COHOMOLOGY OF QUATERNIONIC
SHIMURA VARIETIES AT PARAHORIC
LEVELS

by
Harry Reimann

(April 26, 2000)

Fakultat fiir Mathematik, Universitit Bielefeld,
PF 100131, D 33501 Bielefeld
(reimann @mathematik.uni—bielefeld.de)






INTRODUCTION

Introduction

In the present paper we generalize the results of [8] concerning the cohomology of
the Shimura variety Shp, associated with the multiplicative group D* (considered
as an algebraic group over Q) of a quaternion division algebra D over a totally real
number field F'. For an open compact subgroup C' C D*(A;), Shy, o = Sh;,/C
is a projective variety over a number field F(D) C C. The inductive limit H* of
the cohomology groups HE = Hi(ShQC(C) ,C) is a module over the Hecke algebra
H(D*(A;)). We assume that D is not totally definite, i.e. Shp o has dimension
d > 0. Let A* denote the set of isomorphism classes of automorphic representations
T = T; @ Ty of D* such that m, has trivial central and infinitesimal characters.
For a representation m € 4>, the C—vector space

HZ(’/T) = HOIHH(DX(Af))(Wf s HZ)

vanishes unless 7 has dimension 1 and ¢ < 2d is even, or 7 is infinite-dimensional

and ¢ = d. Moreover, there is a canonical decomposition

H' = @ H () Q.
TEA®
We fix rational primes ¢ # p, an embedding Q, — C, and a prime p of E(D)
dividing p, and denote the completion of E(D) at o by E, the corresponding Weil
group by W, and the Weil-Deligne group C x W, by W,. Let Q C C be the
algebraic closure of Q. We fix an algebraic closure @p of E and extend the natural
embedding of E(D) into F to a homomorphism Q — @p. Using the canonical

isomorphisms
HE = HY (Shp ¢ ®g(p) Q. Q) ®q, C

we obtain, for every m € A, an algebraic representation of W on H'(7). Let

d
@H%(ﬂ') if dimm = 1;
i=0
HY(rm) otherwise ;

H(m) =

considered as a representation of Wj. Let, on the other hand, 7* denote the auto-
morphic representation of Gly(F') (considered as an algebraic group over Q) which
has the same local factors as 7w at all places of Q at which D is split, and recall
that there is a natural 2¢ dimensional representation (o°, V°) of

D* % Gal(Q| E(D)) € “D* = D* x Gal(Q|Q)
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§1. SEMI-SIMPLE L—FUNCTIONS AND TRACES

where 7 € Gal(Q|Q) acts as (g, ) — (g,1,) on

Dx= ] ().

v: F—Q

This representation is given by

Ve = (§§(C2 and go((gv) ,7) Q) z, — @, (det gv)*lgvxv,lv
vEZ
where Z denotes the set of infinite places of F' at which D is split. Note that we
normalize the Artin reciprocity maps of local class field theory so that uniformizing
parameters correspond to geometric Frobenius elements.

Conjecture 1 For every m € A*, L(H(x),s) = L,(m*,0°% s —%).

For every algebraic representation 7 of W}, one can consider the representation
of Wy on the graded module gr(7) associated with the monodromy filtration. This
gives rise to a variant of Conjecture 1 concerning the semi-simple L—functions.
Conjecture 2 For every m € A*, L¥(H(r),s) = L{(m, 0°, 5 — %)

In the present paper we assume that p is unramified in F', and we show that
Conjecture 2 holds for all 7 € A such that 7, admits a non-zero Iwahori-fixed
vector and that Conjecture 1 holds for these 7 if the monodromy filtration on HY, is
pure of weight 7 for every i < 2d and every sufficiently small open compact subgroup
C C D*(A;) containing an Iwahori subgroup of D*(Q,,). This generalizes [8] where
7, had to be unramified.

§1. Semi-simple L—functions and traces

We fix an Iwahori subgroup C, C D*(Q,) and consider the Opy—scheme ‘fSTLD,Cp
constructed in [9] (§5). It is equipped with a continuous action of D*(A%) and an
equivariant isomorphism

Let kK C R denote the residue class fields of E and @p. For every sufficiently small
open subgroup C C DX(AJ;), there is a Gal(Q,|E) equivariant spectral sequence

Bt = W(Shp,c, /C @0, 7, HH (W) = HH(Shp e iy Ty Q)

where ¥, € ch’tf((:g\sz’Cp /C ®p, F)ets Q,) denotes the complex of vanishing cycles.
These spectral sequences form an inductive system (with respect to C') which is

.



§1. SEMI-SIMPLE L—FUNCTIONS AND TRACES

compatible with the action of D* (A’}). In particular, we obtain a filtration /'® on
Hépxc which is stable under the action of Wg x H(D*(A%})//C). The inertia group
I, C W acts trivially on the sheaves of vanishing cycles (cf. [9], Theorem 5.3 (vi)).
Hence C x I, C W} acts trivially on gr” .(Hépxc)- The image of this module
in the Grothendieck group of finite-dimensional C—vector spaces with an action of
WgxH(D*(A%})//C) does not change if F'* is replaced by the monodromy filtration
(cf. [7], Lemma 8.2 and its proof). For every positive integer j and every algebraic

representation 7 of Wy, let
Te(r,j) = Tr (7 | gr(r)'s)

where ® € Wy denotes a geometric Frobenius element, and for f € H(D*(A%)), let

Te(f, j) = Z(—l)“l‘r(@j x f|er(HE wo))

where C' C D*(AY%) is a small open subgroup such that f € H(D*(A%})//C). We will
identify Tr**(f,j) with the trace of a certain function in C2°(D*(A)/F*(R)) acting
on the space A of automorphic forms on D*\D*(A)/F*(R). To this end, we fix a
measure on D*(R)/F*(R) and a function f,, € C*(D*(R)/F*(R)) such that the
orbital integral O.(f.) vanishes for every non-elliptic regular semi-simple element
v € D*(R)/F*(R) and such that, for every irreducible admissible representation
r= @ , of DX(R)/F(R),
vi F—R
1 ifdimm, =1;
Tr (W(foo)) = Hm(ﬂv) with m(m,) =4q -1 ifveZ, m,=m;

0 otherwise;

where 7, denotes the unique discrete series representation of PGl,(R) with trivial
infinitesimal character (cf. [3], §3). The algebra structure of C°(D*(A)/F*(R))
and its action on A depend on the choice of a measure. We will use the product of
the measure on D*(R)/F*(R) fixed above and the measure on D*(A;) used in the
introduction.

Recall now that every irreducible admissible representation 7 of D*(Q,) corre-
sponds to a D —conjugacy class of admissible homomorphisms

p(m): Wo, =Cx Wy — LD((SP = D* Gal(Q,|Q,).

and let o(m) = p° - () If 7 admits a non-zero Iwahori-fixed vector, o(7) can

-
be described as follows. Let p;,...,p,, be all primes of F' dividing p. For every
i € {1,...,m}, there is a representation 7, of Dy such that 7 = @, m;. If D is

i=1"1%"
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§1. SEMI-SIMPLE L—FUNCTIONS AND TRACES

ramified at p;, there is an unramified character x; of Q, such that ; is the one-
dimensional representation x; e Nmj, o , and we define a map g;: W, — Gl,(C)
by '

|w|1/2

l‘|w|1/2
g;(z,w) = Xi(w)( 0 |w|—1/2

where x; is considered as a character of W@p via local class field theory. Otherwise,
we have to distinguish three cases. If there is an unramified character x; of Q, such
that 7, is the special representation corresponding to the character y; - Nm B, 10y
then we define g; as above. If there is an unramified character x; of Q) such that
T, = X; ° NmDpJ‘@p’ let

|w|1/2 0
gi(%w):X@'(w)< 0 |w|—1/2 :

In the remaining case there are unramified characters x;, and x;, of Q; such that
m; is the principal series representation PS(y; ;e Nm Fy, 10, Xi2° Nmeil@p)’ and we

g:(x,w) = (Xi,l(w) 0 ) |

0 Xi,2(w)

set

Using these maps and the identification of Homg(F,Q) with | [, Homg (£, ,Q,)
induced by the fixed embedding of Q into @p we define a representative ¢(m) of the

conjugacy class referred to above by
o(m)(z,w) = ((gv ) ,w) where g, = g;,(z,w) if v € Home(Fpi .Q,) .
For every i € {1,...,m}, let

a; = ql/QXi(q)*1 and (3, = q*1/2><i(q)*1 if i € I(m) or dim(m;) = 1;

-1

a; = Xi,l(Q)_l and 3, = x;,(q) otherwise ;

where ¢ = #x and I(7) = {i € {1,...,m} | m; square integrable }, and for every
subset J C Z, let
c;=[[ef""875™) where 2, =Homg (F, .Q,)NZ.
i=1

The standard basis {e;, ey} of C? gives rise to a basis of V°,

e, ifveld;
{eJ:®vezeM|J§Z} where e;, = ! ’
e, otherwise;
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in terms of which the action of ® defined by o(w) is given by
$e; =cjeq; forall JC Z,

and the action of (z,w) € C x I is given by exp(zN) for the nilpotent endomor-
phism N of V° such that, for all J C Z,

Ne; = Z €jupy Where Z = |_| Z;.
VEZ T i€l(m)
The monodromy filtration F*V° of o(w) is the Schmid filtration corresponding to
N, i.e. for every integer j, FiV° C V° is the subspace generated by

{e;|v(J)<j} where v(J)=#(Z,NJ)—#(Z,NJ).

Thus, we have an isomorphism gr(o(r)) = @ 0, where o, is the unramified

representation of Wy on the C-vector space with basis {y, | J C Z; } such that

dy, = o Fg#y - forall J C Z,.

Assume now that 7 is tempered, i.e. for every i € {1,...,m}, either D is ramified at
p; or m, is infinite-dimensional, and the characters x; or x,, and ¥, ,, respectively,

v(J)/2

are unitary. Then, for every subset J C Z, |¢;| = ¢ , i.e. for every integer j,

gr;(o(m)) is pure of weight j.

Proposition 1.1 For every integer j > 0, there is a function f\ € H(D*(Q,)//C,)
such that, for every irreducible tempered representation m of D*(Q,) and every
function f € H(D*(A})),

Tr(n(f§)) = ¢ dim(z%) T+ (o (), 5)

Te(f9|.A) = T(f, )

where [0 = f{). f. [ € C*(D*(A)/F*(R)) and the measure on D*(Q,) is the
quotient of the measures on D*(A;) and D*(A%) used above.

The proof of this proposition will be given in the following sections. In the
remainder of the present section we use it to deduce our main result.

Theorem 1.2 For every ™ € A> such that 7rpcp £0,

L»(H(m),s) = L;S(ﬂ'./ 0°,8 — %) ,

and if, for every i < 2d, the monodromy filtration on H(w) is pure of weight i,
then
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Proof. Let 7” denote the representation of D*(A%) such that 7, = 7,®@7" and, for

m

every i € {1,...,m},let m, denote the representation of Dy such that m, = R,
We assume that 7 is infinite-dimensional and that m, is tempered since, other-
wise, either 7 is one-dimensional or, for every finite place v of F', D, is split and
the corresponding factor m, of 7 is not square-integrable (cf. [6], Corollary 3.2.3).
But then m,
ciently small open subgroup C' C DX(Afc) such that 7 is contained in the finite
set Il = {7 € A= | %?pxc # 0} and a function f € H(D*(A})//C) such that
Tr( P(f)) = (=1)% and 7(f) =0 for all 7 € Il \ {7} (cf. [8], Lemma 2.5). For
f( € H(D*(Q,)//C,) as in Proposition 1.1 and fU) = féj) - [+ fo this yields

is unramified, and the theorem is proved in [8]. We choose a suffi-

Tr (m, (£))) = Te(w(f9)) = Te (f9]4) = T, 5) = din(m,”) Tr™(H (), j)

since 7 occurs in A with multiplicity 1 and H® decomposes as pointed out in the
introduction. Consequently, we have

T(H(r), j) = ¢ T(o(m,), 5) -

Together with the power series expansions

o

SS SS . q_js
log L*(H(r),s) = Y _Te*™(H(m), j) ;
j—l
. q‘js
log L (, 0%, 5) Tr*(o .
Z -

this implies our first assertion.

Assume now that the purity condition of the second assertion is satisfied. Since
we consider the case where 7 is infinite-dimensional, 7* may be replaced by 7. Let
7 denote the ®-—semi-simplification of H(7)®| |~%2 (cf. [4], §8). The first assertion
is equivalent to

~

gr(r) = gr(o(m,))

since on both sides I, acts trivially and ¢ defines a semi-simple endomorphism.
Moreover, since H(m) = HY(m), each gr;(7) is pure of weight j, and since we
consider the case where 7, is tempered, the same holds for gr;(o(7,)). Hence, for
all 7,

[

grj(T) grj(a(ﬂp)) .

According to [4] (Proposition 8.9) this implies that 7 and o(m,) are isomorphic

which, in turn, yields the second assertion of the theorem. .
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§2. ORBITAL AND TWISTED ORBITAL INTEGRALS

§2. Orbital and twisted orbital integrals

We fix a small open subgroup C' C D* (Afc), an element & € DX(A?) , and a positive
integer 7, and consider the geometric correspondence

b= (Frob/eby , by): Shp ¢, /CS @0,k — Shp /C @0,k % Shpe [C @,k

where C¢ = £C¢71 N C, Frob denotes the Frobenius endomorphism over r, b, is
the morphism induced by the action of £, and b, is the natural projection. Let

u: (bz)*(FrObjobl)*\IlC e \IIC

be the cohomological correspondence on ¥ with support in b which is induced by

the canonical isomorphisms
Frob* U =W, , bV =V, =b0,,
and the trace map
(02)by Ve — W

The action of u on Hi(*?%z),cp/c Qo R HA (T ,,)) ®gq, C coincides with the action of
7 x f where f € H(D*(A%)//C) denotes vol (C)~" times the characteristic function
of the double coset CEC'. Hence, using the spectral sequence of vanishing cycles we
obtain

o

Tr™(f,j) = Z (_1)i+k Tr(u*

i,k=0

H/(Shp, ¢, /C @0, R H (U,)))

Let W* denote the stalk of the sheaf H*(¥,) at a geometric point 2. From [9] (The-
orem 5.3 (iii) and Corollary 5.4) we infer that b and U, satisfy all of the conditions
considered in §1 of [8]. By Theorem 1.2 in [8] we can, therefore, write

(2.1) T>(f.5) = ) T(f)

BEB
where
B = {0 € Shp,(R)/C* | Frob (by(8)) = by(6) }
and
T(B) =Y (=) Tr(uy | W5 )
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§2. ORBITAL AND TWISTED ORBITAL INTEGRALS

Using Theorem 5.3 (vi) in [9] we can give an explicit description of B and T'. To
this end, we choose a maximal order Op, , C D ®q Q,, containing C), and consider
the biggest left ideal X C Op, , such that

C,={d€0,,| Xd=X}.

Let K be the completion of the maximal unramified extension of Q, in @p. The
Frobenius automorphisms of C and its residue class field £ are both denoted by o.
Let E' C K be the extension of degree j of E, and set

C,=1{d€0p,®, Op | (X ®; Op)d=X®; Op }.

We will use the natural identifications Hom (F',R) = Hom(F',K) = Hom(Op ., R).
Let Y denote the set of all y € D*(E’) such that y ! € Op,,®7, O and such that,
for all v € Hom(F', K),

) -1 ifveZ;
Ordp((v ® ldE’)(NmD|F(y))) = i
0 otherwise.

For every de Yy ={yeY | X ®, Op C (X ®; Op)y}, let

Z(d)={veZ|f(X®, Oc)d SOp,®; O}

Zid)={veZ|f(X ®7,0x)d" € Op , @y O }

2,(d) = {p € Homy (Op . 7) | d" € ker(Op , ®; Op =5 )}
where * denotes the main involution of D, f, € F*(K) is the idempotent cor-
responding to v € Hom(F,K), and ¢: Oy — & is the residue class map. The
inclusions Z,(d) — Z and Z{(d) — Z and the restriction map

Z,(d) — Z
Y 90|OF

induce an injection

QZ SN QZ1(d) AP in(d) D ng(d) .

Let ©, denote the automorphism of its cokernel which is induced by the permu-
tations v — o"v of Z,(d) and Z{(d) and ¢ — o"¢ of Z,(d), respectively, where
r=[FE":Q,]. Using these automorphisms we define a map

©: D*(E') — Q
S (DR TN O,) ifdeYy:
0

dr+— { k=
0 otherwise .
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In the description of the set B we will use the following notation. Let A, be
the totally definite quaternion algebra over F' which has the same invariants as D
at all finite places not dividing p and invariant (d; + ¢,)/2 at p, where

0 if D splits at p,;
1 otherwise;

forall i € {1,...,m}. Forevery a € A}, let A, denote the commutant of L, = F(a)
in Ap. The set of isomorphism classes of pairs (L,e) where L|F is a totally imagi-
nary quadratic extension which splits D at all places not dividing p and ¢ is a map
from the set of all primes of L dividing p into the set of non-negative integers such
that e(p) # ¢(p) for at least one p, and

Z(E(P) +94;) =d, +;

plp;
for all 7, is denoted by J,,. For t = (L,e) € 3, and a € L*,let L, = A, = A, = L.
For every t € {D} UJp, we fix an injective F' ®g A-algebra homomorphism
Lt A ®g A% — D ®g A} and a system of representatives R(t) C A for the set of
conjugacy classes in A /(OxNC'). Let R'(t) be the set of all a € R(t) such that there
are a 6 € D*(E') and an F ®q K-algebra homomorphism ¢: A, ®¢ K — D ®g K
which satisfy the following conditions.

(2.2) For every i € {1,...,m} and every prime p of L, dividing p,,

—2[F, : Qp,]ord,(a) ~Jd;+e(p) —e(p) ift=(L,e) €Tpandp#p;

r d; ord,(p) otherwise .

(2.3) ¢ is injective and «(a) = Nm, (§) = da(8)---o" ().
(2.4) Forall z € A, ®g K, t(o(z)) = do(u(z))d".
For every a € R'(t), we fix § and ¢ as above and set

Y,(a) = {d € D*(E') | d"'d0(d) € Y, }/C,,
YP(a) = {de D*(A}) | d 'ad € EC }/C*

where a is considered as an element of D*(A%) via ;. Since a cannot be contained
in F' unless t = D, ¢ identifies A(A}) with D;(A%), and ¢ identifies A (Q,)
with Dg (Q,), where D;(A%) denotes the centralizer of a in D*(A%}) and

D;,(Q,) ={d e D*(E') | §0(d) = d }.

-9 —



§2. ORBITAL AND TWISTED ORBITAL INTEGRALS

In particular, AY acts on Y,(a) and Y?(a) by left multiplication via these identifica-
tions. Using a standard argument (cf. [7], p.60 62) we derive from Theorem 5.3 (vi)
n [9] that, for a certain subset ¥, C {D} UJ, containing D and all (L,e) € 3,
such that L splits D, there is a bijection

B~ || || (AX a) x Y7(a)) )
teTp aceR (t
such that T corresponds to the map induced by

Yyp(a) — Q
d+— O(d 00 (d))

for all a.
Now we return to our trace formula (2.1) and use the description of B and T

given above to rewrite it as

T (f5) =Y Y. > Od'da(dy))f (dy ad,)

teTpH aceR (t)

where the third sum is extended over all
(dy.dy) € AX\(D*(E")/C, x D*(A})/CF)

and where f’ denotes the characteristic function of £C. Let ¢,...,c, be rep-
resentatives for the factor space C/C%. Then ¢, ..., c,& are representatives for
CEC/C, and an element d € D*(A}) is contained in C§C' if and only if there is an
i€ {1,...,s} such that f'(c;'dc;,) = 1. This i unique, and we obtain

T (f.5) =vol(C) Y > > O(d'do(dy)) f(dy ady)

teTp acR/ ()
where the third sum is extended over all
(dy,d,) € A;\(DX(E’)/C}’7 X DX(AI})/C) .

By linearity, this holds for every f € H(D*(A%)//C). We choose Haar measures on
D (A%) and Dy, (Q,) and use the identifications explained above, to get a measure
on AX(A;). Moreover, we fix measures on D*(E') and AyCp C AX(A;) where

Cp = (Op @7 Z,)* x (F*(A}) NC) C F*(Aj)

such that vol(C}) = vol(C) = 1. Then we apply the argument of Kottwitz [5] (1.5)

to obtain the formula

(2.5) T(f.5) = Y Y vol (A Cp\AJ () TO,(0) O,(f)

t€Tp aceR (t)

— 10 —



§2. ORBITAL AND TWISTED ORBITAL INTEGRALS

where

TO&,(@) _ / Oz "50(x

p)\D*(E)

Recall now that an arbitrary element 6 € D*(E') is called o—semi-simple if
Nm, () is semi-simple. We say that 0 € D*(E’) and v € D*(Q,) are associated if
Nm,(d) and ~ are conjugate in D*(FE').

Proposition 2.6 If § € D*(E') is a 0 —semi-simple element which is not associated
with an element of D*(Q,), then TO;,(©) = 0. Moreover, there is a function
) e H(D*(Q,)//C,) such that, for every irreducible tempered representation 7 of

DX(@p),
Te(n(f)) = ¢*? dim(z) Te™(a(n). j) .

and for every semi-simple element v € D*(Q,),

, TO;, (©) if v is associated with 6 € D*(E') ;

ENO(M) =q
0 if there is no such 0 ;

where £(y) = (=1)* if v € F*(Q,) and £(v) = 1 otherwise, and where the measures

on D}(Q,) and D;,(Q,) are chosen such that Iwahori subgroups have equal volume.

The proof of this proposition will be given in the following section. In the
present section we show that a function fzgj) as above satisfies the conditions in
Proposition 1.1. For any function f € H(D*(A%})//C), the trace of the action of
fU) = féj ). f - fso on A is given by the Selberg trace formula

(2.7) Tl“(f(j)|./4):ZVOI(D,>;CF\D A)/F*(R /f r tyx)d

VER DX (A\D* (A)
where R C D* is a system of representatives for the set of conjugacy classes in
D*/(Of N C), dz denotes the quotient measure obtained from the given measure
on D*(A)/F*(R) and a certain measure on DX(A)/F*(R), and the volume is
taken using the quotient of the latter with respect to the measure on the subgroup
DXCp with vol(Cp) = 1. We will establish a bijective correspondence between
the non-vanishing summands in the formulas (2.5) and (2.7). To this end we recall

Lemma 10.7 in [7] which can be stated as follows.

- 11 —
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Lemma 2.8 Let v € D* C D*(Q,) be associated with an element of Y C D*(E")
and such that L = F(y) C D is either equal to F', or a totally imaginary quadratic
extension of F'. If ord,(y) = ord,(y*) for every prime p of L dividing p, then there
is an F'—algebra homomorphism A: L — A, and we set a = A(y) and t = D.
Otherwise, let a =~y and t = (L,¢) where, for every i € {1,...,m} and every prime
p of L dividing p,,

d; ifp=p;
ep) = —[F,, : Q,]ord,(7)
T

otherwise .

In both cases, t is contained in ¥, a satisfies condition (2.2), and there are a
d € D*(E') and an I ®y K—algebra homomorphism 1: A, ®q K — D ®q K such
that conditions (2.3) and (2.4) are satisfied.

Consider now an element a € 2'(t) for some t € T, choose ¢ and ¢ as in (2.3)
and (2.4), and assume that the corresponding summand in (2.5) does not vanish. In
connection with Proposition 2.6 this implies that o is associated with an element
in D*(Q,), i.e. «(a) is conjugate to such an element. Since either a € F' or L, is
a quadratic extension of F' which splits D at all places not dividing p, it follows
that ¢(a) is conjugate to an element in D*. Let v € R be the representative of the
image of such an element in the set of conjugacy classes in D*/(Of N C'). Then ~
is uniquely determined, and there is an isomorphism L, & F'(y) of F—algebras such
that ord,(a) = ord,(7) for all places p above p. In particular, t can be recovered
from v and (2.2). Recall now from [3] (§5) the equation

vol (AX(R)/F*(R)) -/foo(xlvx)df =¢(7)

where &(y) = (=1)#*%, D, = D and A, = A, if a is contained in F, and
£(y) =1 and D, = A, otherwise, and where the measures on AX(R)/F*(R) and
DX(R)/F*(R) are related (cf. [7], Remark 10.5). Moreover, we have

vol (D C\DJ (A)/F*(R)) = vol (A7 Cp\ A% (&) - vol (A7 (R)/F*(R))

where all the measures are chosen as indicated in the preceding considerations.
Together with Proposition 2.6 this implies that the summand corresponding to ~
in (2.7) coincides with the contribution of a to (2.5).

Consider, on the other hand, an arbitrary v € 8 which contributes a non-zero
summand to (2.7). In particular, the orbital integrals of f., and f,gj ) do not vanish.
By the choice of f,, this requires that either ~ is contained in F or F(v) is a
totally imaginary quadratic extension of F', and by Proposition 2.6 v is associated

12
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with an element § € D*(E') for which TO,, (©) # 0. Since © has support in Y,
the ¢ conjugacy class of ¢ must contain an element of Y. Hence, we may apply
Lemma 2.8 to obtain t € T, and an element in A;. We replace the latter with the
representative a € () of its image in the set of conjugacy classes in A /(OxNC).
Since every element of (Op ®; Z,)* can be represented as Nm,(z) for a certain
z € F*(E'), a is contained in PR'(t). Obviously, the map 7 — (t,a) obtained
this way is inverse to the map (t,a) — 7 constructed above, and we conclude that
Tr(fD]A) = Tr™(f,5) as required.

§3. Base change

In this section we will prove Proposition 2.6. Obviously, © is a product of certain
functions defined on the various factors of the decomposition

DX(E") =[] Dy(E).
i=1

and we can apply Lemma 7.6 of [7] to compute these functions explicitly. The
assertion of Proposition 2.6 can be decomposed into several independent statements
each of which is concerned with one of the groups Dy over Q,. For all 7 such that
D, is ramified, we can apply Proposition 9.4 and the proof of Lemma 11.4 in [7],
but if D, is split, the situation is different from that considered in [7]. In order to
treat this case now, we replace our notation as follows. Let I’ be a finite unramified
extension of @, which is generated by two subfields £ and F' containing Q,, and let
Z be a subset of Homg (F', F') which is invariant with respect to the natural action
of Gal(F'|E"). In particular, there is an integer n such that #2Z =n-[F' : E'].
Consider the Iwahori subgroup

C={deM(Op) | Xd= X} C GL(F) where X =My(O,)n, n= (2 (1))

and, similarly, X’ C My(F") and C" C Gl,(F’). In the sequel, whenever we need
a measure on a p—adic group, we choose it such that an Iwahori subgroup has
volume 1. Let V' and W’ denote the characteristic functions of the subsets C'n~!

and C'(93)C" of Gly(F"), respectively, and set
O =WV'+1-¢)W+ VW eH(GLF)/C

where ¢’ is the number of elements in the residue class field of /. The support of
this function is the set

V' ={de GL(F) | d" € My(Op), ord,(det(d)) = -1, X' C X'd},

13



§3. BASE CHANGE

and for every d € Y’

1—¢ if X'd=My(0Op) = X'd";

1 otherwise .

O'(d) =

Let o be the Frobenius automorphism of F”, and for every integer i, let

Set £ =FENF and e=[F:Q,]|, and consider the function
e—1

O =116;°06: GL(F®g, ') — Q
i=0

where O, is the characteristic function of C" C Gl,(F") if o'’ZNHomy(F,F') = &,
and O, = ©’ otherwise.

To every irreducible admissible representation 7 of Gl,(F) with 7% # 0 we
attach an endomorphism @, of the C—vector space with basis {y, | J C Z} as
follows. Fix unramified characters x; and x, of Q, such that 7 is a constituent of
PS(x1 e Nmpg . xo°Nmpq ). and set

&y, = py(p) Dy (p)#y,, forall J C Z

where pi; = x; o Nmpg, g and & = o~ IE"®] . The trace of this endomorphism is
given by

Tr(@,) = Z Hl(p)_#(Z\J)#Q(p)_#J = (Vl(P)_l + Vz(p)_l)n

JCZ
PJ=J

where v; = x; ° NmF,‘QP. In order to prove Proposition 2.6 we have to find a
function f € H(GLy(F)//C) such that, for every irreducible tempered representation
7 of Gl,(F) with 7¢ # 0,

Te(n(/)) = ¢'"/2 dim(x®) Tr(®,),
and for every semi-simple element v € Gl,(F'),

TOs,(0) if v is associated with § € GL(F ®@q E');

0 if there is no such ¢ ;

31 &M O,f) =

where £(y) = (=1)#2 if v € F* and £(vy) = 1 otherwise.
There is a unique generator 7 € Gal(F’|F) such that 077 € Gal(F’|E’), and
a simple calculation shows that, for every o—semi-simple ¢ € Gl,(F ®q, E'),

T0,,(0) = TOy,(6)

— 14 —
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where & = 3,(0)3,(6)---B, ,(6) € GL(F') and © € H(GL(F')//C") denotes
the n th power of ©" (cf. [7], p.73). Moreover, ¢ is associated with an element
v € GL(F) if and only if Nm(¢§) = &'7(¢") - -7 FI=1(§") = B;(Nm,(5)) and v
are conjugate in Gl,(F"). Such a 7 always exists, and we claim that () coincides
with

) (_1)ordp(det(5’)) if Nm7(5') € F*:
e(d') =
1 otherwise ;
if TO(;,T(C:)) #£ 0. In fact, since every element d of the support of © satisfies the
equation ord,(det(d)) = —n, TO4 (©) = 0 if £(7) # e(&)F*#']. On the other
hand, if e(d’) = —1, then 7 is contained in F'* and

[F': Ford,(det(8")) = 2ord,(v),

hence [F' : F'] is even. Since [F' : E'] and [F’ : F'| are relatively prime, our
claim follows. Hence a function f € H(Gly(F)) satisfies condition (3.1) for every
semi-simple element v € Gl,(F) if and only if f and O are associated in the sense of
[1] (Chapter 1, §3) which, in turn, holds if and only if, for every irreducible tempered
representation 7w of Gl,(F'),

Tr(I(©) ;) = Tr(x(f))
where II denotes the base change lift of 7 to Gl (F') and [.: II — II" is the

canonical intertwining operator (cf. [1], Chapter 1, §6, and [7], p. 76-77). There are
the following three possibilities :

> 7¢=0and II =0 ;

> dim(7“) = 1 and there is an unramified unitary character p of F* such
that 7 is isomorphic to the quotient of PS(uq,py) with py = pyl |;1/2 and
Uy = p |},/2 by a one-dimensional subrepresentation isomorphic to p-det and
IT is isomorphic to the quotient of PS(v,15) with v; = p; o Nmp, p by a
one-dimensional subrepresentation isomorphic to p e NmF,| pedet;

> dim(7%) = 2 and there are unramified unitary characters pu, and p, of F*
such that 7™ = PS(py, py) and I1'= PS(vy, 1) with v; = pi; o Nmpy .

Note that, since © is C’'—bi-invariant, Tr(II(©)L,) = 0 if I = 0. Similarly,
Tr(w(f)) =0 if f is C—bi-invariant and 7 = 0.
Let now f € H(GL,(F)//C) be the n—th power of

fl= WV + (1= W) 4 (vy)tree]

— 15 —
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where V' and W are the characteristic functions of the subsets Cp~* and C'(9§)C
of Gl,(F), respectively, and ¢ is the number of elements in the residue class field
of F'. Consider an unramified character p of F*, and set gt = pedet, v = po-Nm PR
and v = v odet. Then we find

(V) =pp)™ and @(W)=vol (C(94)C) = q,
hence
a(f) = (ue) "+ (quip) HF D" = (v(p) ™ + ¢v(p)™)"

Similarly, we have

hence
v(0) = (y(p)f1 + qll/(p)*l)n
Together with the following lemma this implies that f has the required properties.

Lemma 3.2 Let m = PS(uy, yy) for unramified characters p, and p, of F*, and
let I = PS(vy,v,) with vy = py e Nmpy p and vy = piy o Nmp, . Then

Te(11(O)1,) = Tr(x(f)) = 24 (i ()™ + 5(p) )"
where I.: 11 — II" is the canonical intertwining operator.

Proof. According to [3] (Theorem 3.13), II¢ admits a basis on which 1. acts triv-
ially and with respect to which

. 0 ¢ v, (p)! ' 0 ¢
e (v = ! d Iw’ = .
. (q'—% R I B VI

This implies that ©' acts on I as multiplication by a = ¢'*/?(vy(p)~" + 15(p)™").
Similarly, there is a basis of 7€ with respect to which

B 0 ¢" ()™ _ (0 a
V)= (q‘1/2u2(p)‘1 0 ) and x5(W) = (1 q— 1) ’
hence
(P07 (L= @)d P (p)
WC(WV +(1—q)V)= < 0 1/2u1(p) 1 >

and

0 ¢y (p) "
Thus f” acts on 7 as multiplication by (ql/Qul(p)_l)[F/:F]+(q1/2u2(p)_l)[F/:F] =a,
and we obtain Tr(II(©)/1,) = Tr(n(f)) = 2a™. .

— 16 —
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