A CHARACTERIZATION OF HEREDITARY CATEGORIES
WITH TILTING OBJECT

DIETER HAPPEL

INTRODUCTION

Let k be an algebraically closed field and H a connected abelian k—category.
We assume that H is hereditary, that is the Yoneda Ext?(—,—) vanishes, and
we assume that H has finite dimensional homomorphism and extension spaces.
In addition H has a tilting object, that is some object 7' with Exti (T,7T) = 0
such that Homy(T,X) = 0 = Ext}, (T, X) implies X = 0. This concept was
introduced in [HRS] to obtain a common treatment of both the class of tilted
algebras (compare [HRi]) and the class of canonical algebras (compare [R2] or [LP]).
This common treatment lead to the definition of a quasitilted algebra. A quasitilted
algebra is the endomorphism algebra EndyT of a tilting object T € H. In [HRS]
quasitilted algebras are characterized by the following homological property. This
class coincides with the class of finite dimensional k—algebras of global dimension
at most 2 whose finitely generated indecomposable modules have either projective
or injective dimension at most 1.

It was shown in [HRel] that any hereditary category which is derived equivalent
to a hereditary category with tilting object automatically has a tilting object. So
one is interested in a description of hereditary categories with tilting object up to
derived equivalence. Possible approaches to this problem include a thorough inves-
tigation of quasitilted algebras via the homological characterization or a detailled
inspection of the essential features of the main examples. We will follow here the
second approach.

There are two main known types of such categories H; those derived equivalent
to mod H for some finite dimensional hereditary k—algebra H and those derived
equivalent to some category coh X of coherent sheaves on a weighted projective line
X, in the sense of [GL]. Because of the simple description of the corresponding
bounded derived category D®(H), it is possible to give a description of those in the
same derived equivalence class (see for example [H1] and also [LS]). Note that the
tilted algebras are those coming from mod H using an arbitrary tilting object, in
this case called tilting module, and the canonical algebras are those coming from
coh X using a special type of tilting object. The first type of hereditary categories is
characterized by the existence of some indecomposable directing object C' [HRel].
Recall that C is directing if it does not lie on a cycle of nonzero nonisomorphisms
between indecomposable objects.

The aim of this paper is to show that these two types are the only possible
hereditary categories containing a tilting object, and thereby proving a conjecture
stated for example in [Re].

The result has quite a number of consequences. We only mention that it follows
that a connected quasitilted algebra A (or even a connected piecewise hereditary
algebra) satisfies that either H'(A) = 0 or H?(A) = 0, where we have denoted
by H(A) the i—th Hochschild cohomology space of A. Clearly, H°(A) ~ k and
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Hi(A) = 0 for all i > 3. For details we refer to [H2] and [Re]. Moreover we have
that the characterization of tame quasitilted algebras in [Sk] is an easy consequence.
This conjecture was previously shown under additional assumptions. In joint
work with Reiten (see [H1]) it is proved that a hereditary category with tilting ob-
ject which contains nonzero projective objects is equivalent to mod H for some finite
dimensional hereditary k—algebra H. In [HRS] it was shown that representation-
finite quasitilted are in fact tilted algebras, so the conjecture holds for this repre-
sentation type. It was shown in [Sk] that tame quasitilted algebras can only arise
as endomorphism algebras of tilting objects in hereditary categories from the list
above. In [L] it was shown that any noetherian hereditary category with tilting
object which does not contain a nonzero projective object is a category coh X of
coherent sheaves on a weighted projective line X. This was generalized in [HRe2]
in the following way. Any hereditary category with tilting object which contains
a simple object is derived equivalent to a category of coherent sheaves or derived
equivalent to mod H for some finite dimensional hereditary k—algebra H.

We point out that the main result of this article implies that any hereditary
category with tilting object is derived equivalent to a noetherian hereditary category
with tilting object.

Note that any tilting object T in #H induces a torsion pair (7(T"), F(T)) on H,
where T (T') = FacT, the factors of finite direct sums of copies of T. We say that
X € H is torsionisable, if X € T(T') for some tilting object T € H. We also say
that E € H is exceptional, if Ext}, (E, E) = 0.

The basic strategy of the proof of the main result is as follows. Assume that
H is not equivalent to some mod H where H is a finite dimensional hereditary
k—algebra. When H has some simple object, then we know that H is derived
equivalent to some category coh X [HRe2]. Note that the converse does not hold.
So we may assume that H does not contain a simple object. But then it was shown
in [HRe2] that for an indecomposable torsionisable exceptional object E € H the
right perpendicular category

Et = {X € #|Homy(E, X) = Ext},(E, X) = 0}

is equivalent to mod H for some finite dimensional hereditary k—algebra H. We
will recall some more features on perpendicular categories in section 1. It is easy
to see that one may assume that H is wild [HRe3]. In this case we will construct
a directing object in H, and the result will follow from [HRel]. Actually we will
assume to the contrary that there are no directing objects and will come up with a
tilting object and an infinite chain of proper epimorphisms over the corresponding
quasitilted algebra. We should point out that some arguments were inspired from
the presentation of the results in [Ke]. These more technical results will be presented
in section 2. The main result will be dealt with in the final section.

The category H is known to have Auslander-Reiten sequences (almost split se-
quences), and (when H is not equivalent to some mod H for a finite dimensional
hereditary k—algebra H) there is an equivalence 7 : H — H with the property that
if0 > A — B — C — 0is an almost split sequence, then 7C' ~ A. It is also known
that the Grothendieck group Ko(H) is free abelian of finite rank [HRS]. For more
basic facts on hereditary categories with tilting object we refer to [H1], [HRS] and
[HRe2].

We denote the composition of morphisms f: X - Y andg:Y — Zin a
given category K by fg. When dealing with finite dimensional k—algebras we will
consider finite dimensional left modules. For unexplained representation-theoretic
terminology we refer to [R1] or [ARS].
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1. PERPENDICULAR CATEGORIES

In this section let H be a connected hereditary abelian k—category with tilting
object T. Denote by Hy the full subcategory of H whose objects are those of
finite length, and by H. the full subcategory of H where each indecompoable
summand of the objects has infinite length. Let Hg;, be the full subcategory of H
where each indecomposable summand of the objects is directing. Recall that an
indecomposable object X € H is said to be directing, if X does not lie on a cycle
of nonzero nonisomorphisms in H between indecomposable objects.

We will frequently use the concept of minimal right (resp. left) approximations
(compare [AS]). Given two objects X,Y € H, then we have a map f : X! - YV
(resp. g : X — Y1) with the property that the induced map Homy (X, f) :
Homy (X, X*) — Homy(X,Y) is surjective (resp. Homy(g,Y) : Homy (YY) —
Homy(X,Y)) is surjective. Note that ¢ = dimyHomy (X,Y’) and that as compo-
nents of f (resp. g) one uses a k—basis of the vector space Homy(X,Y). We call f
the minimal right add X —approximation of Y, where add X is the full subcategory
of ‘H formed by finite direct sums of direct summands of X. We call g the minimal
left add Y —approximation of X. In case that End X = k we also have that the
induced map Homy (X, f) is an isomorphism.

If T € H is a tilting object we have the associated torsion pair (7 (T"), F(T))
where

T(T) =FacT = {X € H|Ext},(T,X) = 0}

and

F(T) = {Y € H|Homy(T,Y) = 0}.

Recall that for an indecomposable exceptional object E € H there are defined
the right and left perpendicular category E+ and +E by

Et ={X € #|Homy(E,X) =0 = Ext},(E, X)}

LE = {X € #|Homy(X,E) = 0 = Ext},(X,E)}

If H is not equivalent to mod H for a finite dimensional hereditary k—algebra
H, we know that the Auslander-Reiten translation 7 = 75 is an equivalence on H.
In this case it easy to see that 7 induces an equivalence from +E to E+.

If E is indecomposable we have the Auslander-Reiten sequence

0—-7EFE— M — E—0.

The following collection of known results is essential for the subsequent develop-
ment. The first two assertions are contained in [HRe2] as 4.11 and 2.10. The third
follows from [LM] and [R1], while the last is contained as 3.4 in [HS].

Theorem 1.1. If E € H, is an indecomposable torsionisable exceptional object,
and

0=>7E—+M—-E—0
is the Auslander-Reiten sequence, then the following holds.
(i) E+ = modH for some finite dimensional hereditary k—algebra H with M €
Et and rkKo(H) = rkKo(H) — 1.
(ii) g H ® E is a tilting object in H and Endy(nH ® E) = H[M] (the one-point
extension algebra of H by M ).
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(i) If H is a tame algebra, then H is derived equivalent to cohX for a weighted
projective line X or to mod H' for a finite dimensional hereditary k—algebra
H'.

(iv) If H[M] is not a tilted algebra and M is decomposable, then M = M; & Ms
with My, My indecomposable. My, My are pairwise orthogonal and exactly one
of the indecomposable summands is a direct summand of H.

We point out that in the situation of 1.1 (iv) it was shown in [HS] that one
component of E is representation-finite of type A, for some r € N. Later we will
assume that the other component is not of tame representation type, i.e. that the
underlying graph is not a Euclidean diagram.

The following two easy lemmas will be useful in the next section. They give for
special tilting objects alternative descriptions of the torsion and torsionfree classes.

Lemma 1.2. Let E € Hoo be an indecomposable torsionisable exceptional object
with E+ = mod H for some finite dimensional hereditary k—algebra H. If T = g H®
E, then T(T) = {X € H|Ext;)(E,X) = 0} and F(T) = SubTE, the subobjects of
finite direct summands of copies of TE. Moreover for each X € F(T') there exists
an exact sequence 0 - X — 7E" - Y — 0 with Y an injective H—module and
some r € N.

Proof: Trivially, T(T) C {X € H|Ext},(F,X) = 0}. For the converse inclu-
sion let X € H with Ext},(E,X) = 0. If Homy(E,X) = 0, then X € E*, so
Ext},(yH,X) = 0 and so X € T(T). If Homy(E,X) # 0 consider the mini-
mal right add E—approximation f : Ef — X. Then cokf € EX C T(T) and
imf eFacT =T(T),so X € T(T), since T(T) is closed under extensions.

Trivially Sub7E C F(T), since 7E € F(T') and F(T) is closed under subobjects.
For the converse inclusion let X € F(T), so 0 # Ext},(E,X) ~ DHomy (X, 7E).
Consider the minimal left add 7E—approximation g : X — 7E" of X. Thus we
have that Homy (kerg,7E) = 0, so kerg € T(T) by the first part. But then
Homy (ker g, X) = 0, so ker g = 0, hence X € Sub7E.

For the last part of the assertion, consider for X € F(T) the minimal left
add 7 E—approximation g : X — 7E" which we know to be injective. So we have
an exact sequence

(*) 0-X—>7E">Y —=0.

Apply Homy (E, —) to this sequence and use that X, 7E € F(T) then yields that
the following sequence

0 — Homy (E,Y) — Ext}, (E, X) —2— Ext},(E,7E") - Ext},(E,Y) =0

is exact. Since End E ~ k, we infer that ¢ is an isomorphism, so Y € E*. Let

7Z € E*. Apply Homy((Z,—) to the exact sequence (x). This yields a surjec-

tion Ext}, (Z,7E") — Ext},(Z,Y) — 0. Now Ext} (Z, 7E") ~ DHomy(7E",7Z) ~

DHomy (E", Z) = 0 shows that Ext},(Z,Y) = 0, hence Y is an injective H—module.
We will also need the dual of 1.2.

Lemma 1.3. Let E € Ho, be an indecomposable torsionisable exceptional object
with *E = mod H for some finite dimensional hereditary k—algebra H. Then T =
E® D(Hpyg) is a tilting object where D(Hpr) is the injective cogenerator in mod H.
Moreover T(T) = FacE and F(T) ={Y € H | Homy(E,Y) = 0}.

Proof: Let 0 » E — 7~ M — 7~E — 0 be the Auslander-Reiten sequence
starting at E. Then it is straightforward to check that 7~ M € LE. But then it
follows that Ext}, (T, T) = 0, since Ext}, (=M, D(Hg)) = 0, for D(Hp) is injective.
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Let 0 # X € H with Homy (T, X) = Extl, (T,X) = 0. Then Homy(r X,T) =
Ext} (7= X,T) = 0 shows that 7~X € +E and so Homy (7~ X,D(Hpu)) # 0, a
contradiction. So T is a tilting object in H.

Trivially F(T) C {Y € H|Homy(E,Y) = 0}. Conversely, let Y € H with
Homy (E,Y) = 0. So Ext}, (7Y, E) = 0. If Homy(7 Y,E) = 0, then 7Y €
LE. But then 0 = Ext} (r"Y,D(Hpy)) ~ Homy(D(Hy),Y), so Y € F(T). If
Homy (77Y, E) # 0 consider the minimal left add E—approximation f : 77Y — E"
of 77Y. Then ker f € +E, so Extl (ker f, D(Hy)) = 0. Since im f is cogenerated
by E we infer that Ext}, (im f, D(Hg)) = 0. Thus also 0 = Extj, (7Y, D(Hpu)) =
Homy(D(Hg),Y), hence Y € F(T).

Trivially FacE C T(T). Conversely let 0 # X € T(T'). Thus Homy (7~ X,T) =
0.S0 7~ X ¢ L+E, since D(Hp) is an injective cogenerator. Thus we have that 0 #
Ext}, (77X, E) ~ Homy/(E, X). Consider the minimal left add E—approximation
g: E% — X of X. By the first part of the proof we deduce from Homy (E, cok f) =0
that cok f € F(T). Since X € T(T) we infer that cok f = 0, or equivalently that
X e FacE.

We will also need the following consequence of 1.2.

Corollary 1.4. Let E € Ho be an indecomposable torsionisable exceptional object.
If X € H satisfies Ext (E, X) = 0, then X is torsionisable.

2. SPECIAL TORSION PAIRS

We keep the notation from the previous section. From now on we will assume
that H is a connected hereditary abelian k—category with tilting object satisfying
(a‘) H=Hoo,
(b) Hair =0 and
(c) if E € H is an indecomposable torsionisable exceptional object with E+ =
mod H for some finite dimensional hereditary k—algebra H, then no connected
component of H is tame.

Note that these assumptions in particular imply that 7 is an equivalence. Note
that under the assumption (b) it follows from [HS] by using the result in [HRel] that
the perpendicular category of any indecomposable torsionisable exceptional object
has at most two connected components and that for any tilting object T' € H we
have that EndyT is quasitilted and not tilted again using [HRel].

The main aim of this section is to show Corollary 2.11. For this we will need a
series of lemmas which will show certain properties of the torsion pair associated
with an indecomposable torsionisable exceptional object £ € H. If E is such an
object with E+ = mod H for some finite dimensional hereditary k—algebra H, then
we put Ty = g H® E and denote by (Tg, Fg) the associated torsion pair. As above
we denote by 0 - 7E — M — E — 0 the Auslander-Reiten sequence ending at
E. Let A = H[M] = EndyTE be the corresponding quasitilted algebra. We denote
by Homy(Tg, —) the functor from #H to mod A. We will use that this functor is an
equivalence from Tg onto a certain subcategory of mod A. For details we refer to
[HRS]. If the middle term M is decomposable, we know from 1.1 that M = M; @ M>
where M7, My are both indecomposable. We denote the unique direct summand of
M which is a direct summand of Tg by Mj.

Lemma 2.1. Using the above notation we have that the induced map My — E
18 mono and that EndyMs = k. Also we have that the induced map My — E is
epi. Moreover there exists an integer r < rkKo(H) — 3 and a chain of irreducible
monomorphisms
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Ml(r) — Ml(r—l) ey Ml(l) s F
where Ml(r) has an indecomposable middle term in the Auslander-Reiten sequence
ending at Ml(r). Moreover E is filtered by T*le(r) foro<j<nr.

Proof: Indeed, since M is indecomposable exceptional we have that Endy M; =
k and so dimyHomy (M, E) = 1. Since 0 = Ext}, (M, T) ~ DHomy (T, 7M;), we
infer that 7M; € Fg. So it follows by using 1.2 that the induced map 7M; — 7FE is
mono and so is My — E. Since there exists an irreducible map f : My — E we have
that f is either epi or mono. Since My € E*+ the map f is epi, since otherwise M,
would be projective in E-+ in contradiction to 1.1 (iv). Since H[M] is quasitilted
we conclude from [HRS] and [HS] that Endy M = k.

Iterating this argument gives for each indecomposable torsionisable exceptional
E € H, with E+ = mod H for some finite dimensional hereditary k—algebra H, a
chain of irreducible monomorphisms

Ml(r) — Ml(r_l) — e Ml(l) — B

where Ml(iﬂ) € Ml(i) " s projective for 1 < ¢ < r — 1. We prove by induction on
i that M{" € EL. For i = 1 this holds by assumption. Since M — (¥ is
mono and Ml(i) € E+ we have that Homy (E, Ml(i+1)) = 0. By induction, applied to
VeV VI (i+1) 1+ 1+

the pair M; "/, M;"’, we have that M, € M;” .AlsoTE € M;"’ . Moreover
7E and MI(HI) belong to different connected components of MI(I)L, hence 0 =
Homy, (M), 7E) ~ DExt}, (E, M) shows that M{") € E+. So the M[”
are pairwise nonisomorphic indecomposable H —projectives for 1 < < r. Since H
is assumed to be wild it follows by using 1.1 (i) that r < rk Ko(#H) — 3. Choose
maximal then MI(T) has an indecomposable middle term in the Auslander-Reiten
sequence ending at M{".

We will show the last assertion by induction on r. For r» = 0 there is nothing to
show. By induction we have that M) is filtered by 7=9 M") for 0 < j < r—1. We
consider the Auslander-Reiten sequence starting at Ml(l)

<ul

T, A 7?’)

0— MM (mn), P er ~—L —u® 50

Again by induction we infer that cok u' = T_TMl(T). But then also cok i = T_er(T),

hence the assertion.

In analogy to the theory of wild hereditary algebras we will call objects X, whose
middle term in the Auslander-Reiten sequence is indecomposable, quasisimple ob-
jects.

Dually, given E € H indecomposable torsionisable exceptional, with +FE =
mod H for some finite dimensional hereditary k—algebra H, there exists an integer
s <tk Ko(H) — 3 and a chain of irreducible epimorphisms

E—»Nl(l) —»N1(2) —» '-~—»N1(s)
with Nl(s) quasisimple. Moreover E is filtered by 77 Nl(s) for 0 < j <s.
For later reference we state the following result which was basically shown in
[HRe3].

Lemma 2.2. Let E be an indecomposable torsionisable exceptional object, then E
18 not T—periodic, so T*E # E for all i # 0.



A CHARACTERIZATION OF HEREDITARY CATEGORIES 7

Proof: If E is T—periodic, then each object in the connected component of the
Auslander-Reiten quiver of A containing F is T—periodic (see for example [HPR]).
By the previous lemma we thus have a quasisimple torsionisable exceptional F
which is 7—periodic. Let M be the indecomposable middle term in the Auslander-
Reiten sequence ending at F. Then it was shown in the proof of 1.1 in [HRe3] that
M is Tp1 —periodic. Thus F* is tame which contradicts the assumption (c).

We will first consider this special type of objects and will then extend these
results to arbitrary objects.

Lemma 2.3. Let £ bg an idecomposable torsionisable exceptional quasisimple ob-
ject. Then Ezty (E,7'E) = 0 for all i # 1,i > 0 and Homy(7'E,E) = 0 for all
i > 1. In particular 7°E € Tg for alli # 1 and i > 0.

Proof: Since E is exceptional we have that Ext} (E, E) = 0. Since E is qua-
sisimple the Auslander-Reiten sequence 0 — 7E — M — E — 0 satisfies that
M is indecomposable. Since Endy M = k and E is exceptional it follows that
Homy (7E, E) = 0. But then Ext}, (E,7>E) ~ DHomy(7E, E) = 0. We will show
the assertion by induction on 4. So assume that Homy (7 E, E) = 0.forall 1 < j <i
and i > 1. Then Ext} (E,7""'E) ~ DHomy ("' E,7E) = DHomy (7'E,E) = 0.
If Homy (7t E, E) # 0 then any nonzero map f : 7t1E — E is either mono or
epi, since Ext}, (E, 771 E) = 0 by [HRi]. First we assume that we have a monomor-
phism 7**'E — E. By 2.2 this map is proper. Then Homy(E,7'E) = 0 and
so 7"H'E € E+ = mod H for some finite dimensional hereditary k—algebra H.
Moreover it follows from 2.3 in [HRe2] that 77! E is a projective H—module. Let
A = H[M] be the one-point extension algebra of H by M. Since A is quasitilted
and not tilted we infer that M is a regular H—module. Let I' be the connected
component of the Auslander-Reiten quiver of A containing M. We have a unique
(up to isomorphism) non-split exact sequence 0 — 72E — N — M — 0 in H, since
dim;Ext}, (M, 72E) = dimyDHomy (72E,7M) = 1. Since 72E, M € Tg, we have
that N € Tg. Let

*)
!

T
tTEe X —— M =0

be the Auslander-Reiten sequence in H ending at M. Then 72E = kerm = kerrn’
shows that N ~ X. Since 7E € Fg it follows that 0 = 72E - N - M — 0is a
relative Auslander-Reiten sequence in Tg.

Using the tilting functor Homy (Tg, —) we see that Homy (Tg, 7?E) € . By the
inductive hypothesis we have that 77/E € Tg for 2 < j < i+ 1. Since Tg is closed
under extensions we also have that 0 — 7 'E — 79 M — 7/E - 0for 2 < j <i
are relative Auslander-Reiten sequences in Tg. Using again the tilting functor we see
that Homy (T, 7' E) € T for 2 < j <i+ 1. But 7+ E is a projective H—module.
So M and Homy (Tg, 71 E) both lie in T'. This shows that T' coincides with
the preprojective component of mod H, hence M is a preprojective H—module, a
contradiction.

If 7'E — E is an epimorphism it follows that E € 1(7+1E) is injective, or
equivalently that 7=~ E € 1 E is injective. So the dual argument applies by using
the tilting object T' = E®D(Hp), where D(Hp) is the injective cogenerator in - E.
The inductive hypothesis then shows by using 1.3 that 77 E € F(T") for 1 < j < i.
Also M € F(T'). As above we may show that Ext}, (7', M) and Ext}, (T',7 7 E)
for 1 < j < i both lie in the same connected component of the Auslander-Reiten
quiver of A = End#T7". Note that this endomorphism algebra is isomorphic to the
one-point coextension algebra [r~ M|H of H by 7~ M. Since A is not tilted we infer

0—-717M
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that 7~ M is aregular H—module. Now Ext}, (T",7 ‘E) is an injective H—module,
so Ext},(T", M) = DHomy (7~ M, D(Hp)) = 7~ M is preinjective, a contradiction.

Hence 7'E € Tg for all i # 1 and Homy(7*E, E) = 0 for all i > 1,7 > 0 which
finishes the proof of the lemma.

Lemma 2.4. Let E be an indecomposable torsionisable exceptional quasisimple ob-
ject. Then there exists m > 0 such that Homy (E, 77 E) # 0 for all j > m.

Proof: By the previous lemma we have that 7/ E € Tg for all j # 1. Assume to the
contrary that for each m > 1 there is some j > m with Homy (E, 7/ E) = 0. Since
179 E € Tg we have that 77 E € E+ = mod H for some finite dimensional hereditary
k—algebra H. If Homy (E,77~'E) # 0, then any nonzero map f : E — 7971 E is
either mono or epi, since Ext},(r"~'E, E) ~ DHomy(E, 7/ E) = 0 (see [HRi]). If
f is epi, then 77~'E € 1 E is injective. Since 7: *E — E* is an equivalence, we
infer that 77 F is injective in E+. If f is mono, then E € (7~'E)' is projective,
or equivalently 79t E € E* is projective. Since E is not T—periodic by 2.2 and
there are only finitely many indecomposable projectives and injectives in E+ up to
isomorphism there exists m > 1 such that Homy(E,7?E) = 0 for all j > m. But
then 77 E € E+ for all j > m. As above let A = H[M], so we have that 7{ X = 75X
for all i > 1 and X = Homy (Tg,7™E). But then Hompg (M, 75 X) = 0for alli > 0
by 2.5.5 in [R1]. Since H is wild, X is not a regular H—module by 10.5 in [Ke].
Since TI}j M is a sincere H—module for all j sufficiently large by 10.3 in [Ke] we
infer that X is not a preinjective H—module. So X is a preprojective H—module,
but this contradicts the fact that 7%, X is indecomposable for all i > 0.

The next two assertions extend the two previous results to not necessarily qua-
sisimple exceptional objects.

Lemma 2.5. Let E be an indecomposable torsionisable exceptional object. Then
there exists m > 0 such that Homy(E, 77 E) # 0 for all j > m.

Proof: Let w : E — F be the composition of the chain of irreducible epimor-
phisms such that F' is quasisimple. Assume that there are r such irreducible epi-
morphisms in this chain. By 2.4 there exists m > 0 such that Homy (F, 7/ F) # 0
for all j > m. Now there is a monomorphism p : 7" F — E. Let j > m and consider
for 0 # f € Homy(F, 77" F) the composition g = nf7/(u) : E — 79 E. Clearly
g # 0, so Homy (E, 77 E) # 0 for all j > m.

Lemma 2.6. Let E be an indecomposable torsionisable exceptional object. Then
there exists m > 0 such that 7 E € Tg for all j > m.

Proof: Let m : E — F be as above the composition of the chain of irreducible
epimorphisms such that F' is quasisimple. Assume that there are r such irreducible
epimorphisms in this chain. Let F' = ®_,7¢F. By 2.3 we have that Ext%{(ﬁ’, TIF) =
0 for all j > r + 1. But then it follows that also Ext},(E,77F) =0for all j > r+1,
since F has a filtration by 7"F, ..., F (compare 2.1). For j > 0 we have that 7/ E
is filtered by 79t"F,... 77 F, thus Ext},(E,77E) =0 for all j > r + 1.

We will also need the dual of the last lemma, which we state without proof.

Lemma 2.7. Let E be an indecomposable torsionisable exceptional object. Then
there exists m > 0 such that Homy (E,77E) =0 for all j > m. So for j > m we
have that =7 E is torsionfree for the torsion pair induced by T' = E & I, where I
is an injective cogenerator for ~E.
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The last two assertions of the next lemma will be quite essential in the proof of
the main theorem.

Lemma 2.8. Let E be an indecomposable torsionisable exceptional object. Then
the following hold.
(i) There exists m > 0 such that 7'E € FacE for all j > m.
(ii) For X € Tg there exists m' such that 7 X € Tg for all j > m'.
(iii) For X € H with Homy(E,X) = 0 there exists an integer m > 0 such that
Homy(E, 79 X) =0 for all j > m.

Proof: Let E+ = mod H for some finite dimensional hereditary k—algebra H. Let
S1,...,S,-1 be the simple H—modules. Since mod H € Tg by 1.2 we have that all
S; are torsionisable and clearly exceptional, since H is finite dimensional. By lemma
2.5 there exists m; such that Homy(S;,77S;) #0forall j > m; and 1 <i<n—1.
Also we choose by 2.5 and 2.6 an integer r such that Homy(E,77E) # 0 and
79E € Tg for all j > r. Let m = max(r,my,...,mn_1). Let j > m and consider
f : Bt = 77 E the minimal right add E—approximation of 77 E. By the choice of m
we infer that f # 0. Assume that f is not epi and let Q = cok f. Since W E € Tg
we have that Q € Tg and by construction we have that Homy (F, Q) = 0, hence
Q € E*. Thus @ has a simple factor S;. So we have an epimorphism 7 : 7/ E — S;.
Since 7 > m > m; we have that Homy(S;,77S;) # 0, so Homy (77 E,77S;) # 0,
since m is epi. But Homy(7'E,79S;) = Homy(E,S;) = 0, since S; € E+, a
contradiction, and so f is epi, and therefore 7/ E € FacE for all j > m.

The second assertion now follows easily from the first part. Let X € Tg. So
there exists T € add T and an epimorphism 7 : T — X. By () there is m > 0 such
that 79T € Fac T for all j > m, just take m as the maximum of the corresponding
numbers for the indecomposable direct summands of Tg. Since 7r : T — 79X
is epi for all j > 0, we have that 77 X € Tg for all j > m.

Finally, let X € H with Homy(E, X) = 0. By (i) we may choose m such that
7/ E € Fac E for all j > m. Thus for all j > m we have an epimorphism 7 : 7/ E —
E for some E € add E. But then 0 = Homy(FE, X) = Homy (7~ E,777 X) shows
that Homy (E, 7 7X) = 0.

Lemma 2.9. Let E be an indecomposable torsionisable exceptional object and let
P be an indecoposable projective in E+ with Homy (P, E) # 0. Then the minimal
add P—approzimation f : Pt — E of E is either mono or epi.

Proof: Assume that f is not epi, then im f is a proper subobject of E which lies
in E+ and therefore is projective. If ker f # 0, then 0 — ker f — Pt —im f — 0
is an exact sequence in E-, hence splits, but this contradicts the minimality of f.

The following lemma and its immediate corollary are crucial for the proof of the
main theorem in the next section.

Lemma 2.10. For each integer n > 2 there exists E indecomposable torsionisable
exceptional such that Homy (E,7"E) = 0.

Proof: Let n > 2 and assume that for all torsionisable exceptional objects E we
have that Homy (E,7"E) # 0. Consider f : E — (7"E)" and g : E* — 7"E be the
minimal left (resp.right) approximations. We claim that f is mono and g is epi.

First we show that f is mono. Assume that ker f # 0. Consider the induced
exact sequence 0 — kerf — E — imf — 0. By construction we infer that
Homy (ker f,7"E) = 0. Thus Ext} (r" !E ker f) = 0, shows that ker f is tor-
sionisable by 1.4. Since Homy(ker f,7"E) = 0 and im f — (7"E)" is mono we
have that Homy (ker f,im f) = 0. Now Ext}, (ker f, E) = 0 shows that ker f is ex-
ceptional by applying Homy (ker f, —) to the exact sequence from above. Now also
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0 — 7"ker f - ™E — 7"im f — 0 is exact, so Homy (ker f,7"ker f) = 0, since
Homy (ker f,7"E) = 0. But this is a contradiction, so ker f = 0, and thus f is
mono.

Next we show that g is epi. Assume that cokg # 0. Consider the induced
exact sequence 0 — img — 7"FE — cokg — 0. By construction we infer that
Homy (E,cokg) = 0. Now Ext} (7"E,cokg) = 0, shows that cokg is torsion-
isable by 1.4. Since Homy(E,cokg) = 0 and E®* — img is epi we have that
Homy, (im g, cok g) = 0. Now Ext}, (7" E, cok g) = 0 shows that cok g is exceptional
by applying the functor Homy (cok g, —) to the exact sequence from above. Next
we apply Homy (—,7"cok g) to the exact sequence from above. This shows that
Homy (cok g, 7"cok g) = 0, since 0 = Homy (E, cok g) = Homy (7" E, 7"cok g). But
this is a contradiction, so cok g = 0, and thus g is epi.

Now we choose F an indecomposable torsionisable exceptional object such that
the vector space Homy (E, 7" E) is of minimal k—dimension. Let E+ = mod H for
some finite dimensional hereditary k—algebra H and let 0 > 7E - M - E — 0
be the Auslander-Reiten sequence. By [H1] we may assume that M is a sincere
H—module. Let P(a) be a simple H—projective and let I(w) be a simple injective
in LE. Consider f : P(a)! = E and g : E — I(w)" the minimal right (resp. left)
approximations. Since M is sincere both maps are nonzero. By 2.9 and its dual
we know that f is either mono or epi and that the same holds for g. Since P(a) is
simple projective in E+ we have that 7~ P(a) is simple projective in +E. We may
choose a and w auch that 0 = Hom. g(7~ P(«), I(w)) ~ DExt}, (I(w), P(a)). If f
is epi, then Ext}, (I(w), P(a)) = 0 implies that g is not mono, hence g is epi. So we
have that either f is mono or g is epi.

We will first assume that f is mono. So we have an exact sequence

0— Pla)) - E—Q—0.
Clearly @ € Tg and Homy (P(a), @) = 0. This implies that @ is exceptional. Since
End E = k and Ext}, (E, P(a)) = 0 we infer that Homy(E, Q) = k, and so Q is
indecomposable. We also consider the exact sequence

0— 7"P(a)! = 7"E = 7™"Q — 0.
Since P(a) € Tg and the fact that the minimal right add P(a)—approximation
P(a)® — ™ P(a) is epi by the first part of the proof we infer that 7" P(a) € Tg.
Applying Homy (E, —) to the second sequence then yields that

0 — Homy(E, 7 P(a)t) — Homy(E,™E) —— Homy(E,™™Q) — 0

is exact. Applying Homy (—, 7" Q) to the first sequence yields that

0 — Homy(Q,7" Q) — Homy (E,7"Q)
is exact. The minimality assumption on E now implies that =« is injective, or
equivalently that Homs (E,7"P(a)) = 0, and so 7"P(a) € E*. Since P(a) is
simple projective in E* there is no proper epi from P(a)® onto 7"P(a), so s = 1
and P(a) = 7" P(«). But this contradicts 2.2.
Next we consider the case that g : E — I(w)” is epi. So we obtain an exact
sequence

0> K—>FE—Iw" —0.

By construction we have that 0 = Homy (K, I(w)) = Ext}, (77 I(w), K), hence
K is torsionisable. As above we may show that K is also indecomposable and
exceptional.
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We als have the exact sequence

027 "K 57 "E =717 "I{(w)" = 0.
Now Ext}, (I(w), E) = 0. By the first part of the proof we have that 7~ "I(w) is
cogenerated by I(w). Therefore we obtain by applying Homy (—, E) to this exact
sequence an exact sequence

Homy (77 "I(w)", E) = Homy (1~ "E,E) —— Homy (7 "K,E) — 0.

Also we have from the first exact sequence that

0 - Homy (77" K,K) - Homy (77" K, E)
is exact. Thus by the minimality assumption on E we have that = is injective, or
equivalently we have that 7 "I(w)” € *E. But then as above we conclude that
I(w) = 77"I(w), a contradiction to 2.2.
The proof of the next corollary is clearly inspired by some wing arguments in
the theory of wild hereditary algebras (compare for example [Ke]).

Corollary 2.11. There exists an indecomposable torsionisable exceptional object E
and some integer n > 2 such that Homy (E, 7" E) = 0 and Homy(E,T™E) # 0.

Proof: Let n > rk Ko(#). By 2.10 choose E an indecomposable torsionisable
exceptional object with Homy (E, 7"t E) = 0. Assume that Homy(FE, 77 E) = 0
for all j with 2 < j <n.

First we show that we may assume without loss of generality that E is quasisim-
ple. Indeed, let

E=FE.—-FE._1—>---—F - E
be the chain of irreducible epimorphisms such that Ey is quasisimple which exists
by the dual of 2.1. For each 1 < i < r we have that Ey € 1 E;. Since 7'Ej is a
subobject of F; we have that Homy (Ey,7°Eg) = 0for 1 <i<r. Ifr <j<n+1,
then 77 Ej is a subobject of 77~ "E,. and the epimorphism E, — Ej then shows that
Homy (Ey, 77 Fy) = 0 for all j with 2 < j < n.

So we have an indecomposable torsionisable exceptional object E which is qua-
sisimple and satisfies Homy (E, 7/ E) = 0 for all j with 2 < j < n + 1.

We now show by induction on r that for all » < n we have a chain of irreducible
epimorphisms

E.-»E._1—»--->FE »FE=F
with all E; exceptional for 1 <i <.

Let E4 be the indecomposable summand of the middle term of the Auslander-
Reiten sequence ending at Eg. We know that E; is not a direct summand of T'g,.
First we claim that Homy (Eo, 72Ep) = 0 implies that E; is exceptional. We con-
sider the exact sequence 0 — 7Ey — E; — Ey — 0. Indeed, 0 = Homy (Ey, 72 Ep) ~
DExt},(TEo, Ey), shows that Ext}, (7 E, E1) = 0 by applying Homy (7 Ep, —) to the
Auslander-Reiten sequence and using that 7Eq is exceptional. Since E; € Eg- this
shows that E; is exceptional by applying the functor Homy(—, E1) to the above
sequence.

Assume inductively that we have constructed a chain of irreducible epimorphisms

E. 1 »FE 23— —»E »FE=F
with all E; exceptional for 1 < i <r — 1 and exact sequences

0=27E;1 =2 E; =+ Ey—=0
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0—)TjE0—)Ej—)Ej_1—)O
for 1 <j <r—1 and that Ext}, (7 Ey, E;) =0for 1 < j <r—1.

Let E, be the unique indecomposable summand of the middle term of the Aus-
lander sequence ending at E,._; which is not a direct summand of Tg,_,. By 2.1 we
have an epimorphism E, — E,._;. We claim that Homy(Ey, 7"t Ep) = 0 implies
that E, is exceptional. Let

(1) (Z:>

0— TE’I‘—I e ET@TET_Q —_— E,-_l —0
be the Auslander-Reiten sequence in H ending at E,._;. Then by induction we have
that Ey = cok i/ which is isomorphic to cok u. Thus we have an exact sequence

(*) 0>7E._1— E.— Ey—0.
Since 0 = Homy, (Ey, 7" Ey) = Ext}, (7" Ey, Eg) and Ext} (7" 'Ey, E,_1) = 0 by
the induction hypothesis we infer that Ext}, (77 Eo, E,) = 0 by applying the functor
Homy (7" Ep, —) to the sequence ().
By induction we have that 77 1Ey = ker 7 7. So 7" Ey = kerm = ker«’. Thus
we also have an exact sequence

(x¢) 0= 7"Ey = E, = E,_; = 0.
Applying Homy(—, E,) to (xx) and using that E, € E;- ; and Ext} (7" Ey, E,) =0
then shows that E, is exceptional.
So we have constructed a chain of irreducible epimorphisms between exceptional
objects of length equal to rk Ko(H), which contradicts the dual of 2.1.

Thus we have an indecomposable torsionisable exceptional object £ and some
integer n > 2 such that Homy (E, "' E) = 0 and Homy (E,7"E) # 0.

3. THE MAIN RESULT

We keep the basic notation from the previous sections. We are now able to show
the characterization theorem of hereditary abelian k—categories containing a tilting
object.

Theorem 3.1. Let H be a connected hereditary abelian k— category with tilting ob-
ject. Then H is derived equivalent to mod H for some finite dimensional hereditary
k—algebra H or derived equivalent to cohX for some weighted projective line X.

Proof: As pointed out in the introduction we may assume without loss of gener-
ality that H satisfies the extra assumptions stated at the beginning of section 2 by
using the results from [HRel], [HRe2] and [HS]. By 2.11 we have an indecompos-
able exceptional object E and some integer n > 2 with Homy (E, 7"t E) = 0 and
Homy (E, ™ E) # 0. As before we see that any nonzero map f : E — 7" E is either
mono or epi. We will first deal with the case that f is epi. So we have an exact
sequence

0->K—>E—>T1TE-=D0.

Now 7™ FE € L E is injective, so 7"t E = I(a) € E* is injective. We also have an
exact sequence

(*) 027K =7E = 71ME=1(a) = 0.



A CHARACTERIZATION OF HEREDITARY CATEGORIES 13

We claim that there exists an indecomposable torsionisable exceptional object
F such that the exact sequence (x) is contained in Tp.

If there exists an indecomposable projective E-—module P(3) with the property
that Homy (P(8), I(a)) = 0, then we apply Homy (P(3), —) to the sequence (x) and
obtain the following exact sequence

0 — Exty, (P(B),7K) — Extj,(P(3), 7E) — Ext},(P(8),I(a)) = 0.

Now 0 = Homy (E, P(3)) ~ DExt}, (P(8),7E) shows that for F = P(j) we have
that (%) is contained in 7.

If for all indecomposable projective E+—modules P(3) we have the fact that
Homy (P(8),I(a)) # 0, then we infer that P(«) is simple projective, where P(a)
is the projective cover of the socle of I(a). But then there exists a simple injec-
tive E+—module I(w) with Homy (I(w), I(a)) = 0. Apply Homy (I(w),—) to the
sequence (*). So we obtain the following exact sequence

0 — Extl, (I(w), 7K) — Bxtl, (I(w), 7E) = Ext}, (I(w), I(a)) — 0.

Now 0 = Homy(E, I(w)) ~ DExt} (I(w),7E) shows that for F' = I(w) we have
that (x) is contained in 7.
By 2.8 (ii) there exists an integer m > 1 such that

0= 7K - 7E—71""E 0.
is contained in Tg for all i > m. So we obtain an infinite chain of proper epimor-
phisms

TmE T pminp T ominp —)TZ"W

contained in 7. Moreover we infer that ker /"1 € T for all j > 0. Let F+ =
mod H' for some finite dimensional hereditary k—algebra H' and let A = H'[M'] be
the corresponding quasitilted algebra where M’ is the middle term of the Auslander-
Reiten sequence ending at F. Then Homy (Tr, /") is an infinite chain of proper
epimorphisms of A—modules, a contradiction.

Next we consider the case that the map f : E — 7"E is mono. Now P(a) =
77 "E € E+ is projective. We also have an exact sequence

() 0= 7P(a) >7E - Q — 0.

We claim that there exists an indecomposable torsionisable exceptional object
F such that the sequence (*x) is torsionfree for the torsion pair associated with the
tilting object T' = F @ I, where I is an injective cogenerator of - F. We denote this
torsionfree class by F.

If there exists an indecomposable injective E--—module I(3) with the property
that Homy (P(a), I(8)) = 0, then we apply Homy (I(8),—) to the sequence (*x)
and obtain the following exact sequence

0 — Homy (I(B), 7P(a)) = Homy(I(8),7E) — Homy(I(3),Q) — 0.

Now Homy (I(8),7E) ~ DExty, (E,1(3)) = 0 shows that we may choose F' = I(3).

If for all indecomposable injective E-+-—modules I(3) we have the fact that
Homy (P(a),I(8)) # 0, then we infer that I(«) is simple injective, where I(c)
is the injective envelope of the top of P(«). But then there exists a simple projec-
tive E+—module P(w) with Homy (P(a), P(w)) = 0. Apply Homy (P(w), —) to the
sequence (**). So we obtain the following exact sequence
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0 — Homy (P(w), 7P(a)) = Homy(P(w),7E) = Homy(P(w), Q) — 0.

Now Homy (P (w),7E) ~ DExt}, (E, P(w)) shows that we may choose F = P(w).
By 2.8 (iii) and 1.3 there exists an integer m > 1 such that

07 ""E=srt'E=s7m71Q = 0.
is contained in F for all ¢ > m. So we obtain an infinite chain of proper monomor-
phisms

—2n

copm=3np T “; Fm-2np T ”; Fom-npg [ s 7TME

contained in F. Moreover we infer that cok 7%y € F for all j > 0. Let 1F =
mod H" for some finite dimensional hereditary k—algebra H" and let A’ = [M"|H"
be the corresponding quasitilted algebra where M" is the middle term of the
Auslander-Reiten sequence starting at F. Then Ext}, (T”, 77" y) is an infinite chain
of proper monomorphisms of A’—modules, a contradiction.

This finishes the proof of the theorem.
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