Algebraic K-Theory of Non-Linear Projective Spaces

THOMAS HUTTEMANN

Extending ideas of “The Fundamental Theorem for the Alge-
braic K-Theory of Spaces: 1”7 we introduce a category of sheaves
of topological spaces on projective n-space and present a calcula-
tion of its K-theory, a “non-linear” analogue of QUILLEN’s isomor-

phism Ky (P%) = @y Ki(R).

1. Introduction

Let R denote a commutative ring. QUILLEN has proved ([Q2], § 8, theorem 2.1)
that there is an isomorphism of K-groups K,P% = @ K;(R) for all i > 0 where
P, = Proj R[Xy, X1, ..., X,] is the n-dimensional projective space over R.

This paper is concerned with an analogous result for the algebraic K-theory of
spaces in the sense of [W]. We define a category P™ of “quasi-coherent sheaves” on
projective n-space and a notion of twisted structure sheaves Opn (7). If Y is a pointed

space, we can form the “tensor product” Y A Op=.(j), and the assignment

(Yo, Y1, ..., Yu) = \/ ¥ A Opn(—j)
j=0

induces a weak homotopy equivalence [[5 A%/?(x) — Q|hS,P"| (where A%/9(x) is
the version of WALDHAUSEN’s algebraic K-theory of spaces functor using stably finitely
dominated spaces, and the target is the algebraic K-theory of non-linear projective
n-space).

The author has to thank M. BOKSTEDT, J. KLEIN, S. SCHWEDE and F. WALD-
HAUSEN for many discussions. The model structures introduced in § 7 result from joint
work with O. RONDIGS.

All diagrams are made with PAUL TAYLOR’s diagrams macro package for TEX ([T]).

2. Equivariant Spaces

Let k Top, denote the category of pointed (or based) KELLEY spaces (or k-spaces) in
the sense of [Ho|, definition 2.4.21 (3): a space Y is a KELLEY space if every compactly
open subset U C Y is open (here U is compactly open if for all compact HAUSDORFF
spaces K and all continuous maps f: K — Y, the set f~1(U) is open in K). Ac-
cording to [Ho, 2.4.24] this category has a model structure where a map f is a weak

equivalence if and only if it is a weak homotopy equivalence, and f is a fibration if and
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only if it is a SERRE fibration. All k-spaces are fibrant. Cofibrations are retracts of gen-
eralized C'W-inclusions ([DS], 8.8 and 8.9) where we have to use the pointed cells A”}.
It follows that all cofibrant objects are HAUSDORFF. Colimits agree in k7Top, and the
category of pointed topological spaces. Limits can be computed by first calculating the
limit in the category of topological spaces, then applying the “KELLEYfication” func-
tor k. In particular, all smash products occurring in this paper will bear this modified
product topology. The category kTop, is a proper model category; in particular, the
gluing lemma holds.

A monoid is a (multiplicative) semi-group with identity element 1. A monoid with
zero is a monoid M with a distinguished element 0 € M such that m -0 =0-m =0
for all m € M. A map of monoids with zero is a monoid homomorphism preserving
the zero element. A topological monoid with zero is a monoid with zero which is also a
pointed KELLEY space with 0 as basepoint such that the multiplication is continuous.

We can consider S° as a monoid with zero, it is initial in the category of monoids
with zero. If M is a topological monoid, one can add a disjoint zero element. This gives
a functor M — M left adjoint to the forgetful functor (forgetting the zero element).

Suppose M is a topological monoid with zero. A right action of M on a space
Y € kTop, is a continuous map Y A M —— Y satisfying the usual associativity
and unitality condition. Similarly we can define left actions. If M happens to be
commutative every right action determines a left action and wice versa. Let M-kTop,
denote the category of pointed topological spaces with a right action of M; morphisms
are M-equivariant pointed continuous maps. The following proposition summarizes
formal homotopical properties of equivariant spaces:

Proposition 2.1.

(1) The category M-kTop, has the structure of a topological model category where a
map is a weak equivalence (resp. fibration) if and only if it is a weak homotopy
equivalence (resp. fibration) of underlying k-spaces, and a cofibration if and only
if it is a retract of a generalized CW -inclusion in the sense of [DS, 8.8] (cells are
of the form A N M ). Furthermore, all objects are fibrant.

(2) If M = G A M is the smash product of a topological monoid with zero G and a
discrete monoid with zero M, the forgetful functor (GAM)-kTop, — G-k Top,
preserves cofibrations.

(3) If M is cofibrant as an object of kTop,, the forgetful functor M-k Top, — kTop,
preserves cofibrations.

(4) If M is cofibrant as an object of k Top,, all cofibrant objects of M -k Top, are HAUS-
DORFF.

O

From now on, “topological space”, “topological monoid” etc. will always

refer to k-spaces.

The category M-k Top, has a suspension functor XY := S' AY with M acting
on Y only. Suspension preserves cofibrations, acyclic cofibrations and hence all weak
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equivalences between cofibrant objects. Note that this is still true if “cofibration” (and
“cofibrant”) refers to the underlying maps and objects in kTop,.

Proposition 2.1 implies that an object of M-kTop, is cofibrant if and only if it
is a retract of a generalized M-free pointed CW-complex. Let C(M) denote the full
subcategory of cofibrant objects in M-k Top.,.

An object Y € M-k Top, is called finite if it is obtained from a point by attaching
finitely many free M-cells (in particular, Y is cofibrant). It is called homotopy finite if it
is connected by a chain (or zigzag) of weak equivalences in M-k Top, to a finite object.
By [DS] 5.8 and 5.11, this is equivalent to the existence of a finite object Z and a weak
equivalence Z —— Y. If in addition Y is cofibrant, the WHITEHEAD theorem ([DS],
lemma 4.24) applies: Y is homotopy finite if and only if Y is homotopy equivalent, in
the strong sense, to a finite object. A space Y is called finitely dominated if it is a
retract of a homotopy finite object. Finally Y is said to be stably finitely dominated if
some suspension of Y is finitely dominated. The full subcategories of C(M) consisting
of the finite, homotopy finite, finitely dominated and stably finitely dominated objects
will be denoted by C¢(M), Cpy(M), Cta(M) and Cyrq(M), respectively.

Suppose Y and Z are objects of k Top, with an action of M from the right resp. left,
we can form their tensor product Y Ay Z € kTop, defined as the coequalizer (in k Top,)
of the two maps Y AM A Z —— Y A Z given by the action of M on Y and Z. If Z has
an additional right M-action (compatible with the left M-action), the tensor product
Y A Z is an M-equivariant space.

The following lemma is an exercise in general nonsense; we omit the proof.

Lemma 2.2. Suppose f: M — M is a morphism of topological monoids with zero.

Then M acts on M wvia f from the left.

(1) The functor -Ap M : M-k Top, — M-kTop, has a right adjoint Y — Y where Y
is Y as a topological space, but with M acting via f.

(2) The functor - Ay M preserves cofibrations and acyclic cofibrations. It maps weak
equivalences between cofibrant objects to weak equivalences.

(3) The functor -Apr M maps cells to cells. It restricts to a functor Co(M) — Co(M)
where 7 may denote any of the decorations f, hf, fd or sfd.

O

Let I := [0, 1]; denote the unit interval with a disjoint basepoint. If Y € M-k Top,
is cofibrant, Y A I is a good cylinder object for Y ([DS], definition 4.2), i.e., the map
Y VY — Y A I (inclusion of top and bottom into the cylinder) is a cofibration of
M-spaces. Using this, we obtain a functorial mapping cylinder construction Z, for
maps g € M-kTop,. It is compatible with all finiteness notions (for cofibrant spaces)
and commutes with colimits.

We will also have occasion to apply the following technical result:
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Lemma 2.3. Let G denote a topological monoid with zero. Suppose M is a discrete
monoid with zero, and t € M is an element such that right translation by t (i.e.,
the map py: M —— M, m +— mt) is injective. Then for each Y € C(GAM), the

selfmap Y . Y, y — yt is a cofibration in G-kTop, (though not necessarily in
(GAM)-kTop, ).

Proof. Let Q := M \ p;(M) denote the subset of those elements which are not a
translate of ¢. Assume first that Y is a finite generalized free (GAM)-equivariant
CW-complex, i.e., Y can be obtained from a point by attaching finitely many free
cells. Write Y = Y Uyc C where C' = Aff_ NG A M is a free cell with boundary 0C,
and consider the following diagram:

AEANGAM «— AN N\GAM —— Y

] o

AN ANGAM ~— A N\GAM —— ¥

We may assume by induction that the right vertical map is a cofibration. We claim that
the map from the pushout of the left square into its terminal vertex is a cofibration.
Indeed, the pushout and the terminal vertex differ by a one-point union of Ai A G,
indexed over @), with attachment done over a one-point union of 8A’j A G, indexed
over . (This is true since right translation by ¢ is assumed to be injective.)

In this situation, REEDY’s patching lemma ([BF], lemma 3.8) asserts that the
induced map from the pushout of the top row into the pushout of the bottom row is a
cofibration. Hence the lemma is true for finite Y.

By transfinite induction, this proves the lemma for (not necessarily finite) general-

ized free CW-complexes. Finally, if Y is a retract of a generalized free CW-complex Z,

the map Y ~ '+ YV is a retract of the map 2 — '+ Z. But the latter is a cofibration,

hence so is the former. O

3. Iterated Homotopy Cofibres

Definition 3.1. Assume C is a category. For any object ¢ € C let C | ¢ denote the
category of objects over ¢, and define C | ¢ as the full subcategory of objects over c
without the identity of c¢. There is a functor j: C | ¢ — C defined by (a — ¢) — a.
If Y is a functor C — G-kTop, we define the latching space of Y at ¢ as

L.Y :=colimY oj
cle

(cf. [Ho|, 5.2.2). Note that L.Y comes equipped with a canonical map to Y (¢) induced
by the structure maps Y (a) — Y (¢). Given an object of C | ¢, i.e., a morphism
b — c in C different from id., we obtain a map Y (b) — L.Y since Y (b) appears
in the diagram defining the latching space.
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For a finite non-empty set N let (V) denote its power set regarded as a cate-
gory with inclusions as morphisms. For all A € N we identify (N) | A with a full
subcategory of (N).

Let C'N) = Func((N), C) denote the category of functors (N) — C. If G denotes
a topological monoid with zero, we have defined G-k Topka> := Func((N),G-kTop,),
the category of N-cubical diagrams in G-kTop,. If Y is an object of G-k Topka> we
write Y4 for Y/(A). The latching space L,Y has a canonical map to Y4. We say that
Y satisfies the latching space condition at A if this map is a cofibration in G-k Top,.
More generally if f: Y —— Z is a map of cubes, we say that f satisfies the latching
space condition at A if the induced map LZ Uy ,y YA —— Z4 is a cofibration.

For 0 < k < #N define a functor

e : G—kTopiN> — G-k Topim, ek(Y)A = {gg{(LAY - YA)’ ii ]]z ; ﬁﬁ
where C'yl denotes the mapping cylinder construction, and e (Y') has the obvious struc-
ture maps: for B = A1l {i} C N, the map ex(Y)* —— ex(Y)® is given by the
structure map Y4 —— YB of Y if neither A nor B has k elements; by the com-
posite Y4 » LgY » Cyl(LgY — YB) if #B = k; and by the composite
Cyl(LpaY — YA) — YA = YBif #A =k

Let v: G-k TopiN ) — G-k Top, denote the functor taking Y to the strict cofibre
of the map LyY —— Y. We define the iterated homotopy cofibre of Y as

I'(Y):=voeuno...0e10e(Y). (%)

Finally we define the KRONECKER delta cube dc (for a subset C' C N) as the func-
tor 8¢ : G-k Top, — G-kTop!™ with 6c(K)* = if A # C and 6¢(K)° = K.
Remark 3.2.

(1) We will only be interested in I'(Y) if all the spaces Y4 are cofibrant in G-k Top,. In
this case, the following description holds: calculate the homotopy colimit C' of the
diagram obtained from Y by deleting the terminal vertex YV; there is a canonical
map C — Y, its homotopy cofibre is I'(Y'). The functors e; “make Y cofibrant
as a cube” which guarantees that application of v “gives the correct homotopy
type”. More precisely, I' is a model for the total left derived of v in the sense
of [Q1] on the subcategory of objects with cofibrant components.

(2) Since both the mapping cylinder construction and formation of latching spaces are
compatible with smash products, the functor I' commutes with smash products
with spaces. Explicitly, if Y is an object of kTt opiN ) and K € G-k T op,., there is a
canonical isomorphism of G-spaces ['(K AY) =2 K AT(Y) where K A'Y denotes
the cubical diagram A +— K A Y4 in G-k Top,.

(3) There are natural transformations e, — id which are weak equivalences on each
component. Explicitly, the A-component is given by idya if #A # k, and is the
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projection from the mapping cylinder of L4Y — Y4 to Y4 if A has k elements.
Moreover eg = id.

(4) The functor I'" admits a recursive definition. If we write N = M 11 {j}, we can
regard an N-cube as a map “in j-direction” of two M-cubes and compute the point-
wise homotopy cofibre. The iterated homotopy cofibre of the resulting M-cube is

isomorphic to the iterated homotopy cofibre of the original N-cube.

The category G-k TopiN ) admits two model structures with pointwise weak equiv-
alences. The f-structure is obtained from [Ho, 5.2.5] if (IV) is considered as an inverse
category equipped with degree function d(A) := n+ 1 — #A. A map of cubes is an
f-cofibration if it is a pointwise cofibration. The c-structure has pointwise fibrations.
The corresponding cofibrations will be denoted by c-cofibrations; explicitly a map f is
a c-cofibration if and only if it satisfies the latching space condition at A for all A C N.
This follows from [Ho, 5.2.5] using the degree function d(A) := #A (which makes (V)

into a direct category).

Corollary 3.3.

(1) The functor I' maps an (acyclic) f-cofibration between f-cofibrant objects to an
(acyclic) cofibration in G-k Top, ; in particular T'(Y') is cofibrant if Y is f-cofibrant.

(2) The functor T’ preserves weak equivalences between f-cofibrant objects.

(3) The functor I' commutes with colimits.

Proof. For (3), note that the functors ey, are compatible with colimits by construction.
Moreover, v has a right adjoint 0, hence commutes with colimits. To prove (1), observe
that if f is an f-cofibration, the map exnyo...0eg(f) is a c-cofibration. By adjointness,
v maps c-cofibrations to cofibrations. Application of BROWN’s lemma ([DS], 9.9) shows
that T preserves all weak equivalences between f-cofibrant cubes, hence (2) holds.

O

Lemma 3.4. Suppose N is a finite non-empty set and Y is an f-cofibrant N -cube with

trivial initial vertex. Suppose that all structure maps of Y away from the initial vertex

are weak equivalences.

(1) For all k € N, the iterated homotopy cofibre of Y is weakly equivalent to XY 1F}
(where n = #N —1).

(2) If Y has contractible iterated homotopy cofibre and the spaces YF} are simply

connected for all k € N, then' Y has weakly contractible components.

Proof. (1). Compute homotopy cofibres in k-direction as explained in remark 3.2 (4).
The resulting (N \ {k})-cube Z is weakly equivalent to §pY {*} since all structure maps
starting at a non-initial vertex are weak equivalences and consequently their homotopy
cofibres are weakly contractible. Next, computing in /-direction (where ¢ # k), we see
that I'(Z) is weakly equivalent to the iterated homotopy cofibre of the (N \ {k, (})-

cube Jp(XY ¥} since the homotopy cofibre of a map K — * is ¥K. Continuing in
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this manner, we obtain a chain of isomorphisms and weak equivalences
T(Y)=T(Z) 2T (Y #) ~ sy e

(2). By part (1), all the spaces XY {¥} for k € N are contractible. This implies
that Y#} is contractible for all k since Y ¥} is simply connected. Hence all components

of Y are contractible by hypothesis on the structure maps of Y. O

4. A short review of Projective Spaces

Let R be a commutative ring. Algebraic geometers define the n-dimensional pro-
jective space over R as the (projective) scheme Pj} := Proj S where S is the polynomial
ring S := R[X,, X1, ..., X,]. Note that S is a graded ring with the usual total degree
of polynomials; indeterminates have degree 1.

There is another description of the scheme Pp: It can be obtained by gluing certain
affine schemes. Let S* := R[Xy, X1, ..., X, Xi_l} denote the ring S with X; inverted,
and let similarly S% be S with both X; and X; inverted. The rings S® and S% are
graded rings again (with Xi_1 having degree —1) and we can define R’ and R to be
their degree 0 subrings. There exist inclusion maps R? —— R% «<—— RJ. Passage to

spectra (in the sense of algebraic geometry) yields
Spec R® «— Spec RY —— Spec R ,

and it can be shown that the scheme obtained by gluing all the affine schemes Spec R?
fori =0, 1, ..., n along the schemes Spec R¥ is isomorphic to Proj S. Thus Spec R
is the intersection of Spec R’ and Spec R/ inside PR. We call Spec R’ the i-th canonical
open set.

We can characterize the intersections of more than two of the canonical sets. Let
(n) denote the set {0, 1, ..., n}. For A C (n) we define S* as S with [, , X; inverted
(i.e., with all X;, i € A, inverted), and let R4 denote the degree 0 subring of S4. Then
we have inclusion maps R* —— R® whenever A C B C (n). By applying the functor
Spec, we obtain a collection of subschemes of Pp, and for non-empty A C (n) we see
that Spec R* is the intersection ), , Spec R’ inside P7.

The reader should note at this point that all the rings constructed from R are
monoid rings of a very special kind. Let IN denote the natural numbers including 0
considered as a monoid with respect to the sum. Then the polynomial ring R[X] is, by
definition, the monoid ring R[N] with X corresponding to 1 € N (the generator of N).
More generally, we have

R[Xo, X1, ..., X,]=R[N®--- ®N]
N———

n-+1 summands

where @ denotes the sum of abelian monoids (finite sums and products agree and

are given by cartesian product of underlying sets). Inverting X; amounts then to
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changing the corresponding factor N to Z; thus R[X,, Xi, Xal] = R|Z & N] and
R[Xo. X1, X;']=RN®aZ|.

To introduce some notation, we denote by Mr‘:‘ the monoid described above oc-
curing in the definition of S, i.e., a sum of n + 1 copies of N or Z (a more formal
definition will be given later). Then we have the short formula S4 = R[MA].

There is a similar description of the rings R4. Let M2 denote the set of those

clements of M4 having sum zero. Then M2 is a submonoid of M2 and R4 = R[MA].

We are interested in quasi-coherent sheaves on P’;. Such a sheaf is determined by
its sections over the canonical open sets Spec (RY) and its behaviour on intersections of
these. In more detail, suppose we have, for all non-empty A C (n), an RA-module M4,
and for each inclusion A C B an R“-equivariant additive map M* —— M? which
becomes an isomorphism after “inverting the action of X; for i € B\ A ”. Then there is
a unique quasi-coherent Opr-module 7 with I'(F, Spec (R4)) = MA. The category of
“diagrams” of this kind is equivalent to the category of quasi-coherent sheaves on P7%.

5. Non-Linear Polynomial Rings

By “forgetting the linear structure”, i.e., forgetting the ring R, we pass from

monoid rings to monoids (with zero) which can be thought of as “non-linear rings”.

Definition 5.1. Suppose N is a non-empty finite set. For A C N, define the monoid

with zero

]/\ZA:M]@ ::{(mi)ieNEZN | VZGN\AmZZO}+

The homomorphism deg: M4 —— Z,, (a;)ien — Y ien @i is called “degree
map” (here Z, is the set of all integers with a disjoint basepoint considered as a
monoid with zero; “multiplication” is given by the usual sum of integers).

Define subsets MA(]') = M]G(]) := deg™'(j) for all j € Z, and note that MA(O)
is really a monoid with zero which acts on the pointed sets MA (7). It is convenient to
introduce the notation M4 = M := MA(O).

There is a convenient class of finite sets, the standard sets (n) := {0, 1, ..., n} for
n € Z, and the even-more-standard sets [n] which are (n) as sets again, but equipped
with the natural order. When using the standard sets, we write M,, for M,y and Mj,).

We think of the above monoids as multiplicative monoids: write t; for the element
which contains a 1 € Z in the i-th place and 0 € Z everywhere else, then the collection
of the t; and t;l generates MY = (Z#N), as an abelian monoid with zero. The

monoids MY are generated by the compound symbols tﬁ;l for i # j—The symbol ¢;

should be thought of as the indeterminate X;, and M4 (resp. M 4Y corresponds to the
ring R4 (resp. S4) of the previous section.



Algebraic K-Theory of Non-Linear Projective Spaces 9

Example 5.2. The monoid Ml{o} is isomorphic to N (natural numbers with disjoint
basepoint):

Ny — M = {(a, b)) e ZxN|a+b=0},, tr (-t 1)
This corresponds, in the linear setting, to the isomorphism of rings
RIX]| = R[Ty, Ty ', Thlo, X T, 'Ty .
For n = 2, we find the following isomorphisms:

(Nx Ny — M”,  (a, b))+ (—~a—b, a, b)
(ZxN)y — M"Y, (a, b))~ (~a—b, a, D)
(ZxZ); — M3*" (a, b) > (—a—b, a, b)

Definition 5.3. Suppose M is a monoid with zero. A subset I C M is called a
(twosided) ideal of M, denoted I <M, if 0 € I, and for all (m,a) € M x I the elements
a-m and m - a are contained in [.

If I <M we can define a new monoid with zero M/I. As a set, it is given by
(M \ I)4 (this is the quotient M/I = M Uy * in the category of pointed sets). The
monoid structure is induced by that of M.

There is an obvious map M —— M/I, sending m € M \ I to m € M/I and
mapping all of I C M to = € M/I. 1t is readily verified that this map is a map of
monoids with zero. Its kernel, i.e., the preimage of the zero element (not of the identity)
is 1. If R is a commutative ring, the module R[I] is an ideal of the (reduced) monoid
ring R[M], and there is a canonical isomorphism R[M/I] = R[M]/R][I].

Example 5.4. Suppose N is a finite set, A C N a subset, and j € N \ A. We define
the ideal “generated by t;”

IJI-?N = {(ai)ieN - Mj\é} ‘ a; 7& 0}+

of M#. Then there is an isomorphism MX}/[;}N = Mﬁ\{j}, mapping (a;);en to
(ai)ien\(j1- In particular, Mg acts on M]{}\{Z.} via the projection Mg — Mf,/[fN.
We will repeatedly make use of this fact.

For the rest of this paper we will consider M# as a topological monoid with zero
having the discrete topology. Similarly we regard MA () as an object of MA-kTop,.
From now on, let G denote a topological monoid with zero, and suppose N
is a non-empty finite set with n + 1 elements.
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Definition 5.5. Suppose we are given a (possibly empty) subset A C N, an element
i € N, and a space Y € (GAM#)-kTop,. Then we can form the space

Y[t;' =Y A MANT e (GAMAY )k Top,
M

and call Y[t; '] obtained by inverting the action of ¢; on Y. This construction is

functorial in Y. More generally, given subsets A and B of N, there is a functor

[t5'] =+ A MAE(GAM*)-k Top, — (GAMP)-kTop,, Y —Y[t5'].
M

The construction of 5.5 is the non-linear analogue of inverting indeterminates in a
LAURENT ring. As in the linear case, there are alternative descriptions using mapping
telescopes. Omne can check that all three constructions have the same universal property
and hence are canonically isomorphic; we omit the details.

Lemma 5.6. (Telescope construction.)
Suppose A C N is not empty; write a = #A and m = max(A).

(1) The space Y[t;'] = Y Appa MAYTY s isomorphic to the colimit (in the cate-
gory G-kTop, ) of the sequence

et 7t tet7t

Y ALY A Y A L.

where we have used the multi-index notation tZl = HjeA tj_l. In particular, the

colimit admits a canonical action of MAYY,
(2) The space Y[t; '] = Y Appa MAYE s isomorphic to the colimit (in the cate-
gory G-kTop, ) of the following sequence:

t; tit!

y Liny Ltny

In particular, the colimit admits a canonical action of MAV{},
O

The following technical results about equivariant spaces will be used when dealing

with finiteness conditions.

Lemma 5.7. (Smallness of finite equivariant spaces.)

Suppose G is cofibrant as an object of kTop,. Let A C N, j € N\ A and
spaces 7 € C(GAMA) and Y € C;(GAM?) be given; define a := #A. Let sq de-
note the canonical (GAMA)-equivariant inclusion 7 — Z[tj_l] = 7 Appa MATL,
For any map f:Y — Z[t;l] in (GAMA)-k Top, there is a (GAM?)-equivariant map
g: Y —— Z and an integer k > 0 such that f = t;aktg o0 sgog. Moreover, k can be
enlarged arbitrarily.
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Proof. We proceed by induction on the number of (equivariant) cells in Y. For Y = %
we can choose k =0 and g = f.
Identify Z [t]-_l] with the colimit of the telescope construction (5.6 (1)). The top

ot e et

zZ—22 sz A4 1L L7 .
) .l |
Zlt;' == Z[t; '] Z[t; ...

row of the diagram is the telescope. The vertical arrows are the canonical maps into the
colimit, where sg is as above. The maps in the telescope are cofibrations of G-spaces
by 2.3. Since G is cofibrant, the telescope consists of cofibrations of HAUSDORFF spaces
in kTop, by 2.1 (3, 4).

Let C := Az_ AGAMA denote a cell with boundary 9C, and suppose Y = Y Uy C.
By induction, we find k and a map g: ¥ — Z with f|y = t;aEtkA 0sp0g = s;0g. Let
a: AL — 7 [tj_l} denote the restriction of f to the “generating” non-equivariant cell
of C. Since Z is HAUSDORFF (2.1 (4)) and A’ is compact, this map factors through
some finite stage £ of the telescope construction. By forcing (GAM4)-equivariance we
obtain a map f: C —— Z such that f|c = tj_aétf4 0sgof = sgo 3. Since spy, is

injective the following diagram commutes:

/ \ . .
\ 4
A
/ Se id
t;‘k:tfk:

Let k := k + ¢, and define g as the induced map from Y =Y Uy C to the rightmost Z
in the diagram. Then by construction f = s;o0g =1, “ktA 05p0g.

To enlarge k by m > 0, note that sg is M A—equlvarlant, hence:
f= t;aktA 0sgog= t_a(k+m) (]H_m) oti™t,Mosgog

a(k+m) ,(k+m) o

=ty 500 (7"t 0 g)

Lemma 5.8. (Smallness of finite equivariant spaces alternative version.)
Suppose G is cofibrant as an object of kTop,. Let A C N, j € N\ A and
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spaces Z € C(GAMA) and Y € Cz(GAMA) be given; define m := max(A). Let sq
denote the canonical (GAMA)-equivariant inclusion Z — Z[tj_l] = 7 Appa MATUE
For any map f: Y — Z[t;l] in (GAMA)-k Top, there is a (GAM?)-equivariant map
g: Y —— Z and an integer k > 0 such that f = t;ktﬁ% 0 sgog. Moreover, k can be

enlarged arbitrarily.

Proof. This is similar to the previous lemma, except that one uses the second telescope
construction (5.6 (2)) instead of the first. O

Corollary 5.9. Suppose G is cofibrant as an object of kTop,. Let AC N, je N\ A
and Y € C;(GAMZ) be given. If Y[tj_l} ~ x, the space ¥Y V'Y is homotopy finite

as a (G/\sz‘,\{j})—space (with the restricted action); hence Y is finitely dominated as a
(G/\M]‘é,\{j})—space.

Proof. We show that XY VY is homotopy finite as a (G A Mﬁ\{j})—space (then its
retract Y is finitely dominated).

Since Y[t;l] ~ x, the inclusion s¢: Y —— Y[t;l] is null homotopic (where s
is the canonical inclusion as in 5.7). Choose such a homotopy H: Y AT — Y[tj_l]
from sy to the trivial map.

The space Y AT is finite as a (GAM4#})-space, hence we know by 5.7 that H factors
through some finite stage of the telescope: thereisamap F': YAI — Y and an integer
m > 0 with H =t;“"t} osgo ' where a := # A, and consequently t{™t," o H = soo I

By choice of H, the map sg o I is a homotopy from ¢§™t,™ o sg = sg o t{™t ;™ to the
J

4. Y. So

trivial map. But sg is an injective map, so F' is a null homotopy of Y

we have a commutative diagram

Ny ATy

Y
t;”"tAml Fl l* (%)
Y Y Y

where ig and i; denote the inclusion of Y as top and bottom into the cylinder. Ap-
plication of the homotopy cofibre (mapping cone) functor to the vertical maps yields a
sequence of weak equivalences in (G A M j\‘}\ { j})—k Top,

am ;—m

hocofibre (Y 22+ Y) —~+ hocofibre (F) ~~— hocofibre (Y —~ Y) = TY VY .

On the other hand, the left vertical map in () is a cofibration in G-kTop, by
lemma 2.3. Hence the canonical map from the mapping cone into the strict cofibre

Y/tgmt,"(Y) is an equivariant weak homotopy equivalence.
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It remains to note that the space Y/t5™¢,™(Y) is finite as a (GAMJ‘G\{j})—space.
This is shown by induction on the number of cells in Y. Since formation of quotients
commutes with cell attachment, it suffices to show that the cofibre of

am ;—m
3™t

M L2 M3 (%)
is isomorphic, as an M f,\ (jy-Sbace, to a finite one-point union of copies of M ]’3\ G
then a free (GAMZ)-equivariant cell of Y gives rise to a finite one-point union of
free (GAM ]f}\ {j})—equivariant cells of the quotient space. But we can partition the

set M j\‘} into subsets according to the value of the j-th component; explicitly, we have
an isomorphism

My = \/ Mﬁ\{j}(*i) At
i>0

of M ]‘3\ (jy-spaces. Each of the subsets M 1’\‘}\ (j3(—1%) is (non-canonically) equivariantly

isomorphic to M j\‘}\ (j}> AN isomorphism is given by ¢} for any b € A. Now the cofibre of

the map (*x) is seen to be \/;lg]_l Mf]\{j}(—i) which is isomorphic to \/;‘fo‘l Mz’é\{j}.

O

6. Non-Linear Sheaves on Projective Space

In section 4 we indicated how to describe quasi-coherent sheaves by certain di-
agrams of modules. We want to “forget the linear structure”, i.e., replace rings by
monoids and modules by equivariant spaces to obtain a non-linear version of sheaves
on projective space. As before, we assume that G is a topological monoid with zero,

and N is a non-empty finite set with n + 1 elements.

Definition 6.1. (Presheaves on projective space.)

We define the category pPY (G) of (G-equivariant quasi-coherent) presheaves on
projective N-space to be the following subcategory of k Topka ) objects are the functors
Y : (N) — kTop, with Y ()) =  such that for each A C N, the space Y4 := Y(A) has
a (right) (GAM#)-action, and for each morphism o: A —— B in (N), the associated
map Y2 : Y4 — YB is (GAM#)-equivariant. We will sometimes refer to the map Y’
as a “b-type structure map” of Y. The space Y4 is called the A-component of Y. A
morphism f: Y — Z is a natural transformation of diagrams, consisting of (GAM4)-
equivariant maps f4: Y4 — Z4 called components of f.—If N = [n] or N = (n), we
write pP"(G) instead of pP" (G).—Note that pP°(G) = G-kTop,, and every choice
of a bijection N = (n) defines an isomorphism of categories pP" (G) = pP"(G).

We will sometimes use the category (N)g of non-empty subsets of N as indexing
category (omitting the redundant one-point space corresponding to ) C N). If G = S°
(the “trivial” monoid with 0 # 1), we write pP omitting G' from the notation.
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The category pP? (G) has a zero object given by A + *, the constant functor with
the one point space as value. We call this the zero presheaf, sometimes denoted .

For any object Y € pP?™(G) we define the suspension of Y, denoted X(Y), as
the functor A — X(Y4) with M4 acting trivially on the suspension coordinate (com-
ponentwise suspension). Similarly, we can define a mapping cylinder by applying the

mapping cylinder construction componentwise.
Each of the structure maps YUb has a corresponding adjoint map

YE:vAuG =y A MP — ¥P
M

since the functor -Apa M B : (GAMA)-k Top, — (GAMP)-k Top, is left adjoint to the
functor restricting the (GAMPB)-action to GAM4 along the inclusion M4 —— MB.
Sometimes we will call Y} a “f-type structure map” of Y. These structure maps will

be used to formulate a “sheaf condition” (see below).

An object of pPY(G) can be visualized as an n-simplex with a space attached
to each of its faces, and maps corresponding to inclusion of faces (suppressing the
redundant one point space corresponding to ) € N). In the case N = (1), a typical
object Y is depicted

ylor _ , y{o1}r . yH{1}

(the arrows indicate b-type structure maps). For N = (2), we have the following picture:

y {2}

/\

y 10,2} y{1:2}
~ e
y{0,1,2}
yioy  , yio}y . {1}

Equivalently we can regard an object of pPY(G) as an (n+1)-cubical diagram
with a point as initial vertex. For N = (2) this yields the following picture:

y {2} > y10.2}
/
% / - y{0
|
yitzy |, y{oL2}
v
y {1} y {01}




Algebraic K-Theory of Non-Linear Projective Spaces 15

Definition 6.2. (Structure presheaves of projective spaces.)

We define the structure presheaf of projective N-space O = Opn to be the functor
A+ M# (for A # ()); structure maps are given by inclusions, and M3 acts on itself
by right translation.

If N = (2), we have the following picture for Op-:

(N x N xZ)} -~ (Zx N x Z)%,
|
(NxZx1Z)} - (Zx Z x 7)",
(N><Z><1{v =(ZxeNﬁ/'

(The lower index “4” means adding a disjoint basepoint, and the upper index 0 denotes
the subset of tuples with sum 0. That is, (Z x Z x N)(}r = MQ{O’l}, and similarly for the
other spaces in the diagram.)

For N = (1), the structure presheaf looks like this (with the same conventions for
notation as before):

(ZxN)) — (Zx2)) -

(N % Z))

Definition 6.3. (Sheaves on projective space.)

We define the category PV (G) of (G-equivariant quasi-coherent) sheaves on projec-
tive N-space to be the full subcategory of pP™ (G) consisting of those objects Y which
satisfy the following sheaf condition: for every inclusion 6 : A — B of non-empty sub-
sets of NV, there is an object Y4 € C(GAM#) and a weak equivalence 7, : Y4 — Y4
such that the map

yA t5}] — VB

cA To Y, . .
adjoint to the composite map Y4 7, yA 2=, VB is a weak equivalence.

Standard model category arguments show that in the definition of the sheaf condi-
tion above, we could have worked with some fized cofibrant replacement, or equivalently,
we could have asked for the condition to be satisfied for all cofibrant replacements in-
stead of just one. In particular, we can choose Y4 = Y4 if Y4 is cofibrant:

Corollary 6.4. Suppose Y € pPY(G) is locally cofibrant in the sense that the
space YA is cofibrant in (GAMA)-kTop, for all non-empty A C N. Then Y is a
sheaf if and only if for all inclusions c: A —— B of non-empty subsets of N, the
map YE: YAt — YB (adjoint to the structure map Y2 : YA —— YB) is a weak
equivalence. O
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Corollary 6.5. (Homotopy invariance of the sheaf condition.)

Suppose Y and Z are objects of pPY (G). Assume that there is a weak equivalence
f:Y —— Z (i.e., all components of f are weak equivalences). Then Y is a sheaf if
and only if Z is a sheaf. O

Remark 6.6. The structure presheaf Opn~ defined above is in fact a sheaf, called
the structure sheaf of projective N -space. This follows from the canonical isomorphism
MA[tEY = MA Appa MB = MP and 6.4.

7. Model Structures

Our next goal is to establish two model structures on pP”"(G) sharing the same

weak equivalences, but having a different class of cofibrations. (We think of pP" (G) as

(V)

a generalized diagram category. Both of the model structures introduced for kTop;

(preceding 3.3) apply to this generalized situation.) The interplay of the different
notions of cofibrations and fibrations will be an important feature for handling finiteness
conditions in PV (Q).

As before, assume that G is a topological monoid with zero, and let N denote a
non-empty finite set with power set (N). The symbol (N)g means the set of non-empty
subsets of N.

Suppose Y is an object of pP™ (G) and A C N is not empty. We define the twisted
latching space of Y at A, denoted LAY, by
LY :=colim R(Y)
(A)o
(colimit in (GAM#)-k Top,) where (A)} is the subcategory of non-empty proper subsets
of A, and R(Y) is the diagram B + YB[t'] (this is a diagram in (GAM™)-k Top,).
If 0: B —— C is an inclusion of proper subsets of A, i.e., a morphism in (A)}, the
structure map R(Y)(c): R(Y)® —— R(Y) is given by the composite
RY)P =YB '] =YP A MA=(YP A MY A MA
MB MB Me
Y/ Aid
= V9 A MA =Yt = R(Y)°
iy 13') = R(Y)

where Y : YB[t.'] — Y© is adjoint to the structure map Y2 : Y5 —— YC. It can

be shown that this construction yields a commutative diagram in (GAM4)-k Top,.

The latching space LY has a canonical map in (GAM4)-k Top, to Y4, induced
by the structure maps Yf: YB[t3!] —— YA, If 7: B —— A is an inclusion of a
proper subset, write F, = - Ay MA: (GAMPB)-k Top, — (GAMA)-k Top,, and
let U, denote its right adjoint (restriction of action). There is a (GAM B)-equivariant
map YB —— U, (L4Y) given by the composite Y2 —— U, o F.(YB) — U, (L4Y)
(the first map is the unit of the adjunction of F. and U, the second map exists
since F(YP) = YB [tzl] appears in the diagram defining the latching space, hence
maps to L,Y).
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Proposition 7.1. (The c-structure of pPY (G).)

The category pPY (G) has the structure of a model category where a map is a weak
equivalence (resp. fibration) if each of its components is a weak equivalence (resp. fibra-
tion) in its respective category. Furthermore the map Y —— Z is a cofibration if and
only if the induced maps L7 Uy, .y YA —— Z4 are cofibrations in GAM*A-k Top, for
all non-empty A C N.

Proof. Counsider (N)q as a direct category with degree function d(A) := #A. With
the above definition of (twisted) latching spaces, the proof of [Ho, 5.2.5] carries over

word for word. O
Corollary 7.2. All objects of pPY (GQ) are fibrant with respect to the c-structure. O

Example 7.3. (The c-structure of pP*(G).)
Let f: Y — Z denote a map in pP!(G), i.e., we have a commutative diagram
of the following kind:

yior _, y{o1} _ y{1}

f{O} l f{Owl} l lf{l}

7z{0} _, 7{0,1} . {1}

Then f is a weak equivalence if and only if its components f4 are weak equivalences
in (GAM*A)-kTop, for all non-empty A C (1). The map f is a fibration if and only
if f4 is a fibration in (GAM#)-kTop, for all non-empty A C (1). Finally, f is a
cofibration if and only if f{°F is a cofibration in (GAM19)-kTop,, f{'} is a cofibration
in (GAM})-k Top,, and the induced map

YO UL,y Loy Z = YOH Yy o7 vy 05! (2O v 20t 1) — 210U

is a cofibration in (GAM{%)-kTop,. In particular, a sheaf Y is cofibrant if and only
if Y{0} € C(GAMIY), Y1} e C(GAM{1Y), and the map

Y{O}[tl_l] vV Y{l}[to_l] _ ,» yl{ot}
is a cofibration in (GAM{%'})-k Top, —This model structure is used implicitly for the
category P;(G)" in [HKVWW, proof of 3.3 (1)].

By duality we obtain a second model structure:

Proposition 7.4. (The f-structure of pP™(G).)
The category pPYN (G) has the structure of a model category where a map is a
weak equivalence (resp. cofibration) if each of its components is a weak equivalence

(resp. cofibration) in its respective category. O
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Both model structures share the same weak equivalences, called h-equivalences,
and hence have the same homotopy category Ho pP¥ (G).

We will need yet another notion of cofibrations which belongs to one of the model

structures of the category G-k TopiN )

Definition 7.5. A map f:Y —— Z in pPN(G) is a weak cofibration if it is an

(N)

o, d.e., if all its components are

f-cofibration when considered as a map in G-k Top
cofibrations in G-k 7Top,.
Any c-cofibration is an f-cofibration, and any f-cofibration is a weak cofibration

since forgetting the M“-actions preserves cofibrations by 2.1 (2).

Definition 7.6. The presheaf Y is called strongly cofibrant if it is cofibrant with
respect to the c-structure. Explicitly Y is strongly cofibrant if and only if the map
LY —— Y4 is a cofibration in GAMA-kTop, for all non-empty A C N. An ob-
ject Y € pP¥(G) is said to be locally cofibrant if it is cofibrant with respect to
the f-structure. Explicitly Y is locally cofibrant if and only if Y4 € C(GAM?)
for all A C N. Finally Y is called weakly cofibrant if it is f-cofibrant as on object
of G-k T0p<N >, i.e., if all its components are cofibrant in G-k Top, .

*

Any strongly cofibrant presheaf is locally cofibrant, and a locally cofibrant presheaf

is weakly cofibrant.

Let Y € pPY(G) be a presheaf, and fix j € N. We can consider Y as an N-cubical
diagram in G-k Top,; then its j-th face is an N\ {j}-cubical diagram consisting of those
components Y B with j € B C N. More generally, a subset C' C N determines an
N \ C-cubical diagram formed by those components Y2 with C' C B.

Definition 7.7. Let Y € pPV(G) and C C A C N be given. The restricted latching
space LXCY is defined as

LTCY = colim R(Y
A colim (Y)

0,

(colimit in (GAMA)-k Top, ) where (A)(l)vc is the subcategory of non-empty proper sub-
sets of A containing C, and R(Y') is defined as in the case of (unrestricted) latching
spaces L, i.e., R(Y) is the diagram B + Y B[t '] (this is a diagram in (GAM*)-k Top,)
with structure maps as defined earlier.

In effect, the space LY is the latching space at A\ C of the restricted (N \ C)-
cubical (twisted) diagram determined by C (given by B+ Y BYC),

The following lemma is a “twisted” version of the familiar fact that if a cube is
“cofibrant as a cube”, the same is true for all its faces. If 7: B —— A is an inclusion
of a proper subset, write F, = - Ay MA: (GAMP)-kTop, — (GAMA)-k Top,, and
let U, denote its right adjoint (restriction of action).
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Lemma 7.8. Let Y € pPYN(G), CCACN andj € A\ C be given.
e restricted latching space comes equipped with a map — .
(1) Th icted latching ipped with LY yA
or C C, there 15 a canonical map —_— , ana the composite
2) For D C C, there i jcal LY LEPY, and th '
LXCY — LXDY —— YA is the map of (1). In particular, there is a canonical
map LjCY —— LAY, and the composite LICY —— LY — Y4 is the map
of (1).
et o denote the inclusion 7y — A. e following square 1s a pushout:
3) L d he inclusion A j A. The followi ] h

Fy(LEC5,Y) — Fo (YA

| |

chu{j}y - LXCY
(4) If Y is strongly cofibrant, the natural map Lj{j}Y —— YA of (1) is a cofibration.

Proof. (1). The objects occuring in the definition of the restricted latching space are
of the form Y¢[t;']. The t-type structure maps YC[t;'] — Y4 are compatible with
the structure maps of R(Y'). Hence we have an induced map LZj Y — Y4,

(2). The diagram used for defining LXCY includes into the diagram used for
defining LXD Y, and the map from the former to Y4 is the restriction of the map from
the latter to Y4. Moreover L?Y = L,4Y. Hence (2) holds.

(3). Since F, is a left adjoint, it commutes with colimits. By explicitly spelling
out the definitions, one realizes that the pushout in the above square and L;CY really
are colimits of the same diagram, hence are isomorphic.

(4). By (2), we have a factorization LY — LY — Y4, The second map
is a cofibration since Y is strongly cofibrant. Part (3) asserts that the first map is a
cobase change of the image of L 4\ (;;Z — ZA\3} under F,,. But this is a cofibration
since Y is strongly cofibrant and F, preserves cofibrations. O

8. Restriction and Extension by Zero

In algebraic geometry, application of “Proj” to the n + 1 projections
R Xo, X1, ..., X»] — R[Xo, X1, ..., X,,]/(X;) =2 R[Yy, Y1, ..., Vo]

gives rise to n+ 1 different closed immersions of projective (n—1)-space into projective
n-space. Restriction along these immersions induces n + 1 different functors mapping
quasi-coherent sheaves on P, to quasi-coherent sheaves on P%_l.

An analogous construction can be made in the non-linear context.
Definition 8.1. Given j € N, we define the j-th restriction functor
pi=py PPN (G) — pPMUH(@)

by the equation p;(Y)4 := Y4 Anra Mz’é\{j} using the canonical map M# —» Mzé\{j}
of example 5.4 (whose effect is to get rid of the generator ¢; by dividing it out).
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Example 8.2. There is a natural isomorphism pé-v (Opn~) = Opnys since

N A_ 2sA A ~ 1fA
Py (Opx)™ =My A Mgy = My,

N
for all non-empty A C N\ {j}.

If we represent an object Y € pP"(G) by a diagram having the shape of an
n-simplex, the restricted sheaf p;(Y") is given by the j-th (n—1)-dimensional face of the
diagram after dividing out the action of ¢;.

Lemma 8.3. The functor pY has a right adjoint ¢ : pPM\UHG) —— pPY(G)

called “extension by zero”. It is given by

C(Y)A—{YA’ A

* otherwise

where YA is YA as a space with Mj(} acting via the canonical map Mj\‘} — Mj\“,\{j}
(cf. 5.4), i.e., with t; acting trivially.

Proof. This follows from lemma 2.2 (1) applied to the monoid homomorphisms

Mjf} — M]’é\{j} for non-empty A C N\ {j}. H

For an object Y € P!, the sheaf (5(Y) is described by the following diagram
(together with the convention that the additional “indeterminate” to acts trivially on

/\
\T/ ‘\

ytoy L y{o1}r . y{l}

all spaces):

Lemma 8.4. The restriction functors pj-v preserve all (acyclic) f-cofibrations and
in addition weak equivalences of locally cofibrant objects. Moreover, they map locally
cofibrant objects of PN (G) to objects of PN\IH(@).

Proof. The first two assertions follow from lemma 2.2 (2) applied componentwise.
Now assume Y is a locally cofibrant sheaf. Let 0: A —— B denote an inclusion of
non-empty subsets of N\ {j}. Since p;(Y) is locally cofibrant by the above, corollary 6.4
asserts that it suffices to show that the map
ANV YA = oY (0 A MEy —— oY (V)P

A
N\{s5}
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is a weak homotopy equivalence. Tracing the definitions shows that it is obtained from
the structure map Y} : YA[t5'] — Y B by applying - Am Mﬁ\{j}. But this functor
is known to preserve weak equivalences between cofibrant spaces by 2.2 (2), and Y(f is

a weak equivalence since Y is a sheaf. O

9. Twists and Canonical Sheaves

The definition of the twist functor as given in [HKVWW] is not symmetric. It turns
out that for twists and related constructions, it is convenient to have both symmetric
and asymmetric descriptions, the latter arising from a choice of a total order on the
indexing set. (In this case, it is enough to restrict attention to the standard ordered

sets [n].)

Definition 9.1. (Tensor product of sheaves.)

Suppose Y is an object of pPY(G) and Z is an object of pP?™. The (non-linear)
tensor product Y Ao Z of Y and Z is the presheaf given by A — YA A4 Z4 with M4
acting from the right on Z#. (This definition makes sense because M* is abelian,
hence acts from the left and from the right on Z4.) The tensor product is an object
of pPY (@) (where G acts on the components of V).

Definition 9.2. (Symmetric description of twisting.)
The j-th SERRE twisting sheaf Opn (j) = O(j) € PV is given by

A MJG)  (A#£0)

with b-type structure maps given by the inclusions O(j)4 = Mj\‘}(]) - ]T/[/]]\B,’ (7)) = 0P
for non-empty subsets A C B C N (for notation cf. 5.1). For an object Y € pP™(G)
and j € Z, the j-th twist functor 0; = 9§V: pPY(G) —— pPY(Q) is defined as
Qj(Y) =Y Ao O(])

Definition 9.3. (Asymmetric description of twisting.)

The j-th twist functor 0; = 07 : pP"(G) — pP"(G) (for j € Z) assigns to an
object Y € pP"™(G) the object Z := 0,;(Y) in the following way: for all A C [n], we
define Z4 := Y4, and for non-empty subsets A C B of [n] we define the structure map
74 —— 7B as the composite

i 4—d
ZA=yA L~ yB mk, yB_ 7B (%)
where m := max(A) and k := max(B). A morphism f:Y —— Y in pP"(G) (with
components f4) gives rise to a morphism of twisted objects with the unchanged com-
ponents 4.

Obviously 07 = id. Moreover, the twist functor éj restricts to an endofunctor

of P"(@G) since t{nt;j is an invertible map and hence a weak homotopy equivalence.
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To make the asymmetric definition of twisting less obscure, we include the diagrams
for the projective line (n = 1) and the projective plane (n = 2). An object Y of pP!(G)
Y {1}, the twisted object éjl- (Y') can be pictured

is a diagram Y10} — y{01} L

53
as YO Ol yioy o yim, (Here we abbreviated the above composition (*) to
a single map.) In the second case, Y € pP?(G), the twisted object is given by the

following diagram:

y {2}
Y{U,Z} Y{LQ}
| / yio12) \
f\y/":) T 5;\
/& tt,?
| \
y {0} Hi— yioip . y{1}

The asymmetric description depends on a choice of order on the indexing set. All

choices yield isomorphic sheaves by the next lemma.

Lemma 9.4. (Properties of the twist functor.)
(1) We have O(i) Ao O(j) = O(i + j) and O = O(0).
(2) There are natural isomorphisms 0,1, = 0; 0 0 and Oy = id. In particular, 0y is
an equivalence of categories. Similarly, éj+k = éj 00y, and 6y = id.
(3) For all Y € pP"(G), the presheaves 05 (Y) and 07 (Y) are naturally isomorphic.
(4) If Y € PY(Q), then 0;(Y) € PV (G).
O

In algebraic geometry, the sheaf (’)p; (1) has n+ 1 canonical sections Xg, ..., X,.

Each of these determines a natural map F(k) K F (k + 1) where F is a module
on P%. We have an analogous set of maps in the non-linear context:

Definition 9.5. Let i € N be given. The natural transformation
ki = kN 0N — OIZCVH
is given by morphisms 0y (Y) — 0, 1(Y) for each object Y € pP¥ (@) described by

O (V) — Gpa (V)

for ) £ A C N.
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Definition 9.6. The natural transformation

R; = R?

. on on
7t ek 9k+1

is given by morphisms 6, (Y) — 0,1(Y) for each object Y € pP"(G) described by

tit! -
(VA =v4 2o vA =g (V)4

with m := max(A) (where () £ A C [n]).

The transformations x; and ; correspond under the isomorphism of 9.4 (3).

Definition 9.7. For K € G-kTop, we define the canonical sheaf associated to K as
the object ¥o(K) = ¢’ (K) € PY(G) given by

KAOpn: A KNME

(0 #£ A C N) with structure maps induced by inclusions of submonoids. The assignment,
K — ty(K) is functorial in K. For convenience, we introduce the twisted canonical
sheaf functor 1; = N = 0N o Y.

As a first example, we note that 9¥(S%) = Opuw, the structure sheaf of projective
N-space, and w;V(SO) >~ O(5)-

Recall that (N)o is the set of non-empty subsets of N. Let G-k Top{¥® denote the

functor category Func({N)q, G-kTop,).

Lemma 9.8. Let V denote the forgetful functor pPY(G) —— G-kTopN'. The

*

functor ¥_y,: G-kTop, — pPN(G) is left adjoint to the functor lim oV o 0y,

Proof. For k = 0 this can be deduced from adjointness of inverse limit and constant
diagram functor. Since 0 is an equivalence of categories with inverse given by 6_j
(9.4 (2)) the general case follows. O

The functor lim oV (this is the case case k = 0 from the lemma) is the analogue

of the algebraic geometers’ global sections functor.

The following lemma is the key ingredient for the splitting theorem.

Lemma 9.9. Suppose Y € pPY(G) is a locally cofibrant presheaf, and let j € N
and k € Z be given. Then r;: 0,(Y) —— Op41(Y) is a weak cofibration, its (strict)
cofibre is isomorphic to (jop;jol,4+1(Y), and the projection 041 (Y) — (jopjobi4+1(Y)
is isomorphic to the 0j41(Y")-component of the unit of the adjunction of {; and p;.
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Proof. We begin by showing that r; is a weak cofibration. By definition, we have to
prove that for all non-empty A C N its A-component

KA =1d A () YA A MA(k) — YA A MA(k+1)
MA MA
is a cofibration in G-k Top,. Choose an element e € A. We can factor the map
MA(k) —2o MA(k + 1)

in the following way:

TrA -k A tjt71 A thtl TrA

M2 (k) —=— M* — M* = M*(k+1)
The first and third map are isomorphisms of discrete M “-spaces, the map in the middle
is injective. Application of the functor Y4 A4 - yields a factorization of /<;3-4 as a com-
posite of an isomorphism, a cofibration in G-k Top, (use lemma 2.3) and an isomorphism
again. Hence k; is a weak cofibration.

Since 6, is an equivalence of categories (9.4 (2)) it commutes with restriction,
extension by zero and taking cofibres. Thus it suffices to prove the remaining claims
for k = —1 only.

Fix a non-empty subset A C N, and consider the A-component

A, A TrA A A~y A
kit Y ]\/?A My(—1) — Y ]\//I\A My 2Y
N N
of k;. We claim that its cofibre is isomorphic to ¢j o p;(Y)4 =Y4 Anrg M]‘\‘}\{j}. Now
the functor Y4 AVYRRE M#-k Top, — M#-k Top, commutes with taking cofibres since
colimits commute among themselves. Thus it suffices to show that the cofibre of the

map M. /(=1 Iy Y, 4 is isomorphic to M ]‘é\ e But this is clear since its image is
precisely the ideal I;}N, and we know that M]@/IfN = Mﬁ\{j} by 5.4. O

10. Global Sections

We have seen above (9.8) that there is a non-linear analogue of global sections of
sheaves. However, it turns out that this functor is not suitable for K-theory calcula-
tions. Hence we introduce a functor I' which (philosophically speaking) captures global

sections and higher sheaf cohomology at the same time.
Definition 10.1. (Global sections of sheaves.)
For any object Y € pP¥(G) we define the global sections of Y, denoted
L(Y)=T"(Y) € G-k Top, ,

as the iterated homotopy cofibre of Y in the sense of definition 3.1 where Y is considered

as a functor (N) — G-k Top, (with b-type structure maps).

For an object Y € pP!(G), the space I'(Y) is given by the mapping cone of the
map Y10 v y{tt — y{01} An explicit model (as given in [HKVWW)) for this is

F(Y) = CY{O} Uy {0} Y{O’l} Uy-{13 CY{I}
where CK = K AN I/(K x {0}) denotes the (reduced) cone on the pointed space K.
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In what follows, we develop the elementary properties of the global sections functor.
As a beginning, we note that suspension commutes with global sections, i.e.,

D(XY)=T(S'AY) 2 STAT(Y) = ST(Y)

for all Y € PV (@) (this is a special case of 3.2 (2)).

Next we consider global sections of a sheaf Y and its extension (;(Y"). In algebraic
geometry, extension by zero does not change the cohomology groups of a sheaf. The
analogous statement in the present context says that Y and ¢;(Y’) have stably the same
global sections:

Lemma 10.2. For an object Y € pPY\iH(@Q), the spaces STVNMIN(Y) and TN o ;(Y)

are naturally isomorphic.

Proof. By definition ¢;(Y)* =  if j € A. Computing the homotopy cofibre of
¢;(Y) in j-direction (cf. 3.2 (4)) results in an N \ {j}-cube Z. Its A-component is the
mapping cone of Y4 —— . But this is the suspension of Y4. Hence Z is isomorphic

to X(Y), and since the global sections functor commutes with suspension, we infer that
Fo;(YV)=T'(Z)=T(XY)=XI(Y). O

Now we want to compute global sections of twisted canonical sheaves. For j € Z
define an N-cube of spaces

Wi (§): (N) — kTop,, A~ M)

where M ﬁ(k) has the discrete topology. Structure maps are given by inclusions. As
before, N denotes a non-empty finite set with n + 1 elements.

Lemma 10.3. If j > —n — 1, the cube Wn(j) has contractible iterated homotopy
cofibre, i.e., T(Wn(j)) ~ *.

Proof. It suffices to consider ordered indexing sets N = [n]. For k = —1, 0, ..., n
define an (n—k)-cube
Vi(3): ([n = k = 1]) — kTop,

A {(ao, a1,..., ap) € MAHRenb (Y Vo > — kiay < 0}

with structure maps given by inclusions. Note that V_1(j) = Wx(j), and V,(j) is a
single space consisting of the basepoint only (if (ag, ai, ..., a,) is a non-basepoint
in V,(j), we have j = > a; < —(n + 1) which is impossible by assumption on j).
Now Vi (j) is weakly equivalent to the pointwise homotopy cofibre of the cube Vj_1(j)
in (n—k)-direction since all spaces are discrete, all maps are injective, and Vi (j) is the
strict cofibre of V;_1(j) in (n—k)-direction. Hence I'(Wn (§)) = V,(j) = *. 0
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Define, for j > 0, the number A(N, j) := #M}%(]) — 1. Since M]%(O) = MZQ\), =90,
we have h(N,0) = 1.

Corollary 10.4. (Global sections of canonical sheaves with non-negative twist.)
Suppose G is a topological monoid with zero which is cofibrant as an object of k Top, .
For K € C(G) and j > 0, there is a natural chain of weak equivalences connecting

Yol o;(K) and \Vy(y, 5 YLK In particular, we have a natural weak equivalence
Yol oty(K)~ XK.

Proof. It suffices to give a proof for N = [n].—First note that we have I'(¢;(K)) =
I (1;(KAS%) = K AT (;(S°)). Since G is cofibrant in k Top, so is K (2.1 (3)), hence
the functor K A - is homotopy invariant. Consequently it suffices to prove the claim for
the special case K = S° (twisted structure sheaves).

Recall the definition of Wy (j) from lemma 10.3. There is an obvious map of cubes
¥;(S°) — Wn(j) (given by the identity map for A # (). For N = [1], we have the
following picture:

(N x N), - (Zx NY,
x / l - (Z x N)/
(N x Z)}. - (Z x Z),
(N x z{ (Z x Z)/

(The lower index “+” means adding a disjoint basepoint, the upper index j denotes
the subset of tuples with sum j.) The front face of this cube is Op1(j) = ¥,(S?), the
back face is Wy (j)-

In the general case, note that all the components of the map v;(S%) — Wy (j)
are injective, and all components of the cubes are discrete spaces. Hence the pointwise
homotopy cofibre is weakly equivalent to the pointwise (strict) cofibre. Computation
of the pointwise cofibre yields an (n + 1)-cube D with D? = WY (4) = Mg(]) (since
¥;(S°)? = %), and DA = x for A # 0 (since 1;(S°)* = W4 (j) in this case). The
discrete space D? has h(N, j) non-basepoint elements (by definition of that number),
hence can be written as an h(N, j)-fold one-point union of zero spheres. Application

of T to the cofibration sequence 1;(S%) — Wy (j) — D yields a sequence of maps
(1(8%) —> T(Wn(j)) — (D) =xrHpl= \/ mriist . (x)
h(n, J)

Since I' commutes with pushouts, the last space of (x) is the cofibre of the map on the
left. But this map is a cofibration by 3.3 (1) since 1;(S%) — Wy (j) is an f-cofibration
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in kTopiN ). Hence its cofibre is weakly equivalent to its homotopy cofibre. By 10.3, the

space in the middle is contractible, hence the homotopy cofibre is weakly equivalent to
the suspension of I'(¢;(S?)) which finishes the proof. O

Now we treat negative twists. Define, for j < 0, the number

a(N, j) ::#{(ai)ieNEZN‘ Zai:jandVi:ai<0}.

1EN

We have
a(N, j)=0 (for —-n—1<j<0)

a(N, -n—1)=1

which can be seen in the following way: suppose (a;);ecn is an element of the set occuring
in the definition of a(N, j). Then j = ) a; < —(n+ 1). Hence such an element does
not exist if —m —1 < j, and there is exactly one such element if j = —n — 1.—Using the
notation of 10.3, we have a(N, j) = #V,(j) — 1, the —1 being due to the basepoint.

Corollary 10.5. (Global sections of canonical sheaves with negative twist.)

Suppose G is a topological monoid with zero which is cofibrant as an object of k Top,.
For K € C(G) and j < 0, there is a natural chain of weak equivalences connect-
ing T' o ¢;(K) and \/a(N’ j)K. In particular, we have a natural weak equivalence
Fotp_p_1(K)~ K, and for —m — 1 < j <0, the space I 0 1p;(K) is contractible.

Proof. As is the proof of 10.4 it suffices to give a proof for N = [n] and K = S°.
Recall the definition of Wy (j) from lemma 10.3. For j < 0, comparing the defini-
tions shows Opn~ (j) = Wn(j). Using the notation from the proof of 10.3,

T'(Op~ () = T(Wn(j)) = Valj) -

As we have seen, this space is contractible for j > —n — 1. In general, this space
has a(N, j) non-basepoints (this is just the definition of a(N, j)), hence can be written
as an a(N, j)-fold one-point union of copies of SY. If in particular j = —n — 1, we have
F(OPN(—TL— 1)) ~ S0, O

11. Spread Sheaves

Definition 11.1. Given S C Z, a map f in pP"(G) is called an hg-equivalence if

for all s € S the map I' o 045(f) is a weak equivalence of spaces. A map of cubes
g € G-k TopiN ) is called an h{oy-equivalence if I'(g) is a weak equivalence of G-spaces.

The purpose of this section is to establish a chain of hgg-equivalences in PN (G)
connecting 2 0 ¢ o I'(Y) and X" +2(Y).
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Definition 11.2. Suppose Y is an object of pPY(G), and C is a (possibly empty)
subset of N. We define the C-spreading of Y, denoted spr®(Y), to be the presheaf

A sprd(Y)A = youa

(0 # A C N) with (b-type) structure maps induced by those of Y. Here Y4 is
considered as an GAM“A-equivariant space. Define sfrC(Y) = spré(Y) if C # 0
and spr’ (Y) = =

For C C D C N there is a map of presheaves spr(Y) — spr”(Y’) with compo-
nents induced by the structure maps of Y. The assignment C' s spr©(Y) for fixed Y
is itself functorial, hence:

Lemma 11.3. The cubical diagram A — T ospr(Y) in G-k TopiN> 1s commutative.
O

Example 11.4. We draw the diagram of 11.3 for the case N = (1):

x — Y10} x — Y10}
IR et N

y{1} —» y{0,1} y{0,1} _» y{0,1}

x — Y101} x — y{o.1}
I e

yvit} —» y{0.1} y{0.1} _» y{0,1}

As usual, the 0-direction is left to right, i.e., the small square in the upper right
corner represents spri® (Y), the small squares in the bottom row represent spri!}(Y)
and spri®1}(V), respectively.

As each component of spr®(Y) has an M %-action, the space I' o spr(Y) is an
object of GAMC®-kTop,. Because of this and the previous lemma, it is possible to
define a new presheaf o™ (V) = o(Y) by

A oVN(Y)A =2 0T osprt(Y) (A#£0).

In this way we obtain a functor oV = o: pP¥(G) —— pP¥(G). (For N = (1) this
is the double suspension of ¥/ as defined in [HKVWW]. For a picture, replace the left
upper square in the above example by a point, and suspend twice.)
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Lemma 11.5.

(1) If Y is a weakly cofibrant object (7.6) of pPN(G), there is a natural chain of
h-equivalences connecting o(Y) and X" 2Y . In particular, if Y is a weakly cofi-
brant sheaf, then o(Y) € PN(G).

(2) The functor o commutes with pushouts. It preserves h-equivalences and weak

cofibrations (7.5) between weakly cofibrant objects.

Proof. For a space K € kTop,, let con(K) denote the N-cube with a point as initial
vertex and K everywhere else; structure maps are identity maps (away from the initial
vertex). For Y € pPY(G) define a presheaf ¢Y by (eY)¢ := I' o con(Y®). It is
h-equivalent to the n-fold suspension of Y (compute global sections in any direction
and observe that the resulting cube has Y© as initial vertex, and all other vertices are
contractible). Thus it is sufficient to show that 32 o € is h-equivalent to o.

For C C N and Y € PN (G) there is a map of cubes f¢: con(Y?) — spr?(Y),
natural in C' and Y, induced by the structure maps of Y.

In the case N = (1), this map has the following pictorial representation:

x« — YC© x« — y{ojue
le]

{ { : l l

YC > YC Y{l}uc R Y{O,I}UC

The square on the left depicts con(Y©), the square on the right represents spr®(Y).

Back to the general case, the maps f€ induce upon application of X2 oI" a natural
transformation g: 2 o ¢ — 0. We want to prove that g is an h-equivalence of
functors, i.e., that all components of g are weak equivalences. Fix a non-empty subset
C C N. By definition, the map ¢© is given by %2 o I'(f¢). Thus it is enough to show
that T'(f¢) has contractible mapping cone for all C' # (). But I' commutes with taking
homotopy cofibres. Hence it suffices to compute the pointwise mapping cone of f¢ and
show that the resulting cube Z has contractible iterated homotopy cofibre.

So define Z := hocofibre (f¢). Choose i € C. By definition of the C-spreading
we have Z? = % and Z4 = hocofibre (Y —— YCY4) for A # (. This implies
ZA ~ ZAM} for all A C N (even Z4 = ZAM} if A is not the empty set). Hence
computing I'(Z) in i-direction yields a cube with contractible vertices.—This proves
that o(Y) and X"*2(Y) are weakly equivalent (with respect to h-equivalences).

Since the sheaf condition is homotopy invariant (6.5), and since the suspension of
a weakly cofibrant sheaf is a sheaf, we infer that o maps weakly cofibrant sheaves to
sheaves. This completes the proof of (1).

For (2) note that the functors spr® commute with pushouts (since colimits are
calculated pointwise). Since I is also compatible with pushouts (3.3 (3)), so is o.

Let f: Y —— Z denote a weak cofibration between weakly cofibrant objects.
This means by definition that all components of f are cofibrations in G-k Top, . Hence

the same is true for spr¢(f), i.e., spr®(f) is an f-cofibration in G-k TopiN> between



30 Thomas Hittemann

f-cofibrant objects of G-kT opiN ). Since I preserves these cofibrations by 3.3 (1), we
know that I' o spr®(f) is a cofibration in G-k Top,, hence (by suspending twice) so is
the C-component of o(f). This means by definition that o(f) is a weak cofibration.
Finally, o preserves weak equivalences between weakly cofibrant objects since X7+2
does and both functors are connected by a chain of h-equivalences as shown in (1).
O

We proceed with a technical lemma. Let Y € P¥(G), and suppose B is a
non-empty subset of N. Fix ¢ € B. There is a natural map

vispr® (V) — §;3(YP)

in G-k Top!™? given by the identity idy s on {i}-components (the functor d;;3 has been

*

defined in 3.1). For N = (1) and ¢ = 1 € B this map has the following representation:

¥ —— y{o0tuB k —> %
—_
Y{l}uB - Y{O,l}uB YB -

Lemma 11.6. The map vy is an hyyy-equivalence (11.1).

Proof. Consider the cube Z which is the same as spr®(Y") with {i}-component replaced
by a single point, and let 0: Z — spr(Y’) denote the inclusion map; it is the identity
on all components except the {i}-component. Picture:

« —» yli0}uB « > yloyus

{ { : { {
—

M > y{0.1}UB y{1}us _, y{o.1}uB

There is an obvious map from the pointwise homotopy cofibre of o to dgj (YB)
(given by the identity on {i}-components), and this map is an h-equivalence since
all components of the homotopy cofibre, except the {i}-component, are contractible.
Moreover, the composite spr?(Y) — hocofibre (0) — ;3 (Y?) is the map 7.

On application of I', we obtain the following diagram:

T(spr?(Y)) o T (hocofibre (0)) ——— T'(6;;3(Y?))

T(spr®(Y)) LG) - T (603 (YP))

Hence to show that I'(y) is a weak equivalence, it suffices to prove that the map p
is a weak equivalence. But the target of p is the homotopy cofibre of I'(0), hence it
suffices to show I'(Z) ~ *. But this is clear since computing the homotopy cofibre of Z

in {-direction results in a cube with contractible components. O
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Let T o spr(Y) denote the presheaf C' +— I' o sﬁ“C(Y), and recall the forgetful
functor V: pP¥(GQ) — G-k Topimo. Lemma 11.3 asserts that there is a canonical
map I'(Y) — lim oV (I o spr(Y)). By passing to the adjoint map (9.8) we obtain
a natural map 7: ¢y o I'(Y) —— I' o spr(Y) and, by suspending twice, a natural
transformation 2 o¢pgo ' — 0.

We give a graphical representation of 7 in the case N = (1) :

x* —— D(Y)AM 1%} * I'(spri®(v))

| | = |

rY)AMr — ry)am o D(spri' (v)) — D(spri®t}(v))

The left square is the picture of 15 o I'(Y), the right square symbolizes I" o spr(Y).

Lemma 11.7. Suppose G is cofibrant as an object of kTop,. Then the natural map
Y201y o'(Y) — o(Y) constructed above is an h{oy -equivalence for weakly cofibrant
objects Y € PN (G).

As an immediate consequence of this lemma and 11.5 (1), we have:

Corollary 11.8. Suppose G is cofibrant as an object of kTop,. Then the two functors
Y201y o' and X"F2, restricted to weakly cofibrant objects, are connected by a chain

of hyoy-equivalences. O

Proof of 11.7. There is a canonical map Y A M4 —— s’erA(Y); its B-component
is given by the composite of the structure maps Y2 —— Y BY4 and the M“*-action
on YBY4 The A-component of 7 is the image of this map Y A M4 — s’pvrA(Y)
under T since Yo T (Y)A =T(Y)AMA 2 T(Y AM?A). Let us agree to use the letter B
as indexing set for the presheaves Y and SAp?A(Y), and we will write I'y to indicate
that T" belongs to this indexing set B. Similarly, let A denote the indexing set for the
presheaves 1 o 'y (Y') and T’y o spr(Y) with corresponding global sections functor T',.
Then the lemma asserts that

L,oX2(1): ThoX?otgoly(Y) — Tuool =T, 0%%0T, 0spr(Y)

is a weak homotopy equivalence.

Using the identification of 74 from the beginning of the proof, we can combine both
directions (A-direction and B-direction) into a “hypercube”: the lemma is equivalent
to the claim that the map of N II N-cubes

OpnAY — spr(Y) (+)

becomes a weak equivalence after application of ¥20T, where the source is the “external
tensor product” of Op~ and Y, i.e., the N Il N-cube AIl B — Of‘,N AYE (this is a
diagram in G-k Top, because of the G-action of Y'P), and the target is the functor

spr(Y): NTIN — G-kTop,, ATIBw (spr*(V))" .
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For N = (1), the source of the map (x) is a 4-dimensional cube. It has the following
graphical representation:

* ———> % x —— M0 Ay {0}
e MY AY 11— pri0} Ay {01}

x —— MU Ay {0} « —— MO Ay {0}

M Ay — pp{1} Ay {01} M0 Ay} —» py{0,1} Ay {0,1}

Here the “B-direction” is encoded into the small squares, the A-direction is the large

square. Similarly, the target of (x) has the following picture:

§ —> % « —» yftoyu{o}

§ ——> % y{1}u{o} _, y{0,1}u{o}

« — » yloru{i} y — » y{o}u{o1}
y{1yu{1} _, y{o.1}u{1} y{1tu{o,1} _, y{o,1}u{o,1}

In informal language, the result of computing I' “in B-direction” (i.e., evalu-
ating T'p) is the map 74. But computing ', first and then applying T, is the same
(up to natural isomorphism) as applying I' to the “hypercube”, which in turn is the
same as first computing I',, then applying I',. Symbolically, this change of preference
is depicted as follows for the source of (x):

) —> % x ————————> M{O}/\Y{O}
> % MU AY (0} — pri01} Ay {0}
x ———— MI0F Ay {1} x —— MO Ay {01}

| |

MIAY Y — pp{01} Ay {1} M Ay {01} 5 {01} Ay {01}
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This is really the same cubical diagram as before. The right upper small square is
Op: A Y19 and similarly for the other small squares.—There is a similar picture for
the target of (x):

x —> % * — » y{oju{o}
 — > % y{oyu{1} _, y{oyu{o1}
s — % y{13u{o} s — &+ y{o,1}u{0}
yittu{l} _» y{1tu{o,1} yio,1ju{1} _ 5 y{0,1}u{o,1}

Computing “in A-direction”, i.e., evaluating I',, results in a map of N-cubes. Its
B-component is given by

B:T4(Opn ANYP) — Ty (spr(Y)?) .

We want to show that this map is a weak homotopy equivalence after two suspensions
(for all non-empty B C N). Then application of 32 o T, gives a weak homotopy
equivalence (3.3 (2)), hence the double suspension of the map (x) is an hygy-equivalence
as claimed.

Now spr(Y)? is the same as spr®(Y) which can be seen by tracing the defini-
tions. The source of 3 is isomorphic to I'(Op~) A Y. Choose some i € B. The
map 7y from 11.6 is an hygy-equivalence. Since weak homotopy equivalences satisfy the
saturation axiom, it suffices to show that I'(y) o 8 is a weak homotopy equivalence.

Define the map a: Opy — 6;3(SY) by mapping all non-basepoints of M1 into
the non-basepoint of SY. Picture for N = (1) and i = 1:

x ——> M0} k —> %
_—
Mt — p{01} SY —— &

Tracing the definitions shows that I'(a A idys) =2 I'(y) o 3. Since Y8 is cofibrant
as a G-space and hence as an object of kTop, (2.1 (3)), and since I'(a Aid) = I'(a) Aid,
it suffices to show that X?(a) is an hggy-equivalence.

Recall the cube W := Wy (0) from 10.3. There is a map

w: W — (5@(50) V (5{i}(SO)
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defined similar to a and fitting into the following commutative diagram:

Opn - W - 50(S°)

a l w l lid

81iy (S%) —— 3p(S%) v 3y (S°) —— p(S°)
Note that the two horizontal maps on the left are f-cofibrations of objects in kTopiN >,
and the two cubes on the right are the cofibres of these (strict cofibres). Hence by 3.3 (1)

application of X2 o T yields a map of two cofibre sequences:

22 o) F(OPN) 22 o) F(W)

2% oT(6p(S?))
%20l () l 2201“(“;)1 lid
20 T(6(;3(8°)) —— 20 T(6p(S%) Vi3 (S?)) —— 220 I'(6p(5))

The two spaces in the middle are contractible (by 10.3 for the upper space, by com-
puting I' in é-direction for the lower space). Consequently the vertical map in the
middle induces an isomorphisms on homology groups. By the five lemma (applied to
the long exact sequence of homology groups) this is true also for X2 oI'(a) which proves

that ¥2(c) is an hygy-equivalence. 0

12. Finiteness in Projective Space

We define different finiteness conditions and show that they are well-behaved in
the sense that weak equivalences and formation of pushouts preserve finiteness. The
main tool is the existence of the two model structures on pPY (G) (cf. § 7).

For the rest of the paper, we assume that N is a non-empty finite set
with n 4+ 1 elements, and that G is a topological monoid with zero which is
cofibrant as an object of kTop,.

Definition 12.1. An object Y of PN (G) is called locally finite if all its components Y4
are finite (and hence cofibrant) in their respective categories, i.e., if Y4 € C;(GAMA)
for all non-empty A C N. The full subcategory of these objects is denoted by P}V (G).
An object Y € PV (G) is called homotopy finite if all its components are homotopy finite
in their respective categories. We say that Y is finitely dominated if Y is a retract of
a homotopy finite sheaf. Finally we call Y stably finitely dominated if L*Y is finitely
dominated for some k& > 0. The full subcategories of locally cofibrant objects which are
homotopy finite, finitely dominated and stably finitely dominated will respectively be
denoted by Pflvf(G), Pﬁcvd(G) and Pi\}d(G).

We will also need the full subcategory 15}\7 (G) of objects which are locally finite and

strongly cofibrant. Finally let ?i\;d(G) denote the full subcategory of stably finitely
dominated, weakly cofibrant objects.
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We have defined a sequence
o =N
P (G) € P (G) € Pyy(G) S P1y(G) € Py(G) € Pypy(G)

of full subcategories of pP™ (G). It is the purpose of this paper to define and study
the algebraic K-theory of P?}d(G). We will indicate how it compares to alternative
definitions of the K-theory of projective space.

Lemma 12.2. All the following conditions are equivalent for a locally cofibrant object

Y € PN(G):

(1) For alli € N, the component Y% is an object of Cpr(GAMTY).

(2) There is a locally finite, strongly cofibrant object Z € PN(G) and a weak equiva-
lence 7 — Y.

(3) There is a locally finite Z € PN (G) and a chain of weak equivalences in pPY (G)
connecting Y and Z.

(4) Y is homotopy finite.

Proof. Condition (1) is a special case of (4). Conversely, assume (1) holds. Fix a
non-empty subset A C N, and choose i € A. By hypothesis Y1 ¢ Chf(G/\M{i}).
Since Y is a sheaf, we know that Y4 and Y{#[t,!] are weakly equivalent (6.4). But
the latter space is homotopy finite since inverting the action of ¢4 preserves homotopy
finitenes by lemma 2.2 (3). This holds for all A, hence Y is homotopy finite.

Condition (3) is a special case of (2). Moreover, (3) implies (4) since an object
of C(GAM™) is homotopy finite if it is connected through a chain of weak equivalences
in (GAM#)-kTop, to a homotopy finite object.

It remains to prove (4) = (2). So assume (4) holds. By the WHITEHEAD theorem
([DS], 4.24), there are spaces Z4 € C;(GAM#) and mutually inverse (M“-equivariant)
homotopy equivalences (in the strong sense) a?: Y4 —— Z4 and g4: 74 — YA,
Define ZV} .= Z{i} and pl} .= gli} for all j € N.

Let A C N, and suppose that by induction ZZ and 82 have already been con-
structed for all proper subsets B C A. Define a map Ly Z — Z* as the composite
LaZ — LyY —yA 2 74
where L4 denotes the A-th latching space functor (section 7—this makes sense be-
cause the definition of L 47 involves only those spaces Z? for proper non-empty sub-
sets B C A). By choice of a? and $4, the two maps LaZ —— LY —— Y4

B A

and LaZ - 74 b, Y4 are homotopic. Let Z4 denote the mapping cylin-
der of LyZ —— Z. Then a choice of a homotopy determines a weak equivalence
BA: Z4 — Y4, homotopic to 84, making the following diagram commute:

LaZ — 74

| )

LY — YA
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We claim that L4Z (and consequently Z4) is a finite cofibrant (GAMA)-space.
Choose j € A. By 7.8 (3), we have a pushout square

Lagp Z[t; '] — 2\

: |

Ltz LaZ

where the upper horizontal map is, by induction, a cofibration between finite spaces.
Hence it suffices to show that the restricted latching space Lj{j } 7 is a finite cofibrant
(GAM#A)-equivariant space. This can be shown by induction (note that the restricted
latching space is the latching space of the j-th face of Z, i.e., of a lower-dimensional
cube).

The spaces Z4 assemble to a presheaf Z; b-type structure maps are the composites

74 22 ZAt5Y] — LpZ — ZP for the inclusion A C B, where so denotes the
unit of the adjunction of - Ay;a MP and the restriction functor from (GAMP®)-k Top,
to (GAM™)-kTop, (2.2 (1)). Since Z maps to Y via the weak equivalence 8 (with
components 34 constructed above) it is a sheaf (corollary 6.5). It is locally finite since
its components Z4 are mapping cylinders of maps between finite spaces. Finally Z is
strongly cofibrant since the maps L4Z — Z# are inclusions into a mapping cylinder
by construction of Z#4, hence are cofibrations. O

Lemma 12.3. Suppose Y is a finitely dominated sheaf, and suppose that there is a
strongly cofibrant sheaf Y and a weak equivalence wy : Y —— Y. Then there exists a
strongly cofibrant, homotopy finite sheaf Q such that Y is a retract of Q.

Proof. By hypothesis, Y is a retract of a homotopy finite object Q). Call retraction
and section 7 and 8§, respectively. Choose a strongly cofibrant @ and a weak equiva-
lence mq : @ —+ . The object @ is homotopy finite since it maps to Q via a weak
equivalence.

By 5.8 of [DS] we can form 7yt o7 omg in Ho pPY(G), and since Y is c-fibrant we
can represent this composite by a map 7: Q — Y in pPY (@) ([DS], 5.11). Similarly
we can represent Wél o §omy by a morphism 5: Y —— é Since 7 o § = idy, we
know that 7o 5 = idy in HopP¥(G), i.e., the maps 7 o s and idy are homotopic.
Let @ denote the mapping cylinder of 5. A choice of homotopy yields a map Q — Y
with section given by the inclusion Y —— ). Moreover, @) is homotopy finite since @
is. O

Lemma 12.4. The classes of homotopy finite, finitely dominated and weakly cofibrant
stably finitely dominated objects of PV (G) are closed under weak equivalences.

Proof. For homotopy finite objects this holds by definition of homotopy finiteness.
Suppose Z is connected by a chain of weak equivalences to the finitely dominated
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sheaf Y. Choose a strongly cofibrant sheaf Y and a weak equivalence 7y : Y —— Y.
According to 12.3 there exists a strongly cofibrant, homotopy finite sheaf ) such that Y
is a retract of ). Call section and retraction s and r, respectively.

The objects Z and Y are connected by a chain of weak equivalences. Since Z is
strongly cofibrant and Y is fibrant with respect to the c-structure, this chain induces a
weak equivalence p: Y — Z in pPY(G).

Factor s: Y —— @ as a c-cofibration ¥ —— P followed by a weak equiva-
lence P —— @, and observe that P is homotopy finite since ) is. There is a map

//

ZUyP<—P—>Q

\
Z < Y

ZUy P — Z induced by id: Z — Z and the composite P — Q —» Y —» Z;
this map has a section given by the canonical map 7 — Z Uy P. Hence 7 is a retract
of Z Uy P. But by the gluing lemma (which is valid for cofibrant objects) the map
P —— Z Uy P is a weak equivalence whence the pushout is homotopy finite. This
shows that Z is finitely dominated as claimed.

Now assume Z is weakly cofibrant and weakly equivalent to a weakly cofibrant,

stably finitely dominated object Y through a chain of weak equivalences. Choose a

c-cofibrant object Y together with a weak equivalence Y —— Y. Since Y is weakly
equivalent to Z, we find a weak equivalence Y —— Z. We have constructed a chain
of weak equivalences Y «—— Y —— Z. All three spaces are weakly cofibrant, hence
YFY «—— 3*FY —— Y%7 is a chain of weak equivalences. But if k is large, the object
on the left is finitely dominated by hypothesis, and the previous case asserts that ¥%(7)
is finitely dominated. O

Lemma 12.5.

(1) Let ? denote any of the subscripts f, hf, fd or sfd. Suppose Z < vy_1.p
is a diagram in PY(G), and the map Y — P is an f-cofibration (7.4). Then
the pushout exists in PY (G), and the map Z —— Z Uy P is an f-cofibration.

(2) If Z «—Y —— P is a diagram in Fi\;d(G) and the map Y —— P is a weak
cofibration (7.5), then the pushout exists in ﬁi\;d(G), and the map Z — Z Uy P

18 a weak cofibration.

Proof. We prove (1) only, the other assertion being similar.
In all cases we can form the pushout in the ambient category pP™(G). Since
the class of cofibrations in (GAMA)-kTop, is closed under cobase changes, we know
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that the map Z —— Z Uy P is an f-cofibration; in particular, the pushout is locally
cofibrant.

We have to show that the result satisfies the sheaf condition. By 6.4 it suffices to
show that for all inclusions o: A —— B of non-empty subsets of NV, the map

(ZUy P)E: (ZUy P)At5'] — (ZUy P)B (%)

is a weak equivalence. But since pushouts are calculated pointwise in pP"(G) and
-[tlgl} commutes with pushouts, it is isomorphic to the map induced on pushouts of top

and bottom row

74t — YAt5' ] — PAlt5']

z) v |2

78 < y B > PB

where the two horizontal maps on the right are cofibrations since -[t;l] preserves
cofibrations by 2.2 (2). All vertical maps are weak equivalences since Z, Y and P
are sheaves. Hence the gluing lemma (in (GAMPB)-k Top,) asserts that (x) is indeed a

weak equivalence.

Standard model category arguments similar to those exhibited in the previous
lemmas show that Z Uy P satisfies the correct finiteness condition. We omit the details.
O

13. Finiteness of Global Sections

Definition 13.1. For j € Z and k € N, a j-twisted k-cell is the sheaf 1;(A% A G);
its boundary is given by ; (8A’i A G) with the obvious inclusion into the cell. A sheaf
Y € PYN(Q) is globally finite if it can be obtained from the zero sheaf by attaching
finitely many twisted cells (not necessarily in order of increasing dimension).

Remark 13.2. Suppose Y € PY(G) is globally finite, and let 0: A — B denote an
inclusion of non-empty subsets of N.

(1) The sheaf YV is locally finite and locally cofibrant.

(2) The structure maps Y: Y4 —— Y B are injective.

(3) The structure maps Y : YA[t53'] — YZ are isomorphisms.

(4) If Y is globally finite, so are 0;(Y) and 0 (Y).

Lemma 13.3. IfY € PY(Q) is a globally finite sheaf, the space T'(Y') is stably finitely
dominated as a G-space.
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Proof. For Y = x we have nothing to prove. Now assume Y is obtained from Z by
attaching a cell, i.e., Y = Zij(aAi/\G) ¥; (A% AG) for some j € Z and k > 0. Assume
by induction that I'(Z) is a stably finitely dominated space. Since I' commutes with
pushouts (3.3 (3)) we know that the canonical map

T'(Z) Uy, (aak rc)) I(y; (AL AG)) — T(Y)

is an isomorphism. All spaces on the left are known to be stably finitely dominated
(use the induction hypothesis for I'(Z), 10.4 and 10.5 for the other two spaces), and
the map I'(1;(0A% A G)) — T'(¢;(A% A G)) is a cofibration since the functor
- AN G: kTop, —— G-kTop, maps cofibrations in kTop, to cofibrations in G-k7Top,
(apply 2.2 (2)), ¢; maps cofibrations to f-cofibrations (apply 2.2 (2) componentwise),
and I' preserves cofibrations by 3.3 (1). Hence the pushout is stably finitely dominated.

O

Lemma 13.4. (Extending coherent sheaves to PV .)
Given a finite space T € C(GAMY™), there exists a globally finite sheafY € P™(Q)
with Yint =T

Proof. We proceed by induction on the number of cells of T'. For T' = * choose Y = .
Now assume T' = SUgc C where C' = Aﬂ_ AGAM™} is an equivariant cell. By induction
we have a globally finite sheaf Z € PN with Z{"} = §.

The boundary of C' has a compact subspace 0Cy := A% A {0,1} A {0};. Let
ol 9Cy —— Z1"} denote the restriction of the attaching map. Fix i € [n] \ {n}.
By 13.2 (3) the maps Z{#}[t 1] — Z1"} are isomorphisms. Identify the target with
the colimit of the (second) telescope construction (5.6 (2)) for inverting the action of ¢,
on Z{. Since all maps in the telescope are cofibrations in kTop, by 2.3 and 2.1 (3),
the composite

ac, 2"zt . gin}

olid . tfit;ki
factors as 0Cy, — Z1} 1",

this is similar to 5.7). Since all k; can be enlarged, we may assume that all k; have the

7z} for some k; > 0 (smallness of compact spaces;

same value k£ > 0.
We claim that for all A C [n] and 7,j € A the diagram

olid )
0C, —— z1}

| | (¥
7y L 7A

k,—k
tht,

commutes where a := max(A); lower and right maps are structure maps in 0 (%)
(cf. 9.3). To see this it is sufficient to show that both maps from upper left to lower
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k,—k
right are coequalized by the map Z4 faln, 7] since the latter is injective by 13.2 (2, 4).
So consider the following diagram:

ol k

00y —— 7{i} ﬁ, 7A

t?tn’“l

ziny _, glion}y | 7ln]

k,—k
aln} Rt

The left square commutes by construction of al?t, the square on the right commutes
since it consists of structure maps of 0;(Z). The composition of the lower maps is the
structure map Zi" —— Z[™. Thus the composite 0Cy — Z[™ from upper left to
lower right is independent of ¢ which proves commutativity of (x).

Define a?: 9Cy —— Z4 as the unique map from upper left to lower right in
diagram (*). By virtually the same argument as before (map everything into Z[™)
we can show that the a? are compatible with the structure maps of 8;(Z2), i.e., they
assemble to a map 9Cy) — l(in V(01(Z)), where V denotes the forgetful functor

pPY(G) — G-k TopiN>°. Hence we obtain, by passing to the adjoint map, a mor-
phism f: 1 4(0Cy) — Z (note that 9.8 applies since 0 and 0 are isomorphic
functors, cf. 9.4 (3)), and by construction f{™ coincides with the given attaching map
in T. Define Y by attaching an ¢-cell with twist —k to Z. Then Y is globally finite.
On {n}-components, attaching the twisted cell amounts to attaching a free (GAM{"})-

equivariant cell to Z{"} = § along the given attaching map, hence Y™ =T O

Lemma 13.5. (Extending morphisms of sheaves.)

Let Y and Z be objects of P™(G). Suppose Z is globally finite, and suppose Y
is locally finite and strongly cofibrant. Let g: Y™ —— 7}t be a given (GAMI™H)-
equivariant map. Then there exists an integer k > 0 and a morphism f:Y —— 0y(2)

with fim = g.

Proof. The proof consists of three steps: first we construct maps f4: Y4 — 74
for A C [n] with n € A which are compatible with the structure maps of Y and Z. (In
other words: if Y and Z are considered as cubical diagrams, we construct a natural
transformation from the n-face of Y to the n-face of Z.) The second step is to extend
this partial map to a map of (n+1)-cubes (we have to twist Z to do this). In the last
step, we check that the components f4 constructed before fit together.

Step 1. We proceed by induction on s := #A. Start by defining f{"} :=g.

If A= {j, n}, we claim that the map Y {"} [tj_l] —— Y137} is an acyclic cofibra-
tion. Indeed, by 7.8 (4) we know that the map LE{Z]][ Y —— YU} is a cofibration.
But LE{Zi Y = Y{”}[t]-*l} by definition of restricted latching spaces, and the map is a
f-type structure map of Y. Since Y is a sheaf, it is a weak equivalence by 6.4. Hence
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we can choose a (dotted) lift f{7"} in the following diagram:

f{n} [t,l] Z
n — ; ) ) |
waset ..................... STl )
. l ..................... " o
Y{]y’ﬂ} - |

(Here o denotes the inclusion {n} —— {j, m}.) This lift is compatible with the
structure maps of Y and Z: by passing to adjoint maps, we obtain from the above

diagram the following commutative square:

yiny " Sy

Yﬁl lZﬁ

ytiny £ S iny

Now assume s = #A > 3. We give a formulation of the induction hypothesis:
(i)s We have compatible maps fZ for all proper subsets B of A containing n; i.e., if o
denotes an inclusion B —— (' of proper subsets of A with n € B, the following

diagram commutes:

(ii)s If B is a proper subset of C' with n € B, and C is a proper subset of A with
#C = #A—1 = s—1, the canonical map LéB Y —— Y is an acyclic cofibration,
and the source is cofibrant as an object of (GAM®)-k Top,.

To start the induction, we still have to check condition (ii)s, i.e., the case #A4 = 3.
But then necessarily B = {n} and C' = {j, n} for some j, and we have checked above

that the map Y} [tj_l] —— Y1im} is an acyclic cofibration. Moreover, the source of
this map is cofibrant in (GAM ¥"}H)-k Top, since Y1} is cofibrant in (GAM{"})-k Top,

(apply 2.2 (2)).
Assume now that conditions (i)s and (ii)s are satisfied. Consider the following
diagram:

e

The left arrow in the first row is induced by the maps f? of (i),. The second map in

the first row and the left vertical map are the canonical maps of 7.8 (4). In particular,
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the left vertical map is a cofibration. To construct the dotted lift, it thus suffices to
show that the left vertical map is a weak equivalence.
Choose a filtration of A

{n}=CicCyc...cCs1CCs=A

with #C; = i. By iterated application of 7.8 (2) we see that the map LXCS”Y — Y4
factors as

[ty L%y — 1Oy s y4 (*)

By 7.8 (4) the last map is a cofibration. All the other maps in this factorization are
acyclic cofibrations: fix ¢ with 1 < i < s— 1, and write C; = C;_; 11 {j}. By induction
hypothesis (ii)s, the map LXS{";}IY — YA} is an acyclic cofibration, hence so is

LX\CE;}lY [t;l] — YA [t;l} (lemma 2.2 (2) applies since the source is cofibrant by

induction hypothesis). By 7.8 (3) we have a pushout square

+Ci-1 — A\{j} 14—
Ly Y 51 —— Yy [

l |

L1y Loy

which shows that the lower map (appearing also in (%)) is an acyclic cofibration.

Write A = Cs_1 L1 {j}. Then the leftmost space in (x) is LZCS“Y = YA\{j}[tjfl]
by definition of restricted latching spaces. Since YA\t is cofibrant, this proves that
all spaces appearing in (%) are cofibrant. Moreover, the composite map () is a f-type
structure map of Y, hence a weak equivalence. This shows that the rightmost map
of (x) is a weak equivalence.

The above arguments apply for all A with s elements, and for all filtrations. This
proves (ii)s41.

We also have shown that the left vertical map in (xx) is an acyclic cofibration, hence
the lift f4 exists. This map is compatible with the f” constructed earlier since the

structure maps of Y and Z are encoded in the restricted latching spaces. Hence (i)s11
holds.

Step 2. We commence now with the construction of maps f4 for A C [n—1]. Given

All{n}
! ZAI{n} where the
second map is as constructed in step 1, and the first map is a b-type structure map of Y.

Since Z is globally finite, we have ZAMn}t & ZA[t-1] and finiteness of Y4 guarantees
k

A A kA
that we can factor this map as Y4 I7, gA it Lz AN} with m = max(A) and

some k4 > 0 (apply 5.8). Since all k4 may be enlarged independently, we may assume

such a set A, consider the composite map Y4 —— YAD{n}

that all k4, for the various A C [n — 1], have the same value k.
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Step 3. We claim that all the different maps f4 constructed in steps 1 and 2
assemble to a map of diagrams Y — 0;(Z). So assume B = AII{j} C [n]. We have

to show that the square

yA 4 7A

| e ’

B

yB L. 7B
commutes (where m = max(A4), £ = max(B), and the right vertical arrow is the
structure map of 0;(%)).

(a) If n € A this follows from the construction of the f4 in step 1 of this proof since
m = { in this case, and the right vertical map in (x) coincides with the (b-type)
structure map in Z.

(b) If j = n (and, consequently, £ = n) this follows from the construction of f4 in
step 2.

(c) Now assume n ¢ B, and consider the following cube:

yAI{n} f L Anm
A
yA —
l thtk
y Bll{n} prutnd . 7BU{n}
<
YB/fB . 7B )m/“

The front face is the diagram (x). The back face of this cube is commutative
by (a), for upper and lower face commutativity follows from (b). The left and
right face commute by definition of the structure maps of Y and 0 (Z2), respectively.
This shows that the two composite maps from initial to terminal vertex, given by

A th ik tht t-k
A T oA tmte Bt n_ Bl
Y A Z ZBUin}

—k fB tlc
“s 7B and YA — VB o 7B L
are equal. But the last map in these compositions is injective since 0y (Z) is globally

finite (13.2 (2, 4)). Hence the front face commutes as well.
O

Proposition 13.6. (Finiteness of global sections.)
The global sections functor I' maps objects of Fi\;d(G) to stably finitely dominated

G-spaces.

The proof will show that even for a locally finite sheaf Y, the space I'(Y) is, in
general, only stably finitely dominated, not finitely dominated.
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Proof of 13.6. Let P denote a weakly cofibrant object of Pﬁ\}d(G). We can find a
strongly cofibrant sheaf Z and a weak equivalence Z — P. Since Z is stably finitely
dominated (12.4), we know that there exists k¥ > 0 such that X%(Z) is a retract of
a strongly cofibrant, homotopy finite sheaf @ (12.3). By 12.2 (2) we find a strongly
cofibrant, locally finite sheaf Y and a weak equivalence Y —— Q. Now I' preserves
weak equivalences between weakly cofibrant objects (by 3.3 (2)) and retractions (by
functoriality), and commutes with suspensions. Hence it suffices to show that a strongly

cofibrant, locally finite object Y is mapped to a stably finitely dominated space.

Assume N = [n]. We proceed by induction on the dimension; for n = 0, nothing
has to be shown (since ?Sfd(G) = C,44(GQ) and T" = id).

Now assume the statement is true for n — 1, and let Y € Iu’ﬁcv(G) be given. Choose
a globally finite object Z with Z{"} = V{n} (13.4). By 13.5, we can extend the identity
map of Y™ to a morphism f:Y —— (%) for some k > 0 such that f{"} =idy (a.
For A C [n] withn € A, let 0: {n} — A denote the inclusion. Consider the following
diagram:

nyre— id ) nyly— njl4—
vt —— 0 (2) Mgt = v
v} 0(2)%
A ~ 0 (oA
Y 01(Z)

The vertical maps are the f-type structure maps of Y and 0,(Z2), respectively. They
are weak equivalences since Y and 0, (Z) are locally cofibrant sheaves (6.4). Hence the
components f4 with n € A are weak equivalences.

Let Ct denote the (pointwise) mapping cone of f (i.e., the space C? is given by

the homotopy cofibre of the map f4). Since I' commutes with pushouts and preserves

cofibrations, we have a cofibration sequence I'(Y") ) I'(0x(Z)) — T(Cy). By 13.3
the space F(O_k(Z )) is stably finitely dominated. Hence it suffices to show that the space
on the right is stably finitely dominated. (By using a PUPPE sequence type argument,
one can show that if two out of three spaces in a cofibration sequence are stably finitely
dominated, so is the third. We omit the details.)

Define Y € P"~1(G) as the object A +— 0}4 where the spaces C’;‘ are equipped with
the restricted action (restriction along the inclusions M2 ; € M2). (If we consider C/
as a diagram having the shape of an n-simplex, the presheaf Y is just the n-th face
of C¢.) There is an obvious map o: Cy — (,(Y) of diagrams in G-k Top, (not of
sheaves) given by the identity and constant maps to the basepoint, respectively.
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For n = 2, we have the following picture:

C{z}

f *
/ \ | / \
CJ{CO’Q} 0}1,2} * "
- »~
clo.1.2} \ /
f T

off) s e off) s cff )
This map is a weak equivalence in G-k TopiN ) by construction of f: it is given by
identity maps (on A-components with n ¢ A), or maps between contractible spaces
(since f4 is a weak equivalence if n € A by the above). Moreover, Y is a sheaf since Cy
is.

Caution: o is not a map in pP?(G) since it fails to be equivariant with respect
to the Mr‘:‘—actions. For example, in the picture we have ty acting trivially on the
spaces on the lower face in the target (by definition of extension by zero (), but acting
non-trivially in the source; maps are identities on underlying spaces.

Recall that I' 0 (,(Y) = X o I'(Y) by 10.2. Hence the weak equivalence o shows
that I'(C/) is stably finitely dominated if Y is.

By its construction as the pointwise homotopy cofibre of a map between finite
(GAM)-spaces, we know that Y4 = (C)4 is a finite (GAM;)-space. Moreover, Cy is
a sheaf. Hence if o denotes the inclusion A —— A Il {n}, we have a weak equivalence

AL, — _ (Cp)t n
YA = (Cp) Aty ] —L2 (Cp) A

In this situation, we can apply lemma 5.9 to conclude that for each A C [n— 1], the
space XY 4 VY4 is homotopy finite as a (GAM |)-space, i.c., Y VY is a homotopy
finite object of P"~!(G). This implies that the sheaf Y € P"~1(G) (which is a retract
of XY VY) is finitely dominated. In addition, Y is certainly weakly cofibrant since C' ¢ is
locally cofibrant as an object of P"(G) (apply 2.1 (2) to the components of Y). Hence

the induction hypothesis applies, asserting that I'(Y') is stably finitely dominated as
claimed. 0

14. K-Theory Structures

Lemma 14.1. Let ? denote one of the subscripts f, hf, fd or sfd.

(1) The f-cofibrations (7.4) and h-equivalences make PY (G) into a category with cofi-
brations and weak equivalences satisfying the saturation axiom. The pointwise
mapping cylinder construction equips PN (G) with a cylinder functor satisfying the
cylinder axiom.
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(2) The c-cofibrations (7.1) and h-equivalences make P;V(G) into a category with cofi-
brations and weak equivalences satisfying the saturation axiom. The pointwise
mapping cylinder construction equips f’ﬁcV(G) with a cylinder functor satisfying the
cylinder aziom.

Proof. (1). Axioms (Cof 1), (Cof 2) and (Weq 1) hold by definition, and (Cof 3) has
been checked in 12.5 (1). Axiom (Weq 2), the gluing lemma, follows from the fact that
in any model category the gluing lemma is valid for cofibrant objects. The saturation
axiom holds since PY(G) is a full subcategory of a model category.

Concerning the cylinder functor the only non-trivial thing to verify is that the
mapping cylinder construction respects finiteness. For 7 = f, this follows from the fact
that it preserves finiteness on each component. In all other cases, the mapping cylinder
is weakly equivalent to the target of the map, hence is an object of PY(G) by 12.4.

(2). This is similar to (1). O

Proposition 14.2. (Different models for the K-theory of projective space.)

(1) The inclusion p}V(G) — P}V(G) induces an equivalence on Se-constructions.

(2) The inclusion P}V(G) — P%(G) induces an equivalence on Se-constructions.

(3) The inclusion Pflvf (G) — P;Vd(G) induces an isomorphism on all K-groups ex-
cept possibly on K.

(4) The inclusion P%(G) — Pé\}d(G) induces an equivalence on Se-constructions.

Proof. To prove (1) and (2) it suffices to check that the inclusions of IS}V (G) into
P}V (G) and szvf (G) have the approximation property ([W], 1.6). By definition both
inclusions detect weak equivalences, i.e., satisfy (App 1).

Let ? denote the subscript f or hf, and let f: Y —— Z be a map in PY(Q)
where Y is an object of € 15?[(0) By lemma 12.2 there is an object P € f’}V(G)

and a weak equivalence g: P —— Z. We can form ¢! o f in the homotopy cate-

gory Ho PN (@), and by [DS], proposition 5.11 we find a map h: Y — P in PY(Q)
representing it. Since goh and f have the same image in Ho PV (G), we infer that goh
and f are homotopic. A choice of a homotopy yields a factorization Y — 7;, — 7
of f where 7 is the mapping cylinder of h. By construction 7}, is locally finite and

strongly cofibrant and maps to Z via the weak equivalence 7 ——~+ P-"+ Z This
proves (App 2).

For (3), we follow the argument given in [HKVWW, 3.3 (2)]: let Y be an object
of chvd (G). Then Y is homotopy finite if and only if for all i € N, the component Y {#}

is a homotopy finite (GAM{})-space (12.2). We have maps of abelian groups
711hSe Chp (GAMIH) | —— 71 |hSeC s o (GAM )]

with cokernel H;. The space Y1 gives rise to an element of 7r1|hS.Cfd(GAM{i})| by
the remarks in [W, p. 329], and Y} is homotopy finite if and only if the image of this
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element in H; is zero. Thus the sheaf Y determines an element of Hie ~ Hi which is
zero if and only if Y is homotopy finite.
By the cofinality theorem of [TT, 1.10.1], we obtain a fibration sequence

QRSP (G)) — QURSPY,(G)| — [] H:
iEN

where the abelian group on the right has the discrete topology. This proves (3).
For (4), let Ci denote the full subcategory of Pi\}d(G) of objects whose k-th sus-

pension is finitely dominated. Then Pfs\}d(G) = U Cr and Cy = P%(G). We have

. . . by . . .
inclusion maps Cy, — Cg41 and suspensions Cpy; — C. Since suspension (consid-
ered as an endofunctor) induces a self-equivalence of S,-constructions by [W, 1.6.2], we

know that the Se-constructions of Ugo Cir and Cy are homotopy equivalent. O

We have already introduced the notion of hg-equivalences (11.1). The interplay

with h-equivalences allows us to use the fibration theorem of [W]. Fix sets T'C S C Z.

Definition 14.3. We define Pi\;’g(G) to be the full subcategory of Pi\}d (G) consisting
of the objects Y such that I' 0 6;(Y) ~ « for all j € T. Similarly we define the
category ﬁi\;’dT(G) as the full subcategory of ﬁi\;d(G) whose objects satisfy I'of;(Y") ~ x
for all j € T.

Lemma 14.4.

(1) The axioms for a category with cofibrations and weak equivalences hold for Pi\;;dT (GQ)
with respect to f-cofibrations and hg-equivalences. The saturation axriom is sat-
isfied. The mapping cylinder construction provides a cylinder functor, and the
cylinder aziom holds.

(2) The axioms for a category with cofibrations and weak equivalences hold for Pi\}’dT (G)
with respect to f-cofibrations and h-equivalences. The saturation axiom is satisfied.
The mapping cylinder construction provides a cylinder functor, and the cylinder
axiom holds.

(3) The axioms for a category with cofibrations and weak equivalences hold for Fi\;’g (G)
with respect to weak cofibrations and hg-equivalences. The saturation azxiom is
satisfied. The mapping cylinder construction provides a cylinder functor, and the
cylinder axiom holds.

Proof. We prove (1) only, the other cases being similar.—Axioms (Cof 1), (Cof 2)
and (Weq 1) hold by definition. The saturation axiom follows from the model category
axioms. To prove (Cof 3), suppose we have a diagram Z <— Y —— P with the right
map an f-cofibration. Since Pi\}d(G) satisfies axiom (Cof 3) by 14.1 (1), the pushout
7 Uy P exists in Pi\;d(G), and the map 7 —— Z Uy P is an f-cofibration. We are left

to check that the pushout is an object of Pi\;’g(G), i.e., that for all ¢ € T', the space
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I'00;(Z Uy P) is weakly contractible. But I' and 6, commute with pushouts (the former
by 3.3 (3), the latter since it is an equivalence of categories by 9.4 (2)). Moreover, every
f-cofibration is a weak cofibration, i.e., a pointwise cofibration in G-k TopiN ) (cf. remark
following definition 7.5), and T' maps weak cofibrations to cofibrations (3.3 (1)). Hence

the right horizontal maps in the diagram

IFob;(Z) «—To00,(Y) — T'ob(P)

N

* = * > >k

are cofibrations of G-spaces, and all three vertical arrows are weak equivalences since Z,
Y and P are objects of Pi\;’g (G). The gluing lemma in G-k Top, then asserts

Foet(Z Uy P) = Fo@t(Z) Upogt(y) Fo@t(P) >~ ok,

The gluing lemma (axiom (Weq 2)) is proved with a similar argument.

The mapping cylinder construction is a cylinder functor by 14.1 (1). Since all
h-equivalences between weakly cofibrant objects are in particular hg-equivalences, the
projection from the cylinder is an hg-equivalence. Hence the cylinder axiom holds.

O

Recall the notion of an exact functor ([W, 1.2]). Since we deal with several
notions of weak equivalences, we say a functor is h-exact (or exact with respect to
h-equivalences) if, in particular, it preserves h-equivalences. Similarly, we have hg-exact
functors. Again, if we have a weak equivalence of exact functors, and we want to specify
the notion of weak equivalences, we speak of an h-equivalence of functors, or a weak

equivalence with respect to hg-equivalences.

Proposition 14.5. The hg-exact inclusion Pi\;’dT(G) — ?i\;’g(G) induces an equiv-

alence on Se-constructions with respect to hg-equivalences.

Proof. Exactness of the inclusion functor is obvious. We check that it has the
approximation property. Axiom (App 1) holds by definition of weak equivalences
(hg-equivalences in both categories).

Given amap f: Y — Z with Y € Pi\}’g(G) and Z € ﬁi\;’dT(G), we can find a
factorization f = goh with h: Y —— P an f-cofibration (making P a locally cofibrant
object) and an acyclic f-fibration g: P —— Z. From 12.4 we infer that P is stably
finitely dominated, and since I' preserves weak equivalences of weakly cofibrant objects
(3.3 (2)) we conclude that P € Fﬁ,\;’g(G). Application of the approximation theorem
finishes the proof. O

Lemma 14.6. Let 7 denote any of the subscripts f, hf, fd or sfd.
(1) The functors ¥, 0y and 0y, are exact endofunctors of PY (G).
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(2) The canomical sheaf functors 1y, are exact functors C:(G) — PY(G).

(3) The functor I': PY(G) — Cs14(G) is exact.

(4) The functor o: P?}’;(G) — Fi\;g((}) is exact with respect to hg-equivalences
(where T C S CZ).

Proof. For the proof we have to gather material from earlier lemmas.

(1). This follows from the fact that cofibrations and weak equivalences are defined
pointwise. For the case of twisting functors use 9.4.

(2). The A-component of 1;(K) is given by K A M#. Hence 1, is exact (ap-
ply 2.2 (2) to the morphism G — GAM#). Combining 2.2 (3) with 12.2 it is easy
to show that 1); preserves all finiteness notions.

(3). The functor I' maps stably finitely dominated, locally cofibrant sheaves to
stably finitely dominated G-spaces by 13.6. The other conditions have been checked
in 3.3.

(4). This follows immediately from 11.5. O

Lemma 14.7. (Shifting lemma.)
Suppose F, G: PZJ;F(G) — ?Z;(G) are hg-exact functors, and 7: F — G
is a weak equivalence of functors (with respect to hg-equivalences). Then the induced

natural transformation
07]9(7—916) : Q,k oFo ek —_ Oik o G o ek

is a weak equivalence of hytg-exact functors where k+ S denotes the set {k+ s|s € S}.
O

15. The Splitting of the K-Theory

Definition 15.1. Let G denote a topological monoid with zero. The algebraic
K-theory of G-equivariant non-linear projective N-space is the algebraic K-theory
in the sense of [W, 1.3] of the category Pé\}d(G) with respect to f-cofibrations and

h-equivalences, i.e., the space Q|h8.Pé\}d(G)|.

The above definition displays, to the author’s taste, the most natural choice of
cofibrations. The finiteness condition, however, is forced upon us if we want to use the
functor I since it maps locally finite sheaves to stably finitely dominated spaces.

From now on we will restrict ourselves to the stably finitely dominated
case. We will only consider f-cofibrations unless otherwise stated. Let G de-
note a topological monoid with zero which is cofibrant as an object of k£ Top,,
and let N denote a non-empty finite set with n + 1 elements.
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Lemma 15.2. For each number k € [n], the functors _j: Cspa(G) — p =l (G)

sfd
and I' o O : Pi\;’g[lkfl] (G) — C,14(G) induce equivalences on So-constructions with

respect to hyyy-equivalences in Pi\;’c[lkfl] (Q). Ezplicitly, the map

N,[k—
[hS.Csal Q)| — [hySaPpy = (G)]
induced by ©¥_j is a homotopy equivalence, and similarly for ' o .

Proof. By corollary 10.5, the spaces I' 0 0 01 (K) = I' 0 ¢;_;(K) are contractible
for all K € G-kTop, and 0 < j < k. Hence ¢_: Cs5q4(G) — Pi\}d(G) factors
through Pi\;’o[lk_l] (@), so ¥ induces a well-defined map in K-theory. Since ¥ induces
a self-equivalence ([W, 1.6.2]), it is sufficient to show that the map X2 o +)_; induces
an equivalence on S,-constructions. Now (I'o 0) o (82 0t_p) =2 X2 0 o)y ~ LH2
by 10.4, and the suspension functor induces an isomorphism on homotopy groups. Thus
Y2 09)_;, induces an injection on homotopy groups, and I' o #;, induces a surjection.

It remains to prove that the functors X2 o ¢)_j o I' 0 0, and £"*2 induce homo-
topic self-maps on the Se-construction. By 14.5 it is sufficient to prove that they
are weakly equivalent as exact functors Pi\;’t[ik_l] (G) — ?Zf’g{%] (G) with respect to
hyi-equivalences (cofibrations are f-cofibrations in the source and weak cofibrations in
the target). But by 11.8 and 14.6 (4), the functors X2 o ¢pg o I' and ¥"*2 are connected
by a chain of hygy-equivalences of functors. Hence

Y2otp_rol ol 20_,oX201yol ol

~f0_oX"20g, (by 11.8)

with respect to hyjy-equivalences by the shifting lemma (14.7). We claim that this is
an hyi-equivalence of functors, i.e., for all j € [k], the components of the natural trans-
formations involved in the chain are mapped to weak equivalences upon application
of I'o ;. For j = k this is what we have just checked. For j < k, observe that source

and target of the components of the natural transformations are objects of ?i\;’ ([f_l](G),
hence are mapped to contractible spaces, and any map between contractible spaces is

a weak homotopy equivalence. |

Lemma 15.3. For k € [n], the map

Vo PG % Cupa(@) — PRET@), (VE) - Y Vi (K)
(where ¢ : Pi\;’c[ik] (G) — Pi\;’(gk_l] (G) symbolizes the inclusion functor and \V denotes

the coproduct in Pi\;’c[lk_l](G)) induces an equivalence on So-constructions with respect

to h-equivalences.
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Proof. For n =0, i.e., if N is a set with one element, we know k = 0, Pi\;c[l_l] (G) =

C,ra(G), T =id, ¥_j, =id, and Pi\;’c[lo](G) is the subcategory of C,¢4(G) of contractible
spaces. Hence the assertion is true.
So assume N has at least two elements (n > 1), and let E2Pi\;’gﬂ (@) denote the full

subcategory of P ’[ ](G) consisting of objects with simply connected components. This
category inherits the structure of a category with cofibrations and weak equivalences.
Similarly we can define all the other categories present in the following square:

WS PN M(@) — hy SR (@)

i l

h5.22pf9§g’“—”(c:) . h[k]s.z’zpff’g“‘” (@)

The h-equivalences satisfy the extension axiom in these modified categories. Hence
we can apply the fibration theorem ([W], 1.6.4) to conclude that the above square is
homotopy cartesian with contractible upper right corner. This square has a canonical
map into the square

N,k N,k

| |

N,[k—1 N,[k—1]
hSaPLF NG — hSaPL (G

induced by inclusion of categories. There is a map going backwards induced by dou-
ble suspension. But Y2, considered as an endofunctor, induces a self-equivalence on
Se-constructions ([W, 1.6.2]). Hence the maps of squares are weak equivalences. This
implies that the second square is homotopy cartesian with contractible upper right
corner.

By the previous lemma, 3" o' 00} induces a homotopy equivalence from the lower
right space to hSeCjyfq(G). Hence we obtain the following homotopy cartesian square:

hSeP(G) hiSePNG) =~

l lz%roe,c (%)

hS, PV () hSeCoa(G)

_—
Sfd EnOFOGk

As in the proof of the previous lemma, we see that the canonical sheaf functor ¥_y

induces a map Cyfq(G) — Pi\;’c[lk_l] (G). But there is a chain of weak equivalences

of functors
SPoTobot 4 gZoFonow,kozn_l

%EoFoq)[)OoE”_l
~Nntloynt (by 10.4)

~ 2n
>y
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and X" induces, on S,-construction, a map which is homotopic to the identity. This
shows that 1_j induces a section-up-to-homotopy of the lower horizontal map.
We claim that the composite map

N,[k LXP_ N,[k— N,[k—
RSP G| % [hS.Cara(G)] “2=5 [hSPNE (6] x (S P (6))
\% N,[k—
—— [rS. PTG

where ¢ is induced by the forgetful functor and Vv denotes one-point union (the coproduct
inducing the H-space structure) is a weak homotopy equivalence. Since source and
target are connected, it suffices to check that the induced map (v V ¢_j), on j-th
homotopy groups is an isomorphism for j > 1.

To see this, recall the homotopy cartesian square () above. Since its upper right
corner is contractible, we obtain a long exact sequence of homotopy groups (which are
abelian because the S,-construction has an abelian H-group structure induced by the
coproduct)

(Z™oT'0by,) «
_—

7k Lx ,k*
—— m[hSPIG)| s i hS P (G 7| hSeCy1a(G)|

N, k Lx
—— T [RSPIG)
with maps induced by ¢+ and X" o I" 0 0, as indicated. But we have shown above that
the latter map has a section-up-to-homotopy, hence the long exact sequence gives rise
(for j > 1) to short exact sequences

(X" olob, )«
_—

N,[k L N,[k—1
0 — m S PIG) — m S PN (@) 75|hSeCy1a(G)] — 0

which are split by the map induced from ¢ _g, i.e., for all j > 1 we have an isomorphism

of abelian groups
LA Wk)e: TIRSP NG @ 7 hS.Capa(G)| — 5 kS P T(G)

where “4” means the sum of group elements.
But the target is a homotopy group of an H-space. Hence the group structure
is induced from the H-space structure ([S], 1.6, corollary 10), i.e., from the coprod-

uct in Pivf’c[lk_l] (G). Consequently, the isomorphism ¢+ (t)_g)« is the same map as
(L V lb,k)*. O

Lemma 15.4. Suppose S C Z contains n+ 1 successive integers. Then |hS.Pi\;’5(G)|
s contractible.

Proof. For k > 0, let C* denote the full subcategory of PZJO‘?(G) generated by the

objects Y with X*(Y) ~ x. These categories inherit the structure of categories with

cofibrations (f-cofibrations) and weak equivalences (h-equivalences).
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Now |hS,C°| ~ * since the map ¥ —— x is a weak equivalence for all objects
Y € C°. Furthermore, suspension defines a map C**' —— C* which shows that the in-
clusion C* C C**! induces a homotopy equivalence on S,-constructions. Hence the cat-
egory C* = |Jg° C* has contractible S,-construction. We claim that Psfd (G) =C>.
By definition of C*, we have C*® C P sfd %(@). For the reverse inclusion, it suffices to
prove the following assertion: if Y is an object of Pi\;’(‘j (G), some finite suspension of Y’
is acyclic (i.e., the map X¢(Y) — * is an h-equivalence for £ > 0 large).

It is enough to consider ordered indexing sets N = [n]. We proceed by induction on
the dimension n. The statement is clear for n = 0 (in which case PY;;(G) = Csa(G)
and I' = id). So assume we have shown the result for n — 1. Let YV € PZ}E. Fix
j € [n], and choose k € S with k+1 € S. The functors 6, and 6, are naturally
isomorphic by 9.4 (3), and the natural transformations x; and &; (defined in 9.5 and 9.6,
respectively) correspond under this isomorphism. Hence lemma 9.9 applies, asserting
the existence of a cofibration sequence

O (Z2(Y)) —2 Opg1 (Z2(Y)) — ¢ o pj 0 O pa (B3(Y))
which induces, by application of T', a cofibration sequence of spaces

o0 (Z*(Y)) — To0,41(X2%(Y)) — T(¢j 0 pj 0 011 (X%(Y)))
=¥o F(0k+1 o p](z (Y)))

(we have used lemma 10.2 and the fact that restriction commutes with twisting for
the last isomorphism). Since suspension commutes with restriction and global sections
(3.2 (2)), all spaces in this sequence are simply connected. Furthermore, by hypothesis
on Y the first two spaces are contractible, hence so is the third, which implies (by
varying k) that the global sections of n successive twists of p; (22(Y)) are contractible.
In other words, the induction hypothesis applies to the object p; (ZQ(Y)). Thus we
find that some finite suspension of p; (22(Y)) is acyclic. Since twisting, suspension,
and restriction commute, this means that p; o §k+1(ZZ(Y)) ~ % for some ¢ > 2.
By lemma 9.9, there is a cofibration sequence

e (S(Y)) o Bi 1 (BUY)) — ¢ o pj 0 Okir (SXY))

whose last term is acyclic by what we have just shown. From the long exact sequence in
homology, applied componentwise, we infer that all components of k; are weak equiv-

alences.
Now suppose we have a non—empty set A C [n], and let m := max(A). The
A-component of &; is given by 3¢ (YA) . (Y4) which is a weak homotopy equiv-

alence by what we have shown above. This implies that all maps in the telescope

construction 5.6 (2) for EZ(YA)[tjfl] are weak homotopy equivalences. Consequently,
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the (GAM#)-equivariant inclusion of ¥¢(Y4) into ¢ (YA)[t;l] (the unit of the adjunc-
tion described in 5.5 (1)), denoted s, is a weak homotopy equivalence.

Let o denote the inclusion A — AU {j}. The b-type structure map 6y (%* (Y))Z
is given by the composite

S0

LA O Ay f—17 OR(ECO)E
YY) — XY ———+

SH(Y)ARl

The second map is a weak equivalence since 6, (EZ(Y)) is a locally cofibrant sheaf

(6.4), and s is a weak equivalence by the above argument. Hence 6 (3¢ (Y))i is a
weak homotopy equivalence.

This argument applies for all j € [n]. Thus all b-type structure maps in 6y (EK(Y))
(away from the initial vertex) are weak homotopy equivalences. By lemma 3.4, we
conclude that 65 (X¢(Y)) has contractible components since I' o 8, (S(Y)) ~ . O

In particular, we get a homotopy equivalence \hS.Pé\}d(Gﬂ — \hSS.Pé\}d(G)\
whenever the set S contains n + 1 successive integers.

Theorem 15.5. Suppose N is a non-empty finite set with n+ 1 elements, and G is a
topological monoid with zero which is cofibrant as an object of kTop,. The map

n

\ Y-kt Capa(G) x ... x Cypa(G) — PYy(G)

k=0 g
n+1 factors

mnduces an equivalence on Se-constructions with respect to h-equivalences and hence a

weak homotopy equivalence

AT, Q) < x AT (5, G) —— QRSP 4(G)]

v~

n+1 factors

where AT denotes the version of WALDHAUSEN s algebraic K -theory of spaces func-
tor using stably finitely dominated spaces. In other words: the algebraic K-theory of

G-equivariant non-linear projective N -space decomposes naturally as a product of n+1
copies of A%f(x,G).
Proof. The map can be written as the composite

*xidnT!

Capa(G)"H - PI@) x Cypa(G)H

(VY _p ) xid™ N,[n—1 n
> Psfc[l }(G) X Csfd(G)

(L\/?JJ,TH,l) Xidn_l

(V1) xid N,[0
- PI(G) x Cypa(G)

Vo

Y

P (@)

which induces an equivalence on S,-constructions by 15.4 and 15.3. O
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Since 0y, is an equivalence of categories, we see that for any ky € Z the map

\/ ’(ﬁkO,kZ Csfd(G) X ... X Csfd(G) — P?}d(G)
k=0

-~

n+1 factors

induces an equivalence on Se-constructions with respect to h-equivalences.
Corollary 15.6. Let kg € Z be any integer. The map

(Tob gy, N0l ko1, ...y 00 poin): Pé\;d(G) —_ Csfd(G)”+1
induces an equivalence on Se-constructions with respect to h-equivalences.

Proof. The composite map f:= Xo(Tof_g,, Tol_g,11, ..., [00_k 1n)oVi_gVko—k
is given, up to homotopy, by the matrix

yntl 0 0 0 ... 0
? yrtl 0 0o ... 0
? ? DV | 0
: . 0
? D Y

where 7 means “don’t care”, and 0 denotes null-homotopic maps (we have used 10.4 to
identify the terms on the diagonal, and 10.5 for the zero entries). More precisely, this
means that the map induced on homotopy groups is described by the above matrix. But
since ¥ induces a homotopy equivalence on S,-constructions, the matrix is invertible (on
the level of homotopy groups). Hence the map f induces a weak homotopy equivalence,
hence so does the map of the corollary. O
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