CLEAVING FUNCTORS AND CONTROLLED WILD ALGEBRAS
PETER DRAXLER

ABsSTRACT. We show that the cleaving functors introduced in [BGRS] as a tool for
proving infinite representation type of finite-dimensional algebras can also be used to
establish controlled wildness. The main application is that an algebra is controlled wild if
there is an indecomposable projective module with a Loewy factor having a homogeneous
direct summand which is of length at least 3. As a second application we derive Han’s
covering criterion.

1. INTRODUCTION AND SUMMARY OF CONTENTS

1.1. Variations of Wildness. A finite-dimensional associative algebra A over an al-
gebraically closed field k is said to be wild if there is a faithful exact functor H :
mod—k{X,Y} — mod—A which preserves indecomposability and isomorphism classes.
We use the notation mod—B for the full subcategory of finite-dimensional modules inside
the category Mod— B of right modules over an associative k-algebra B. A wild algebra is
called strictly wild provided the functor H can be chosen to be full.

Ringel proposed a notion of wildness which lies between common and strict wildness.
A finite-dimensional algebra A is said to be controlled wild by a full additive subcategory
C of mod—A if there is a faithful exact functor H : mod—k{X,Y} — mod—A such that
Homs(HM, HN) = H Homy(x y1(M,N) ® Homuy(HM, HN )¢ and Homu(HM, HN)c C
rad4(HM, HN) holds for all M, N in mod—k{X,Y}. We use the notation Hom4(—, —)¢
for the ideal of mod—A formed by all homomorphisms factoring through an object in C
and rady for the Jacobson radical of mod—A which is the ideal generated by all non-
isomorphisms between indecomposable modules.

As it is shown in [Hn] using arguments from [Si], in all these variations of wildness the
functor H can be chosen to be of the form — ®xyy W for a k{X, Y }-A-bimodule W
which is finitely generated free as k{X, Y }-module.

Obviously, any strictly wild algebra is controlled wild by the subcategory formed by the
zero module. Moreover, any controlled wild algebra is wild (see [Hn]). It is well-known
that a local wild algebra (and there are plenty of them) is never strictly wild. On the
other hand, it is conjectured that any wild algebra is controlled wild. This paper may
serve as support for this conjecture.

1.2. Cleaving Functors. In order to introduce cleaving functors, a more categorical
point of view is appropriate. For a skeletally small k-linear category & we denote by
Mod—S the category of all k-linear contravariant functors from & — Mod—k where
Mod—F is the category of all vector spaces over k. The functors in Mod—S will be called
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right modules over §. If we consider an associative algebra A as a category with one
object in the obvious way, then this definition of right modules is consistent with the
usual one.

A module in Mod—S is called finitely generated projective if it is a direct summand
of a module of the shape @ _; S(—, z;) where z1,...,, are objects of S. We denote
by proj—S& the full subcategory of Mod—S given by the finitely generated projective
modules. A module M in Mod—S& is said to be finitely presented if there is an exact
sequence P, — Py — M — 0 such that P; and F, are finitely generated projective. By
modg,—S we denote the skeletally small full subcategory of Mod—S given by the finitely
presented modules.

Let S, 7 be two skeletally small k-linear categories and F': § — 7 a k-linear functor.
The restriction functor £* : Mod—7 — Mod—S8, M + MF has a left adjoint /* which
is up to natural isomorphism well-defined by requiring that F* : Mod—S — Mod—7 is a
right exact, coproduct preserving functor such that F*S(—,z) = 7 (—, Fx) for all objects
x of §. The functor F'is called cleaving if the canonical natural transformation from the
identity of Mod—& to F'*F* is a section. Cleaving functors where introduced in [BGRS] as
an elementary tool for showing that algebras are representation-infinite. It was observed
in [Pe] that cleaving functors are also helpful for detecting wild representation type. We
will refine these arguments in order to deal with controlled wildness.

For our purposes we will need a characterisation of cleaving functors from [BGRS]. We
observe that F'S(—, —) is a subbifunctor of the bifunctor 7 (F—, F'—) : S? xS — Mod—k.
In [BGRS] it is shown that a functor F' : S — 7T is cleaving if and only if F' is faithful
and there is subbifunctor U of T (F—, F—) such that FS(—,—) e U =T (F—, F—). A
subbifunctor U with this property is called a cleavage of F.

The key result of our paper says that, if /' : § — 7 is a cleaving functor, then
F modg,—S — modg,—7 is a cleaving functor as well. This assertion will be proved
in section 2 as Proposition 2.2 by constructing a cleavage Homy(—, —)y for F* from a
cleavage U for F.

For our applications it will be convenient to use the language of spectroids and aggre-
gates which was introduced in [GR]. We will recall the relevant notation in section 3. In
particular, we will see that finite spectroids are practically the same as finite-dimensional
algebras. After these preparations in Theorem 3.2 we will present a sufficient condition
to obtain controlled wildness of a finite spectroid 7 from a cleaving functor F': & — 7T
starting in a strictly wild locally bounded spectroid S. This theorem may be considered
as the main result of our paper but it has the drawback to depend on clever choices of
subcategories VW of mod—S and C of mod—7 satisfying certain conditions. We will finish
section 3 by giving some hints how these conditions can be checked.

1.3. Applications. As mentioned before, in order to apply Theorem 3.2, one has to
choose suitable subcategories ¥V and C. In section 4 we will give two applications where
this is possible. As main application, which was actually the motivation for this paper,
we will establish that an algebra B is strictly wild if there is an indecomposable projective
module with a Loewy factor having a homogeneous direct summand which is of length at
least 3. As a second application, we will reprove Han'’s covering criterion (see [Hn|) using
our approach.

The author is grateful to C.M. Ringel and Han Yang for fruitful discussions.
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2. LIFTING CLEAVING TO FINITELY PRESENTED MODULES

2.1. Projective Presentations. For a skeletally small k-linear category & we denote by
add S a minimal additive k-linear category containing & in which idempotents split. The
category add S will be skeletally small again and the Yoneda functor add S — proj—S,
x +— add §(—, ) will be an equivalence. (Indeed, this shows that proj—S may be chosen
as a model for add S.)

A functor F' : § — T of skeletally small k-linear categories extends uniquely to a
functor addS — add7. We will denote this extended functor by F' as well. If F' is
cleaving then the extended functor add S — add 7 will be cleaving as well because any
cleavage U can also be extended uniquely. We will also keep the name U for the extended
cleavage.

For a skeletally small additive k-linear category A with splitting idempotents let us
introduce the category mat.A whose objects are morphisms a : x1 — x¢ in A. The space
of morphism mat.A(a,d’) from a : 21 — xy to @' : 2} — = is the set of pairs (hy, hg) of
maps hy @ 21 — 2, ho : ©9 — xf in A satisfying a’hy = hpa. The composition is defined
componentwise. Clearly, mat.A is a skeletally small k-category again.

If A = addS, then we obtain a full and dense functor ¥s : matA — mod—S which
sends an object a : 1 — xy of matA to the cokernel of the map A(—,a) : A(—,z1) —
A(—, zg). Usually, mat.A is called the category of projective presentations for S.

2.2. Construction of the Cleavage of the Left Adjoint. For a k-linear functor F' :
S — T of skeletally small k-categories we put A := addS and B := add 7. The induced
functor F' : A — B yields a functor F? : matA — matB which sends an object a to
Fa and a morphism (hy, hg) to (F'hy, Fhg). Because of the defining properties of the left
adjoint of F' we obtain F*Ws = U7 ¥ : matA — modg—B. We use this equation to
prove the key result of this paper:

Proposition. If F' : S — T is a cleaving functor of skeletally small k-linear categories,
then F* : modg,—S — modyg,—7 is cleaving as well.

Proof. If F'is cleaving with cleavage U, then for a and @’ in mat.A we denote by matU (a, a’)
the set of all (uy,up) in matB(FPa, FPa’) such that uy lies in U(zy,2}) and ug lies in
U(zo, z})). Tt is rather obvious that matU is a cleavage for the faithful functor F#. Thus
we have already shown that F is cleaving.

For M. M’ in mod—S8 we choose a, a’ in matA such that Ysa = M and Vsa' = M.
Now we define Homy (M, M')y as WrmatU(a,a’) and observe that Homy(—, —)y is a
well-defined subbifunctor of the bifunctor Homy(F*—, FA—) : (mod—8) x mod—8 —
Mod—k because matU(—,—) is a subbifunctor of matB(F7—, FF—) : (matA)? x
matA — Modk. It remains to show that F* is faithful and Homz(F*M, FA*M') =
F*Homg (M, M') & Homg (M, M')y.

For the first assertion we consider (hi, hy) in mat.A(a, a’) such that Wz F?(hy, ho) = 0.
Hence there is g : Fzg — Faf satisfying Fhy = F(a')g. Because F' is cleaving, we can
write g as g = F'f +u where f in A(zg, z}) and w in U(zy, 2}). Since F'(a’)u belongs to U,
from the equation Fhy = F(d'f) + F(a')u follows that hy = fa’ using that F' is faithful.
Hence Ws(hy, hg) = 0.

Because W7 is full, for the second assertion it suffices to prove that the sum is di-
rect. Assume that UrFP(hy, ho) = Wr(uy,uo) for (hy, hy) in matA(a,a’) and (up,ug) in
matU(a,a’). We obtain the existence of a map ¢ in B(Fzg, Fz}) such that Fhy — uy =
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F(a')g. Writing g as ¢ = Ff + u with f in A(zg,2}) and u in U(zg,2}), we get
F(d'f)—Fhy = —F(a’')u—ug. Hence F(a'f—hg) = 0 and therefore U+ F?(hy, ho) = 0. O

3. CLEAVING FUNCTORS FOR SPECTROIDS

3.1. Spectroids and Aggregates. It will be convenient to pass from finite-dimensional
algebras to spectroids. The first step is that we can always assume that the algebra A
under consideration is basic because any finite-dimensional algebra is Morita equivalent
to a basic algebra and Morita equivalent algebras have equivalent module categories.

A spectroid S is a small k-linear category with finite-dimensional morphism spaces such
that for each object x of S the endomorphism algebra S(z, x) is local and pairwise different
objects are non-isomorphic. Given a basic finite-dimensional algebra A, we can write the
unit element of A as a sum Y ., e, of mutually orthogonal primitive idempotents and
obtain a spectroid S4 which has the set {1,... ,n} as set of objects and the space e, Ae,
as set Sa(z,y) of morphisms from z to y. The composition is given by multiplication.
The spectroid Sy is finite meaning that it has a finite set of objects. It is obvious that
Mod—A can be identified with Mod—S4 by sending a module M to the functor which
maps the object = of S4 to Me,.

For a spectroid & we will denote by mod—S& the full subcategory of Mod—S& formed
by the finite-dimensional modules M (i.e. > _sdimy M(z) < oo). Clearly for Sy the
identification of Mod—A with Mod—S 4 yields an identification of mod—A with mod—S&4.

Since we also want to derive Han’s covering criterion using our set-up, we will have to
consider a slight generalisation of finite spectroids, namely the locally bounded spectroids.
A spectroid § is said to be locally bounded if ) o dimy S(z,y) +3_ o5 dimy S(y, x) < 00
for all objects x of S. For a locally bounded spectroid S the categories mod—S and
modg,—S coincide.

An aggregate is a skeletally small additive k-linear category with finite-dimensional
morphism spaces such that all idempotents split. For a spectroid S the categories add S
and modg,—S are aggregates. The objects of add S are just finite direct sums ;. z; of
objects 1, ... ,x, of S because the category formed by these objects has already splitting
idempotents.

For a locally bounded spectroid § we put A := add § and analyse more precisely the full
and dense functor ¥g : mat.A — mod—S. The kernel of this functor is the ideal of mat.A

formed by the morphisms which factor through an object of the shape (z g z)®(y — 0)
where z, y are objects of A. If we define mmat.A as the full subcategory of mat.A4 formed

by the objects which do not admit a direct summand of the shape (x s z)® (y — 0),
then ¥s : mmat A — mod—S is a representation equivalence. The objects in mmat.A are
called minimal projective presentations.

3.2. A Sufficient Condition for Controlled Wildness. Let us now formulate a con-
dition which produces a controlled wild spectroid 7 from a cleaving functor F : § — T
starting in a strictly wild spectroid S.

Theorem. Let F : S — T be a cleaving functor of locally bounded spectroids with
cleavage U where S is strictly wild. Thus there exists a fully faithful exact functor
H :mod—k{X,Y} — mod—S.

Assume that we find a full subcategory W of mod—S which contains H(mod—k{X,Y})
and a full additive subcategory C of mod—7 satisfying the following conditions:
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(a) F* : W — mod—T is eract.

(b) F* : W — mod—T preserves indecomposability.

(¢c) For all M, N in W the equation Homy (M, N)y = Homg(FAM, FAN)c holds.
Then T is controlled wild by C.

Proof. Tf we consider the composition F*H : mod—k{X,Y} — mod—7, then all what is
left to show is that Homz (F*M, FAN)¢e C radr (FAM, FAN) for all M, N in W. We may
assume that M, N are indecomposable which by (b) also forces F*M and F'*N to be inde-
composable. If we assume that Homz(FAM, FAN)e € rads(F*M, FAN), then there is an

isomorphism «a in Homgz (F*M, FAN)c. Because Homz(—, —)c is an ideal of mod—7, the
identity idg»,; = F*(idys) has to lie in Homy (F*M, F*M)e = Hom (M, M)y. Because
F* is cleaving, this implies idy; = 0. a contradiction. O

3.3. An Exact Structure for the Projective Presentations. The difficulty in the
preceeding Theorem is to find the appropriate subcategories W and C such that the
assertions are satisfied. If S is a skeletally small k-category and A := add S, then mat.A
becomes an exact category (see [GR]) with the componentwise split exact structure. This
means that ((f1, fo), (g1, 90)) is an exact pair if (f;, g;) is a split exact pair for i = 0, 1.
Usually the functor Ws will send exact pairs only to right exact sequences in mod—S.
Nevertheless, we will see in the next section that this exact structure on mat.4 may be
helpful for establishing condition (a) of Theorem 3.2.

3.4. Preserving Indecomposability. Now we will present a lemma which is helpful to
establish (b) of Theorem 3.2 in some situations.

If Ais a k-algebra and W is a subspace of A, then for all non-negative integers 7
we denote by W the subspace of A spanned by all elements of W* where W' is the
set of all product wy ---w, such that wi,...,w, are elements of W. Further we put
W)= 3 W,

Lemma. Let B be a finite-dimensional k-algebra, A a subalgebra of B, and W a A-A-
subbimodule of B satisfying B =A® W and W™ = 0 for some natural number m. Then
the following assertions hold:

(i) For all i € N the subspace W is a A-A-subbimodule of B.

(i) W) is a nilpotent ideal of B.

(iii) B/W ) is a factor algebra of A.

(iv) If A is a local algebra, then B is a local algebra.

Proof. Parts (i) and (ii) are clear. For (iii) we observe that the composition of the canonical
inclusion A — B with the projection B — B/W©) is surjective. Now (iv) follows
immediately from (ii) and (iii). O

4. APPLICATIONS

4.1. Algebras with Big Loewy Factors. We will need the path category & of the
3-Kronecker quiver

X y

as domain for a cleaving functor and put A := add S. Since this quiver admits no oriented
cycle, its path category § is actually a spectroid. We consider the full subaggregate W of
mod—S formed by the modules having no simple direct summand and the subaggregate
mmatyy A of mmat.A such that Vsmmatyy A = W. If a : 27 — x9 is in mmat,y.A, then
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a is a monomorphism, x; is of the shape 2™ and x(y of the shape y™. It follows that
Vs : mmatyy A — W is an exact equivalence.

Let us now state the result which was the original motivation for this paper. In classical
language it says that an algebra is controlled wild provided there is an indecomposable
projective module with a Loewy factor having a homogeneous direct summand of length
at least 3. Passing to the language of spectroids this reads as follows:

Theorem. Let T be a finite spectroid with radical J = rad 7 and assume that there are
objects s, t of T and there is a natural number n such that dimg(J"/JT" 1) (s,t) > 3.
Then T is controlled wild by mod—7 /J™.

Proof. We may assume that J"™' = 0 and dimy J"(s,t) = 3. Now we choose a basis
ay, as,asz of J"(s,t). In order to construct a cleaving F' : § — 7 we consider the path
category S of the 3-Kronecker quiver and denote the arrows from z to y by ay, as, as.
Now we define F' : § — 7T by F(z) :== s, F(y) :=t and F(o;) == @; for i = 1,2,3. A
cleaving U for F'is given by U(x,z) := J(s,s), Uly,y) := T (t,t), Uly,x) := T (t,s) and
U(z,y) a complement of J"(s,t) in 7 (s,t).

Let us put B := add 7. As subcategory W needed to apply Theorem 3.2 we use the S-
modules without simple direct summands as considered above. Because Vs : mmatyy A —
W is an exact equivalence, we obtain F* = U FAUS! : W — mod—7. In order to show
that this functor is exact, we have to prove that exact pairs in mmatyy.4 are mapped
to exact sequences in mod—7 by WsF?. Because of J"*! = 0 we see that for any
map a : 1 — o in matw.A the map B(—, F'(a)) : B(—, Fx;) — B(—, Fxy) has kernel
rad B(—, F'zp). It follows that the kernel sequence induced from the diafram of projective
modules associated with the image of an exact pair in mmat,,.A under F? is exact. The
snake lemma yields the assertion. Thus we have checked condition (a) of Theorem 3.2.

Let us turn to condition (b). If @ : x; — =z is an object of mmat,y.A such that
Us(a) is indecomposable, then the endomorphism algebra mat.A(a, a) is local. It suffices
to prove that matB(F’a, FPa) is local as well. Because F is cleaving, we know that
matB(FPa, FPa) = FP(matA(a, a)) ® matU(a,a). where F?(mat.A(a,a)) is a subalgebra
isomorphic to the local algebra mat.A(a,a). Since U(z,z) = J(s,s) and U(y,y) =
J(t,t), we get that matU(a,a)™ = 0 for some m € N and therefore Lemma 3.4 applies.

It remains to establish condition (c¢) saying that Homs(M,N)y and
Homg (F*M, FAN)moa_7/7n coincide for all M, N in W. Because of U(y,y) = J(¢,1)
and J" = 0 it is obvious that the image of a map in Homs (M, N)y is annihilated by
J". The other inclusion will be proved in the lemma below. O

Lemma. Let a, ¢’ be in mmatyy.A, (hy, hg) be a non-zero morphism in mat.A(a,a’) and
(uy,up) in matU(a,a’). Then J"Im Wr(F(hy, ho) + (u1,up)) # 0.

Proof. We put f; := F(h;) +u; for i = 0,1. For a : z; — 27 and d : 2] —
x, we consider the exact sequences B(—, Fzy) R B(—, Fzy) — ¥7Fa — 0 and
B(—, Fz)) P28 B, Fal) =5 WrFd — 0.

Let us assume J" Im W (F (hy, ho) + (uy,ug)) = 0. Because 7 is an epimorphism we
obtain 7'B(—, fo)(J"(—, Fzo)) = 0, thus w.B(—, fo)J"(s, Fzg)) = 0 by looking at the
object s of 7. Now we observe B(—,ug)J"(s, Fzg) = uoJ"(s, Fxg) = 0 using uy €
J(Fxg, Fxy) because U(y,y) = J(t,t). Thus from 7. B(—, Fho)J"(s, Fzy)) = 0 follows
that B(—, Fho)J (s, Fxy) C B(—, Fa')B(s, Fx}). Using B(s, F'x)) = FA(z,2}) @ U(z, )



CLEAVING FUNCTORS AND CONTROLLED WILD ALLGEBRAS 7

and U(z,z]) C J(s, Fx}) (because of U(z,z) = J(s,s)), from B(—, Fa')U(z,z)) =
Fd'U(z,z}) = 0 follows the inclusion FhoJ"(Fz, Fzy) C Fad'FA(z,z}). By the con-
struction of F' we can replace J"(Fz, F'xg) by FA(z, o) and arrive at F'(hoA(z, ) C
F(d A(z, 2})).

Now we use that F is faithful to obtain hoA(x,z0) C o A(z,2}) which shows that
Us(hi, hg)r = 0. Therefore Wg(hy, hg) has to factor through a semisimple injective S-
module. From (hy, hg) # 0 follows that Ws(hy, hy) # 0 forcing Wsa’ to have a non-trivial
simple injective summand, a contradiction to the choice of W. O

4.2. Han’s Covering Criterion. Let us pass to a second example. We consider a
k-linear functor F' : & — 7T of locally bounded spectroids and a group G of k-linear
automorphism of F' satisfying F'g = F for all g in G. The functor F' is called Galois
covering with Galois group G if the following conditions are satisfied (see [BG], [Ga]):
(i) F is dense.
(ii) For each object s of 7 the group G acts transitively on F~1s.
(iii) The group G acts freely on the objects of S, i.e. for each object x of S and element
g of G the equation gz = x implies g = e where e is the neutral element of G.
(iv) F is a covering functor, i.e. for any two two objects s, t of 7, and z, y of S with
r in F~ls and y in F~!t the canonical maps F : [] _.S(x,gy) — 7T (s,t) and
F: [,eq S(gz,y) — 7 (s,t) are isomorphisms.

se

We recall that G acts also on mod—S. In fact, any element g of GG yields an exact
autoequivalence of mod—S sending a module M to 9M = Mg~!. Moreover, the equation
Homz (FAM, FAN) = @, F*(?M, N) holds for all M, N in mod—S8.

Lemma. Let F : S — T be a Galois covering with Galois group G. Then the following
assertions hold:

(a) F'is cleaving with cleavage U(z,y) = D, F'S(gz,y).

(b) F* : mod—8 — mod—7T is ezact.

(¢) For all M, N in mod—S8 the equation Homz (M, N)y = @, F* Homs(M?, N) holds.
(d) If G is torsion free, then F* : mod—S — mod—7 preserves indecomposability.

Proof. Let us put again A4 := add S and B := add 7. Part (a) is obvious and (b) follows
because F* coincides with the right adjoint of F'* on mod—S&.

For showing (c) for all g € G and any two objects a : x1 — xg, ' : 2} — z{ of mat.A
we define matIB(Fa, Fa') as the set of all (Fvy, Fug) in matB(Fa, Fa’') such that v; €
A(9z;, 2). Tt is clearly sufficient to establish Wrmat9B(Fa, Fa') = F* Homg(Y¥sa, Ysd').
Since F is faithful, mat?B(Fa, Fa') is the same as FPmat.A(%a, a’) which is contained in
the right side because 9Wsa = W(%a). The other inclusion is now obvious.

Part (d) is proved in [Ga] using the Krull-Remak-Schmidt-Azumaya Theorem refer-
ring to an infinite decomposition of an infinite-dimensional module. We will apply our
Lemma 3.4 to give an independent prove where no infinite-dimensional situations occur.
We know from (a) and (c) that for an indecomposable module M in mod—S the endo-
morphism algebra Endz(F*M) can be written as F* Ends(M) ® @, F* Homs(9M, M)
where F* Ends(M) is a local subalgebra. Hence we only need to show that the subspace
W =@, F*Homs("M, M) satisfies W™ = 0 for some positive integer m. The module
M has some length n which is inherited to all the modules M. We put m := 2" —1. In or-
der to prove that for any sequence wy, ... ,w,, of maps in W the product w,, - - - w; is zero,

!/
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we may assume without loss of generality that w; = F*f; where f; € Homg (%M, M) with
g; # e. Since the group G is torsion free, it acts freely on the indecomposable modules in
mod—S& which shows that 9 M 2 M and therefore none of the f; is an isomorphism. This
implies that also the map 9791 f; is not an isomorphism and by the Harada-Sai Lemma
we obtain f,,9m fo,_1 ---9m92 f; = 0 which by application of F* yields w,, ---w; = 0. O

Theorem (Han). Let F': S — T be a Galois covering with torsion free Galois group G.
If there is a finite minimal strictly wild factor spectroid R of S, then T is contolled wild
by C := add F'* Uy, (mod—R N mod—IR).

Proof. We recall from [Hn| that one can find a fully faithful exact functor H

mod—k{X,Y} — mod—S whose image is contained in an abelian full subcategory
W of mod S consisting of sincere R-modules. This allows to prove (see also [Hn])
D, F*Homg(M?9, N) = Homz(FAM, F*N)¢ for all M, N in W. The rest follows from
Theorem 3.2 using the Lemma above. O
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