EXACT FACTORS OF EXACT CATEGORIES

P. DRAXLER AND @. SOLBERG

ABSTRACT. In the representation theory of algebras situations occur where
one has to transport an exact structure £ on a category A to a factor category
by a relation R. We characterize when this is possible and discuss how almost
split pairs are transferred to the factor category. As an illustration, we give
applications for the category of finitely presented functors on modules over an
artin algebra and for the category of regular modules over a wild hereditary
algebra.

INTRODUCTION

In [4] it was studied how one can form new exact categories by looking at sub-
functors of the functor Ext. The motivating examples for this investigations came
from the representation theory of algebras where certain reduction functors only
happen to be exact when looking at the appropriate exact structure. In fact, in
some examples in addition to choosing the correct exact structure one also had to
pass to a factor category by a relation. For this purpose, in [4, Proposition 1.11] a
sufficient condition for a relation R of an exact category A was given which ensures
that the factor category A/R together with the appropriate induced exact structure
becomes exact again.

It is the aim of the first section of this paper to prove a necessary and sufficient
condition for A/R to be exact. Moreover, we discuss how our conditions simplify
if the relation R is generated by projective and injective objects. Finally, we study
when A4/R becomes even abelian.

The modern representation theory of algebras was strongly pushed forward by
the detection of Auslander and Reiten that almost split sequences exist in the
category of finitely generated modules over artin algebras. Meanwhile it turned out
that almost split pairs exist in many more exact categories. Therefore we devote the
second section to showing how almost split pairs are pushed down to exact factor
categories. As a preparation we investigate how projective and injective objects are
transferred.

In the third section we use our results to reprove that the category mod(mod A)
of finitely presented functors from the category mod A to the category of abelian
groups is abelian and has almost split sequences where A is an artin algebra and
mod A is the category of finitely generated A-modules. Of course, this is well-
known but our intention is to illustrate that there are natural examples where our
settings and results from the first two sections apply. In fact, categories of the
shape A/R appear frequently by looking at the kernel R of a functor A — B where
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B is another category. This is also the case in our example of the third section
where B = mod(mod A) and A = mod T'(A) with T'(A) being the triangular matrix
algebra (4 ) over our given artin algebra A. It was shown in [1, Theorem 1.1] that
there is a full and dense functor a: mod T'(A) — mod(mod A) and we look at the
relation R given by the kernel of a.

The final fourth section deals with a very recent application in the representation
theory of wild hereditary algebras which was brought to our attention by O. Kerner.
For a wild hereditary algebra H with more then 2 simple modules there exist appro-
priate quasi-simple regular modules X such that the right perpendicular category
X can be identified with a module category over another wild hereditary algebra
C. If we denote by reg H and reg C the respective subcategories of regular modules,
then in [3] a full and faithful functor F': reg C — reg H is introduced whose kernel
is the relation R of maps factoring through the orbit under the Auslander-Reiten
translation of a quasi-simple C-module. In [7] an additive subfunctor of the restric-
tion of the bifunctor Ext(lj to reg C' is introduced which is mapped by F' onto the
restriction of Ext}; to reg H. We use the results of [4] to see that this subfunctor
gives rise to an exact structure on reg C' and then the results of section 1 to push
this exact structure down to reg C'/R which is equivalent as an exact category to
reg H equipped with the usual exact sequences.

The first author is grateful to Norwegian Research Council for supporting his
visit in Trondheim in fall 1998 where this project was started and to S. Smalg and
@. Solberg for their kind hospitality during his stay. The last author thanks the
Sonderforschungsbereich 343 “Diskrete Strukturen in der Mathematik” at Bielefeld
University and the first author for their support and kind hospitality during his
stay there in November and December 1999.

1. CONDITIONS FOR THE EXISTENCE OF EXACT FACTORS

This section is mainly devoted to finding necessary and sufficient conditions for
a factor of an exact category by a relation again to be an exact category. To make
this precise and for the convenience of the reader we recall the definition of an exact
category from [5].

Let A be an additive category with split idempotents. A pair (i, d) of composable
morphisms X — Y < Zin A is called exact if i is a kernel of d and d is a cokernel
of 1. _

Let € be a class of exact pairs X — Y 4, Z which is closed under isomorphisms.
The morphisms ¢ and d appearing in a pair (i,d) in € are called an inflation and a
deflation of &, respectively. The class £ is said to be an exact structure on A and
(A, &) an ezact category if the following axioms are satisfied:

E1  The composition of two deflations is a deflation.

E2 For each f in A(Z’,Z) and each deflation d in A(Y, Z), there is some Y’ in
A, an [/ in AY',Y) and a deflation d': Y’ — Z’ such that df’ = fd'.

E3  Identities are deflations. If de is a deflation, then so is d.

E3°P Identities are inflations. If ji is a inflation, then so is i.

Let (A, &) be an exact category. In the appendix of [4] Keller showed that the
above axioms are equivalent to a set of axioms involving existence of pullback and
pushout diagrams. More precisely, for each f in A(Z’, Z) and each deflation d in
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A(Y, Z), there is a pullback diagram

Y/L>Z/

i, b

Y ——Z7

where d’ is a deflation. Dually, for each morphism f in A(X, X”’) and each inflation ¢
in A(X,Y), there is a pushout diagram. These preliminaries enables us to formulate
the main result of this section.

Let (A, £) be an exact category, and let R be a relation on A. Denote by A/R
the factor category whose objects are the same as those of A and morphisms given
by

Hom 4,z (A, B) = Hom (4, B)/R(A, B).

The pair of maps {(i,d) | (i,d) € £} is not necessarily closed under isomorphisms.
We close this class of pairs under isomorphisms in the following way. A pair (i, d’)
is isomorphic to (i, d) if there is a commutative diagram

A——sp—2.(

P,k

A/#B/HCH

where f, g and h are isomorphisms in .4/R. Denote the closure of {(i,d) | (i,d) € £}
under isomorphisms by £/R. In this section we characterize when £/R induces an
exact structure on A/R. Special cases of relations are discussed, in particular when
the relation R is given by all morphisms factoring through objects in a given sub-
category. We also investigate when 4/R is even abelian using the characterization
(see [6]) when an exact category is abelian.

Let (A, &) be an exact category, and let R be a relation on 4. A morphism
f: A— Ais called an R-isomorphism provided f is an isomorphism in A/R.

Then, if (i’,d’) is in £/R, there exist R-isomorphisms «, 3, 4’ and J, and an
exact pair (i,d) in € such that i = Bia +r and d' = 6df’ + ' for some r and 1’
in R and where 3 = 371. The maps ¢’ and d’ are then called an R-inflation and
an R-deflation, respectively. Furthermore, it is easy to see that (i',d’) is in £/R if
and only if there exists R-isomorphisms a, b, b’ and ¢, and an exact pair (i,d) in £

such that i = bi'a+r and d = ¢d'l/ +1' for some r and 7/ in R and where ¥’ =5 .
In general the class £/R does not induce an exact structure on A/R. In the
next result we characterize when this happens.

Theorem 1.1. Let A, £ and R be as above. The class of pairs E/R is an exact
structure on A/R if and only if the following hold:
(I) Ifi is an inflation in A, then
(i) if ig is in R, then g is in R.
(ii) if gi is in R, then gi = ri for some r in R.
(I1) If d is a deflation in A, then
(i) if sd is in R, then s is in R.
(ii) if ds is in R, then ds = dr for some r in R.
(IIT) (i) Ifij is an R-inflation in A, then i is an R-inflation in A.
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(ii) If de is an R-deflation in A, then d is an R-deflation in A.
(IV) If d: B — C is a deflation in A and ¢ is an R-isomorphism, then in the

pullback diagram B" 4 B’ , the morphism ¢ is an R-isomorphism.

‘| d |+

B——C

Proof. Assume that £/R is an exact structure on A/R. Let (i,d) be in £. Then
by definition (,d) is in £/R. If ig = 0 for some morphism g, then g = 0. This is
equivalent to having the following. If ig is in R, then g is in R.

Similarly we show that if sd is in R, then s is in R.

Suppose that ds = 0 for some morphism s. Then there exists a unique morphism
t such that 3 = it. This implies that if ds is in R, then there exists a morphism t
such that s = it 4+ r for some r in R. It follows that ds = dit + dr = dr for some r
in R.

Dual arguments show that (I)(ii) is satisfied. This proves that the properties (I)
and (II) are satisfied.

By assumption if dé = de is a deflation in £/R, then d is a deflation in £/R. A
morphism d’ is a deflation in £/R if and only if there exist R-isomorphisms ¢ and
1 and an element r in R such that ¢d’y) + r is deflation in €. The property (ITT)(i)
follows directly from this. The property (IIT)(ii) is shown by the dual arguments.

Let d: B — C be a deflation in A, and let ¢: B — C be an R-isomorphism. In
the pullback diagram

B/I ? > BI

Wlala

B——C
in A/R, the morphism ¢’ is an isomorphism. If

4"
BI/I > BI

o| d |+

B——C
is the pullback in A, then

BI/I d > Bl

Wlala

B——C

is also a pullback in A/R. It follows from this that ¢” is an isomorphism, hence
¢’ is an R-isomorphism. This shows that all the conditions (I)—(IV) are satisfied.

Conversely, assume that the relation R satisfies the conditions (I)-(IV). Let
(i',d") be in £/R. First we show that (7/,d’) is a kernel-cokernel pair.
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We have that there exists a diagram

A—i>B—d>C

i, ofle,

A ——=DB ——=(

which induces a commutative diagram in A/R, where (i,d) is in £ and all the
vertical maps are R-isomorphisms witha=f ,b=g 'andc=nh

Assume that i’ = 0 for some morphism ¢. Hence giat = 0 and therefore iat = 0,
since g is an isomorphism. Property (I)(i) implies that at is in R. It follows that
fat is in R, so that fat = fat =t = 0. This shows that ' is a monomorphism in
A/R.

Assume that d’s = 0, hence hdbs = 0. Since h is an isomorphism, dbs = 0
and dbs is in R. Property (II)(ii) implies that dbs = dr for some r in R. Hence
d(bs —r) = 0, and therefore there exists a morphism ¢ such that bs — r = it. Then
gbs — gr = git, so that 5 = gbs — g = git = giaft = ¢’ ft and 7' is a kernel of d’ in
A/R.

This shows that 7/ is the kernel of d’ in A/R. Similarly using the properties
(IT)(i) and (I)(ii) we show that d’ is the cokernel of 7/ in A/R.

The class £/R is therefore a class of exact pairs which is closed under isomor-
phisms.

Let d’: B — B’ and d’: B’ — C be two deflations in £/R. Then we have a
diagram as follows

v do E” d"
B—Y o e "
X b
a, d/ b, d//
B B’ C

— — -1 — 1
where a, o/, b, b, ¢, ¢’ and 1) are R-isomorphisms, o/ =a 1, b =b , ¢ = ¢

and the diagram commute in A4/R. We construct the morphisms do: Y — B’ and
c¢: Y — B as the pullback of the maps d’: B —B’ and V/¢: B’ — B’. The morphism
dp is a deflation in A and by property (IV) the morphism ¢ is an R-isomorphism.
This shows that we have the following commutative diagram in A/R.
d"dy
_ C

¥

Y
B-IL ¢
where @ and v are isomorphisms and d"dy is a deflation in A. Hence d"d is a
deflation in A/R, and the property E1 is satisfied. 3
Next we prove that the property E2 is satisfied. Let d: Y — Z be a deflation
in A/R, and let f: Z' — Z be a morphism in A/R. Then we have the following
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diagram

v /H

Y1—>Z1

B A
Y Z
where 1, 1’, ¢ and ¢’ are R-isomorphisms with 1)/ = Eil and ¢ = 571 and the
front square diagram is commutative in A/R. The morphisms d’: Y{' — Z’ and

1 Y}l — Y; are constructed as the pullback of the morphisms d and ¢f. Then d'
is a deflation in 4, and we get the following commutative diagram in A/R

Y —— 27

d/
o7 jf
Yy _a A

where d’ is a deflation in A/R. This shows that the property E2 is satisfied for
E/R.

The condition (III) is a direct reformulation of the properties E3 and E3°P, so
that we have shown that £/R is an exact structure on A/R. O

Now we discuss the properties (I)-(IV) for the special case when R(A, B) =
Rx(A,B) = {f € Homus(A4,B) | f = vu,u: A — X,v: X — B, X € X} for a
subcategory X in A. We show that the condition (III) is always satisfied in this
case.

Proposition 1.2. Let (A, &) be an exact category. Assume that R = Rax for a
subcategory X in A. Then the property (II1) is satisfied.

Proof. Suppose ¢dep + vu: B — C is a deflation in A, where ¢ and ¢ are R-
isomorphism, and u: B" — X and v: X — C with X in X. Since (¢d,v) (&) =
dde) + vu, it follows that (¢d,v): B@ X — C is a deflation in A. Then we have
the following commutative diagram

d
B—" . ¢
a—<a>l H
d,v
Box Y o

Define @’ = (1,0): B® X — B. Then d’a = idg and ad’ = (})(10) = (§$): B®
X — B® X, hence d/a = idg and ad’ = idpex. Therefore a and o’ are R-
isomorphisms and ¢d = (¢d, v)a, so that ¢da’ = (¢d,v). This shows that (¢d,v) =
¢da’ +r for some r in R, where ¢ and a’ are R-isomorphisms. This shows that the
property (IIT)(ii) is satisfied. The property (IIT)(i) is proved by dual arguments.
This completes the proof. O

When R = Ry for a subcategory X of A consisting of injective or projective
objects we see next that this is sufficient for one of the properties (I)(ii) or (IT)(ii)
to hold.
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Proposition 1.3. Let (A, &) be an exact category. Assume that R = Rx for a
subcategory X in A.

(a) If X consists of injective objects, then property (I)(ii) is satisfied.

(b) If X consists of projective objects, then property (11)(ii) is satisfied.

Proof. Assume that ¢i is in R for an inflation ¢ in A. Then we have that following
commutative diagram

A——

B
, 7/
ul u/ 7 Jt
+ v
X—7
with X in X. Since ¢ is an inflation and X is injective, there exists a morphism

u': B — X such that v/i = u. Hence ti = vu = vu'i where r = vu/ is in R, and
therefore condition (I)(ii) is satisfied. The proof of the statement in (b) is dual. O

Next we discuss property (IV).

Proposition 1.4. Let (A, &) be an exact category, and let R be a relation in A.

(a) Assume that R = Ry for a subcategory X in A consisting of projective objects.
Then the property (IV) is satisfied.

(b) Assume that idg +r is an isomorphism for all objects A in A and all r in R.
Then the property (IV) is satisfied.

Proof. (a) Let d: B — C be a deflation in A, and let ¢: ¢’ — C be an R-

isomorphism. Let ¢/: C — C’ be such that ¢/ = 571. Consider the following
pullback diagrams

A" Lo

T RN

A—>B’—>C” , X

N
| s
“d

A—-=p=tilsc

We have that ¢¢’ = idc + vu with X in X. Since X is a projective object, there
exists a morphism v': X — B such that dv’ = v. This implies that ¢¢'d” =
d’ + dv'ud” = ¢d'yy' = dy’, hence d(yp)’ — v'ud”) = d”. Moreover i = i’ =
P’ = (" — v'ud’)i”, since d”’i” = 0. This shows that we have the following
commutative diagram

i’ B// d’

c
H e |
d C

It follows from this that 1/)1// — v'ud” is an isomorphism in A where v'ud” is in
R. Hence )’ is an isomorphism in ,A/R. Similarly one can prove that 1’9" is
an isomorphism in A/R for some morphism /. Therefore ¢/ is an isomorphism
in A/R, and consequently 1 is an isomorphism in .A/R. This proves that 1 is an
R-isomorphism.
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(b) Assume that id4 + r is an isomorphism for all objects A in A4 and all r in
R. Suppose that ¢: A — A’ is an R-isomorphism. Then there exists a morphism
¢': A/ — A such that ¢'¢ =id4 +r and ¢¢’ = ida + 7’ for some elements r and r’
in R. By our assumption the morphisms ¢’¢ and ¢¢’ are isomorphisms. It follows
that ¢ is an isomorphism and therefore a morphism ¢ is an R-isomorphism if and
only if ¢ is an isomorphism. The claim in (b) follows directly from this fact. O

The property in statement (b) above appeared in the sufficient conditions in [4]
for (A/R,E/R) to be an exact category. The application in section 3 show that
this condition is not necessary as identity morphisms are in R in this case. The
two previous propositions have the following immediate consequence.

Proposition 1.5. Let (A, &) be an exact category. Assume that R = Rx for a
subcategory X in A consisting of projective injective objects only. Then £/R is an
exact structure on A/R if and only if R satisfies the properties (I)(i) and (II)(i).

By [6] an exact category (A, &) is an abelian category if and only if every mor-
phism in A can be written as a composition of a deflation with an inflation. Hence
we have the following.

Proposition 1.6. Let (A, &) be an exact category, and let R be a relation on A
such that A/R is an exact category with respect to E/R. Then A/R is an abelian
category if and only if for every morphism f in A there exists an R-deflation d and
an R-inflation i such that f —id lies in R.

2. ALMOST SPLIT PAIRS

In this section we discuss when the existence of almost split pairs in an exact
category (A, &) is transferred to a factor category A/R for some relation R in A.
As we allow identity morphisms to be in R, it should not come as a surprise that
the existence of almost split pairs in a factor .4/R can not be transferred back to
A in general.

Throughout this section we restrict ourselves to Krull-Schmidt categories, that
is, additive categories where each object is a finite direct sum of indecomposable
objects with local endomorphism rings. Thus the indecomposable objects coincide
with those having local endomorphism rings.

A morphism ¢g: Y — Z in a Krull-Schmidt category A is called right almost
split if it is not a retraction and for any non-retraction t: A — Z there exists a
morphism s: A — Y such that ¢t = gs. Given a right almost split map ¢g: Y — Z
the set g A(Z,Y) is the unique maximal proper right ideal of the ring A(Z, 7Z) and
consequently Z has a local endomorphism ring. In particular, Z has to be indecom-
posable. We say that A has right almost split morphisms if for all indecomposable
objects Z there exists a right almost split morphism ending in Z. Dually we define
left almost split morphisms. We say that A has almost split morphisms if A has
right and left almost split morphisms.

A morphism g: Y — Z is called right minimal if every endomorphism s: ¥ — Y
with the property that ¢ = gs, is an isomorphism. Minimal right almost split
morphisms ending in an object Z are essentially unique. Namely, if g: Y — Z and
g': Y’ — Z are right minimal almost split morphisms, then there is an isomorphism
s: Y = Y satisfying ¢’ = gs.

It is shown in [4, Proposition 2.2] that if right (left) almost split morphisms exist,

then minimal right (left) almost split morphisms exist. An exact pair X Ly %y
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in £ is an almost split pair if one of the following three equivalent conditions is
satisfied: (i) f is minimal left almost split, (ii) g is minimal right almost split and
(iii) f is left almost split and g is right almost split [4, Proposition 2.3]. The exact
category (A, €) is said to have almost split pairs if A has almost split morphisms
and moreover for all indecomposable non-projective objects Z there exists an almost

split pair X Ly 2y and dually for all indecomposable non-injective objects X
there exists an almost split pair X Ly 4 g Recall that an object P in A is

called E-projective if each exact pair X — Y 4 pPiné splits. The E-injective
objects are defined dually. For simplicity we say projective and injective objects.
Moreover, E-projective and E-injective objects have the same characterization in
terms of exactness of Hom-functors as for module categories. By P (&) and Z(£) we
denote the full subcategories of A consisting of the projective and injective objects
respectively.

Now we show that when (A, £) has almost split pairs and R is a relation on A
satisfying the conditions (I)—(IV), then the exact factor category (A/R,E/R) has
almost split pairs too.

Proposition 2.1. Let (A,€) be an exact category and let R be a relation on A
satisfying conditions (I)—(IV).
(a) Then P(E/R)="P(E) and I(E/R) =I(€).
(b) If a morphism f: A — B is left almost split in A and ids does not belong
to R, then f: A — B is left almost split in A/R. Dually, if a morphism
g: B — C is right almost split in A and idg does not belong to R, then
g: B — C is right almost split in A/R.
(c) Let (f,g) be an almost split pair in A such that f: A — B and g: B — C.
Then id s does not lie in R if and only if idc does not lie in R. Moreover, if
ida does not belong to R, then (f,g) is an almost split pair in A/R.
(d) If A has almost split morphisms (almost split pairs), then A/R does.

Proof. (a) Since every exact pair (i,d) in £/R is isomorphic to the residue class of
an exact pair in &, it follows easily that P(€) is contained in P(E/R).
Let X be indecomposable in P(£/R). In particular, idx is not in R. Let

n:A-> B 2, X be an exact pair in €. In A/R the object X is projective, so
that there exists a morphism ¢g: X — B such that dg = idx. Hence dg —idx = r
for some r in R. If r is an isomorphism, then idx would be in R. Therefore r
is not an isomorphism and r is in the radical of End 4(X), since it is a local ring.
Consequently, idx 4 r is an isomorphism and 7 is a split exact pair. This shows
that X is in P(€).

(b) Since any lifting of a non-retraction (non-section) in A4/R to A is a non-
retraction (non-section), the proof of (b) is immediate.

(¢) If id4 belongs to R, then f = 0 and § becomes a retraction in A/R. The
assumption that ide does not also lie in R implies that ¢ is a retraction in A, a
contradiction. The rest of (¢) is now a consequence of (b).

The assertion (d) follows directly from (a) to (c). O

3. FINITELY PRESENTED FUNCTORS

We want to look at an example where the theory developed in the previous section
applies. Let A be an artin algebra. By mod A we denote the category of all finitely
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generated left A-modules and by mod(mod A) the category of finitely presented
contravariant functors from mod A to abelian groups. This functor category carries
the exact structure given by the pointwise exact sequences which is well-known to
be abelian. The aim of this section is to realize this abelian category as factor of
another exact category by applying our results of section 1. The exact category we
need will be introduced next.

Let T(A) be the lower triangular matrix algebra (4 Q) which is again an artin
algebra. We regard the modules X in mod T'(A) as triples X = (X1, fx, X2) where
X1, Xz are in mod A and fx is a homomorphism in Homp (X7, X2). Thus a T'(A)-
homomorphism u: X — Y is a pair u = (u1,u2) of A-homomorphisms u;: X7 — Y3
and uy: Xy — Y, such that usfx = fyu;. Following [1] we consider the functor
a: modT(A) — mod(mod A) which sends a T'(A)-module X to the cokernel of the
map Homp (—, fx): Homp(—, X;) — Homp(—, X3). The following proposition is
slightly more precise than the statement used in [1, Theorem 1.1].

Proposition 3.1. The functor a: modT(A) — mod(mod A) is full and dense. Its
kernel is the relation Ry where X is the full subcategory formed by the modules
(U,0,0) @ (V,idy, V) such that U and V' are modules in mod A.

Proof. Only the description of the kernel of « is not given in [1]. It is obvious that
a maps the objects (U,0,0) and (V,id, V') to 0.

Let us consider an arbitrary homomorphism u: X — Y such that a(u) = 0.
Looking at the commutative diagram below we obtain a homomorphism h: X5 —
Y7 such that us = fy h.

Hom(—,u
Hora (—, X1) —2 ") Homa (—, 1)
Hom(—,ﬁ)/ -7

Hom(—, fx) Hom(—, fy)

= /Hom(f,uz)

Homp (—, X2) — "2/ Homy(—, Y2)

a(u)=0

a(X)

a(Y)

0 0

Because of fy(u1 — hfx) = 0 there is g: X1 — Ker fy such that f{,g = u; —
hfx where f{: Ker fyy — Y7 is the canonical inclusion of the kernel of fy. The
commutative diagram

g
Iy h
X1 —>( fX) Kerfy @ Xo ( r ) Y:

ek

Xo X3 Y,

shows that u factors through the object (Ker fy,0,0) @ (X3,id, X3). O

By Proposition 3.1 we can identify mod(mod A) with mod T'(A)/Rx. We want
to find an exact structure on mod T'(A) such that the images of the exact pairs of
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this structure under « are precisely the exact sequences in mod(mod A). Of course
the usual exact sequences in mod T'(A) yield too many pairs for this job.

The ideal a = (4 9) of T(A) satisfies a> = a and T(A)/a = A. For X =
(X1, fx,X2) in mod T'(A) the module G(X) = ann, (X) is (0,0, X2) and the module
G'(X) = X/G(X)is (X1,0,0). Note that G'(X) is a module over the factor algebra
T(A)/b where the ideal b is given by b = G(A) = ({ ) and therefore T'(A)/ b = A.

Let us consider another ideal of T'(A) namely ¢ = (8§) satisfying ¢* = 0
and T(A)/c =2 A x A. For X in modT(A) we obtain H(X) = ann.(X) =
(Ker Ix,0, X2) = (Ker Ix:0, 0) S (Oa 0, XQ)

If L is one of the functors G, G’ or H, then as in [4] we denote by Fj, the
subfunctor of Exty(—, —) given by all short exact sequences which are mapped to
split exact sequences by L. We observe that Fg C Fg.

[4, Proposition 3.3] shows that Fg, Fgr, and Fy are closed subfunctors of
Ext(—, —). Consequently, by [4, Corollary 1.5] the subfunctor F' = FoeNFeNFy =
Fe:NFy is closed. Finally, by [4, Proposition 1.4] the set E of pairs (f, ¢g) such that

0 X ! y 2>z 0 is an element of the subfunctor F', provides

an exact structure on mod T'(A).

Exact pairs in £p are mapped to pointwise exact sequences in mod(mod A) by «.
That all exact sequences of mod(mod A) are obtained in this way, is an immediate
application of the Horseshoe Lemma. Hence we arrive at the following result.

Proposition 3.2. The images of the exact pairs in Ep under « are precisely the
short exact sequences of the exact structure on mod(mod A) given by the pointwise
ezact sequences.

Proposition 3.2 implies that the factor category mod T'(A)/R x with exact struc-
ture £p /Ry can be identified with the abelian category mod(mod A), where X is
the full subcategory formed by the modules (U, 0,0) @ (V,idy, V') such that U and
V are modules in mod A. By Theorem 1.1 Rx has to satisfy the conditions (I) to
(IV) and in addition the condition from Proposition 1.6 warranting being abelian.
As an illustration we want to check all the conditions directly. For preparation
we calculate the Ep-projective and £p-injective objects in mod T'(A). We use the
duality functor D, the respective transpose functors Trp, Trr(x) and the functor
—* = Homy (—, A) in the formulation and the proof of the following lemma.

h

Lemma 3.3. If P, Py U 0 s a minimal projective presenta-
tion of a module U in mod A, then D Trp)(0,0,U) = (D TraU,id, DTry U),
DT‘I‘T(A) (Ua lda U) = (D Try Ua 0, 0); and D rI‘I‘T(A) (U 0, 0) = (D(Pl*) D(h*)v D(Pg))

Proof. The minimal projective presentation of (0,0, U) over T'(A) looks as follows.

bkl

1

h
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By applying Homga)(—,T(A)) to the left square and adding cokernels we obtain
the following commutative diagram.

0<~— Trp\U~— P} <~ p¢

0<—TrAU%P1*<LPJ

The left column of this diagram describes Trp(4)(0,0,U). Application of D yields
the first equality. The second is proved in a very similar way. For the third we
observe that the minimal projective presentation of (U,0,0) over T(A) has the
following shape.

h

P K U 0
1]
(1)
Pyd P Py 0 0

Application of Hompa)(—,T'(A)) to the left square and adding cokernels gives the
subsequent commutative diagram.

1
0=~ pp <7D PU*EBPFLPJ

| ) T

Hence, the left column describes Trp()(U,0,0) and dualizing with D gives the
promised result. [l

Proposition 3.4. The Ep-projective and Ep-injective modules in modT(A) are
gien as follows:

(a) The indecomposable & -projective modules in mod T (A) are the modules (U, 0,0),
(0,0,U), (U,idy,U) for U in mod A indecomposable.

(b) The indecomposable Ep-injective modules in mod T'(A) are the modules (U, 0,0),
(U,idy,U), D Trpay (U, 0,0) for U in mod A indecomposable.

Proof. We use the notation introduced in [4]. From [4, Proposition 3.11] we derive
Fgr = F* where X = add({(U,0,0) | U € mod A} U {D Trp(a)(0,0,A)}). By [4,
Corollary 2.5] F* coincides with with Frep,, px- Hence by [4, Proposition 3.10]
and Lemma 3.3 we arrive at F' = F with

Y =add({(U,0,0)} U {(0,0,U)} U {TI'T(A) D(U,0,0)})

where U is always running through the modules in mod A. We use [2, Proposition
1.10] to compute the indecomposable Ep-projective modules. Clearly, we have the
modules (U, 0,0) and (0,0,U) for U in mod A indecomposable. From Lemma 3.3
we get the modules (U,id,U) for U in mod A indecomposable not projective. To
this we have to add all indecomposable projective T'(A)-modules. This provides
also the (U,id,U) for U in mod A indecomposable projective.

[4, Proposition 2.6] allows to calculate the indecomposable £p-injective modules
by forming the D Trp(s)-shifts of the indecomposable Er-projective modules and
adding the indecomposable injective T'(A)-modules.
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Besides the modules D Trpx) (U,0,0) for U in mod A indecomposable we obtain
the modules (U, id, U) and (U, 0, 0) where U is non-injective using again Lemma 3.3.
But the adding of the injective modules T'(A)-modules provides just the modules
of this shape where U is injective. [l

We see that X consists of objects which are Ep-projective and Ep-injective.
Hence by Proposition 1.5 we only need to convince ourselves that conditions (I)(i)
and (II)(i) are satisfied in order to obtain that £r/Ry is an exact structure on
mod T'(A)/Rx. By duality we only look at (I)(i). Let ¢g be a morphism in R » where
i: X — Y is an inflation and g: A — X a morphism in mod T'(A). Thus there is an
A-homomorphism s: Y7 — As such that fy = i2g2s. Hence isfx = fyiy = i2g28i1
and therefore fx = ga2si; because iz is an A-monomorphism. This shows that g is
in R and that property (I) (i) is satisfied.

Now we can apply Proposition 2.1 to reprove various results about the functor
category mod(mod A).

Corollary 3.5. The projective objects in mod(mod A) are the functors Homy (—,U)
and the injective objects are the functors D Homp (U, —) for U in mod A. Moreover,
mod(mod A) has almost split pairs.

Proof. Tn order to get the injective objects, we have to calculate a(D Trpa) (U, 0, 0)).
By the last equality of the lemma we have to compute the cokernel of

Homy (—, D(h*)) = D(Hompy (h, —))

which is D Homy (U, —). O

It remains to use Proposition 1.6 in order to see that the exact structure Ep /Ry
is abelian. We look at a homomorphism u: A — B in mod T'(A). Let us denote by
fli: Ao — Ay a kernel map of f4 and by f: By — B a kernel map of fg. Now
we consider the following pullback diagram.

By =—=D5By

h’l lf}g
b

7z — B

o e

142L>B2

In particular, there is a homomorphism aq: A; — Z such that ba; = uy and
hai; = fa. Because of hayf)y = faf)y = 0 there is ag: A9 — By such that a1 f)y =
h'ag. By the following diagram we present a product id such that d is a deflation
and ¢ is an inflation with respect to £r. There are obvious R y-isomorphisms s and
t such that u = tids.
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—
=
~

(ag 1)

Ag @ By By By Z
(49)] | |(54)
00 h b 00
ot (ar 1h') (’f o1
A1€9ZEBBO 7 Big A dZ
Xl I (41
Ay 7 — ) Ay ! By @ A,

4. REGULAR MODULES OVER WILD HEREDITARY ALGEBRA

Recently we learned form O. Kerner that the results of this paper and [4] have
an application in his study of regular modules over wild hereditary algebras. We
give some outline of the situation and refer to [7] for details.

Let k be a field and @ a finite connected quiver without oriented cycles whose
underlying graph is neither Dynkin nor extended Dynkin. Then the path alge-
bra H = k(@ is hereditary and of wild representation type. In particular, most
of the indecomposable H-modules are regular, i.e. they lie in A, ,-components of
the Auslander-Reiten quiver of H. We denote by reg H the full subcategory of
mod H given by all H-modules whose indecomposable direct summands are reg-
ular. Recall, that an indecomposable regular H-module is called quasi-simple if
the Auslander-Reiten sequence 0 T X Z X 0 ending in
X has an indecomposable middle term Z. In other words this means that X sits
at the border of an A ,-component. If ) has n vertices and n > 2, then there
exists a quasi-simple module X satisfying Ext}{(X ,X) = 0. For such a module
X its right perpendicular category X consisting of all H-modules M satisfying
Homp (X, M) = 0 = Exty (X, M), is an exact extension-closed abelian full sub-
category of mod H which is equivalent to mod C where C = kQ’ is again a wild
hereditary algebra whose connected quiver @’ has n — 1 vertices. Moreover, if we
identify X with mod C, then Z is a quasi-simple module in reg C.

In [3] a full and dense functor F': regC — reg H is constructed whose kernel
is the relation Ry consisting of the morphisms factoring through a module in
X = add{r.Z | i € Z}. If one defines for U and W in regC the set E(W,U)

as the set of all short exact sequences () U ! %4 w & 0 such

that Homg(Z, g) (or equivalently Home (f, Z)) is surjective, for all objects Z in X,
then E is an additive subfunctor of the bifunctor Ext{ : (reg C')°P x reg C' — mod k
which by [4, Proposition 1.7] is closed. Hence, by [4, Proposition 1.4] the category
reg C carries the exact structure €. By the definition of £ the modules in X" are
projective and injective with respect to £g. From Proposition 1.5 we derive that we
only have to check (I)(i) and (II)(i) in order to ensure that £g/Rx becomes an exact
structure for reg C/Ry. But this is clear because the functor F' maps inflations
to monomorphism and deflations to epimorphisms. Thus [7, Theorem 2] can be
interpreted as saying that the functor F' induces an equivalence of exact categories
from reg C/R» equipped with the exact structure £g/Ry to reg H equipped with
the usual exact structure inherited from mod H.
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