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1 Introduction

In this paper we study the Cauchy problem for infinite dimensional symmetric
Kolmogorov operators of the form

Lu =
∑

k,j

akj
∂2u

∂xj∂xk
+

∑

k,j

∂akj

∂xk

∂u

∂xj
+

∑

k,j

βµ
kakj

∂u

∂xj
,

where u ∈ FC∞
b , i.e. the set of smooth finitely based functions on a locally convex

vector space X. Here the entries of the symmetric positive definite diffusion
matrix (akj) are functions on X satisfying certain conditions specified below, and
βµ is the logarithmic derivative of a given probability measure µ on X. This
operator is associated with the pre-Dirichlet form

E [u, v] =
∑

k,j

∫

X

akj
∂u

∂xk

∂v

∂xj
dµ = −

∫

X

Lu vdµ, u, v ∈ FC∞
b .

Let L be the Friedrichs extension of L on L2(X, µ). It is well-known that the

semigroup etL is sub-Markovian (i.e. positive and L∞-contractive). Thus etL � L∞

extends to a C0-semigroup on every Lp(X, µ) for every p ≥ 1, with generator L̂p.
Hence the Cauchy problem

∂u

∂t
= L̂pu, u(0) = f,

is well-posed in Lp, and its solution is given by

u(t) = etL̂pf.

However, one should realize that the above procedure is only one of the pos-
sibilities to solve the Cauchy problem related to the operator L with domain
FC∞

b . More precisely, there might be other closed extensions of L generating
C0-semigroups on Lp. The aim of this paper is to give geometric conditions on
akj and on the “large” part of the logarithmic derivative (cf. the next section)

implying that L̂p is the only such extension. We would like to mention that by a
result due to W.Arendt (see [13], Theorem AII, 1.33) this uniqueness is equivalent
to the property that FC∞

b is a core of the operator L̂p.
Our main result is formulated in Theorem 2.2 in the next section to which

we also refer for the precise framework. In Section 3 we present the proof of
the result on strong uniqueness which is based on a-priori estimates for the first
order derivatives of solutions of elliptic equations with smooth coefficients. These
estimates are derived in Section 4, whereas certain auxiliary results are contained
in the Appendix.

The problem we treat is refered to as the strong uniqueness problem in Lp.
There are numerous publications on this problem (for the case where X is infinite
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dimensional, which we are most interested in, see, e.g. [1, 2, 3, 4, 10] for the
case p = 2 and akj = δkj, [5, 8] for p ≥ 1, akj = δkj, [7] for variable akj if
p = 2, and [9] for arbitrary p). In [8] an approach was developed to combine
the conditions on the logarithmic derivative from [3] and [10]. However, due to
technical difficulties certain restrictions on the “large” part were imposed. The
present paper is an extension and generalization of the main result in [8] in several
directions. Firstly, we consider variable diffusion coefficients akj, and the matrix
(akj) is not supposed to be uniformly bounded and uniformly elliptic. Secondly,
we remove the said restrictions on the logarithmic derivative (see condition (ii(b))
of Theorem 2.2 below in comparison with condition (iv) of Theorem 1 in [8]).
This was possible due to a new method of obtaining estimates for gradients of
smooth approximating solutions. In comparison with [9], apart from the greater
generality of the results in the present paper, we simplified the framework in order
to make the conditions used more transparent. For illustration of the main result
of this paper we include an application which could not be treated by previous
results.

2 Framework and Main Results

Let X be a separable locally convex Hausdorff topological vector space such
that its topological dual X∗ contains a sequence (ln)n∈N of linearly independent
functionals separating points. We assume that X is Souslinean, hence ln, n ∈ N,
generate the Borel σ-algebra B(X) of X (cf. [14]).

Given N ∈ N and m ∈ N ∪ {∞}, let UCm
b := UCm

b (RN) stand for the class
of m-times differentiable functions on R

N , whose derivatives up to order m are
bounded and uniformly continuous. Now let

FCm,u
b (RN) := {f(l1, . . . , lN) : f ∈ UCm

b (RN)}.

¿From now on FCm.u
b := ∪NFCm,u

b (RN ) and FC∞
b := FC∞,u

b .
Let µ be a probability measure on B(X). Suppose that supp µ = X. For

1 ≤ p ≤ ∞ let Lp = (real) Lp(X, µ). Since B(X) = σ(ln, n ∈ N), the set FC∞
b

is dense in Lp for all p ∈ [1, ∞). Throughout the paper we use the following
notation: ‖·‖p is the norm in Lp, 〈·, ·〉 is the inner product in L2, and 〈f〉 =

∫

fdµ.
Let (ek)k∈N ⊂ X be the unique sequence of linearly independent vectors such

that lm(ek) = δmk, m, k ∈ N and µ is differentiable along every ek in the sense
that there exist measurable functions (βµ

k )k∈N in L2, satisfying

〈 ∂v

∂ek

〉

= −〈v, βµ
k 〉, v ∈ FC1,u

b , k ≥ 1.

βµ
k is called directional logarithmic derivative of µ along ek. Further on we treat

(ek)k∈N as the canonical basis in the space R
N of all real sequences. Hence, we
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identify the linear span of (ek)k∈N with the space R
fin of all finite sequences.

The space R
fin can be considered as the tangent space TxX to X for all x ∈ X

in the sense that we shall take derivatives only along the elements of R
fin. We

introduce the spaces (H0, (·, ·)0) = l2, (H+, (·, ·)+) = l2γk
and (H−, (·, ·)−) = l2

γ−1

k

for a sequence (γk)k∈N in (0, +∞) (where l2γk
:= {h ∈ R

N :
∑

k h
2
kγ

2
k < ∞} and

l2
γ−1

k

is defined in the same way). It is obvious that H+ and H− are mutually dual

w.r.t. the (·, ·)0-duality pairing.
For N ∈ N we define the projection PN : R

N → R
fin:

PNh :=

N
∑

k=1

hkek.

Here and below we denote the linear span of (ek)
N
k=1 by R

N . This notation is
consistent with the definition of FCm,u

b (RN) since for x ∈ X we have

PNx :=
N

∑

k=1

lk(x)ek.

For u ∈ FC1,u
b , u(x) = f(PNx) let ∇u stand for the Frechet derivative of u:

∇u(x) :=
N

∑

k=1

∂f

∂ek

(PNx)ek ∈ R
N .

Furthermore, if u ∈ FC2,u
b then D2u stands for the second derivative of u:

D2u(x) :=

N
∑

k,m=1

∂2f

∂ek∂em
(PNx)ek ⊗ em.

We introduce the following notation: ∇k := ∂
∂ek
, ∇2

kj := ∂2

∂ek∂ej
.

Let {akj, k, j ∈ N} be a family of cylindric functions on X. The following
conditions (A0) -(A4) on (akj) are assumed to hold throughout the paper.

(A0) For every N ∈ N the matrix (akj(x))
N
k,j=1 is symmetric and uniformly

elliptic. For every i ∈ N there exists εi ∈ (0,∞), such that for µ–a.e. x ∈ X,

∞
∑

k,j=1

akj(x)hkhj ≥ εih
2
i , ∀h = (hk)k∈N ∈ R

fin,

and the completion Ha(x) of R
fin with respect to the norm ‖ · ‖a := (·, ·)1/2

a ,
where

(h, g)a(x) :=
∞

∑

k,j=1

akj(x) hk gj, g, h ∈ R
fin,
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embeds one–to–one and continuously into R
N (the latter being equipped with the

product topology).
Note that assumption (A0) is fulfilled if the infinite matrix (akj(x))

∞
k,j=1 is

block diagonal and each block is uniformly elliptic. By HS and HS(a) we denote
the spaces of Hilbert-Schmidt operators over H0 and Ha respectively.

(A1) For every n ∈ N

akj ∈ FC1,u
b (RKn), k, j = 1, . . . , Kn,

for a sequence (Kn)n∈N ⊂ N, Kn ↗ ∞.
(A2) For every k ∈ N

c̄k := sup
x∈X, j∈N

|akj|2(x) <∞.

For every k ∈ N we assume that βµ
k can be decomposed as βµ

k = ξµ
k + ηµ

k , with
ξµ
k and ηµ

k Borel measurable and satisfying the following conditions.

(A3) The series ηµ(x) :=
∑

k∈N

ηµ
k (x)ek converges in Ha(x) for a.a x ∈ X and

|ηµ − PNη
µ|a → 0 in L2 as N → ∞.

Note that, for all k ≤ N < d, the Cauchy inequality gives

∣

∣

∣

∣

d
∑

j=N

akjη
µ
j

∣

∣

∣

∣

≤
( d

∑

l=1

α2
kl

)
1

2
( d

∑

l=1

(

d
∑

j=N

αjlη
µ
j

)2
)

1

2

=
√
akk |(Pd − PN)ηµ|a,

where (αjl)
d
j,l=1 is the square root of the matrix (ajl)

d
j,l=1. Therefore (A3) implies

that the series
∑

j≥1 akjη
µ
j converges in L2 for all k ∈ N.

(A4)The series ξµ
a;k :=

∑

j∈N

(∇jakj + akjξ
µ
j ) is convergent in L2 for all k ∈ N.

The latter enables us to introduce ξµ
a (x) :=

∑

k≥1 ξ
µ
a;k(x)ek ∈ R

N. ξµ
a is refered

to as the “large” part of the collection (βµ
k )k∈N of the directional logarithmic

derivatives of µ, since it is not a section of the “co-tangent bundle” (Ha(x))x∈X .
For d ∈ N and x ∈ X we introduce the quantities υd(x) and νd(x):

υ2
d(x) := sup

|h|a≤1

d
∑

i,j,k,l,m,n=1

akl(x)a
mj(x)(∇kaij(x)hi)(∇lamn(x)hn), (1)

and

ν2
d(x) := sup

|h|0≤1

d
∑

i,j,k,l,m=1

(γ−2
l aij(x)(∇kail(x)γkhk)(∇majl(x)γmhm), (2)
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where h = (hn)n∈N and (aij)d
n,j=1 is the matrix inverse to (aij)

d
n,j=1 (which exists

due to (A1)). Note that if akj(x) = δkjσk(x) one has

υ2
d(x) = sup

m

d
∑

l=1

σl(x)

(∇lσm(x)

σm(x)

)2

.

If one assumes, in addition, that σk(x) = σk(xk), then

υd(x) = sup
k
σ
− 1

2

k (xk)|σ′
k(xk)|

and

νd(x) = sup
k

|σ′
k(xk)|
σk(xk)

.

Consider the operator

Lv =
∑

k,j≥1

(akj∇2
kjv + akjη

µ
j ∇kv) +

∑

k≥1

ξµ
a;k∇kv, v ∈ FC∞

b .

Observe that since v is cylindric, it follows from (A1), (A3) and (A4) that Lv ∈ L2

for all v ∈ FC∞
b . Hence, the operator L is densely defined in L2. Observe that

the following equality holds:

−〈Lu, v〉 =
∑

k,j≥1

〈akj∇ku∇jv〉, u, v ∈ FC∞
b . (3)

Indeed, for u, v ∈ FC2,u
b we have

−
∫

X

v
[

∞
∑

k,j=1

akj∇2
kju+

∞
∑

k=1

∇ku
(

∞
∑

j=1

(∇jakj + akjξ
µ
j ) +

∞
∑

j=1

akjη
µ
j

)]

dµ.

= −
∞

∑

k,j=1

∫

X

v (∇j + βmu
j )(ajk∇ku)dµ,

since the sum in k is finite and the series in j converges in L2 due to (A3) and
(A4). Hence, (3) follows from the integration by parts formula. Therefore, L is
a symmetric operator and the form

E [u, v] =
∑

k,j≥1

〈akj∇ku∇jv〉, u, v ∈ FC∞
b

is a closable symmetric form on L2 whose closure (E , D(E)) is a Dirichlet form
(cf. [12] or [6] for the terminology). We will not distinguish between E and its
closure unless it leads to confusions.
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It follows from the Beurling-Deny criteria that E is associated with a family of
consistent sub-Markovian C0-semigroups of contractions eL̂pt on Lp, 1 ≤ p < ∞.
We refer the reader to [6, 12] for corresponding definitions and standard results.
By construction L̂2 ⊃ L (in fact L̂2 is the Friedrichs extension of L). Moreover,
the following simple statement holds.

Lemma 2.1. Let s = max(2, p). Then L̂p ⊃ L provided |ηµ|a, ξµ
a;k ∈ Ls for all

k ∈ N.

Proof. Our assumptions imply that Lv ∈ L2 ∩ Lp for all v ∈ FC∞
b . Therefore,

Lv = Lp- lim
t→0

1

t

∫ t

0

eL̂psLvds.

On the other hand,

∫ t

0

eL̂psLvds =

∫ t

0

eL̂2sLvds =

∫ t

0

eL̂2sL̂2vds = eL̂2tv − v = eL̂ptv − v.

Thus, Lv = Lp-lim
t→0

1
t
(eL̂ptv − v) and L̂p ⊃ L.

Now we are ready to formulate the main result of the paper. Recall that
conditions (A1) - (A4) are still in force.

Theorem 2.2. Let p ≥ 1, (Kn) be as in (A1). Set s := p if ηµ ≡ 0, and
s := max(2, p) otherwise. Let ξµ

a;k ∈ Ls for all k ∈ N and supn ‖ νn ‖∞ <∞.

Assume that

(i) there exists a sequence ξn
j ∈ FC1,u

b (RKn), j = 1, . . . , Kn, n ∈ N, such that

(a) |ξn − PKnξ
µ
a |− → 0 in Ls as n→ ∞;

(b) there exists a constant c+ ∈ R independent of n such that for all
x, y ∈ R

Kn the following inequality holds

Kn
∑

j,l=1

γ2
l (∇lξ

n
j )(x)yjyl ≤ c+

Kn
∑

k=1

γ2
ky

2
k;

(ii) either ηµ = 0
or

(a) supd ‖ υd‖2p <∞, |ηµ − PNη
µ|a → 0 in L2p as N → ∞;
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(b) there exist a sequence (ξ̂m
j )m,j∈N ⊂ FC1,u

b and numbers ε0 ∈ [0, 1) and

c(ε0) ∈ R such that ξ̂m
j → ξµ

j as m→ ∞ weakly in L2 for every j ∈ N,

and for all n ∈ N and wj ∈ FC1,u
b (Rn), j = 1, . . . , n, the following

inequality holds

lim inf
m,d→∞

d
∑

i,k=1

n
∑

j,l=1

〈(∇kξ̂
m
j )ajlwl, akiwi〉

≤ ε0

n
∑

i,j,k,l=1

〈akj∇iwj, ail∇kwl〉 + c(ε0)

n
∑

j,k=1

〈akjwk, wj〉;

(c) p ∈
(

3 − 3

1 +
√

1 + 3ε0

,
2

ε0

)

.

Then the operator L � FC∞
b has a unique extension which generates a C0-

semigroup on Lp.

Remark. The uniqueness result in [8] can be obtained as a particular case of
Theorem 2.2 if one puts ajk(x) ≡ δjk. (Note the difference in the interval in the
Lp-scale, which was incorrectly stated in [8], Theorem 3.) In [9] the special case
of ξµ

k = 0, k ∈ N, was studied and strong Lp-uniqueness of the extension of L
has been proved under weaker assumptions on the coefficients ajk, namely, their
derivatives need not be either continuous or bounded. If we confine ourselves
to this situation then we can employ estimates (6) and (7) (see Proposition 3.3
below and note that in this case ε0 = 0) and prove the uniqueness under the same
assumptions as in [9].

3 Proof of Uniqueness

Our strategy to prove the uniqueness result is as follows. We take an arbitrary
extension L̂ ⊃ L � FC∞

b , which generates a C0-semigroup on Lp. Then we take
sequences (ξm

j ), (ηm
j ) ⊂ FC1,u

b and deal with the corresponding family of Cauchy
problems:

{

u
(m)
t =

∑Km

k,j=1(ajk∇2
kju

(m) + akjη
m
j ∇ku

(m)) +
∑

k≥1 ξ
m
k ∇ku

(m)

u(m)(0) = f,

with an arbitrary 0 6= f ∈ FC∞
b and (Km) as in (A1). Then we show that

u(m)(t) → eL̂ptf strongly in Lp provided ξm
j , η

m
j approximate ξµ

a;j, η
µ
j , j ∈ N in a

proper way. This will prove strong uniqueness for the generator. The core of the
proof is estimates for the gradient ∇u of the solution u to the following Cauchy
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problem over R
K

{

ut = Lξ,ηu :=
∑K

k,j=1(akj∇2
kju+ akjηj∇ku) +

∑K
k=1 ξk∇ku, t > 0,

u(0) = f,
(4)

with a uniformly elliptic matrix (ajk)
K
j,k=1, ajk, ξj ∈ UC1

b (RK), j, k = 1, . . . , K,
N < K, ηj ∈ UC1

b (RN), j = 1, . . . , N, ηj ≡ 0, j = N + 1, . . . , K, f ∈ C∞
b (RK).

In order to obtain the required estimates we need the following result from
[11].

Proposition 3.1. ([11], 3.1.9, 3.1.17, 3.1.18.)
Set D = {u ∈ ∩p≥1W

2,p
loc (RK) : u, Lξ,ηu ∈ Cb(R

K)}. Then

(i) Lξ,η � D generates a positive analytic semigroup U(t) on Cb , which is
continuous at zero on elements from D̄ = UCb(R

K). In particular, problem
(4) has a unique classical solution u ∈ Cb (in the sense of [11], 4.1.1(iii));

(ii) the functions t 7→ u(t) and t 7→ Lξ,ηu(t) are analytic (0, ∞) → C1
b (RK) and

u(t) → f , Lξ,ηu(t) → Lξ,ηf in C1
b (RK) as t→ 0;

(iii) For all t ≥ 0 we have u(t) ∈ ∩p≥1W
3,p
loc ∩ UC2

b .

By the maximum principle we have ‖u‖∞ ≤ ‖f‖∞.

The estimates are given in the following two propositions.

Proposition 3.2. Let u be the solution to (4). Assume that there exists a con-
stant c+ independent of x such that for all x, y ∈ R

K the inequalities

K
∑

j,l=1

γ2
l (∇lξj)(x)yjyl ≤ c+

K
∑

k=1

γ2
ky

2
k,

νK(x) ≤ c+

hold (νK is as in (2)). Then

‖ |∇u|+‖∞ ≤ exp(C+t)‖ |∇f |+‖∞,

with C+ = c+ + 1
4
c2+ +

(
∑N

k=1 c̄k
)

1

2 ‖ |∇η|HS‖∞ + c+‖ |η|a‖∞ and η = (η1, . . . , ηK)
(recall that |h|2+ =

∑

k≥1 γ
2
kh

2
k, h ∈ H+).

Proposition 3.3. Let u be the solution to (4). For 3 − 3
1+

√
1+3ε0

< p < 2
ε0

set

s = max(p, 2). Let supd ‖υd‖2p < ∞, |ηµ − Pdη
µ|a → 0 in L2p as d → ∞ and

ξµ
a;k ∈ Ls, k = 1, . . . , K. Set Gp := ‖ |η|a + |ηµ|a‖2p

2p + sup
d

‖υd‖2p
2p. Let C+ be as in
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Proposition 3.2. Then there exists a constant Cε0,p > 0, depending only on p and
ε0, such that

∫ t

0

‖ |∇u|a‖2p
2p(τ)dτ ≤ Cε0,p

[

t‖f‖2p
∞

(

Gp + 1
)

+ ‖f‖2
∞‖ |∇f |a‖2p−2

2p−2

+
esC+t − 1

sC+
‖f‖p

∞‖ |∇f |+‖p
∞‖ |PKξ

µ
a − ξ|−‖p

p

]

. (5)

(Recall that |∇u|2a =
∑K

k,j=1 akj∇ku∇ju.)

Furthermore, for p = 2,

∫ t

0

‖ |AD2u|HS(a)‖2
2(τ)dτ ≤ Cε0

[

‖f‖2
∞t(G2 + 1) + ‖ |∇f |a‖2

2

+
e2C+t − 1

2C+
‖ |∇f |+‖2

∞‖ |PKξ
µ
a − ξ|−‖2

2

]

. (6)

and, for 3 − 3
1+

√
1+3ε0

< p < 2,

∫ t

0

‖ |AD2u|HS(a)‖p
p(τ)dτ ≤ Cp,ε0

[

t‖f‖p
∞(Gp + 1) + ‖f‖2−p

∞ ‖ |∇f |a‖2p−2
2p−2

+ ‖f‖p−2
∞

e2C+t − 1

2C+
‖ |∇f |+‖2

∞‖ |PKξ
µ
a − ξ|−‖2

2

]

, (7)

where |AD2u|2HS(a) =
∑K

i,j,k,m=1 aijakm∇2
jku∇2

miu.

We postpone the proof of Propositions 3.2 and 3.3 till the next section.

Proof of Theorem 2.2. Let f ∈ FC∞
b . ForN ≥ 1 let ηN

j ∈ FC∞
b (RN ), j = 1, . . . , N

satisfy ‖ |η − ηN |a‖2p ≤ 1/N , with ηN :=
∑

j η
N
j ej.

Let (ξn
k ) be the sequence satisfying condition (i) of the theorem. Choose n to

be such that Kn ≥ N .

By u(Nn) we denote the solution to the Cauchy problem on R
Kn

{

u
(Nn)
t = Lξn,ηNu(Nn) =: LNnu

(Nn),

u(Nn)(0) = f
(8)

Let L̂ with D(L̂) stand for an arbitrary extension of L � FC∞
b , which generates

a C0-semigroup on Lp. It is easy to show that D(L̂) ⊃ FC2,u
b and

L̂u =
∑

k,j≥1

(akj∇2
kju+ akjη

µ
j ∇ku) +

∑

k≥1

ξµ
a;k∇ku, u ∈ FC2,u

b .
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It follows from Proposition 3.1(ii)-(iii), that the function s 7→ eL̂(t−s)u(Nn)(s) is
a continuously differentiable map [0, t] → Lp. Thus we arrive at the Duhamel
formula

u(Nn)(t) − etL̂f = e(t−τ)L̂u(Nn)(τ)|τ=t
τ=0 =

∫ t

0

e(t−τ)L̂(L̂ − LNn)u(Nn)(τ)dτ.

Since L̂ is the generator of a C0-semigroup on Lp there exist numbers M, γ ∈ R,
such that ‖etL̂‖Lp→Lp ≤Metγ .

Now we have

‖etL̂f − u(Nn)(t)‖p ≤Metγ
[

‖ |ξn − PKnξ
µ
a |2−‖s

∫ t

0

‖ |∇u(Nn)|+‖∞dτ

+ ‖ |ηµ − ηN |a‖2p

∫ t

0

‖ |∇u(Nn)|a‖2pdτ
]

. (9)

In order to complete the proof of the theorem we need to show that

lim
N→∞

lim sup
n→∞

‖e−tL̂f − u(Nn)(t)‖p = 0.

If ηµ
k = 0 for all k, then one can take ηN

k = 0 and the result follows from

Proposition 3.2 since ‖ |∇u(Nn)|+‖∞(t) ≤ e(c++
c2+
4

)t‖ |∇f |+‖∞.
In case ηµ

k 6= 0 we employ Propositions 3.2 and 3.3 with the constant

C+ = C+(N) = c+ +
1

4
c2+ +

(

N
∑

k=1

c̄k
)

‖ |∇ηN |HS‖∞ + c+‖ |ηN |a‖∞

to estimate ‖ |∇u(Nn)|+‖∞ and
∫ t

0
‖ |∇u(Nn)|a‖2pds. Then we get

lim sup
n→∞

‖etL̂f − u(Nn)(t)‖p ≤ C‖ |ηµ − ηN |a‖2p

[

‖ f‖∞t(‖ |ηµ|a + |ηN |a‖2p + sup
d

‖υd‖2p)

+ t
2p−1

2p
(

‖ f‖∞‖ |∇f |a‖p−1
2p−2

)
1

p

]

.

Taking the limit as N → ∞ we complete the proof.

4 Proof of A-priori Estimates

Throughout this section (akj)
K
k,j=1, akj, ξk ∈ FC1,u

b (RK), k, j = 1, . . . , K, ηi ∈
FC1,u

b (RN), i = 1, . . . , N for some N < K, and ηi ≡ 0, i = N + 1, . . . , K, f ∈
FC∞

b (RK), f 6= 0; u(t) ∈ FC2,u
b (RK), t ≥ 0 is the solution to the Cauchy problem

(4). Unless otherwise indicated, all the sums are from 1 to K. We also assume
that the measure µ satisfies the conditions of Theorem 2.2.
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We are now heading towards establishing the estimates for the derivatives of
the solution to (4).

Proof of Proposition 3.2. Let us differentiate equation (4) in the direction ek

(observe that u is three times differentiable by Proposition 3.1(iii)), then multiply
by γ2

k∇ku and sum up from 1 to K. We arrive at

1

2

d

dt

∑

k

γ2
k(∇ku)

2 =
∑

i,j,k

(aij(∇3
kiju)γ

2
k∇ku+ ηiaij∇2

kjuγ
2
k∇ku) +

∑

i,k

ξi∇2
ikuγ

2
k∇ku

+
∑

i,j,k

((∇kaij)∇2
ijuγ

2
k∇ku+ (∇kηi)aij∇juγ

2
k∇ku)

+
∑

i,j,k

ηi(∇kaij)∇juγ
2
k∇ku+

∑

i,k

(∇kξi)∇iuγ
2
k∇ku. (10)

Note that (10) is an equality in Cb(R
K) since ∇ku, (∇kLξ,ηu) ∈ Cb(R

K) due to
Proposition 3.1(ii).

Recall that
∑

k γ
2
k(∇ku)

2 = |∇u|2+. A straightforward computation shows
that

1

2
∇j|∇u|2+ =

∑

k

∇2
kjuγ

2
k(∇ku),

∑

i,j,k

aij(∇3
kiju)γ

2
k∇ku = 1/2

∑

i,j,k

aij∇2
ij(γ

2
k(∇ku)

2) −
∑

i,j,k

γ2
kaij(∇2

iku)(∇2
jku).

Therefore one can rewrite (10) as follows

d

dt
|∇u|2+(t) = Lξ,η|∇u|2+(t) + 2F (t), (11)

where

F (t) =
∑

i,j,k

((∇kaij)ηi∇juγ
2
k∇ku+ (∇kηi)aij∇juγ

2
k∇ku) +

∑

i,k

(∇kξi)∇iuγ
2
k∇ku

+
∑

i,j,k

(∇kaij)∇2
ijuγ

2
k∇ku−

∑

i,j,k

γ2
kaij(∇2

iku)(∇2
jku).

Observe that |∇u|2+ ∈ D, where D is as in Proposition 3.1. Indeed, by
Proposition 3.1(iii) we have |∇u|2+ ∈ ∩p≥1W

2,p ∩ UC1
b . Moreover, Proposi-

tion 3.1(iii) implies that F (t) ∈ Cb(R
K) for all t > 0, and from Proposition

3.1(ii) we conclude that d
dt
|∇u|2+(t) ∈ Cb(R

K) for all t ≥ 0. Hence, (11) yields
Lξ,η|∇u|2+(t) ∈ Cb(R

K), t > 0 and |∇u|2+ ∈ D by Proposition 3.1(i). Therefore,
|∇u|2+ is the classical solution to the non-homogeneous problem for the operator
Lξ,η � D.
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Furthermore, since t 7→ u(t), t 7→ ∇ku(t), t 7→ ∇kLξ,ηu(t) are continuous
functions [0, ∞) → Cb, k = 1, . . . , K, the function t 7→ ∇2

kmu(t) is continuous.
Hence, F is a continuous function (0, ∞) → Cb. By [11], 4.1.2 it follows that

|∇u|2+(t) = U(t)|∇f |2+ + 2

∫ t

0

U(t− s)F (s)ds.

The first assumption of the proposition implies that

∑

k,j

(∇kξi)(∇ju)γ
2
k∇ku ≤ c+|∇u|2+.

Next we estimate the terms in the expression for F , containing ∇kaij. For an ar-
bitrary symmetric matrix (bij)

K
i,j=1 and any vector g ∈ R

K the following inequality
holds:

∑

i,j,k

(∇kaij)bijγ
2
kgk

≤
[

∑

i,j,l

γ2
l aijbilblj

]
1

2
[

∑

i,j,l

γ−2
l aij

(

∑

k

(∇kail)γ
2
kgk

)(

∑

m

(∇majl)γ
2
mgm

)]
1

2

≤
[

∑

i,j,l

γ2
l aijbilblj

]
1

2

|g|+νK. (12)

In order to derive (12) we have applied the Cauchy-Schwarz inequality and used
definition (2) of νK . From the boundedness of νK (the second assumption of the
proposition) we conclude

∑

i,j,k

(∇kaij)(∇2
iju)γ

2
k(∇ku) ≤ νK|∇u|+

(

∑

i,j,k

γ2
kaij∇2

iku∇2
jku

)
1

2

≤ (c2+/4)|∇u|2+ +
∑

i,j,k

γ2
kaij∇2

iku∇2
jku

and

∑

i,j,k

(∇kaij)ηi∇juγ
2
k∇ku ≤ νK |∇u|+

(

∑

i,j,k

γ2
kaijηi(∇ku)ηj(∇ku)

)
1

2

≤ c+|η|a|∇u|2+.

Thus, it remains to estimate the term in the expression for F , which contains
∇kηi. Let A and ∇η be the operators in R

K associated with the matrices (aij)
K
i,j=1
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and (∇kηi)
K
i,k=1 respectively, and T be the operator defined by the diagonal matrix

(δjkγk)
K
k=1. Then one obtains

∑

i,j,k

aij(∇kηi)(∇ju)γ
2
k(∇ku) = (T∇u, (T (∇η)AT−1)T∇u)0

≤ |T (∇η)AT−1|K,0|T∇u|20 = |(∇η)A|K,0|∇u|2+,
where | · |K,0 stands for the operator norm (RK, | · |0) → (RK , | · |0). (Here we
used the property that for any matrix W sp(W ) = sp(TWT−1).) It is well-
known that, for the operator W in R

K associated with matrix (wjk)
K
j,k=1, we have

|W |2K,0 ≤ sup
j

∑

k

|wjk|2. Therefore,

|(∇η)A|2K,0 = sup
j

∑

k

(

N
∑

i=1

aij(∇kηi)
)2

≤ sup
j

( N
∑

i,k=1

(∇kηi)
2

)( N
∑

i=1

a2
ij

)

≤
( N

∑

i=1

c̄i

)( N
∑

i,k=1

(∇kηi)
2

)

.

In order to obtain the last inequality we have made use of (A2). Combining the
derived estimates we arrive at

∑

i,j,k

aij(∇kηi)∇juγ
2
k∇ku ≤

( N
∑

i=1

c̄i

)
1

2

|∇η|HS|∇u|2+.

Since |∇u|2+ is non-negative and the semigroup U(t) is positivity preserving and
contractive we have

‖ |∇u|+‖2
∞ ≤ ‖ |∇f |+‖2

∞ + 2C+

∫ t

0

‖ |∇u|+‖2
∞(s)ds.

Hence the assertion follows from Gronwall’s lemma.

For d > K we set ηj ≡ 0, j = K + 1, . . . , d, and introduce the quantities

ξµ,d
a;k :=

d
∑

j=1

(akjξ
µ
j + ∇jakj), k = 1, . . . , K,

Bd :=
∑

k

(ξk − ξµ,d
a;k )∇ku+

d
∑

j=1

∑

k

akj(ηj − ηµ
j )∇ku,

For p ≥ 1 we set [∇u]2ε,a := |∇u|2a + ε2 with ε > 0. Set χε := [∇u]p−2
ε,a . We

introduce the following quantities:

Tε,a := ‖ [∇u]p−1
ε,a |∇u|a‖2

2 ,

Jε,a := ‖ [∇u]p−3
ε,a |∇|∇u|2a|a‖2

2 ,

Iε,a :=
∑

i,j,k,l

〈χ2
εaij∇2

jku, akl∇2
liu〉 .
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Note that Iε,a = ‖χε|AD2u|HS(a)‖2
2 and (p− 1)2Jε,a = 4‖ |∇[∇u]p−1

ε,a |a‖2
2.

Lemma 4.1. Let u be the solution to (4). Then

‖χε
du

dt
‖2

2 +
1

p− 1

d

dt
‖ [∇u]ε,a‖2p−2

2p−2 ≤ 2‖χεBd‖2
2 + 2(p− 2)2Jε,a. (13)

Proof. It follows from (4) that

〈

ut −
∑

k,j

akj∇2
kju, χ

2
εut

〉

=
〈

∑

k,j

akjηk∇ju+
∑

j

ξj∇ju, χ
2
εut

〉

.

Integration by parts yields

−
∑

k,j

〈akj∇2
kju, χ

2
εut〉 =

d
∑

k=1

∑

j

〈akj∇ju, (∇k + ηµ
k )χ2

εut〉 +
∑

j

〈ξµ,d
a;j ∇ju, χ

2
εut〉.

Hence we obtain

‖χεut‖2
2 +

1

2p− 2

d

dt
‖ [∇u]ε,a‖2p−2

2p−2

=
d

∑

k=1

∑

j

〈akj(ηk − ηµ
k )∇ju, χ

2
εut〉 +

∑

j

〈(ξj − ξµ,d
a;j )∇ju, χ

2
εut〉 −

∑

k,j

〈akj∇ju∇kχ
2
ε, ut〉

≤ 1

2
‖χεut‖2

2 + ‖χεBd‖2
2 + (p− 2)2Jε,a. (14)

The last inequality in (14) follows from the estimate

4〈 |(∇u, ∇χε)a|2〉 ≤ 4‖ [∇u]ε,a|∇χε|a‖2
2 = (p− 2)2Jε,a, (15)

and (14) implies the assertion.

Lemma 4.2. Let u be the solution to (4). Then for any δ > 0 we have

‖χε|∇u|a‖2
2 +

δ

p− 1

d

dt
‖ [∇u]ε,a‖2p−2

2p−2 ≤ 3δ‖χεBd‖2
2 + 3δ(p− 2)2Jε,a +

3

4δ
‖χεu‖2

2

(16)

Proof. Let ψε be defined by ψε := −
∑d

k=1

∑

j(∇k + βµ
k )(χ2

εakj∇ju). It follows
from (4) that

ψε = χ2
ε

[

− ut +

d
∑

j=1

∑

k

akj(ηj − ηµ
j )∇ku+

∑

k

(ξk − ξµ,d
a;k )∇ku

]

−
∑

k,j

akj(∇kχ
2
ε)∇ju

≡ χ2
ε(Bd − ut) − 2χε(∇u, ∇χε)a. (17)
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Integration by parts yields

‖χε|∇u|a‖2
2 = 〈u, ψε〉 = 〈u, χ2

ε(Bd − ut) − 2χε(∇u, ∇χε)a〉 (18)

We estimate the RHS of (18) as follows.

〈u, χ2
εBd〉| ≤ δ‖χεBd‖2

2 +
1

4δ
‖χεu‖2

2 ,

2|〈u, (∇u, ∇χε)a〉| ≤ δ(p− 2)2Jε,a +
1

4δ
‖χεu‖2

2 ,

|〈u, χ2
εut〉| ≤ δ‖χεut‖2

2 +
1

4δ
‖χεu‖2

2,

(where we have used (15) in the second term). Applying Lemma 4.1 we complete
the proof.

We introduce the following quantities.

Υd := |ηµ|a + |η|a + υd,

Ξ2
d := |∇u|2+

K
∑

k=1

γ−2
k (ξk − ξµ,d

a;k )2,

Ξ2 := L1- lim
d→∞

Ξ2
d = |∇u|2+

K
∑

k=1

γ−2
k (ξk − ξµ

a;k)
2 = |∇u|2+|ξ − PKξ

µ
a |2−,

where υd is as in (1) and the limit in d exists due to (A4).

Lemma 4.3. Let p ∈ (3 − 3
1+

√
1+3ε0

, 2
ε0

). Then there exist positive constants

K(ε0, p) and r(p) such that

r(p)
d

dt
‖[∇u]ε,a‖2p−2

2p−2 +K(ε0, p)Jε,a ≤ Cε0, p

[

‖χεΞ‖2
2 + sup

d
‖χε|∇u|aΥd‖2

2

]

+ Cp‖χεu‖2
2.

If p < 2 the same estimate holds for Jε,a replaced by Iε,a.

Proof. It follows from (4) that

〈ut, ψε〉 −
∑

k,l

〈akl∇2
klu, ψε〉 =

∑

k,l

〈aklηl∇lu, ψε〉 +
∑

l

〈ξl∇lu, ψε〉, (19)

where the function ψε was defined in Lemma 4.2. It is easy to see that the second
term in the LHS of (19) equals

−
d

∑

k=1

∑

l

〈∇k(akl∇lu), ψε〉 +
d

∑

k=1

∑

l

〈(∇kakl)∇lu, ψε〉.
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The key point is to evaluate the first term in the above expression. Successive
integration by parts and a straightforward computation give

d
∑

i,k=1

∑

j,l

〈∇k(akl∇lu), (∇i + βµ
i )(χ2

εaij∇ju)〉

= −
d

∑

i,k=1

∑

j,l

〈∇i∇k(akl∇lu), χ
2
εaij∇ju〉

=
d

∑

i,k=1

∑

j,l

[〈∇i(akl∇lu), (∇k + ηµ
k )(χ2

εaij∇ju)〉 + 〈∇i(akl∇lu), ξ
µ
kχ

2
εaij∇ju〉]

=S1 + S2,

with

S1 =

d
∑

i,k=1

∑

j,l

〈∇i(akl∇lu), (∇k + ηµ
k )(χ2

εaij∇ju)〉,

S2 =

d
∑

i,k=1

∑

j,l

〈∇i(akl∇lu), ξ
µ
kχ

2
εaij∇ju〉.

It is easy to see that

S1 = Iε,a +
∑

i,j,k,l

[

2〈χ2
εaij∇2

kju, (∇iakl)∇lu〉 + 〈aij∇ju∇k(χ
2
ε), ∇i(akl∇lu)〉

]

+
d

∑

i,k=1

∑

j,l

[

〈χ2
ε(∇iakj)∇ju, (∇kail)∇lu〉 + 〈χ2

εaij∇ju η
µ
k , ∇i(akl∇lu)〉

]

.

We transform S2 as follows

S2 =

d
∑

i,k=1

∑

j,l

〈χ2
ε∇i(akl∇lu), ξ

µ
kaij∇ju〉

= lim
m

d
∑

i,k=1

∑

j,l

〈χ2
ε∇i(akl∇lu), ξ̂

m
k aij∇ju〉

= lim
m

d
∑

i,k=1

∑

j,l

〈ξ̂m
k akl∇lu, (∇i + βµ

i )χ2
εaij∇ju〉

− lim
m

d
∑

i,k=1

∑

j,l

〈(∇iξ̂
m
k )akl∇lu, χ

2
εaij∇ju〉

=
d

∑

k=1

∑

l

〈aklξ
µ
k∇lu, ψε〉 − lim

m

d
∑

i,k=1

∑

j,l

〈(∇iξ̂
m
k )akl∇lu, χ

2
εaij∇ju〉.
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Thus we have

−
∑

k,l

〈akl∇2
klu, ψε〉 = S1 +

∑

l

〈(ξl − ξµ,d
a;l )∇lu, ψε〉

− lim
m

d
∑

i,k=1

∑

j,l

〈(∇iξ̂
m
k )akl∇lu, χ

2
εaij∇ju〉.

Observe that

〈ut, ψε〉 =
1

2

〈

χ2
ε

d

dt
|∇u|2a

〉

=
1

2p− 2

d

dt
‖ [∇u]ε,a‖2p−2

2p−2.

So we infer from (19) that

1

2p− 2

d

dt
‖ [∇u]ε,a‖2p−2

2p−2 + Iε,a +
p− 2

2
Jε,a

=

[

p− 2

2
Jε,a −

∑

i,j,k,l

〈aij∇ju∇k(χ
2
ε), ∇i(akl∇lu)〉

]

−
∑

i,j,k,l

[

2〈χ2
εaij∇2

kju, (∇iakl)∇lu〉 + 〈aij∇ju∇k(χ
2
ε), ∇i(akl∇lu)〉

]

−
d

∑

i,k=1

∑

j,l

[

〈χ2
ε(∇iakj)∇ju, (∇kail)∇lu〉 + 〈χ2

εaijη
µ
k∇ju, ∇i(akl∇lu)〉

]

+ lim
m

d
∑

i,k=1

∑

j,l

〈(∇iξ̂
m
k )akl∇lu, χ

2
εaij∇ju〉

−
∑

k,l

〈akl ηl∇ku, ψε〉 −
∑

k

〈(ξk − ξµ,d
a;k )∇ku, ψε〉. (20)

In order to estimate the RHS of (20) we use the following inequalities:

|
d

∑

i,k=1

∑

j,l

(∇iakj)∇ju(∇kail)∇lu| ≤ υ2
d|∇u|2a, (21)

∑

i,j,k,l

aij(∇2
kju)(∇iakl)∇lu ≤ δ|AD2u|2HS(a) + Cδυ

2
d|∇u|2a, (22)

|
∑

i,j,k,l

〈(aij∇ju)∇kχ
2
ε, ∇i(akl∇lu)〉 −

p− 2

2
Jε,a|

≤ δ(p− 2)2Jε,a + Cδ‖χε|∇u|aυd‖2
2, (23)

for any positive δ. (Recall that (h, g)a :=
∑

k,j≥1 akjhjgk.) The estimates (21),
(22) are immediate from the definitions and the Cauchy inequality. We postpone
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the proof of (23) to Appendix. It follows from assumption (ii(b)) of Theorem 2.2
that the limit in m and d in the third term from the end in (20) does not exceed

ε0

∑

i,j,k,l

〈ali∇i(χε∇ju), ajk∇k(χε∇lu)〉 + c(ε0)
∑

k,j

〈χ2
εakj∇ku∇ju〉

≤ ε0

(

Iε,a +
(p− 2)2

4
Jε,a + |p− 2|

√

Iε,aJε,a

)

+ c(ε0)‖χε|∇u|a‖2
2. (24)

Here we used the fact that

∑

i,j,k,l

〈ajk(∇iχε)∇ju, ali(∇kχε)∇lu〉 = ‖(∇u, ∇χε)a‖2
2,

and applied (15).
In order to estimate the terms containing ψε we use (15), (17) and the in-

equality
B2

d ≤ 2(Ξ2
d + Υ2

d|∇u|2a).
Hence, for any positive δ we have

|
∑

k,l

〈akl ηl∇ku, ψε〉 +
∑

k

〈(ξk − ξµ
a;k)∇ku, ψε〉|

≤ δ(p− 2)2Jε,a + δ‖χεut‖2
2 + Cδ‖χεΞd‖2

2 + Cδ‖χε|∇u|aΥd‖2
2

Making use of Lemma 4.1 we arrive at

|
∑

k,l

〈akl ηl∇ku, ψε〉 +
∑

k

〈(ξk − ξµ
a;k)∇ku, ψε〉|

≤ 2δ(p− 2)2Jε,a −
δ

p− 1

d

dt
‖ [∇u]ε,a‖2p−2

2p−2 + Cδ‖χεΞd‖2
2 + Cδ‖χε|∇u|aΥd‖2

2. (25)

Combining (21)-(25) and using Lemma 4.2 (to estimate ‖χε|∇u|a‖2
2 in (24))

we get

1

p− 1
(
1

2
+ δ + c(ε0)δ)

d

dt
‖[∇u]ε,a‖2p−2

2p−2

+(1 − ε0)Iε,a +
2(p− 2) − ε0(p− 2)2

4
Jε,a − ε0|p− 2|

√

Iε,aJε,a

≤ δIε,a + 3δ(1 + c(ε0))(p− 2)2Jε,a

+Cδ,ε0
sup

d
‖χε|∇u|aΥd‖2

2 + Cδ,ε0
lim
d→∞

‖χεΞd‖2
2 + Cδ‖χεu‖2

2. (26)

Note that Ξd → Ξ as d → ∞ in L2 due to (A4). Now applying Lemma A2 (see
Appendix below) we complete the proof.
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Proof of Proposition 3.3. First let p ≥ 2. Lemma A1 states that

‖ |∇u|a‖2p
2p ≤ 2‖u‖2

∞‖ |∇u|p−2
a

d
∑

k=1

∑

j

(∇k + βµ
k )(akj∇ju)‖2

2 + 2(p− 1)2‖u‖2
∞J0,a.

(Here and below J0,a := limε→0 Jε,a = 4(p− 1)−2‖ |∇|∇u|p−1
a |2a‖2

2.) Making use of
equation (4) and the maximum principle we get

‖ |∇u|a‖2p
2p ≤ 2‖f‖2

∞

[

‖ |∇u|p−2
a ut‖2

2 + ‖|∇u|p−2
a Bd‖2

2

]

+ 2(p− 1)2‖f‖2
∞J0,a. (27)

Observe that in Lemma 4.1 one can pass to the limit as ε→ 0 provided p ≥ 2:

‖ |∇u|p−2
a ut‖2

2 ≤ 2‖ |∇u|p−2
a Bd‖2

2 + 2(p− 2)2J0,a −
1

p− 1

d

dt
‖ |∇u|a‖2p−2

2p−2.

Hence, estimating ‖ |∇u|p−2
a ut‖2

2 in (27) we arrive at the inequality

‖ |∇u|a‖2p
2p ≤ Cp‖f‖2

∞(‖|∇u|p−2
a Bd‖2

2 + J0,a) − 4
‖f‖2

∞
p− 1

d

dt
‖ |∇u|a‖2p−2

2p−2. (28)

Note that

lim sup
d→∞

‖|∇u|p−2
a Bd‖2

2 ≤ 2‖|∇u|p−2
a Ξ‖2

2 + 2 sup
d

‖|∇u|p−1
a Υd‖2

2.

It is easy to see that we can also pass to the limit as ε → 0 in Lemma 4.3.
Applying Lemma 4.3 to (28) we obtain

κ1(ε0, p)‖f‖2
∞
d

dt
‖ |∇u|a‖2p−2

2p−2 + κ2(ε0, p)‖ |∇u|a‖2p
2p

≤Cε0,p‖f‖2
∞

(

‖|∇u|p−2
a Ξ‖2

2 + ‖|∇u|p−2
a u‖2

2 + sup
d

‖|∇u|p−1
a Υd‖2

2

)

, (29)

with some positive κ1(ε0, p) and κ2(ε0, p). We estimate the RHS of (29) from
above by

δ‖ |∇u|a‖2p
2p + Cp,ε0,δ‖f‖p

∞

(

‖f‖p
∞ + ‖Ξ‖p

p

)

+ Cp,ε0,δ‖f‖2p
∞ sup

d
‖Υd‖2p

2p,

for any positive δ. Choosing δ small enough we arrive at the inequality

κ1(ε0, p)‖f‖2
∞
d

dt
‖ |∇u|a‖2p−2

2p−2 + κ2(ε0, p)‖ |∇u|a‖2p
2p

≤Cp,ε0
‖f‖p

∞‖Ξ‖p
p + Cp,ε0

‖f‖2p
∞

(

sup
d

‖Υd‖2p
2p + 1

)

. (30)
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Now we assume that p < 2. As in the case p ≥ 2 we employ Lemma A.1, equation
(4), the maximum principle and Lemma 4.1. Then

Tε,a ≤ ε2p−2‖u‖2
2 + 4(‖u‖2

∞ + ε2)
[

‖χεut‖2
2 + ‖χεBd‖2

2

]

+ 2(p− 1)2‖u‖2
∞Jε,a

≤ ε2p−2‖f‖2
∞ + Cp(‖f‖2

∞ + ε2)(‖χεBd‖2
2 + Jε,a)

− 4
‖f‖2

∞ + ε2

p− 1

d

dt
‖ [∇u]ε,a‖2p−2

2p−2.

Setting ε := ‖f‖∞, passing to the limit as d→ ∞ and employing Lemma 4.3
we arrive at the estimate

κ1(ε0, p)‖f‖2
∞
d

dt
‖ [∇u]ε,a‖2p−2

2p−2 + κ2(ε0, p)Tε,a

≤Cε0,p‖f‖2
∞

[

‖χεΞ‖2
2 + sup

d
‖χε|∇u|aΥd‖2

2 + ‖χεu‖2
2 + ‖f‖2p−2

∞
]

. (31)

Observe that χε ≤ εp−2 and (χε|∇v|a)p′ ≤ |∇v|p−1
a,ε |∇v|a. The Young inequality

implies that

‖χε|∇u|aφ‖2
2 ≤ δTε,a + Cp,δ‖φ‖2p

2p , (32)

for all φ ∈ L2p and any positive δ. We apply (32) to (31), choose δ small enough
and obtain

κ1(ε0, p)‖f‖2
∞
d

dt
‖ [∇u]ε,a‖2p−2

2p−2 + κ2(ε0, p)Tε,a

≤Cε0,p

[

‖f‖2p−2
∞ ‖Ξ‖2

2 + ‖f‖2p
∞

(

sup
d

‖Υd‖2p
2p + 1

)

]

. (33)

In order to complete the proof of (5) we apply Proposition 3.2. to estimate ‖Ξ‖s
s

in (30) and (33) and integrate the derived inequalities from 0 to t.

When p = 2 we apply the Hölder inequality, Proposition 3.2 and (5) to (26)
in order to obtain (6).

If p < 2 it follows from the Young inequality that

‖|AD2u|HS(a)f‖p
p ≤ ε−p‖ [∇u]ε,a‖2p

2p + Cpε
2−pIε,a. (34)

We employ the Young and the Hölder inequalities to estimate the first term in
the RHS of (34).

‖[∇u]ε,a‖2p
2p ≤ Tε,a + ε2‖ [∇u]p−1

ε,a ‖2
2 ≤ Tε,a + (1/2)‖[∇u]ε,a‖2p

2p + Cpε
2p. (35)

We take ε := ‖f‖∞. Now making successive use of (34), (35), Lemma 4.3, (26),
(33) and Proposition 3.2 one completes the proof.
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5 Example

Let X = R
N, H0 = l2, H+ = l2γk

and H− = l2
γ−1

k

with (γk)k∈N ⊂ (0, ∞), where l2γk

and l2
γ−1

k

are described in Section 2.

Let (sk)k∈N ⊂ (0, ∞). We define an operator S on R
fin in H0 by setting

sjk := δjksk, j, k ∈ N. This operator is positive. Let µS stand for the Gaussian
measure with correlation operator S. Recall that

µS =
∏

k≥1

e
− x2

k
2sk

dxk√
2πsk

.

Let µ be a probability measure on R
∞ given by

µ :=
∏

k≥1

1

mkΓ(mk/2)
xmk

k e
− x2

k
2sk

dxk√
2sk

.

It is easy to see that, for k ∈ N, βµ
k (x) = −s−1

k xk +mk|xk|−1 = ξµ
k (x) + ηµ

k (x)
with ξµ

k (x) := −s−1
k xk and ηµ

k (x) := mk|xk|−1, x ∈ R
N.

For δ > 0 we introduce functions

ajk(x) := δjk
x2

k + δ

x2
k + 1

, x ∈ R
∞.

Note that for every N ∈ N the matrix (ajk)
N
j,k=1 is cylindric, smooth and uniformly

elliptic.

It is obvious that ξµ
a;k = −(x2

k + δ)xk

(x2
k + 1)sk

+
2(1 − δ)xk

(x2
k + 1)2

, k ∈ N.

A straightforward computation shows that |ηµ − PNη
µ|a → 0 in L2p :=

L2p(RN, µ) as N → ∞, provided mk = 2k + 2p− 1, k ∈ N and numbers (sk)k∈N

are such that

∑

k≥1

m
2p−1

2p

k

(

Γ(mk/2 + 1 − p)

Γ(mk/2)

)
1

2p

s
mk/2−p

2p

k <∞.

For example this condition is satisfied if we take the sequence (sk)k∈N to be
bounded.

One can verify directly that υN ≤ 2|1 − δ| and νN ≤ |1 − δ|
δ

, N ∈ N.

We choose ξn
k := −(x2

k + δ)xk

(x2
k + 1)sk

+
2(1 − δ)xk

(x2
k + 1)2

, n ∈ N, k = 1, . . . , n. Then

condition (i)(a) of Theorem 2.2 is satisfied. A straightforward computation
shows that that if δ ∈ (0, 3] ∪ [9,∞) then condition (i)(b) holds for arbitrary
positive (sk)k∈N. of Theorem 2.2. It is also readily seen that the sequence
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ξ̂m
k := −s−1

k xk, m ∈ N, k = 1, . . . , m satisfies condition (ii(b)) with ε0 = 0 and
c(ε0) = 0.

Hence, by Theorem 2.2 the operator L � FC∞
b is strongly unique in Lp for all

p > 3/2.

Appendix: Auxiliary inequalities

Let v ∈ FC2,u
b (RK) and quantities Tε,a, Iε,a and Jε,a be defined as in the previous

section (with v replacing the solution u of (4)). (Recall that then χε = [∇v]p−2
ε,a ).

We use the same summation convention as in section 4.
Below we present several estimates which are used in the proof of Proposition

3.3. It is noteworthy that Lemma A.1 is an extension of the Gagliardo–Nirenberg
inequality to the case when the matrix of coefficients is not the identity. Let us
stress that the function v need not be a solution to a Cauchy problem. Lemma
A.2 is an elementary statement which is needed in the proof of Lemma 4.3.

Lemma A 1. Put ∆av :=
∑d

k=1

∑

j(∇k + βµ
k )(akj∇jv), d ≥ K. Then

T0,a = ‖ |∇v|a‖2p
2p ≤ 2‖v‖2

∞‖ |∇v|p−2
a ∆av‖2

2 + 2(p− 1)2‖v‖2
∞J0,a,

for p ≥ 2 (J0,a := limε→0 Jε,a = 4(p− 1)−2‖ |∇|∇u|p−1
a |a‖2

2), and

Tε,a ≤ ε2p−2‖v‖2
2 + 2(‖v‖2

∞ + ε2)‖χε∆av‖2
2 + 2(p− 1)2‖v‖2

∞Jε,a,

for 1 ≤ p < 2.

Lemma A 2. If 3 − 3
1+

√
1+3ε0

< p < 2
ε0

then there exist positive constants

K(ε0, p) and Cε0,p such that for sufficiently small δ > 0

(1 − ε0)Iε,a +
2(p− 2) − ε0(p− 2)2

4
Jε,a − ε0|p− 2|

√

Iε,aJε,a − δIε,a − cδ(p− 2)2Jε,a

≥ K(ε0, p)Jε,a − Cε0,p sup
d

‖χε|∇v|aυd‖2
2. (36)

Moreover, if p < 2 then

(1 − ε0)Iε,a +
2(p− 2) − ε0(p− 2)2

4
Jε,a − ε0|p− 2|

√

Iε,aJε,a − δIε,a − cδ(p− 2)2Jε,a

≥ K̂(ε0, p)Iε,a − Cε0,p sup
d

‖χε|∇v|aυd‖2
2.

Proof of Lemma A.1. Integration by parts yields

Tε,a = 〈v[∇v]2p−2
ε,a , ∆av〉 − (p− 1)〈v[∇v]2p−4

ε,a (∇[∇v]2ε,a,∇v)a〉. (37)
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Note that ∇[∇v]2ε,a = ∇|∇v|2a. Therefore, |(∇[∇v]2ε,a,∇v)a| ≤ |∇v|a|∇|∇v|2a|a by
the Schwarz inequality. Thus, the absolute value of the last term in the RHS of
(37) does not exceed

|p− 1|‖v‖∞〈[∇v]2p−4
ε,a |∇v|a|∇|∇v|2a|a〉 ≤

1

4
Tε,a + (p− 1)2‖v‖2

∞Jε,a. (38)

Consider the first term in the RHS of (37). Using the Young inequality we
estimate it by

〈χεε|v|, χεε|∆av|〉 + 〈χε|∇v|2a, χε|∆av||v|〉

≤ 1

4
‖χε|∇v|2a‖2

2 +
ε2

4
‖χεv‖2

2 + (‖v‖2
∞ + ε2)‖χε∆av‖2

2. (39)

If p ≥ 2 then we can pass to the limit as ε→ 0 in (39). This yields the first asser-
tion. If p < 2 we observe that ε2‖χεv‖2

2 ≤ ε2p−2‖v‖2
2 and |∇v|2aχε ≤ [∇v]p−1

ε,a |∇v|a
and combine (37)-(39) in order to obtain the second statement.

Proof of Lemma A.2. Let first p ≥ 2. Setting r :=

(

Iε,a
Jε,a

)
1

2

we rewrite the LHS

of (36) as follows

Jε,a

4

(

4(1 − ε0 − δ)r2 − 4ε0|p− 2|r + 2(p− 2) − (ε0 + 4cδ)(p− 2)2
)

=
Jε,a

4
F (r).

(40)

We need to find all p such that F (r) > 0, r ≥ 0. A direct computation shows

that if p ∈ [2,
2

ε0

) then the discriminant of the quadratic function F is negative,

provided δ is small enough.
Now we assume that p < 2. The following inequality holds.

Jε,a ≤ (4 + δ1)Iε,a + Cδ1‖χε|∇v|aΥ‖2
2, ∀δ1 > 0. (41)

We give the proof of (41) below.
Making use of the Cauchy inequality and (41) we estimate the LHS of (36) from
below by

[

2(p− 2) + 1 − ε0 + 2ε0(p− 2) − ε0(p− 2)2 − Cε0,pδ
]

Iε,a − Cδ‖χε|∇v|aΥ‖2
2

= [G(p) − Cε0,pδ]Iε,a − Cδ‖χε|∇v|aΥ‖2
2,

for every δ > 0. It is easy to verify thatG(p) > 0 provided p ∈ (3− 3

1 +
√

1 + 3ε0

, 2).

Hence K̂(ε0, p) := G(p)−Cε0,pδ > 0 provided δ is small enough. This proves the
second assertion. Inequality (36) now follows from (41).



Strong Uniqueness for Symmetric Kolmogorov Operators 25

Now we prove inequality (41). First we notice that for any f, g, h ∈ R
d the

following inequality holds

d
∑

i,k,j,l=1

fi ail(∇lajk)gjhk ≤ υd|f |a|g|a|h|a. (42)

We observe that

∇k|∇v|2a =
∑

j,l≥1

2(∇2
kjv)ajl∇lv + (∇kajl)∇jv∇lv. (43)

Hence,

|∇|∇v|2a|2a ≤ 2|AD2v|2HS(a)|∇|∇v|2a|a|∇v|a + υd|∇|∇v|2a|a|∇v|2a.

This yields (41).

Finally, we prove inequality (23). Since ∇[∇v]2ε,a = ∇|∇v|2a, one gets

∑

i,j,k,l

akj∇kv∇j(ali∇iv)∇l[∇v]2p−4
ε,a

=(p− 2)[∇v]2p−6
ε,a

∑

i,j,k,l

[

akj∇kv(∇jali)∇iv∇l|∇v|2a + aliakj∇kv(∇2
jiv)∇l|∇v|2a

]

.

Using (43) we obtain

∑

i,j,k,l

aliakj∇kv∇2
jiv∇l|∇v|2a =

1

2
|∇|∇v|2a|2a −

1

2

∑

i,j,k,l

akj(∇k|∇v|2a)(∇jali)∇iv∇lv.

Recall that Jε,a = 4〈[∇v]2p−6
ε,a |∇v|2a|∇|∇v|a|2a〉. In order to estimate the remaining

terms we employ (42):

|
∑

i,j,k,l

[

akj∇kv(∇jali)∇iv∇l|∇v|2a| ≤ υd|∇|∇v|2a|a|∇v|2a ≤ υd|∇v|a|∇|∇v|2a|a[∇v]ε,a.

The last term is estimated in the same manner. This yields (23).
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[12] Z.-M. Ma, M.Röckner: Introduction to the theory of (non-symmetric)
Dirichlet forms, Springer-Verlag, Berlin-Heidelberg-New-York-London-
Paris-Tokio, 1992.

[13] R.Nagel (editor): One-parameter Semigroups of Positive Operators, Lecture
Notes in Mathematics, vol. 1184, Sringer, Berlin, 1986.

[14] L.Schwartz: Radon measures on arbitrary topological space and cylindrical
measures, Oxford University Press, London, 1973


