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1 Introduction

In this paper we study the Cauchy problem for infinite dimensional symmetric
Kolmogorov operators of the form

B dayj Ou . Ou
Lu= Z i 9,0y, ijaxk Z Oxy, 0x; * ; O ax; ox;’

k.3

where u € FC}°, i.e. the set of smooth finitely based functions on a locally convex
vector space X. Here the entries of the symmetric positive definite diffusion
matrix (ay;) are functions on X satisfying certain conditions specified below, and
(" is the logarithmic derivative of a given probability measure p on X. This
operator is associated with the pre-Dirichlet form

ou Ov -
E[U,v]—;/xakja—xka—%du——/xﬁu vdp, u,v e FC.

Let £ be the Friedrichs extension of £ on L?(X,u). It is well-known that the
semigroup e** is sub-Markovian (i.e. positive and L*-contractive). Thus et | L*°
extends to a Cy-semigroup on every LP(X, u) for every p > 1, with generator ﬁp.
Hence the Cauchy problem

du
ot

is well-posed in LP, and its solution is given by

u(t) = etﬁpf.

However, one should realize that the above procedure is only one of the pos-
sibilities to solve the Cauchy problem related to the operator £ with domain
FCy°. More precisely, there might be other closed extensions of £ generating
Cy-semigroups on LP. The aim of this paper is to give geometric conditions on
ar; and on the “large” part of the logarithmic derivative (cf. the next section)

= Lyu, u(0)=f,

implying that ﬁp is the only such extension. We would like to mention that by a
result due to W.Arendt (see [13], Theorem AII, 1.33) this uniqueness is equivalent
to the property that FC}° is a core of the operator ﬁp.

Our main result is formulated in Theorem 2.2 in the next section to which
we also refer for the precise framework. In Section 3 we present the proof of
the result on strong uniqueness which is based on a-priori estimates for the first
order derivatives of solutions of elliptic equations with smooth coefficients. These
estimates are derived in Section 4, whereas certain auxiliary results are contained
in the Appendix.

The problem we treat is refered to as the strong uniqueness problem in LP.
There are numerous publications on this problem (for the case where X is infinite
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dimensional, which we are most interested in, see, e.g. [1, 2, 3, 4, 10] for the
case p = 2 and ay; = dj, [, 8 for p > 1,ax; = dk;, [7] for variable ay; if
p = 2, and [9] for arbitrary p). In [8] an approach was developed to combine
the conditions on the logarithmic derivative from [3] and [10]. However, due to
technical difficulties certain restrictions on the “large” part were imposed. The
present paper is an extension and generalization of the main result in [8] in several
directions. Firstly, we consider variable diffusion coefficients ay;, and the matrix
(ag;) is not supposed to be uniformly bounded and uniformly elliptic. Secondly,
we remove the said restrictions on the logarithmic derivative (see condition (ii(b))
of Theorem 2.2 below in comparison with condition (iv) of Theorem 1 in [8]).
This was possible due to a new method of obtaining estimates for gradients of
smooth approximating solutions. In comparison with [9], apart from the greater
generality of the results in the present paper, we simplified the framework in order
to make the conditions used more transparent. For illustration of the main result
of this paper we include an application which could not be treated by previous
results.

2  Framework and Main Results

Let X be a separable locally convex Hausdorff topological vector space such
that its topological dual X* contains a sequence (I,)nen of linearly independent
functionals separating points. We assume that X is Souslinean, hence [,,, n € N,
generate the Borel o-algebra B(X) of X (cf. [14]).

Given N € N and m € NU {oo}, let UC]" := UC™(RY) stand for the class
of m-times differentiable functions on RY, whose derivatives up to order m are
bounded and uniformly continuous. Now let

FCPMRYY :={f(ly,...,In) : f € UCH(RM)}.

;From now on FC;"" := UyFC,""(RY) and FC;° := FC;".

Let p be a probability measure on B(X). Suppose that supp up = X. For
1 <p<oolet LP = (real) LP(X, ). Since B(X) = o(l,, n € N), the set FC;°
is dense in LP for all p € [1, c0). Throughout the paper we use the following
notation: ||-||, is the norm in L?, (-, -) is the inner product in L?, and (f) = [ fdu.

Let (ex)ren C X be the unique sequence of linearly independent vectors such
that l,,(ex) = 0mr, m, k € N and g is differentiable along every e, in the sense
that there exist measurable functions (34 )rey in L?, satisfying

<§% =—(v, B), ve ]:C;’“, k> 1.
k

By is called directional logarithmic derivative of p along ej. Further on we treat
(ex)ren as the canonical basis in the space RY of all real sequences. Hence, we
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identify the linear span of (ey)ren With the space R/ of all finite sequences.
The space R/ can be considered as the tangent space T, X to X for all z € X
in the sense that we shall take derivatives only along the elements of R/, We
introduce the spaces (Ho, (-,-)o) = I?, (Hy, (+,-)4) =13 and (H_, (-,-)-) = lik_l

for a sequence (7yx)ren in (0, 400) (where 2 := {h € RY : 3", hi7} < oo} and
li‘l is defined in the same way). It is obvious that H, and H_ are mutually dual

k
w.r.t. the (-, -)o-duality pairing.
For N € N we define the projection Py : RN — R/

N
PNh = Z hkek.

k=1

Here and below we denote the linear span of (ex)™_, by RY. This notation is
consistent with the definition of FC;""(R") since for € X we have

N
Pyz = Z li(x)eg.
k=1
For u € FC,", u(z) = f(Pyz) let Vu stand for the Frechet derivative of u:
N
, af N
Vu(zx) := kz:; a—ek(PNx)ek e R™.

Furthermore, if u € FCp" then D?u stands for the second derivative of u:

N

D?u(x) := Of (Pyz)ey ® e
e 8ekaem "
We introduce the following notation: Vy := 2, V}; = 86‘:2@j.

Let {ax;, k,j € N} be a family of cylindric functions on X. The following
conditions (AO) -(A4) on (ag;) are assumed to hold throughout the paper.

(A0) For every N € N the matrix (ax;(x))y;_, is symmetric and uniformly
elliptic. For every i € N there exists ¢; € (0,00), such that for y—a.e. z € X,

Z agj(x)hihy > sihf, Vh = (hi)ken € Rfm’

k,j=1

and the completion H,(z) of R/™ with respect to the norm |- |, = (-, ~)(1/2,

where
o0

(h, 9)a(z) = Z aii(z) hi, g5, g,h € RS

k,j=1
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embeds one-to—one and continuously into RY (the latter being equipped with the
product topology).

Note that assumption (A0) is fulfilled if the infinite matrix (ax;(z))7%—; is
block diagonal and each block is uniformly elliptic. By HS and HS(a) we denote
the spaces of Hilbert-Schmidt operators over Hy and H, respectively.

(A1) For every n € N

agj € FCURE) kj=1,..., K,,

for a sequence (K, ),eny C N, K, / 0.
(A2) For every k € N

&= sup |ag|*(z) < oo.
zeX,jeEN

For every k € N we assume that 3} can be decomposed as 3} = &I + 7., with
&) and 7). Borel measurable and satisfying the following conditions.
(A3) The series n*(z) = Zn,’j(w)ek converges in H,(z) for a.a z € X and
keN
In* — Pyn*|, — 0 in L? as N — oo.

Note that, for all £ < N < d, the Cauchy inequality gives

d
n
Z Ak;j;
j=N

1
d 3 d d
1

< () (o Najmg‘)Q)é = V|~ P

1= =1 j=

where (a;;)¢,_, is the square root of the matrix (a;)9,_,. Therefore (A3) implies
that the series ), a;n); converges in L? for all k € N.

(A4)The series &, := Z(Vjakj + ay;€}) is convergent in L? for all kK € N.

jeN

The latter enables us to introduce £#(z) := 7, & ()er € RY. €4 is refered
to as the “large” part of the collection (S )ren of the directional logarithmic
derivatives of i, since it is not a section of the “co-tangent bundle” (H,(z))zex-

For d € N and x € X we introduce the quantities vg(z) and v4(x):

vi(e) = sup Y au(@)a™ (@) (Veay (2)h) (Viagmn (2)ha), (1)
and
vy(x) == sup - > (420" (@) (Viaa(@) i) (Vimai(x)ymhm), — (2)

7'7j7k’l)m:1
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where h = (hy)nen and (") ;_, is the matrix inverse to (a;;)? ;_; (which exists

due to (Al)). Note that if ay;(z) = 0x;0k(z) one has

V() = sup 3 o) <M)2.

Tm ()

and

Consider the operator

Lo =" (ar Vi + agny Vi) + Y & Viv, v e FCF.

k,j=>1 k>1

Observe that since v is cylindric, it follows from (A1), (A3) and (A4) that Lv € L?
for all v € FCp°. Hence, the operator £ is densely defined in L?. Observe that
the following equality holds:

—(Lu, v) = Z (ap;ViuVjv), u, v e FCp. (3)

kj>1

Indeed, for u, v € FC;™" we have

N /XU [ Z ay; Vi u+ Z Vk“(Z(Vjakj +ak;€5) + Zakjnf)]d'u‘

kyj=1 k=1 j=1 j=1

- Z /Xv (Vj + 87" ) (a;nViu)dp,

k,j=1

since the sum in k is finite and the series in j converges in L? due to (A3) and
(A4). Hence, (3) follows from the integration by parts formula. Therefore, £ is
a symmetric operator and the form

Elu, v] = Z (ap;ViuVjv), u, v € FCP°

k,j=>1

is a closable symmetric form on L? whose closure (£, D(£)) is a Dirichlet form
(cf. [12] or [6] for the terminology). We will not distinguish between £ and its
closure unless it leads to confusions.
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It follows from the Beurling-Deny criteria that £ is associated with a family of
consistent sub-Markovian Cj-semigroups of contractions e“** on LP, 1 < p < 0.
We refer the reader to [6, 12] for corresponding definitions and standard results.
By construction ﬁg D L (in fact ﬁg is the Friedrichs extension of £). Moreover,
the following simple statement holds.

Lemma 2.1. Let s = max(2,p). Then L, D L provided |n*|,, b € L® for all
k e N.

Proof. Our assumptions imply that Lv € L? N L? for all v € FC;°. Therefore,

t

1 ~
Ly = L[P-1lim — LS Lods.
t—0 ¢ 0

On the other hand,
t t to X R
/ eLrs Luds = / er? Lods = / eF2 Lovds = e~y — v = eFrty — v,
0 0 0
Thus, Lv = LP-lim %(eﬁptv —v)and £, D L. O
t—0

Now we are ready to formulate the main result of the paper. Recall that
conditions (A1) - (A4) are still in force.

Theorem 2.2. Let p > 1, (K,) be as in (Al). Set s := p if p* = 0, and
s 1= max(2,p) otherwise. Let &, € L* for all k € N and sup,, || vy [ < 00.

Assume that
(i) there exists a sequence £ € FCy'(RE), j=1,...,K,, n €N, such that

(a) |&" — Pk, &4|- — 0 in L® as n — oo;

(b) there exists a constant cy € R independent of n such that for all
z, y € RE the following inequality holds

K, Ky
D R (VEN @iy < v D i
=1 k=1

(ii) either n* =0
or

(a) supg|lvall2p < 00, [n* — Pyn*|a — 0 in L* as N — oo;
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(b) there exist a sequence (é;”)mJGN C FC," and numbers g € [0,1) and
c(eo) € R such that é;” — & as m — oo weakly in L? for every j € N,
and for all n € N and w; € FC,U(R™), j = 1,...,n, the following
inequality holds

d n
lim inf Z Z((ng;n)aﬂwl, Qi W;)

m,d— o0
i,k=17j,l=1

n

< €0 Z (ar; Viw;, aqVywr) + c(go) Z (arjwr, w;);

7:7j7k’l:1 ],kzl

2
(0) pe(3-—2, 2).
1++I+3e0 €0

Then the operator £ | FCp° has a unique extension which generates a Cy-
semigroup on LP.

Remark. The uniqueness result in [8] can be obtained as a particular case of
Theorem 2.2 if one puts a;i(x) = 6;5. (Note the difference in the interval in the
LP-scale, which was incorrectly stated in [8], Theorem 3.) In [9] the special case
of & = 0, k € N, was studied and strong LP-uniqueness of the extension of L
has been proved under weaker assumptions on the coefficients aji,, namely, their
derivatives need not be either continuous or bounded. If we confine ourselves
to this situation then we can employ estimates (6) and (7) (see Proposition 3.3
below and note that in this case £ = 0) and prove the uniqueness under the same
assumptions as in [9].

3 Proof of Uniqueness

Our strategy to prove the uniqueness result is as follows. We take an arbitrary
extension £ O L | FCp°, which generates a Cy-semigroup on LP. Then we take
sequences (£7'), (n7") C Fi C," and deal with the corresponding family of Cauchy
problems:

ugm) = Zﬁ?zl(ajkV%ju(m) + Clkm;ﬂvku(m)) + Zkzl fl::nvku(m)
u(m)(o) = f,

with an arbitrary 0 # f € FC;° and (K,,) as in (Al). Then we show that
u™ (t) — Lot f strongly in LP provided &, mi approximate &, 5, j € Nin a
proper way. This will prove strong uniqueness for the generator. The core of the
proof is estimates for the gradient Vu of the solution u to the following Cauchy
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problem over R¥

{ut = L¢u = ZkK’jzl(aij%ju + ay;n;Viu) + Zszl &Viu, t>0, ()

u(0) =/,

with a uniformly elliptic matrix (ajk)szl, ajr, & € UCHRE), 4k =1,... K,
N<K, neUCHRY),j=1,....,N,n;=0,j=N+1,....K, f € C:°(RF).
In order to obtain the required estimates we need the following result from

11].

Proposition 3.1. ([11], 8.1.9,5.1.17,5.1.18.)
Set D = {u € Nps i WEP(RX) : u, Leu € Co(RF)}. Then

loc

(i) Ley | D generates a positive analytic semigroup U(t) on Cy , which is
continuous at zero on elements from D = UC,(RY). In particular, problem
(4) has a unique classical solution u € Cy, (in the sense of [11], 4.1.1(iii));

(ii) the functionst — u(t) and t — Le,u(t) are analytic (0, 0o) — CLH(RX) and
u(t) = f, Leyu(t) = Leyf in CLRE) ast — 0;

(iii) For allt > 0 we have u(t) € Nys1 WP NUC?.

loc
By the maximum principle we have ||ul|s < || f]|co-
The estimates are given in the following two propositions.

Proposition 3.2. Let u be the solution to (}). Assume that there exists a con-
stant c, independent of x such that for all x, y € RX the inequalities

K

K
> VR VE) @)y < e Y i,

Gl=1 k=1

vi(z) < e
hold (vi is as in (2)). Then

[Vulillee < exp(CLO)| [V f] 4]

1
with Cy = e+ 5 + (330, @) * | [Valuslloe + ol [nlalloe and n = (m .., nx)
(recall that [h|3 = > 1 vihi, h € Hy ).

Proposition 3.3. Let u be the solution to (4). For 3 — ﬁ <p< % set

s = max(p,2). Let supy||vill2p < oo, |n* — Pm*la — 0 in L* as d — oo and
LeE€L k=1,...,K. Set G, := |||n]a+ [1"[all3 + sup ||vall55. Let Cy be as in
d
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Proposition 3.2. Then there exists a constant C,,, > 0, depending only on p and
€9, such that

t
/O HVulallzp(r)dr < Cop [EILFIZ (G + 1) + 2V Flallzp=

6sC+t -1

+ g MLl 1Pt =€l (5)

(Recall that |Vu|? = Zf,j:l ap;ViuV u.)

Furthermore, for p =2,

t
/0 HAD?ul s ll3(7)dr < C- {Hfl!iot(Gz + 1)+ [V £l

20, t

e -1
+ g VAL Pt~ €l-18).

and,forS—H\/++—3€()<p<2,

t
/O HHAD ul1s50)I5(7)dT < Cieq {tllfllio(Gp + 1)+ IV flallzp=2

p_2€2C+t_1 9 u 9
A 5 m— NV A5l [ Prés — €=Mz | (7)

2C,

2,12 _ K 2 2
where [AD u‘HS(a) = Zz‘,j,k,m:l ij VUV U

We postpone the proof of Propositions 3.2 and 3.3 till the next section.

Proof of Theorem 2.2. Let f € FC;°. For N > 1let njv € FCPRM),j=1,...,N
satisfy || [n —n™allzp < 1/N, with ¥ := 37 n¥e;.

Let (&) be the sequence satisfying condition (i) of the theorem. Choose n to
be such that K,, > N.

By u™™ we denote the solution to the Cauchy problem on RX»
uENn) = Egnmzvu(N”) =: LnuN™), (8)
um(0) = f

Let £ with D(L) stand for an arbitrary extension of £ [ FC,°, which generates
a Cyp-semigroup on LP. It is easy to show that D(L) D FC%’“ and

Lu=Y " (arViu+ agn Vi) + Y Viu, ue FC

kj>1 k>1
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It follows from Proposition 3.1(ii)-(iii), that the function s — £t~y (s) is
a continuously differentiable map [0, {] — LP. Thus we arrive at the Duhamel
formula

t A A~
u(Nn ( ) th (t T) (Nn)(T> :zé :/ 6(t—r)£(£ o ﬁNn)u(Nn)(T)dT.
0

Since £ is the generator of a Cy-semigroup on LP there exist numbers M, v € R,
such that |e®||po_rr < Me".
Now we have

. t
et = u@) |, <2 [[116" = P&l [ 119
0

t
1 =l [ 190 ] )
0
In order to complete the proof of the theorem we need to show that

hm limsup |le” f_ u™ ()], =0

If n = 0 for all k, then one can take n; 0 and the result follows from
Proposition 3.2 since || |[Vu™™| ||« (t) < e C++ Y £l so-

In case 1}, # 0 we employ Propositions 3.2 and 3.3 with the constant

N
Ch = Co(N) =y + 1 264+ (Q_ @) 11V |slloo + il 1™ alloe
k=1

to estimate || |[Vu™|,||o and fot | |Vu™™)|,||2pds. Then we get

limsup e f — u™ (@), < Cll 1" = 7™ |all2 [H Flloct (Il 1*]a + [ lall2p + SUp [[val[2p)

O (1 el 195105577

Taking the limit as N — oo we complete the proof. O

Sl

4  Proof of A-priori Estimates

Throughout this section (akj)f’j:l, aij, &k € fC,l,’u(RK), k,j=1,....K,n €
fCi’u(RN),i =1,...,Nforsome N < K,andn;, =0,i =N+1,... K, €
FCP(RY), f#0; u(t) € FCr*(RX), t > 0 is the solution to the Cauchy problem
(4). Unless otherwise indicated, all the sums are from 1 to K. We also assume
that the measure u satisfies the conditions of Theorem 2.2.
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We are now heading towards establishing the estimates for the derivatives of
the solution to (4).

Proof of Proposition 3.2. Let us differentiate equation (4) in the direction ey
(observe that u is three times differentiable by Proposition 3.1(iii)), then multiply
by vViu and sum up from 1 to K. We arrive at

2 pr Z Y2 (Viu)? Z(aij(V2iju)7,§Vku + i Vi Vi) + Z EVERUYEV U

1,5,k i,k

+ Z Viai)Viuvi Vi + (Vi) ay Vuyi Vi)
1,5,k

+ 3 0i(Viay) Vuni Vi + Y (Vi) Viuy Vi, (10)
1,5,k ik

Note that (10) is an equality in Cy(R¥) since Viu, (ViLe,u) € Cp(RX) due to
Proposition 3.1(ii).

Recall that Y, v2(Viu)? = |Vul|?. A straightforward computation shows
that

1
§Vj|Vu\+ Z Vk;“% (Viw),

Z Qi vkzg Vku - 1/2 Z CLZJ /}/k vku Z /Ykalj zku )

1,7,k 1,5,k 1,5,k

Therefore one can rewrite (10) as follows

d
IVl () = Ley|Vuli () + 2F (1), (11)

F(t) = Z((Vkaz‘j>7hvju’yizvku + (Vi) ai; VjuniViu) + Z(kaz’)viu%gvku
0,5,k ik
+ ) (Viai) ViuyiViu — Y ypay (Vi) (Viu).

i?j7k Z'hj?k:

Observe that |Vu|? € D, where D is as in Proposition 3.1. Indeed, by
Proposition 3.1(iii) we have |Vu|? € N> WP N UCE. Moreover, Proposi-
tion 3.1(iii) implies that F(t) € Cy(R¥) for all ¢ > 0, and from Proposition
3.1(ii) we conclude that £|Vul?(t) € Cy(R¥) for all ¢ > 0. Hence, (11) yields
Le | Vul’(t) € Co(RY), t > 0 and |Vu|1 € D by Proposition 3.1(i). Therefore,
|Vu\i is the classical solution to the non-homogeneous problem for the operator

Len | D
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Furthermore, since ¢t — wu(t), t — Vyu(t), t — ViLe,u(t) are continuous
functions [0, co) — Cy, k = 1,..., K, the function ¢ — V2 wu(t) is continuous.
Hence, F' is a continuous function (0, co) — C. By [11], 4.1.2 it follows that

t
Vul2(t) =U@)|VFIL+ 2/ Ut — s)F(s)ds.
0
The first assumption of the proposition implies that

D (Vi) (V)1 Viu < ey Vult.

k,j

Next we estimate the terms in the expression for /', containing Va;;. For an ar-
bitrary symmetric matrix (b;;)f;_; and any vector g € R¥ the following inequality
holds:

> (Viaig)bi g
4,7,k
3 . 3
< {Z Wfaijbizblj} [ Z v 2a ( Z(vkail)'yzgk) ( Z(Vmajl)Vergm)]
il il % m
3
< {Z szaijbilblj] |9]+vK- (12)

Z'hj?l

In order to derive (12) we have applied the Cauchy-Schwarz inequality and used
definition (2) of vk. From the boundedness of vk (the second assumption of the
proposition) we conclude

1

> (Vi) (Vi) (Viw) < vi|Vaul, ( > vray; szkuv?ku)
i,5,k 1,7,k
<(A/D|Vull + ) vt ViuViu

Z'hj?k:

and

=

Z(Vkaij)mvjuvivku < vk|Vul4 ( Z yiaijm(vku)m(vku))
i,k .5,k

< clnla| Vul?.

Thus, it remains to estimate the term in the expression for F', which contains

Vi Let A and Vn be the operators in R* associated with the matrices (a;;)_,
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and (Vgn;) fszl respectively, and T" be the operator defined by the diagonal matrix
(6;x7%) 1. Then one obtains

> (Vi) (V)i (Vw) = (TVa, (T(Vn)AT ) TVu),

injok
<|T(Vn) AT weo| TVUlg = [(Vi) Al ko[ VulZ,
where | - g stands for the operator norm (RX, |-]o) — (R, |- o). (Here we

used the property that for any matrix W sp(W) = sp(TWT™').) It is well-
known that, for the operator W in R¥ associated with matrix (wjk)szl, we have

|W|§<70 < sup Z |wjx|?. Therefore,
J

‘(vn)A‘KO - Sup Z Zam vknl))

o (S ($) = (S0 (wt)

In order to obtain the last inequality we have made use of (A2). Combining the
derived estimates we arrive at

N
Zaij(vkni)vju%%vku < (Zcz) |V77‘Hs|vuﬁ_.

ik i=1

Since |Vu|? is non-negative and the semigroup U(t) is positivity preserving and
contractive we have

t
HVul4 35 < II\Vf\+||§o+2C+/O 1Vl ][5 (s)ds

Hence the assertion follows from Gronwall’s lemma. O

Ford> K weset n; =0, j = K +1,...,d, and introduce the quantities
d

gak = Z(akﬁ;‘ + Vjakj), k = 1, .. .,K,

7=1

By = Z(gk — €NV + Z Za,ﬁ )V

For p > 1 we set [Vul?, := |VulZ + ¢* with ¢ > 0. Set x. := [Vu]? 2. We
introduce the following quantities:

Tea = || [VulZL Vula]3,
Jea = | VU2 VIVUlglalz,
Ia,a = Z <X€aijV?kU, aklvliu> :

Z‘?j7k)l
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Note that I, = [|xc|AD*u|as(a)l3 and (p — 1)*J.a = 4 [V[Vul2 a3
Lemma 4.1. Let u be the solution to (4). Then
du 1 9p—2

Ixe— Hz —3 dtH [Vuleallzp—z < 2lIxeBallz +2(p — 2)* e (13)

Proof. 1t follows from (4) that
<ut — Z akjvzju, X?Ut> = <Z ag;Ne VU + Z@-Vju, X?Ut>-
k,j k.3 J

Integration by parts yields

d
—Z ak]VkJu oug) = ZZ ar;Viu, (Vi + n)xuy) +Z 3% Vju, X2Uy).
k,j

k=1 j J
Hence we obtain

1 d 2p—2
Ixeul3 + 5o g1l [Vulealls

d
= > anilme = nf)Vju, Xu) + Y (6 = €Viu, xCue) = > {an; VuVex?, ue)
k=1 j J k,j
1
||x5ut!|2+||xeBd||2 (p—2)*Jea- (14)

The last inequality in (14) follows from the estimate
A{|(Vu, Vxe)ol) < 4] [Veuleal VXelall3 = (0 = 2)* e, (15)

and (14) implies the assertion. O

Lemma 4.2. Let u be the solution to (4). Then for any 6 > 0 we have

3
x| Vulall3 + - 1dt” (Ve allzp—s < 38| xeBall3 + 36(p — 2)* Joa + 4—5Hxau||§

(16)
Proof. Let 1, be defined by 9, := — Zzzl >i(Vi + B (x2ar;Vju). Tt follows
from (4) that
d
Ve = X[ =+ D> Y ari(n; — ) Viu + Z & — EViu] = ag(Vix2)Vju
=1 k k,j

= x2(Bg — ) — 2x=(Vu, Vx.)a. (17)
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Integration by parts yields

Xl Vulal3 = (u, ve) = (u, X2(Ba = ue) — 2x=(Vt, Vxe)a) (18)

We estimate the RHS of (18) as follows.

(u, X2Ba)| < d|lx-Ball3 + 5HXsuH§a
1
2[{u, (Vu, Vx:)a)| < 0(p — 2)21]5,@ + 4_5HX8UH§a
1
[(u, X2ur)| < 6l xeuells + @HXWH%

(where we have used (15) in the second term). Applying Lemma 4.1 we complete
the proof. O

We introduce the following quantities.

= [n"|a + [nla + va,

K
=2= IVl Y% (6 — €)%

k=1

K
=2 = Ll Jim 23 = [V} Y0973 — €607 = Vul2le - Préf?,

k=1
where v, is as in (1) and the limit in d exists due to (A4).
Lemma 4.3. Let p € (3 — 1+\/++7350’ %) Then there exist positive constants
K(eg, p) and r(p) such that

r(p ) N [Vuleallsy=s + K(go, ) Jea < Ceo,p[erEII%+Sgp|lxe\VU|aTd||§ + Cyllxulls.

If p < 2 the same estimate holds for J., replaced by I. .

Proof. 1t follows from (4) that

<Ut, ¢8> - Z(aklvzlu> ¢a> = Z(aklnlvlu> ¢5> + Z(flvlua ¢E>> (19)
l

k.l k.l

where the function 1. was defined in Lemma 4.2. It is easy to see that the second
term in the LHS of (19) equals

d d
ZZ (Vi(auViu), ) + ZZ (Viar)Viu, ).
k=1 1

=1
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The key point is to evaluate the first term in the above expression. Successive
integration by parts and a straightforward computation give

> (Vilaw Vi), (Vi + B (x2a; Vu)

ik=1 j

d
= Z Z<vz‘vk(aklvlu)a X?az‘jvju>

ik=1 j|l

= Z > [(Vilau Vi), (Vi + 1) (Ca; Viu) + (VilanViw), ix2ai; Vi)l

i,k=1 7,

:Sl + S27

with
d

S, = Z Z(Vi(aklvlu), (Vi + ng)(x?azjvju)),
ik=1 il
d

Sy = (VilauViu), &ix2a;Vu).

ik=1 jl
It is easy to see that

S1=1ITa+ > [20¢a;Viju, (Viar)Viu) + (a;;VuVie(x2), Vilan Vi)

1,9,k,l
d
+ Z Z [<X§(vzak])vju, (Vkail)vlw -+ (x?aijvju ’f]]'L:, Vz(aklvlu))}
i,k=1 7,

We transform Sy as follows

Z Z XCVila Vi), Ea;V u)

zkl]l

=lim Z > Vil Vi), ray V)

i,k=1 7,

d
zligln Z Z(é}fakl%u, (Vi+ ﬁf)Xgaijvﬂo

ik=1 j

d
— lim Z Z((Vié,T)alelu, x2ai;Vju)
"= g
d d R
:Z Z(am&’;‘vzu, Ye) — ligln Z Z«Vz‘fg)aklvlua X?aijvju>-

11 ik=1 j|l
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Thus we have

— > (auViu, ) 51+Z (& — €4 Viu, ve)
k,l

— hm Z Z ng Yar Viu, Xaamv ).

i,k=1 7,

Observe that

d 2 o 1 2p—2
(i, ) = 5 (G VU2 = 5 S Vuleal S

So we infer from (19) that

1 2p—2 p—2
2 2 dt H [vu]e a||2p_2 + Ia,g + 2 Je,a

— {_QJM =) {ayViuVi(x?), Vz’(akzvlu»}

i?j7k7l

— Z [2<X§aijViju, (Viakl)vlw + <(ZijVjUVk(X?), Vz(aklvlu)ﬂ

i7j’k7l

— Z Z [(XE(Viar)Vju, (Viaa)Viu) + (Cain,Viu, Vi(ag V)]

z’kljl

+11m Z Z ng, Yar Viu, Xsawv w)

i,k=1 73,

= AawmViu, ve) = Y {(& — &) Viu, ve). (20)
k,l

k

In order to estimate the RHS of (20) we use the following inequalities:

d
1D ) (Viaw) Viu(Vian) Viu| < 0f|Vul?, (21)

i,k=1 34,
Z a;;(Viu)(Viaw) Viu < 8|AD*ul}g ) + Csv3|Vul2, (22)
i,7,k,l

-2
[ D" (@ V) Vi, Vil Vo)) = 5=l

i7j’k7l

<d(p— 2)2J€,a + C5||X5‘VU|aUd||§, (23)

for any positive §. (Recall that (h, g)q := >_ ;5 arjhjge.) The estimates (21),
(22) are immediate from the definitions and the Cauchy inequality. We postpone
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the proof of (23) to Appendix. It follows from assumption (ii(b)) of Theorem 2.2
that the limit in m and d in the third term from the end in (20) does not exceed

g0 ) {anVi(x-Vju), apVi(xViu)) + e(e0) Y (Car; ViuVu)

1,9,k,l k,j

(p - 2)2 2
S €o ]a,a + Je,a + |p - 2| ]s,ajs,a + 0(50)||X6‘vu|a“2‘ (24)

4

Here we used the fact that

D a(Vixa) Viu, au(Vixa) Viu) = [[(Vu, Vxe)all3,

i7j’k7l

and applied (15).
In order to estimate the terms containing 1. we use (15), (17) and the in-
equality
B < 2(25+ Y3|Vul?).

Hence, for any positive § we have

1> amViu, o) + > (& — € Viu, )|
k,l k

<d(p - 2)21]5,@ + 5”)(51%”3 + CéHXEEng + 05||X5‘VU|aTd||§

Making use of Lemma 4.1 we arrive at

1> {amViu, ) + Z<<sk — & Vi, 1)
k.l

Y d 2p—2

<26(p =2 Jea = == | [Vuleallzp™s + CsllxEalls + Collxe| VulaYall3. (25)

Combining (21)-(25) and using Lemma 4.2 (to estimate ||x.|Vul.||3 in (24))
we get

1 1 d _
—— (5 + 0+ c(20)d) - [[Vuleallzp—3

— 1(2
F(1— e, + 2 e 2

<L+ 36(1+ c(20))(p—2)* .0
+ iz SUP x| VaulaYall3 + Csep im [Ix=Zall5 + Csllxeulls. (26)

Ja,a - €O|p - 2‘ Ia,aja,a

Note that =5y — = as d — oo in L? due to (A4). Now applying Lemma A2 (see
Appendix below) we complete the proof. O
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Proof of Proposition 3.3. First let p > 2. Lemma Al states that

d
ulallzy < 2llulZlH Va2 YD (Vi+ 8 (an V)l + 200 — 1)?[lul3Joa-

k=1 j
(Here and below Jy, := lim. o J., = 4(p — 1)7?|| |[V|Vu[e~!?||2.) Making use of
equation (4) and the maximum principle we get

HVulallzy < 201F 112 [V ulh 2wy + 1IVala™Bally| + 20 = D?)1f 3o (27)

Observe that in Lemma 4.1 one can pass to the limit as € — 0 provided p > 2:

) _ 1 d .
V2w l3 < 20 [Vul~*Ball; +2(p = 2)*Jo.a — ﬁ@” Va5 —>-

Hence, estimating || |Vu|P~%u||3 in (27) we arrive at the inequality

IA1% d

1190l < GV 2Bl + o) = 4 2= 20 (VablE S @8)

Note that

limsup [|[Vulb?Bqll3 < 2[|[Vulb 2|3 + 2sup [[[Vuli ™ Tal3.
d—oo d

It is easy to see that we can also pass to the limit as ¢ — 0 in Lemma 4.3.
Applying Lemma 4.3 to (28) we obtain

d
1o, DI

< Cup £ (VU 2213 4 1Vl ull + sup [Vl Lall). (29

%p—2 2
[V ulall3p—2 + K220, P [Vulalla

with some positive k1(gg, p) and ka(gg, p). We estimate the RHS of (29) from
above by

2 — 2
O]l Vulall3, + Cp,ao,allfllﬁo<||f||€o + ||:H§Z) + Cpeosllf112 sup [ Tall .

for any positive 6. Choosing ¢ small enough we arrive at the inequality

d
1o, DI

< CpeolFIEIEIE + Cpe 17122 (sup 11l +1). (30

9p—2 2
[V ulallp—2 + K2(g0, P)|| [Vulalla
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Now we assume that p < 2. As in the case p > 2 we employ Lemma A.1, equation
(4), the maximum principle and Lemma 4.1. Then

T < 2 ull3 4 Al + <) [l + xBal] + 200 — 12lfullZ e
<2 I + Gyl I + =) (e Bal} + o)

1flI5 +<* d 2p—2
_4TEH [Vuleallp—2-

Setting € := || f]|c0, passing to the limit as d — oo and employing Lemma 4.3
we arrive at the estimate

d _
"4'1(50a p)“f”io@” [vu]a,ang—g + '%2(50, p)TE,a

< Coopll FI5[IXENE + Sup e VulaYall3 + Ixeulls + 1F2E72]. (31)

Observe that x. < P72 and (x.|Vv|,)? < Vo[t Vol,. The Young inequality
implies that

Xl Vuladly < 6Tz + Crsllllay - (32)

for all ¢ € L? and any positive §. We apply (32) to (31), choose § small enough
and obtain

d _
1o, DI (Ve 373 + aeo, 9) T
< oo [IF 1222113 + 1122 (sup Il + 1)) (3)

In order to complete the proof of (5) we apply Proposition 3.2. to estimate [|Z]|?
in (30) and (33) and integrate the derived inequalities from 0 to t.

When p = 2 we apply the Holder inequality, Proposition 3.2 and (5) to (26)
in order to obtain (6).

If p < 2 it follows from the Young inequality that

IAD?ul s FI, < | [Vl 2+ Cpe® 7L (34)

We employ the Young and the Hélder inequalities to estimate the first term in
the RHS of (34).

||[Vu]a,a||§§ <T..+ 52” [Vu]g;ng <T..+ (1/2)H[VU]€@H§£ + Cp52p' (35)

We take € := || f]|co. Now making successive use of (34), (35), Lemma 4.3, (26),
(33) and Proposition 3.2 one completes the proof. a
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5 Example

Let X =RY, Hy=1°, H, =12 and H_ = l“sz_l with (7)ken C (0, 00), where I2,
and li‘l are described in Section 2.
k .
Let (sp)ren C (0, 00). We define an operator S on R/™ in H, by setting
Sk = 0;jkSk, J, k € N. This operator is positive. Let ug stand for the Gaussian
measure with correlation operator S. Recall that

It is easy to see that, for k € N, Bl (x) = —s; "oy + my|ap| 7t = E(x) + 0 (v)
with £ (x) := —s; 2y and 0 (z) := my|ag| 71, © € RY.
For 6 > 0 we introduce functions
2
' xy+0 ~
ajk(m) = (Sjkﬁ, r € R™.
Note that for every N € N the matrix (ajk);\f —1 1s cylindric, smooth and uniformly

elliptic.
240 2(1—-0
It is obvious that &, = _(x,; + ) + ( 5 )x;’ ke N.
A straightforward computation shows that |[p* — Pyn#|, — 0 in L% :=
L?(RN, ) as N — oo, provided my, = 2k + 2p — 1, k € N and numbers (sj)ren

are such that

Zm%l (F(mk/Q +1— p)) ﬂsimkz/jfp < o0
o I'(mi/2) :

For example this condition is satisfied if we take the sequence (si)ren to be
bounded.

14

One can verify directly that vy < 2|1 —§| and vy < 5

, N eN.

(23 +0)xr  2(1—0)xy,
(23 + 1)s (2 +1)%7
condition (i)(a) of Theorem 2.2 is satisfied. A straightforward computation
shows that that if § € (0,3] U [9,00) then condition (i)(b) holds for arbitrary
positive (sg)gen. of Theorem 2.2. Tt is also readily seen that the sequence

We choose & = —

n € Nk =1,...,n. Then
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&n = —s 'z, m e N, k = 1,...,m satisfies condition (ii(b)) with g9 = 0 and
0(50) =0.

Hence, by Theorem 2.2 the operator £ [ FC;° is strongly unique in L? for all
p>3/2.

Appendix: Auxiliary inequalities

Let v € FC*(RX) and quantities 7. ,, I., and J., be defined as in the previous
section (with v replacing the solution u of (4)). (Recall that then x. = [Vuv]??).
We use the same summation convention as in section 4.

Below we present several estimates which are used in the proof of Proposition
3.3. It is noteworthy that Lemma A.1 is an extension of the Gagliardo—Nirenberg
inequality to the case when the matrix of coefficients is not the identity. Let us
stress that the function v need not be a solution to a Cauchy problem. Lemma
A.2 is an elementary statement which is needed in the proof of Lemma 4.3.

Lemma A 1. Put Av =Y}, > (Vi + B)(ar;Vjv), d > K. Then
Toa = || IVolall52 < 2[[0] 2]l Vo[22 A00]13 + 2(p — 1)*[|v]| 2 Jo.a,
forp>2 (Jou:=lim._oJ., =4(p— 1) |V|Vulp~ %), and
T.o < 2|0l + 2([[vlI% + ) lIxAvll3 + 2(p — 1)?[J0[12, J-.a,
for1 <p<2.

Lemma A 2. If 3 — ﬁ <p< % then there exist positive constants

K(go,p) and Cy,,, such that for sufficiently small 6 > 0

2(p—2) — -2
(1_50)Ia,a+ (p ) 480(]9 ) Ea_go‘p_2|\/ [EaJEa 5Izsa_05 )J,a

> K(e0,P)Jea — Cepp Sup x| Volavall3. (36)

Moreover, if p < 2 then

2(p—2) — -2
(1 - 50)18,(1 + (p ) 480(]9 ) ECL - 80‘]) - 2| V [E CLJECL 5Izsa - C(S )2J8,a

2 K(50>p)ja,a - an,p Sl(]ip HX8|VU|aUd||2'

Proof of Lemma A.1. Integration by parts yields

Tea= (W[VVZ? Aw) = (p = D (u[VUlZ H(VIVOL

e,a

Vv)a). (37)

g,a’
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Note that V[Vv]Z, = V|Vu|2. Therefore, |(V[Vv]Z,, Vv)a| < [Vo[o|VIVV[2]4 by

the Schwarz inequality. Thus, the absolute value of the last term in the RHS of
(37) does not exceed

_ 1
[p = Hllvlloe{ VUL V0lal VIVULEla) < 5 Tea + (0 = DP[[0ll5 o0 (38)
Consider the first term in the RHS of (37). Using the Young inequality we
estimate it by

(xeelvl, xeelAavl) + (xel VU[Z, Xl Aqvlfv])

1 g2
< ZH)@W”%H% + ZHM”H% + ([[vll3, 4 %) Ix=Aqv]]3- (39)

If p > 2 then we can pass to the limit as € — 0 in (39). This yields the first asser-
tion. If p < 2 we observe that £?||x.v[|3 < *72||v||3 and [Vv[2x. < [Vo]2,! Vo,

and combine (37)-(39) in order to obtain the second statement. O

1
Iea)? .
Proof of Lemma A.2. Let first p > 2. Setting r := (J’ ) we rewrite the LHS
of (36) as follows 7

Ja,a
4

(4(1 — 0 — 8)r* — deolp — 2|r + 2(p — 2) — (g0 + 4¢d)(p — 2)?) = =2 F(r).

We need to find all p such that F(r) > 0, » > 0. A direct computation shows
2
that if p € [2, —) then the discriminant of the quadratic function F' is negative,
€0
provided ¢ is small enough.
Now we assume that p < 2. The following inequality holds.
Jea < (4+61) g + Cs,|Ix:| Vol T3, V61 > 0. (41)

We give the proof of (41) below.
Making use of the Cauchy inequality and (41) we estimate the LHS of (36) from
below by

[2(p = 2) + 1= 29+ 200(p — 2) — 20(p — 2)? = Coy 8| Lo = Collxe V0la T3
= [G(p) - Cao,pé]la,a - O(SHXS‘VU‘CLT”g?

3
IS
1+\/1+3€0 )

Hence K (€0,p) = G(p) — Cc, p0 > 0 provided 6 is small enough. This proves the
second assertion. Inequality (36) now follows from (41).

for every § > 0. It is easy to verify that G(p) > 0 provided p € (3
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Now we prove inequality (41). First we notice that for any f,g,h € R? the
following inequality holds

d
Z fiaa(Viagn)gihe < valflalglalPla- (42)
ik l=1
We observe that
Vi V|2 = Z 2(Vijv)alel’U + (Via;)VoVo. (43)
et
Hence,
IVIVol2]2 < 21AD*0[3 g0 [VIVU[2al Vo 4+ 0a VIVO[2] o V0.
This yields (41). O

Finally, we prove inequality (23). Since V[V]Z, = V|Vvl|2, one gets

Z ak]VkvV alZV U)VZ[VU]QP 4
1,9,k,l
:(p — 2)[V”U]?ina_6 [akjvkv(vjali)vivvlwwz + aliakjka(V?iU)VAV’Uﬁ] .

i7j’k7l

Using (43) we obtain

1 1
> ayag; Vo V3oV Vol2 = §|V\w§\§ -5 > g (Vi VU2)(Vja) Vio V.

i7j’k7l i7j’k7l

Recall that J. , = 4([Vv]220|Vu[2|V|Vva]2). In order to estimate the remaining
terms we employ (42):

[ D [ Vio(Va) Vo Vi Vols] < val VIVl Voli < 0dl Volo VIV[R]a[Volea

Z"j7k)l
The last term is estimated in the same manner. This yields (23).
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