) D(P(So)) = P(So), D(P(51)) = P(S1).

9.8. Besides the simples and their projective covers there are two other
families of distinguished objects in B, y-Tp-mod. The first we denote by
Z(Sp) and Z(S1). These are indecomposable B, y-Tp-modules whose un-
derlying U,-modules F(Z(Sp)) and F(Z(S1)) are the baby Verma modules
in U, -mod with heads F(Sp) and F(Si) respectively. We have, by [25,

Theorem 2.6], short exact sequences in B, »-T-mod

(21) 0— S — Z(Sp) — So — 0,
and
(22) 0 — So[-1] — Z(S1) — S1 — 0.

To define the second objects we need a little notation. Let ®' C ® be the
root system generated by ai,...,a,—1. Let p be the parabolic subalgebra
of g spanned by b™ and all g, for « € ®. Then p = [ & u where u is the
unipotent radical of p and [ is the Levi subalgebra of g which equals the
direct sum of § and all g, for o € ®’. Since x(u) = 0 any U,(l)-module
M can be extended to a U, (p)-module by letting u act trivially. Thus we
obtain a U, (g)-module by Harish-Chandra induction,

Ind(M) = Uy(9) ®@v, (p) M.

Let € X(T) and let Z} () be the corresponding baby Verma module over
[. Let Q;(,u) be the projective cover of Z;((,u) as a U, (I)-module. Then
Ind(Z (1)) = Zy (1) and we write Ay (u) for Ind(Q! (1)). We furnish these
modules with a compatible Ty-structure by concentrating 1® Z} (1) (respec-
tively 1 ® Q;(u)) in the weight space given by the restriction of u to Tj

and letting Ty act on Uy (g) via the adjoint action. This is well-defined since
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the Tp-action on U, (I) is by construction trivial. For further details see [23,
Sections 10 and 11] and [24, Section 2].

Using the above construction we see that for ¢ = 1,2 there exists p; €
X(T) such that Z(S;) = Ind(Z;((,ui)) as a B, \-To-module. We define
A(S;) = Ay (wi) as By z-To-modules. By [23, 11.18] and [24, 2.9] we have
A(Sp) = Z(Sp), whilst the module A(S7) has a filtration in B, y-Tp-mod

(23) 0= Ao(sl) C Al(Sl) c---C An(Sl) = A(Sl),

such that A;(S1)/A;-1(S1) =& Z(S1) for 1 < i < n. By [23, Proposition

11.18] and [24, Proposition 2.9] we have short exact sequences

(24) 0 — A(S1)[1] — P(Sp) — A(Sp) — 0,
and
(25) 0 — A(Sp) — P(S1) — A(S1) — 0.

In particular, both A(Sp) and A(S7) are indecomposable with simple heads
So and S respectively.

9.9.  We are able to calculate some extension groups in U,-Tp-mod.

Lemma. Let V' be a simple U, -To-module. Then

K if V251,51
Extyr 1, (S0, V) = / LA
0 otherwise.

Similarly, we have

K if V=SS 1
EXt%]X_TO (5,17 V) _ Zf 0 0[ ]

0 otherwise.

Proof. Thanks to [25, Proposition 2.19] it only remains to prove that Sy and
S1 have no self-extensions.

We have an exact sequence induced from (24)
HOIIIUX_TO (A(Sl)[l] So) — EXtIIJX—To (A(S()), S()) — EXt%]X_TO (P(So), S())

Since P(S)) is injective and since the head of A(S7)[1] is S1[1] we deduce
that Ext%JX_TO(A(SO), So) = 0. We have an exact sequence from (21)

Homy, 7, (S1, So) — Exty g, (S0, S0) — Extiy g, (A(S0), So)-
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It follows that Ethljx_TO(507 Sp) = 0.

To deal with S; consider the following exact sequence induced from (25)
Homy, .1, (S1, A(S1)) — Extyy gz, (51, A(So)) — Extyy, 1, (S1, P(S1)).

Since P(S7) is projective and the socle of A(S7) is So[—1] it follows that
Extlljx_TO(Sl, A(Sp)) = 0. The exact sequence induced from (21)

HOIIIUX_TO (51, S()) — EXt%]X_TO (Sl, Sl) — Ethljx—To (Sl, A(So))
now shows that EX‘G%JX_T0 (S1,51) = 0, as required. O

9.10. A module is called wuniserial if it has a unique composition series.
Given a U,-Tp-module V' we define the radical series of V' as follows: set
rad’ V =V and for i > 0 let rad’ V = rad(rad” 1 V).

Lemma. Suppose V is a U,-Tp-module such that rad’ V/ rad' TtV is simple

for all i. Then V is uniserial.

Proof. 1t is sufficient to prove that any U,-Tp-submodule M of V' equals
rad’ V for some i > 0. We prove this by downward induction on the number
of composition factors of M. Let M be a proper U,-Tjp-submodule of V' and
let M’ O M be such that M’/M is simple. By induction M’ = rad’V for
some i > 0 and so rad"™ V = rad(M’) € M. Therefore M'/M is a factor
of rad’ V/rad**! V, a simple module, implying equality. O

9.11. The following lemma is the crucial result in this section.
Lemma. The modules A(Sp) and A(Sy) are uniserial.

Proof. The module A(Sp) is trivially uniserial. We will show that the module
rad’ A(Sy)/rad"™ A(S;) is simple in U,-Tp-mod for all i > 0 and then
apply Lemma 9.10. Suppose for a contradiction that ¢ is minimal such that
rad’ A(Sp)/rad™ A(Sy) is not simple. Since A(S;) has a simple head we
have i > 1. There is a short exact sequence

rad® A(S1) rad=! A(S;) rad=1 A(S))
rad™ A(Sy) T Tad ! A(Sh) — rad’ A(S7)
By hypothesis the term on the right hand side of (26) is simple. The mod-

(26) 0— — 0.

ule A(S7) has only two isomorphism classes of composition factors, S; and
So[—1]. We assume that the right hand side of (26) is isomorphic to Sy[—1].

The other case is treated similarly.
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The left hand side of (26) is semisimple so isomorphic to a direct sum of
copies of Sp[—1] and S;. By Lemma 9.9 Extlle_TO(So[—l}, So[—1]) =0, so we
deduce that this direct sum can contain no copies of Sy[—1].

Let us write V = rad"" ! A(S;)/rad"™ A(S;), a module with head iso-
morphic to Sy[—1] and socle a number of copies of S;. By [19, Proof of

Theorem 9] we have that
(27)  [rad P(Sp)[—1]/rad? P(Sg)[—1] : S1] = dim Ethljx_TO(SO[_l]a S1).

By Lemma 9.9 the right hand side of (27) equals one. We have a commuta-

tive diagram

P(So)[—1] — So[-1]

where f exists by the projectivity of P(Sp)[—1]. This induces a homomor-
phism
= rad P(Sp)[—1]

. 1 F0)Im dv.,
rad P(So)—1]

If f is not surjective then we have V/ im f # 0 and so there is a copy S in
the head of V, a contradiction. Therefore f is surjective and so rad V = S;

as required. O

9.12. Let A be a finite dimensional K-algebra. Given any A-module M
with simple head we define the heart of M to be

rad M
soc M’

The algebra A is called biserial if every nonuniserial projective indecompos-

H(M) =

able left or right A-module P contains two uniserial submodules whose sum
is the unique maximal submodule of P and whose intersection is either zero
or simple. It is easily seen that if A is symmetric and the heart of any pro-
jective indecomposable A-module is a direct sum of two uniserial modules

then A is biserial. According to [4] any biserial algebra A is tame.

Theorem. Let x € g* and A\ € A/W be as in 9.2. Then B, x is a biserial

algebra. In particular B,y is tame.
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Proof. By 9.4 the radical and socle of a B, \-Tp-module V' agrees with the
radical and socle of F(V), so it is enough to prove that the heart of the
projective indecomposables in B, »-Tj-mod are direct sums of two uniserial
modules.

We claim that

and
H(P(Sl)) =~ rad A(Sl) P So.
The uniseriality of these summands follows from Lemma 9.11.

Thanks to (24) we have a short exact sequence

A(S1)[1]
So

Using (24), (19), (20) and (21) we also have a composition

D(A(S0)) _ D(P(S0)) o P(So)
D(So) D(So) So

showing that there is a copy of S; in the head and the socle of H(P(Sy)). By

0— — H(P(Sp)) — S1 — 0.

0—>Sl gD(Sl) =

(23) and (24) S; = S1]0] occurs only once as a composition factor of P(Sp)
in By \-Tp-mod. So we deduce that Si is a direct summand of H(P(Sp)),
proving the first half of the claim.

For the second half of the claim we have, thanks to (25) and Lemma 9.11,

a short exact sequence
0 — So — H(P(S1)) — rad A(S7) — 0.
By (25), (19) and (20) we have a composition of maps
rad P(S1) & rad D(P(S1)) — D(Sp) =2 Sy — 0.

As above we deduce that S is a direct summand of H(P(S1)), as required.
U

9.13. Quiver and relations for B, ). Using the results of the previous
subsections we will determine the quiver and relations for the algebra B, ».
The basic algebra Morita equivalent to B,y is simply Endg,_, (F(P(S))) @
F(P(S1))). To ease notation set Py = P(Sy) and Py = P(S1).
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By (18) we have an algebra isomorphism

(28) Endp,,(F(Py) & F(P)) = €D Endg .1, (Roli] & Pi[i], Py & Py).
i€Z

We construct four elements in the right hand side of (28), show that these

generate the basic algebra and then describe the relations between these

elements.

Let A be the unique (up to scalars) map in By, \-Tp-mod of degree zero,
defined as the composition Py — A(Sp) < Pi. Similarly, let B : Py[1] —
A(S1)[1] < Py be the unique map of degree 1.

By the proof of Theorem 9.12 rad P; has head isomorphic to Sy @ So[—1].

So we have

Bo[-1] — So[-1]

|

rad Pl

Composing f with the inclusion rad P, C P, we obtain A : Py[-1] — P,
a map of degree —1. Similarly, using the proof of Theorem 9.12, we define
B as

P1 \—\i Sl ——— H(Po) I Po/SO

—~
—
~
-
-
-~
—
B —

>.P0

-
-~

By construction B is a map of degree zero.

Lemma. The elements A, A, B and B generate Endg, , (F(Po)® F(Py)) as

an algebra.

Proof. Consider the map induced by A,
- P[] P
e
A-1(Sy) S1
Using Theorem 9.12 we see the image of A is rad A(S7). Since S; = soc Py C
ker B we deduce that

(29) im(Bo A) =im(Bo A) = rad A(S1)[1].

Write X = BA. By (29) X induces an endomorphism of A(S;)[1] C Py
which sends the head of A(S1)[1] onto rad? A(S1)[1]. Since A(S1)[1] is
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uniserial it follows that X sends rad® A(S7)[1] to rad“*2 A(S1)[1]. Hence the
image of X™ : Py — P, equals Sy = soc F.
Let Y = AB. We have

~ ) _ n—1
Boyrt.p B pyoq YT

Po[~1].

It follows from the definition of B and the previous paragraph that the image
of BoY"™ ! equals rad?*~2 A(S}), a module with composition factors So[—1]
and Sy by Lemma 9.11. Using (21), (22), (23), (24) and (25) we see that
the kernel of A has composition factors So[—1] and S;[—1]. It follows that
Y™ has image S; = soc P;.

It is clear that im(Bo A) = soc Py and im(Ao B) = soc P;. Thus, possibly
after rescaling, X" = BoA and Y" = Ao B.

Let fll- —YioA and BZ- = X' o B. The elements Xi,Yi,fL- and BZ- are
linearly independent in Endg,_, (F'(Fy) @ F'(P1)) for 0 < i <n. On the other
hand, by (21), (22), (23), (24) and (25), we have [F(Fy) : F\(So)] = [F(FPp) :
F(S1)] = [F(P1) : F(So)] = [F(P1) @ F(S1)] = n+ 1. We deduce, by [1,
Lemma 1.7.6], that

1
dimEndg_, (F(Ry) @ F(P1)) = Y _[F(P): F(S;)] =4(n+1),
1,j=0

as required. O
9.14. It is now straightforward to obtain the quiver and relations.

Theorem. Let x be subreqular and A € AJW be such that W(X) has type

Apn_1. Then By, \ is Morita equivalent to the quiver

with relations AB = BA = AB = BA =0, AB = (AB)" and BA = (BA)".

Proof. We have shown in Lemma 9.13 that A, A, B and B generate the 4(n+
1)-dimensional algebra Endg, , (F(Fy) ® F(P1)). The first set of relations
holds thanks to the grading on Py and P;: the module Py (respectively

P)) has no composition factors isomorphic to Sp[i] (respectively Si[i]) for
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1 non-zero. The second set of relations already appeared in the proof of
Lemma 9.13. Therefore the endomorphism ring is a quotient of the above
path algebra. The path algebra has a basis consisting of A, B, e1, e and
alternating products of A and B of length no more than 2n. Consequently

the algebras are isomorphic. O

Remark. In the case n = 1 there is a unique subregular nilpotent element,
x = 0, and X is a regular weight. The above description of the basic algebra

of By » was given in [7].

Remark. 1t follows from Theorem 9.14 that the basic algebra of B, , is spe-
cial biserial (see [5, Definition 11.1.1]). All indecomposable representations
of such algebras are classified, [5, 11.3]. The classification is based on [14] and
[38]. It would be interesting to pull the information provided by [5, 11.3] back
to g to obtain an explicit description of all indecomposable representations

of the tame subregular blocks.

REFERENCES

[1] D.J. Benson. Representations and Cohomology I. Cambridge studies in advanced
mathematics, number 30. Cambridge University Press, 1991.

[2] A. Borel. Linear Algebraic Groups. Number 126 in Graduate Texts in Mathematics.
Springer-Verlag, second edition, 1991.

[3] K.A. Brown and I. Gordon. The ramification of centres: Lie algebras in positive
characteristic and quantised enveloping algebras. To appear in Math. Zeit.

[4] W.W. Crawley-Boevey. Tameness of biserial algebras. Arch. Math. (Basel), 65:399—
407, 1995.

[5] K. Erdmann. Blocks of tame representation type and related algebras. Number 1428
in Lecture Notes in Mathematics. Springer-Verlag, 1990.

[6] R. Farnsteiner. Periodicity and representation type of modular Lie algebras. J. reine
angew. Math., 464:47-65, 1995.

[7] G. Fischer. Dastellungtheorie des ersten Frobeniuskerns der SLgz. PhD thesis, Univer-
sitét Bielefeld, 1982.

[8] E.M. Friedlander and B.J. Parshall. Geometry of p-unipotent Lie algebras. J. Alg.,
109:25-45, 1987.

[9] E.M. Friedlander and B.J. Parshall. Rational actions associated to the adjoint repre-
sentation. Ann. scient. Ec. Norm. Sup., 20(4):215-226, 1987.

[10] E.M. Friedlander and B.J. Parshall. Modular representation theory of Lie algebras.
Amer. J. Math., 110(6):1055-1093, 1988.

[11] E.M. Friedlander and B.J. Parshall. Deformations of Lie algebra representations.
Amer. J. Math., 112(3):375 395, 1990.



44

(12]

(13]

(14]

(15]

(21]
(22]

23]

[24]

25]

[26]

IAIN GORDON AND ALEXANDER PREMET

P. Gabriel. Finite representation type is open. In V. Dlab and P. Gabriel, editors,
Representations of Algebras, number 488 in Springer Lecture Notes in Mathematics,
pages 132-155, 1974.

C. Gei. On degenerations of tame and wild algebras. Arch. Math., 64:11-16, 1995.
I.M. Gelfand and V.A. Ponomarev. Indecomposable representations of the Lorenz
group. Usp. Mat. Nauk, 23:3—60, 1968.

I. Gordon. Representations of semisimple Lie algebras in positive characteristic and
quantum groups at roots of unity. SFB preprint 00-007, Universitéit Bielefeld.

R. Gordon and E.L. Green. Graded Artin algebras. J. Algebra, 76:111-137, 1982.
J.E. Humphreys. Reflection Groups and Coxeter Groups. Number 29 in Cambridge
studies in advanced mathematics. Cambridge University Press, 1990.

J.E. Humphreys. Conjugacy Classes in Semisimple Algebraic Groups, volume 43 of
Math. Surveys Monographs. Amer. Math. Soc., Providence, RI, 1995.

L.E.P. Hupert. Homological characteristics of pro-uniserial rings. J. Algebra, 69:43—
66, 1981.

J.C. Jantzen. Kohomologie von p-Lie-Algebren und nilpotente Elemente. Abh. Math.
Sem. Univ. Hamburg, 56:191-219, 1986.

J.C. Jantzen. Representations of Algebraic Groups. Academic Press, Boston, 1987.
J.C. Jantzen. Support varieties of Weyl modules. Bull. London Math. Soc., 19:238—
244, 1987.

J.C. Jantzen. Representations of Lie algebras in prime characteristic. In A. Broer,
editor, Representation Theories and Algebraic Geometry, Proceedings Montréal 1997
(NATO ASI series C 514), pages 185-235. Dordrecht etc, Kluwer, 1998.

J. C. Jantzen. Modular representations of reductive Lie algebras. University of Aarhus
preprint 1998.

J.C. Jantzen. Subregular nilpotent representations of sl, and so02n+1. Math. Proc.
Camb. Phil. Soc., 126:223-257, 1999.

H. Kraft. Geometric methods in representation theory. In M. Auslander and E. Lluis,
editors, Representations of Algebras, number 944 in Springer Lecture Notes in Math-
ematics, pages 80-258, 1982.

A.A. Mil'ner. The maximal degree of irreducible representations of a Lie algebra over
a field of positive characteristic. Funkt. Anal. ¢ PriloZen., 14, 1980 [Russian]; English
transl. in Funct. Anal. Appl., 14:136-137, 1980.

I. Mirkovi¢ and D. Rumynin. Centers of reduced enveloping algebras. Math. Zeit.,
231:123-132, 1999.

D. K. Nakano and R. D. Pollack. Blocks of finite type in reduced enveloping algebras
for classical Lie algebras. Preprint 1998.

V. Ostrik. Cohomological supports for quantum groups. Funkt. Anal. i PriloZen,
32(4): 22-34, 1998 [Russian]; see also g-alg./97110008.

A. Premet. The Green ring of the simple three-dimensional Lie p-algebra. Sowviet
Math. (Iz. VUZ), 35(10):51-60, 1991.



BLOCK REPRESENTATION TYPE OF REDUCED ENVELOPING ALGEBRAS 45

[32] A. Premet. An analogue of the Jacobson-Morozov theorem for Lie algebras of re-
ductive groups of good characteristics. Trans. Amer. Math. Soc., 347(8):2961-2988,
1995.

[33] A. Premet. Irreducible representations of Lie algebras of reductive groups and the
Kac-Weisfeiler conjecture. Invent. Math., 121(1):79 117, 1995.

[34] A. Premet. Support varieties of non-restricted modules over Lie algebras of reductive
groups. J. London Math. Soc., 55(2):236-250, 1997.

[35] A. Premet. Complexity of Lie algebra representations and nilpotent elements of the
stabilizers of linear forms. Math. Zeit., 228(2):225-282, 1998.

[36] J. Rickard. The representation type of self-injective algebras. Bull. London Math.
Soc., 22:540-546, 1990.

[37] C.M. Ringel. The representation type of local algebras. In V. Dlab and P. Gabriel,
editors, Representations of Algebras, number 488 in Springer Lecture Notes in Math-
ematics, pages 282-305, 1974.

[38] C.M. Ringel. The indecomposable representations of the dihedral 2-groups. Math.
Ann. 214:19 34, 1975.

[39] J. R. Schue. Symmetry for the enveloping algebra of a restricted Lie algebra. Proc.
Amer. Math. Soc., 16:1123-1124, 1965.

[40] T. A. Springer and R. Steinberg. Conjugacy classes. In Seminar on Algebraic Groups
and Related Finite Groups, volume 131 of Lecture Notes in Mathematics, pages 167—
276. Springer-Verlag, 1970.

[41] T.A. Springer. Some arithmetical results on semi-simple Lie algebras. Publ. I.H.E.S.,
30:115-141, 1966.

[42] B. Ju. Veisfeiler and V.G. Kac. The irreducible representations of Lie p-algebras.
Funkt. Anal. i PriloZen., 5(2):28-36, 1971 [Russian]; English transl. in Funct. Anal.
Appl. 5:111-117, 1971.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF GLASGOW, GLASGOW G12 8QW

E-mail address: igordon@mathematik.uni-bielefeld.de

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MANCHESTER, OXFORD ROAD M13
9PL

E-mail address: sashap@ma.man.ac.uk



