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0. Introduction

According to the general structure theory of finite algebraic groups, the representation theory
of cocommutative Hopf algebras over an algebraically closed field k of characteristic p > 0
subdivides into disciplines that differ with regard to their methods and results. The by now
classical modular representation theory of finite groups is concerned with those Hopf algebras
whose dual algebras are semisimple. The representation theory of the blocks of these Hopf
algebras is governed by the structure of their defect groups. The theory of defect groups
rests on the Mackey decomposition theorem, which ensures that the relevant representation
theoretic properties are inherited by subgroups. Two other important features of classical
modular representation theory are the symmetry of the underlying algebras as well as the
invertibility of their Cartan matrices.

It turns out that none of these methods and results retain their validity upon passage
to distribution algebras associated to infinitesimal group schemes, i.e., cocommutative Hopf
algebras whose dual algebras are local. In default of a general block theory and methods
of descent one is led to employ geometric methods related to schemes of unipotent and
multiplicative subgroups. Roughly speaking, these tools allow the reduction of problems to
algebras whose module categories are amenable to the methods from abstract representation
theory. Following this philosophy we combine in this paper these techniques to classify the
tame infinitesimal groups of height < 1 as well as the blocks of their distribution algebras
in case the underlying base field has characteristic p > 3. The distribution algebra of an
infinitesimal group of height < 1 is the restricted enveloping algebra u(L) of its restricted
Lie algebra (L, [p]). Thus, our goal is to determine the structure of L and w(L) under the
assumption that the principal block of u(L) is tame.

The class of finite dimensional algebras (associative, with an identity) over an alge-
braically closed field £ may be divided into three disjoint classes (see [7, 13]). For the class
of representation-finite algebras, which have only finitely many isoclasses of indecomposable
modules, the representation theory is well understood. The second class, called the tame
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algebras, consists of representation-infinite algebras for which the indecomposable modules
occur in each dimension in a finite number of discrete and a finite number of one-parameter
families. The third class is formed by the wild algebras whose representation theory com-
prises the representation theories of all finite dimensional algebras over k. Accordingly, we
may realistically hope to classify the indecomposable finite dimensional modules only for
the representation-finite and tame algebras. The representation theory of arbitrary tame
algebras is still only emerging. However, special biserial algebras, which play a prominent
role in this paper, form a distinguished class of tame algebras whose representation theory
is rather well understood. Important examples of such algebras are provided by blocks of
group algebras with cyclic or dihedral defect groups (see [9, 14, 44]) as well as the algebras
appearing in the Gel'fand-Ponomarev classification of the singular Harish-Chandra modules
over the Lorentz group [34].

Our paper is organized as follows. In view of the results of [25] the Lie algebra L is
an extension of sf(2) by a representation-finite center. Basic properties of their enveloping
algebras are summarized in section 1. The important special case of a one-dimensional
p-unipotent center is addressed in section 2. We show that there are three isomorphism
types of such extensions, the trivial (split) extension, a nilpotent type and a semisimple
type. By combining filtrations of principal indecomposables by Verma modules with Galois
covering techniques we establish in section 4 the wildness of the extensions of nilpotent type.
The verification the special biseriality of the dense orbit of extensions of semisimple type
necessitates detailed information on certain extensions of the Kronecker algebra. At this
point the symmetry of restricted enveloping algebras with tame principal block enters in a
crucial way: it enables us to lift zero relations from radical cube zero algebras to arbitrary
extensions of the Kronecker algebra. With this result in hand, the special biseriality of
extensions of semisimple type is a consequence of the decomposablity of certain Loewy
factors of principal indecomposable modules. Here module varieties again enter the stage.

For the determination of the structure of the principal block of u(L) one may assume
that the toral radical of L is trivial. In section 7 we consider this case and show in Theorem
7.1 that the Morita eqivalence class of a tame principal block is entirely determined by the
dimension of the p-unipotent radical of L. It turns out that all tame blocks are special
biserial with exactly two simple modules and singular Cartan matrix. Moreover, u(L) is
tame whenever its principal block is. As a consequence subalgebras of tame restricted Lie
algebras may be wild, a fact which markedly contrasts with the modular representation
theory of finite groups. Theorem 7.4 presents the classification of the restricted Lie algebras
with tame principal block.

The theory of defects suggests that the principal block of a group algebra is the “most
complicated” block. In fact, the representation type of the principal block is “inherited”
by all other blocks. While such a relationship remains in effect for cocommutative Hopf
algebras with representation-finite principal block [24], the results of section 8 imply that
defect theory does in general not provide the right paradigm. Using reduced enveloping
algebras, we show in Theorem 8.10 that, for Lie algebras with non-trivial toral radical, the
restricted enveloping algebra u(L) may have wild blocks even if its principal block is tame.

The final section 9 provides an application by computing the Krull-Gabriel dimension of
restricted enveloping algebras.



1. Principal Indecomposables and the Gabriel Quiver

Throughout this paper we will be working over an algebraically closed field k of positive
characteristic p > 3. Unless mentioned otherwise, a k-vector space is assumed to be finite-
dimensional. Modules over a k-algebra A are always understood to be left modules. With
regard to restricted Lie algebras, we shall use [52] as a general reference for undefined ter-
minology. For basic notions from abstract representation theory the reader is referred to
2, 3, 14].

Given a k-algebra A, we let inds(d) be the set of isoclasses of d-dimensional indecom-
posable A-modules. We say that A is tame, if it is not representation-finite and if for every
d > 0 there exist (A, k[X])-bimodules Q. ..., Qmn@) that are finitely generated free right
k[X]-modules, such that all but finitely many elements of ind, (d) are of the form Q; ®xx) S
for some simple k[X]-module S and i € {1,...,m(d)}. It is well known that an algebra
is tame if and only if its basic algebra is tame. The reader is referred to [8] and [10] for
equivalent concepts of tameness.

Let (L, [p]) be a restricted Lie algebra with center C'(L) and restricted enveloping algebra
u(L). We denote by By(L) the principal block of the Hopf algebra u(L), that is, the block
whose idempotent is not annihilated by the co-unit of u(L). If By(L) is of tame representation
type, then [25, (6.4)] asserts that L/C(L) = sf(2), and that C(L) is the direct sum of a
torus and a nil-cyclic Lie algebra. The general structure of the central extensions of s/(2)
is well understood. Since the trace form of the two-dimensional standard sf(2)-module is
non-degenerate, and every derivation of s/(2) is inner, we have

H?(s0(2), k) — H'(s0(2),s(2)%) = H*(s((2),5((2)) = (0)

for the Chevalley-Eilenberg cohomology groups of the ordinary Lie algebra s/(2) with coef-
ficients in k (cf. [18, (1.3)]). Thus, H?(s{(2),C(L)) vanishes, and each central extension of
sl(2) splits, so that L = s£(2) @ C(L) (see [36, (VIL.3.3)]). The general theory of restrictable
Lie algebras (cf. [52, (IL.2.1)]) then shows that any central extension of the restricted Lie
algebra sf(2) by the center (C(L),[p]) has a p-map

(z,0)P = (&P y(2) 4 vlP)) Ve sl2), ve C(L),

where 1 : s{(2) — C(L) is a p-semilinear map.
For future reference we record the following important consequence of the above obser-
vations.

Proposition 1.1 Let (L, [p]) be a restricted Lie algebra over k.
(1) If L is a central extension of st(2), then u(L) is symmetric.
(2) If By(L) is tame, then u(L) is symmetric.

Proof. (1). In view of [47] it suffices to show that the adjoint representation ad : L — g/(L)
satisfies tr(ad z) = 0 for every « € L. This, however, follows directly from the decomposition
L =sl(2)® C(L) as well as sl(2) = [s((2), s{(2)].

(2). By [25, (6.4)] the algebra L is a central extension of sf(2), so that (1) applies. O
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In this section we study the principal indecomposable modules and the Gabriel quiver of
those central extensions of s/(2), where the toral part of the center is trivial. Specifically, we

let V' be an n-dimensional nil-cyclic Lie algebra with generator vy. Hence V = EB?;OI kv([jp ]i,

where U([)p]n =0 and n > 1. Given a p-semilinear map 1 : s{(2) — V, we denote by sf(2),,
the restricted Lie algebra with underlying k-space s£(2) @ V', whose product and p-map are
given by

[z +v,y+w| = [z,y] and (z+ )P =2V f )+ Vazesi2),veV,

respectively.
Given any restricted Lie algebra (L, [p]), we let Vp, := Vi (k) := {z € L ; 2Pl = 0} be the

?

rank variety of the trivial L-module. For an arbitrary u(L)-module M we recall that
V(M) = {z € Vi, ; M|uke) is not free} U {0}

is the rank variety of M. By general theory (27, 28, 40] V(M) is a conical affine variety
whose dimension coincides with the complexity of M. In particular, M is projective if and
only if V(M) = {0}.

If X C L is asubset of L, then X, denotes the smallest [p]-invariant subspace containing
X. The following result provides an easy necessary, yet, as will be seen in section 4, by no
means sufficient criterion for the tameness of By(s¢(2),).

Lemma 1.2 Suppose that By(sl(2)y) is tame. Then there exists xg € Vgy2) such that V =
(¥ (20))p-

Proof. Given any z € sf(2), we either have (¢(z)), = V or (¢(x)), C VP Assume
the Lemma to be false, and consider the restricted Lie algebra L' := sf(2),/VP. Then
L' = sl(2) & kw,, with w([)p] = 0. Moreover, for € Vy ) and w € kwy, we have (z +w)F =
zlP! + wlPl = 0, so that V;, contains the three-dimensional variety Vsy2) X kwy. On the other
hand, By(L') is tame or representation-finite, so that Rickard’s Theorem [43, Thm.2] implies
dim V;, < 2. This contradiction establishes the Lemma. O

Observe that the ideal I := u(sl(2),)V C u(sl(2),) is nilpotent, generated by the central
element vy, and that u(sl(2)) = wu(sl(2)y)/1. In particular, the algebras u(sf(2),) and
u(sf(2)) have the same simple modules.

It was shown in [38] that u(sf(2)) possesses p simple modules S(0),...,S(p — 1), where
S(i) is the simple highest weight module of heighest weight i € GF(p) and of dimension
dimy, S(i) = i + 1. For 0 < i < 222 the modules S(i) and S(p — 2 — i) belong to the same
block B(i). The simple module S(p — 1), the so-called Steinberg module, is projective. The
simple u(sf(2))-modules have no self-extensions, and dim;, Exti(sz(m)(S(z'), S(p—2—1)) =2
for 0 < i < p—2 (cf.[26, 42]). Our next result compares the Gabriel quivers of u(sf(2)) and
u(sl(2)y).

Proposition 1.3 Suppose that V = (¥ (Vse2)))p. Let S, T be simple u(sl(2),)-modules of
dimension < p — 1. Then we have dimy, Exti(sg(g)w)(S, T) = dimy, Exti(sg(Q))(S, T).
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Proof. Let M := Homy(S,T). The cohomology-5-term sequence associated to the spectral
sequence H"(u(sl(2)), H*(u(V), M)) = H™(u(sl(2)y), M) (see [41, (1.6.6)]) gives rise to a
short exact sequence
(*) (0) — Extyepa)(S.T) — EXtu(sE(Q (S, T) — — H'(u(V), M)*®
— Ext? 0 (S, T).

Since V' acts trivially on M, and sf(2), acts trivially on V, it follows that
(**) HI(U(V), M>s€(2)¢ ~ NSty o Homu(%@)w)(‘& T)_
If S 22T, then the latter space vanishes, and the asserted result follows.

Alternatively, we have to show that Extu(sg )(5,8) = ( ). By assumption, there exists

an element xg € Vg2 such that V' = (¢(z0)),. Smce iL‘[éD] = 0, the element = € u(sf(2),)

is nilpotent. We also note that zf = x[op I = Y(zo) lies centrally in u(sf(2)y). Accordingly,

the element zf, belongs to the Jacobson radical J of u(sl(2)y).
Now let
0)— 8 — M— S —(0)

be a self-extension of u(sf(2),)-modules. The above observation implies that
zg.M C JM

is a submodule of dimension dimy z5.M < 2dimy S — p < dimg S. As JM has no nonzero
submodules of dimension < dimy S — 1, we obtain 2 M = (0). In view of (¢(x)), = V, this
implies V.M = (0), so that M is a u(sf(2))-module. Since the u(s(( ))-module S possesses
no non-trivial self-extensions, the above sequence splits, whence EX‘ru(sg(2 )(8,8)=(0). O

Remark. Since S(p — 1) is a projective u(sf(2))-module, the exact sequence (x) shows that
EXti(sz(2)¢)(S(P —1),T)=(0) = EXti(se(2)w)(Ta Sp—1))

for every simple u(s¢(2),)-module T'2 S(p—1). Consequently, the block B(p—1) belonging
to S(p — 1) is primary. Moreover, (x) and (#x*) give rise to an isomorphism

EXtu(s€(2)w)(S(p —1),S(p— 1)) = Homy(s2),) (S(p — 1), S(p — 1)),
so that this group has dimension 1. Consequently, B(p — 1) is a Nakayama algebra.
Given a simple module S, we let P(S) and B(S) be the projective cover and the block

belonging to S, respectively. If S = S(i), then we write P(¢) and B(7) instead of P(S(7))
and B(S(17)), respectively.

Suppose that (v¥(Vse2)))p = V- Owing to (1.3) and [42, Thm.1] (see [26] for p = 3) the
algebra u(s((2),) has Zt blocks, B(0), . (p ), and B(p—1). For 0 <i < 22 the block
B(i) has two simple modules S(i) and S ( —1).



Corollary 1.4 Suppose that V = (¥ (Vy2)))p. We have IB(i) C J?B(i) for 0 <i < 22,
Proof. Let r,;s € {i,p— 2 — i}. Directly from [3, (2.4.3)] and (1.3) we obtain
Homu(sg(2)¢)(JP(r)/(J2 + [)P(T), S(S)) = Homu(sg(g)w)(JP(T)/J2P(T), S(S))

Accordingly, the two semisimple B(i)-modules JP(r)/(J? + I)P(r) and JP(r)/J*P(r) have
the same multiplicities, and are therefore isomorphic. It follows that IB(i) C J?B(z). O

In the following we let /(M) denote the length of a module M.

Lemma 1.5 Let S be a simple u(sl(2),)-module of dimension < p — 1. Then the factor
module vy P(S) /vi™ P(S) is the projective cover of the u(sl(2))-module S for 0 <i < p*—1.
In particular, dimy, P(S) = 2p"*™! and ((P(S)) = 4p™. Moreover, each of the two simple
B(S)-modules occurs in P(S) with multiplicity 2p".

Proof. Recall that I = u(sl(2),)V is the ideal generated by vy, and that u(sl(2),)/I =
u(sl(2)). Since P(S)/IP(S) = P(S)/vyP(S) is a projective u(sf(2))-module with top S, it
is the projective cover P(S) of the u(sf(2))-module S.

Left multiplication by the central element v induces a surjective, u(sf(2),)-linear map

P(8)/voP(S) = v P(S) /vy P(S)

for each 7 € {0,...,p" — 1}.
Note that k[vg] C u(sl(2)y) is the restricted enveloping algebra of the p-subalgebra

V C s(2)y. Hence P(S)|kpy, s, as a projective module for the local algebra Efvo|, free. As
k[vo] = k[X]/(X?"), we have

P(S)Ikfuo) = Klvo]” = k[X]/(X7")"

for some r € IN. Consequently, dim v P(S)/vi™ P(S) = r for 0 <4 < p® — 1. Thus, m; is
an isomorphism for every such i. Our assertions now follow from the well-known structure

of P(S) (cf. [42, Thm.1] and [26]). O

Remark. Let B C u(sf(2),) be ablock with simple modules Sy, Sa, P := Py@® P, its projective
generator. By (1.5) the simple module S; occurs 2p™ times as a composition factor of P;.
Thus, dimk Homu(sg(2)¢)(]:’i, Pj) = 2pn, and dimk Endu(s((2)¢)(P) = Spn.

We continue by determining the Loewy layers of the principal indecomposable u(s¢(2)y)-
modules. In view of the remark following (1.3) we only consider blocks with two simple
modules.

Proposition 1.6 Suppose that V. = (Y(Vsy2)))p. Let B C u(sl(2)y) be a block with two
simple modules Sy, Si. Then we have JP(S;)/JFLP(S;) = Spyi ® Seqi (with indices taken
mod(2)) for 1 < ¢ < 2p™ — 1. Moreover, J*™ 1 P(S;) = v JP(S;) for 0 <m < p" — 1, and
P(S;) has Loewy length 2p™ + 1.



Proof. We write P, := P(S5;) for ease of notation, and define
q = max{r € Ny ; J*"!P is properly contained in viP; V s <r}.

Then we have v{P, # (0), and by (1.5) viP,/vd™ P, is a principal indecomposable u(sf(2))-
module. Owing to [26, 42] this module has Loewy length 3, so that J2+3P, C vI*'P,
By choice of ¢ this implies J?*3 P, = q+1P We proceed by considering the short exact
sequence

(0) — J2q+3pi/J2q+4PZ, N J2q+2pi/J2q+4PZ, N J2q+2[)i/J2q+3Pi — (0).

Note that the right-hand term is a semisimple submodule of vIP;/vdt'P,. By (1.5) it is
therefore either zero, or isomorphic to S;. In the former case, we have J22P;, = (0).
Thus, v P, = J**3P; = (0), and J**!'P, is a semisimple submodule of the principal
indecomposable u(sf(2))-module vdP;. Thus, ¢(J**1P;) < 1. Thanks to (1.4) we have
JudP; C J*1 P, proving that ¢(J?*T1P;) > 3, a contradiction. Accordingly, the right-hand
term of the above sequence is isomorphic to S;. If the left-hand term is non-zero, then the
identity J2¢3P; = vt P; implies that it coincides with the top of vt P, /vd™ P = S;. An
application of (1.3) now shows that the above sequence splits. This readily yields J23P; =
(0), a contradiction.

Consequently, the first term vanishes, and we obtain (0) = J*3P, = ’US_HPZ'. Since
viP; # (0), (1.5) readily implies ¢ = p™ — 1, whence J?" 1P, = (0). Since we have seen
above that (0) # J%+2P; = J%" P,, it follows that the module P; has Loewy length 2p™ + 1.

Let m < ¢q. By our observations above, we have
vt P C JPR P C SR C g B,

with the right-hand inclusion being proper. Owing to (1.5) Jvj'P; is the unique maximal
submodule of v§"P; containing v{"* P;. Since JuJ'P; C J*" 1P, we have equality, and (1.5)
in conjunction with [26, 42| shows

'UE)nPi/JQm+1]Di ~ Sz : J2m+113i/c]2m+2pi ~ Si+1 oy Si+1 : J2m+2Pi/,U6n+1Pi ~ Sia

where the indices are to be interpreted mod(2). This readily implies the asserted result. O

2. One-Dimensional Central Extensions of s/(2)

In this section we will consider the case where V' = kv is one-dimensional. It will turn out
that the information obtained here actually suffices for the treatment of the general case.

Recall that for any p-semilinear map 1) : s£(2) — kvy we have a central extension s¢(2),,
with Lie bracket

[x+v,y+w]=[m,y] V.T,yGSg(Z), ’U,U)Ek’l}o,



and p-map
(z + v)P = 2Pl () Vx e sl(2), ve k.

The purpose of this section is to show that there are exactly three isomorphism types of these
Lie algebras. In the sequel, we let Aut,(L) be the automorphism group of the restricted Lie
algebra (L, [p]). Given g € Aut,(sf(2)) and o € k™, we consider

G SU(2) ® kvg — sl(2) D kvy ; =+ v— g(x) + av.
Obviously, g, is an isomorphism of vector spaces.

Lemma 2.1 Let g € Auty(sl(2)) and o € k*. Then go : sl(2)y — 5L(2)a(pog-1) 5 an
isomorphism of restricted Lie algebras. Moreover, if sl(2)y = sl(2)y, then there exist g €
Aut,(sl(2)) and a € k* such that ' = a(ip o g7h).

Proof. Let x,y € sl(2), v,w € kvy. Then we have

oz +v,y+w]) = Gallz,y]) = g9([z,y]) = [9(), 9(v)] = [9(x) + av, g(y) + aw]
[90(2); Ga(Y)],

as well as
oz + o)l = (g(z) + av)? = g(a) + a( o g71)(g(2)) = g(z) + arp(x)
= Gal@? +9(2)) = gal(z +0)7),
as desired.

Let p @ sl(2)y, — sl(2)y be an isomorphism of restricted Lie algebras. Then p is
an automorphism of the ordinary Lie algebra L := sl(2) @ kvy. Since s¢(2) = [L, L] and
kvyg = C(L) is the center of L, the map p restricts to automorphisms of these subalgebras.
Hence there exist g € Aut(sf(2)) and o € k* such that u = §,. As sf(2) has trivial center,
the map g necessarily is an automorphism of the restricted Lie algebra sf(2). By assumption
w1 is compatible with the p-maps, whence

9(@)P + ¢ (g(2)) = (9(z) +av)? = pe + )" = p((z +v)?) = p(@? + 9 (2))
= g+ ay(z) = g()P + av(z) Yz € sl(2), v € ku,.
Hence ¢/(g(x)) = atp(z), so that the desired identity follows. O

Now let s0(2) = kf @ kh @ ke be the standard basis of s/(2), i.e.,

(1) (1) (20)

We consider three particular choices of ¥ that will turn out to be orbit representatives with
respect to a certain group action:

lbo = O ) wn(e) = lbn(h) = 07 wn(f) =7y , ws(e) = 0 = ws(f)v ws(h) = Ug.

The corresponding one-dimensional central extensions of s/(2) will be denoted s£(2)y, s¢(2),
and s/(2)s, respectively.



Proposition 2.2 Let s{(2),, be a four-dimensional central extension of sl(2). Then s(2),
is isomorphic to sl(2)g, or sl(2),, or sf(2)s.

Proof. We let
(,):sl(2) xsl(2) —k ; (z,y):=tr(zoy)

be the trace form of sf(2) on its standard module, and recall that (, ) is a non-degenerate
SL(2)-invariant form. Here SL(2) acts on sf(2) via the adjoint representation, that is, via
conjugation. We will denote this action by (g,z) — ¢ - 2. Accordingly, every element
g € SL(2) defines an automorphism of s¢(2), which we also denote by g. It is well-known
that every element of Aut,(sf(2)) is of the form x — g - x for a suitably chosen g € SL(2)
(see [39, p.281ff]). In the sequel, we will interpret ¢ as a p-semilinear map s¢(2) — k. Then

there exists an element z,, € s/(2) such that

U(y) = (zy,y)" Vy e sl(2).
Given g € SL(2) and a € k* we have, observing the invariance of the trace form,

1

oP(og Ny =a"(zy.g 'y = (alg-zy),y)"

so that Tep(gog-1) = a(g - zy). In view of (2.1) we see that sf(2), is isomorphic to the
extension given by an orbit representative of x,, relative to the action

(a,9) - z:=ag-x

of the group k* x SL(2). There are three orbits given by: 0, e, h. The standard orthogonality
relations of the trace form (cf. [48, (I1.1.7)]) show that these representatives yield non-zero
multiples of 1, 1, and 1, respectively. O

Remark. Let G := k* x SL(2). By the proof of (2.2) we have
sl(2)=G-0UG-hUG -e.

Direct computation shows that dimG - h = 3 so that G - h is the dense open orbit of s/(2)
relative to G. Moreover, we have {0} CG-e C G - h.

3. Verma Modules

In this section we collect a few general results on certain induced modules that will be referred
to as Verma modules. As before, we consider a one-dimensional central extension s¢(2),, that
is defined by a non-zero p-semilinear map v : s£(2) — kvo. Observe that (¢¥(Vse2))), = kvo
in this case, for otherwise we would have V) C ker ¢, which, by equality of dimensions,
implies Vyyo) = ker1p. As e+ f & Vo), this is impossible. By (2.2) we may assume that
¥(e) = 0. In this situation we define p-subalgebras

sl(2)f = ke, s(2)y = k(h+¢(h)), s0(2); :=kf®kvy, By :=sl(2)y & sl(2)].
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Let

Xy = {resl(2)) 5 MheDkf @ kvy) = (0) and A(h)? = A(h)} and
X = {Aesl(2)"; ANke@kf)=(0) and A(h)? = A(h)}.

In the sequel, we will often identify the elements of X and X,. If A belongs to X, or &,
then the element X' of X, or X' is given by X'(h) :=p — 2 — A(h).

Note that each element A € X, induces a character u(By) — k, which we will also
denote by A. Let M be a u(sl(2),)-module. A nonzero element m € M \ {0} is a highest
weight vector with highest weight X € Xy if am = A(a)m for every a € u(B,). If, in addition,
M = u(sl(2)y)m, then M is called a highest weight module with highest weight X. The
simple module S(7) is a highest weight module with highest weight given by A(h) = i. We
will occasionally write S(A) instead of S(i). Note that S(A) belongs to a block with two
simple modules if and only if A(h) # —1.

We continue by defining universal highest weight modules, the so-called “Verma mod-
ules”. Given a character A € &}, we let k) be the one-dimensional u(B,)-module on which
u(By) acts via A, and put

Z(A) = u(sl(2)y) Qupy) Fx
The corresponding construction for u(sf(2)) gives rise to the Verma module Z ) (N) =
u(50(2)) @u(khake) kx with highest weight A € A

For an arbitrary k-algebra A, we let 25 be the Heller operator. The reader is referred to

2, 3] concerning its definition and basic properties.

Proposition 3.1 The following statements hold:

(1) sl(2)y = sl(2),, @ sl(2)y, @ sl(2);; is a triangular decomposition of st(2)y with a
torus s€(2)},, and unipotent constituents SK(Q)i.

(2) We have isomorphisms viZ(N) /o5t Z(N) = Zgyay(A) for 0 <i <p— 1.

(3) If X(h) # —1, then the p*-dimensional module Z(\) is uniserial of length 2p with
simple top S(\) and simple socle S(X').

(4) If A(h) # —1, then Qi(sm)w)(z(/\)) =Z(A).

Proof. (1). The first statement follows immediately from the fact that i(e) = 0 as well as

(h+¢(h)P = h+ ().
(2). Directly from the definition we obtain dimy Z(\)/vgZ(A) = p. Moreover, the canon-
ical projection my : u(sf(2),) — u(sf(2)) induces a surjective u(sf(2),)-linear map

Z(N) — Za)(A) 5 u®ar my(u) ®a.

Consequently, this map gives rise to an isomorphism Z(\)/vgZ(A) = Zgy2)(A) of u(s(2)y)-
modules. Left multiplication by the central element v induces a surjective homomorphism

Z(N)/vZ(X) — vZ(N) /v Z(N)

of u(sf(2)y)-modules. Since Vyya), (Z(N)) C ke (cf. [20, (3.4)]) the module Z(A)][xp,) is projec-
tive, and we have Z(\)|x[u] = k[vo]" for some r € INy. It follows that dimy v§ Z(A) /vi™ Z(N) =
r for 0 <7 < p—1, implying that the above maps are in fact isomorphisms.
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(3). Owing to (2) the module Z(\)/voZ()\) has (Loewy) length 2, whence J2Z(\) C
voZ (). Since A(h) # —1, (1.4) yields voZ(\) C J*Z(A), so that equality holds. Part (2)
now implies that J*Z(\)/J%*+2Z()) is a uniserial module of length 2 for i € {0,...,27}.
Accordingly, (J*Z(X))sso is a composition series of Z(\), so that Z()) is uniserial.

Since vy belongs to the Jacobson radical of u(sf(2),) the canonical surjection Z(\) —
Zsy2)(N) of u(sl(2)y)-modules induces an isomorphism Top(Z (X)) = Top(Zsz)(A)). As
the latter module is known to have top S(\), the assertion follows. According to (1) the
uniseriality of Z(\) yields Soc(Z(\)) = Soc(vh ' Z(\)) = Soc(Zspzy(A)) = S(N).

(4). Suppose that A(h) # —1. Thanks to [20, (3.4)] we have V2, (Z(A)) C ke. For
dimension reasons (see (1.5)) the module Z(A) is not projective, so that equality holds. We
may now apply [19, (2.5)] to obtain QZ ) (Z(A) = Z(A). O

Lemma 3.2 Suppose that A(h) # —1. There are isomorphisms J1Z(\) = Z(u)/J*~17(u),
where = X if q is even, and = N if q is odd.

Proof. We proceed by induction on ¢. Suppose that ¢ = 1, and let i € {0,...,p — 2} be
such that i = A(h) mod(p). From the Cartan-Weyl formulae (cf. [52, (I.1.3)]) we see that
[ ®1 € Z()) is a highest weight vector with highest weight X'. Since its image in Zg2)())
generates Rad(Zs2)(N\)) = S(N), (3.1) yields JZ(A) = u(sl(2)y) ([T @ 1) + v0Z(N) =
u(sl(2)y)(fT @ 1) + J2Z(N). Consequently, JZ(N) = u(sl(2)y)(f @ 1), and the highest
weight vector fi*! ® 1 induces a surjection

Z\) — JZ(\) 5 u@l—ufttel.

Since U(JZ(N)) = L(Z(N) — 1 =0(Z(N)) — 1, (3.1(3)) shows that the above map gives rise
to an isomorphism Z(X)/J* tZ(N) = JZ(N).

Now suppose that ¢ > 1. By inductive hypothesis there exists a surjection Z(u) —
J9rZ(\), which induces a surjection JZ(u) — J9Z()\). We combine this with the case
g = 1 to obtain a surjection Z(p') — J2Z(A). Owing to (3.1(3)) we have ¢(J1Z(\)) =
2p—q=LU(Z()/J*1Z (1)), so that there is an isomorphism Z(p')/J*~1Z (i) = J1Z ().
O

4. Wildness of the Algebra u(s/(2),)

We continue by considering the case where ¥ = 1, i.e., ¥(e) = 0 = ¥(h) and ¥(f) = vo.
In this situation, the triangular decomposition is induced by a Z-grading on s¢(2),,, whose
homogeneous components ke, kh, kf and kvy have degrees 1, 0, —1 and —p, respectively.

Lemma 4.1 There exists a short exact sequence

0) — Z(X) — P(A\) — Z(A\) — (0).

11



Proof. Note that our Z-grading is compatible with the p-map, i.e., (56(2)¢)£P] C (80(2)y)pi-
Consequently, the grading induces a Z-grading on the restricted enveloping algebra u(s¢(2),).
The PBW-Theorem implies that this grading satisfies the hypotheses of [37, (2.1)]. Hence
137, (4.5)] applies, and the projective u(sf(2),)-module P(\) affords a “Z-filtration”, i.e.,
a filtration with factors being Verma modules. According to (1.1) the algebra u(sf(2),) is
symmetric. Hence (3.1(3)) yields Soc(P(N)) = S(A) = Soc(Z (X)), and our assertion follows
from (1.5). O

We require a subsidiary result on the radical of a principal indecomposable s¢(2)-module.
Recall that the subspace M, of a u(sf(2))-module M relative to v € X' is defined via

M, :={m e M ; hm = ~y(h)m}.

If M, # (0), then « is called a weight and M, is the corresponding weight space.

For A € X such that A(R) # —1, we let P()\) be the principal indecomposable u(sf(2))-
module with top S(A). By results of [26, 42] each weight space of P(\) has dimension 2.
Let i € {0,...,p — 2} be given such that A(h) = i mod(p). Since X is not a weight of
S(A) = Top(P())), we have dimy, Rad(P(\))y = 2.

We consider the coinduced module Z{,,(A) = Homyksawn)(u(sl(2)), kx). Thanks to
[41, (IL3.7)] we have Z{,, () = u(sl(2)) @ukforn) k-x. Moreover, [41, (11.3.8)] shows that

SOC(Z;e(z)()\)) = 5(A).
Lemma 4.2 Suppose that A(h) # —1. Then eRad(P(\))x # (0).

Proof. By general theory (cf. [41, (I1.11.4)]), the projective u(s{(2))-module P(\) possesses
a Z'-filtration. Since Soc(Z'(A)) = S(A) = Soc(P(})) we thus have Z{,, (A) C P(A).

A

Recall that Z{,, (A) has length 2, whence Z{,, (A) C Rad(P())). Hence we also have

A

Zgiy( Ay C Rad(P(A))y. However, the isomorphism Z{,,) (A) = u(s0(2))ukfornk—x shows

S
that the N-weight space is k(e?">7*®1). Since this vector is not annihilated by e, our Lemma

follows. d

Proposition 4.3 Suppose that A\(h) # —1. Then the module J*"~1P(X)/J*™1P()\) is
indecomposable form € {1,...,p—1}. In particular, the heart H(P(X)) := JP(\)/Soc(P()\))
18 1ndecomposable.

Proof. We proceed in several steps. Since P(A) has a simple top, the exact sequence of (4.1)
induces a short exact sequence

(0) — Z(N) — JP(A) — JZ(X) — (0).

We first claim

(a) The above exact sequence induces a short exact sequence
() (0) — Z(X)/ PZ(N) == JP(A)/J*P(X) == JZ(\) [ J*Z(X) — (0).

12



Since () is obtained from the above sequence by tensoring with u(sl(2),)/J?, it suffices
to verify the injectivity of 4. From (1.6) and (3.1(3)) we have ¢(JP(\)/J*P()\)) = 4 and
UJZN)/TPZ(N) = 2 = L(Z(N)/J*Z(N)). Thus, 2 = l(kern) = {(im~), so that v is
injective.

In view of (3.2) the right-hand term of (f) is isomorphic to Z(\')/J?*Z()X). Recall from
(3.1) that J*°Z(¢) = voZ(¢) and Z(C)/v0Z({) = Zsu=)(C) for ¢ € {\,X'}. Accordingly, the
sequence (T) gives rise to an exact sequence

(1) (0) — Zuy(X') — JP(N)/J*P(A) — Zsuzy(X) — (0)

of u(sl(2))-modules.

(b) The exact sequence (1T) of u(sl(2))-modules is an almost split sequence.
We put M(X) := JP(\)/J3P()\) and assume that the exact sequence

(0) — Za)(N) — M(X) -5 Zy(N) — (0)

splits. Thanks to (1.6) the simple modules S(A) and S(X') each occur in M(A) with mul-
tiplicity 2. Consequently, every weight space of M(A) has dimension 2. By virtue of our
current assumption the weight space M(\)y is generated by two highest weight vectors,
so that eM(A)y = (0). The canonical surjection P(\) — P()) induces a surjection
M) — Rad(P(\)) that sends M(\)y onto Rad(P()\))y. Consequently, we also have
eRad(P(\))x = (0), which contradicts (4.2). As a result, the sequence (1) does not split.

Owing to (1.1) the algebra u(sf(2)) is symmetric, and [3, (4.12.8)] entails the identity
DTr = Q2 0y Since QF o)) (Zse)(V) = Za)(N), and Endygse) (Zsz) (X)) = k, an
application of [2, (V.2.4)] shows that the sequence (Tt) is either split exact or almost split.
In view of our above observation, the former alternative does not apply.

Since the non-projective Verma modules of u(s/(2)) lie at ends of homogeneous tubes (cf.
23, (6.1)]), claim (b) implies the indecomposablility of M (\). We have therefore established
the first part of our proposition for m = 1.

Now suppose that 1 < m < p—1. From (1.6) we recall that M (\) = JP(\)/vyJ P(A). Left
multiplication by v{" ' thus gives a surjection M(\) — v *JP(X)/vi*JP()\), and (1.6)
shows that the latter module is isomorphic to J*™~1P()\)/J*™T1P(\). By the same token,
we have ((J?*™LP(\)/J*™TLP(X\)) = 4 = £(M(]))), so that J*~LP(X)/J>™FLP(\) = M()\).

We finally show that H(P())) is indecomposable. Suppose that H(P(\)) = X®Y. Then
we have M(\) = H(P()\))/J?H(P()\)) = X/J?X @ Y/J?Y. By the above we may assume
that X = J?X, whence X = (0). This concludes the proof of our proposition. O

Theorem 4.4 Let B C u(sl(2),) be a block with two simple modules. Then B is wild.

Proof. Since 1, (f) = vy Proposition 1.3 applies and Gabriel’s Theorem (cf. [3, (4.1.7)])
shows that the algebra B is Morita equivalent to the bound quiver algebra A = k[Q]/I,
where @) is the quiver

13



{5

_—

2

—_—_—

i) )

-~

Y2
and [ is an admissible ideal in the path algebra k[Q] of Q. We consider the factor algebra
A := A/J? of A by the cube of its Jacobson radical J. Then A admits a Galois covering
F: R — R/G (in the sense of [4, 30]), where R = k[Q]/] is a locally bounded k-category
given by the locally finite quiver ) of the form

Z; Tit1 Tit2
-1 1+ 1 142 1+3---
Yi Yi+1 Yit2

The group G is the infinite cyclic group generated by the square of the canonical shift that
sends the vertex ¢ to the vertex 7 + 1 and the arrows z; and y; to x;41 and y;11, respectively.
The ideal I is the admissible ideal in the path category k[@] given by all elements u € k[@]
with F'(u) € I. Let F\ : modR — modR/G be the push-down functor associated to the
Galois covering F'. We denote by Pr(1) and P4(1) the indecomposable projective R-module
and the indecomposable projective A-module corresponding to the vertex 1, respectively.
Then we have Py(1) = Fy(Pg(1)) as well as M := Rad(Pa(1)) = F\(N), where N :=
Rad(Pg(1)) (cf. [4, Prop. 3.2]).
We let @’ be the full subquiver of Q of the form

T T2
1 > 2 - 3
Y1 Yo

and put I’ := k[Q'] N I. Then I' := k[Q']/I" is the one-point extension

(5 )

of the path algebra H of the Kronecker quiver

T2
22— 3

Yo

by the radical N of the indecomposable projective I'-module Pr(1) = Pr(1) (cf. [2, p.71]).
Thanks to (4.3) M is an indecomposable A-module of dimension 4, so that N is an in-
decomposable R-module (H-module) of dimension 4. It follows from the structure of the
Auslander-Reiten quiver of the Kronecker algebra (cf. [2, VIL.7]) that N is an indecom-
posable, regular H-module of quasi-length 2 lying in a tube of rank 1. An application of
(45, p.260] now shows that the algebra I' is wild. Consequently, R is also wild, and [11,
Proposition 2| yields the wildness of 4. As a result, the algebras A and B are wild as well.
O
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5. Extensions of the Kronecker Algebra

Having collected the structural ingredients of the blocks of enveloping algebras, we will now
employ methods from abstract representation theory to pass from the quiver and relations
of u(s¢(2)) to the corresponding data for u(sf(2),). It was shown in [26] that the blocks of
u(sl(2)) possessing two simple modules are given by the following quiver

x

_—

n

e

1, 2

-~

Y2

and relations x1ys = Y122, Yoy = Toy1, 122 =0, y1y2 =0, a0 =0, yoy; = 0. We
denote this basic algebra by K and observe that K is the trivial extension H x D(H) of
the path algebra H of the Kronecker quiver by its minimal injective cogenerator D(H) :=
Homy(H, k). The block we are interested in is a connected algebra Ay with Jacobson radical
J such that K = Ag/I for some ideal I satisfying J*> C I C J?. In particular, Ay and K
have the same Gabriel quiver, and we denote the idempotents of Ag by e;, es. We choose
pre-images of the arrows x; and y; under the canonical projection Agy — K, which, by abuse
of notation, will also be denoted x; and y;. Thus, the elements z;, y; € e;1Je; \ eir1J%€;,
with ¢ € {1,2} and addition of the indices interpreted mod(2), enjoy the following properties:

(1) {Iz + ei+1J26i7 Y; + ei+1'-]2€i} is a basis of €i+1J€i/€i+1J2€i.

(2) Yip1ms — xip1yi € I, but ym, vy € 1.

(%) Tip1%i, Yiyryi € 1.
We require that, in addition to (1) and (2), the generators x; and y; satisfy the following
crucial conditions:

(3) g1, Yirryi € J° 1<i<2.

(4) Top(Jz;) and Top(Jy;) are simple for 1 <1i < 2.

Lemma 5.1 We have

J k(yam:) s + J ey if £is odd
' kxi(yi+lxi)§ + J 1y, if £ is even
k B gy i s odd
Jlys = (Tig1ys) = + STy if liso

k:yl-(:viﬂyi)% + J* 1y, if £ is even.

In particular, the modules Nox; and Aoy; are uniserial.
Proof. In virtue of property (2) we have
Yini®; € J2x; and ziy; € TPy
In view of (4) these elements therefore generate Jx; and Jy;, respectively, and we obtain

J; = Ny i = kyisazi + Jyin®i = kyipi + J°x;
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as well as
Jy; = kiy; + Ty
Since Je; = kx; + ky; + J2e; induction on £ in conjunction with (3) shows that
£ +1 e
Jly — k(yip1m;) 2 + Ja; if £is odd
' kxi(yi+1xi)% + J1x, if £ is even

as well as
£4+1 . .
Ty, — k(ziay:) = + Jly, if £is odd
v kyi(xi—i—lyi)% + J Yy, if £ is even.
Consequently, the modules Agx; and Agy; are uniserial. O

Let A be a self-injective algebra. Recall that A is biserial if for every indecomposable projec-
tive A-module P the heart H(P) := Rad(P)/Soc(P) is a direct sum of at most two uniserial
modules. Following [51, p.174] we say that A is special biserial if A is Morita equivalent to the
bound quiver algebra k[Q]/I, were the bound quiver (Q, I) satisfies the following conditions:
(SB1) Each vertex of @ is the starting point and end point of at most two arrows.
(SB2) For any arrow « of @, there is at most one arrow § and one arrow ~ such that

af, ya & 1.
By [51, Lemma 1] special biserial algebras are biserial. Note that the algebra K is special
biserial.

Proposition 5.2 Suppose that Ao is symmetric of Loewy length 2m + 1, m > 2, and such
that J'e;/ Jte; = Top(Ageirs) ® Top(Aoeise) fori € {1,2} and 1 < £ < 2m—1. Then there
exist generators x;, y; € Ao of J satisfying (1) through (4) and such that

Tip1Ti = 0= Yy 1<i<2
In particular, the algebra Ag is special biserial.

Proof. Proceeding in several steps we first claim that

(i) woxy € J?x1 and yoy1 € J?y1.
Owing to (5.1) we have Jx; = kyoz1 + J%x,. The assumption wox; & J?z; thus entails the
existence of a nonzero element A\ € k such that xoz; = Ayoz; mod J?z;. In view of (3) we
thus have
Yax1 € J°,

which contradicts property (2). This establishes the first statement, and the second claim
follows analogously.

(ii) We may choose the z; and y; such that xoxy = 0 = yoy;.

Thanks to (i) we can find elements u, v € J?e, such that
L2Z1 = Ux1 5 Y21 = VY1-
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Since J%ey/J3ey = Top(Agez) @ Top(Ages) we have e;J%e; = ey /ey, so that u,v € J3e,.
We put 7, := x5 —u and vy = ys — v. As u,v € J* C I lie in the kernel of the canonical
projection Ag — K, properties (1) through (3) hold for z1, 25, y1, y5. Moreover, we have

zoxy = (xo —u)xy =0 ; ysy1 = (Y2 —v)ys = 0.

Thus, it remains to show that the tops of Jz}, and Jy, are simple. Since u € J* we have
y17h = Y17 mod(J?), and property (2) now yields y;zy, € Jzb \ J%z,. We claim that
z1xfy € J2x,. This will imply that Jz) is generated by yy25, and hence the top of Jz) is
simple. Observe that x5, and y, generate Jey, and consequently J3ey = J2x,, + J?y,. Thanks
to (3) we have z17}, € J3ey, and so 12y = axl, + bys for some elements a,b € J?e;. The
relation xbxq = 0 now implies

(by2)z1 = (axh, + bys)xy = 21 (2hw1) = 0.

By virtue of (5.1) the modules Agx; and Agye are uniserial. Hence there is @ € IN such that,
for the left annihilator ann(z;) of z; in Ag, we have ann(z;) N Agys = J'yo. This yields
Jiysry = (0). In view of (5.1) we have Jz; = kysx1 + J%x1, whence Agyor; = Jz;. Tt follows
that

Ji+1$1 —= Jiygxl — (O),

and uniseriality implies i + 1 > ¢(Agz;). Our current assumption on the Loewy layers of
the projective indecomposable modules Age; entails £(Agz1) = 2m = ((Agy2). We therefore
conclude that by € ann(z1) N Agya C J*™ Lyy = Soc(Agys).

Since Agzy has Loewy length 2m, and 2, = xo — u with v € J? the module Ayz), also
has Loewy length 2m. Clearly, we also have Soc(Agyz) = Soc(Ages) = Soc(Agzs). Hence
by, € Soc(Agzhy) C J2x), so that zia) € J?x), as required. The proof that vy} € J?y), and
hence Jy, has simple top, is completely analogous.

We shall assume from now on that the z; and y; are chosen such that xox; = 0 = you/1.

(i) z12e, y1y2 € Soc(Ag).
From (5.1) we readily obtain
T1ZT9 € €2Jl'2 C ylA(J-

ThuS, $1($1$2) = Q?%x2 = 0, $2($1x2) = (ngl)xQ = 0, yl(gjlx2) = (y1x1)x2 = 0 and
y2(l'1$2) € Yoy1 o = (0) As a result, J(.Tll'g) = (0)7 so that zyzs € SOC(AO), The proof for
Y1y is completely analogous.

Since A is a symmetric algebra, there exists a linear form ¢ : Ay — k satisfying p(ab) =
¢(ba) for all a,b € Ay and such that ker ¢ does not contain any non-zero left ideals (see [3,
(1.6)]). By (iii) the space kzjzs is a left ideal, which, owing to zox; = 0, is annihilated by ¢.
Consequently, z1xo = 0. By the same token, we have ;o = 0. This establishes the asserted
properties of the generators. The special biseriality of Ay is a direct consequence of these
relations. O

Example. The assumption (3) and the symmetry are essential for the special biseriality of
Ag. Let C be the algebra given by the quiver
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and relations x1ys = Y109 = T1T92 = Y1Y2, Y21 = T2y1, Tox; =0, yoy; = 0. Then C is a
weakly symmetric biserial radical cube zero algebra which is not special biserial.

6. Special Biseriality of the Algebra u(s/{(2)s)

In this section we are going to apply the results of section 5 to study the representation type
of the blocks of u(sf(2)s) containing two simple modules. Thus, we assume that ¢ (e) =0 =
Y(f) as well as ¢(h) = vy and consider a block B(\) associated to a linear form A € &, that
satisfies A(h) # —1. The basic algebra of such a block is readily seen to afford generators
x;, y; enjoying properties (1) and (2) of section 5. The verification of conditions (3) and
(4) requires a detailed analysis of the module M(\) := JP(A\)/J°P()\). Note that (1.6)
implies v M (X) = (0), so that M(A) also has the structure of a u(s¢(2))-module. Recall the
isomorphism Z{, ) (A) = u(sl(2))usernk-y. Since P(f) = 0, the space B := k(h+wvo) Dk f
is a p-subalgebra of s/(2),. Given A € Xy, we put Z'(A) := u(sl(2),) Busy) k_x.

Proposition 6.1 Suppose that A(h) # —1. Then we have M(X) = Zsy2)(X) © Z{y4(A).

Proof. Thanks to (3.1(3)) there is a surjection P(A\) — Z(\), which induces a surjection
JP(N)/JPP(\) — JZ(N\)/J*Z(N\). Owing to (3.2) and (3.1(2),(3)) the latter module is
isomorphic to Z(X')/J*Z(X) = Zye)(N). Let N be the kernel of the resulting surjection
n: M(XN) — Zgeoy(XN). Tt readily follows from (1.6) that ((N) = 2. If N was semisimple,
then NV = Soc(M(N)) = JM(X). Since Zgy2)(N') is not semisimple, this is impossible. Hence
N is uniserial. We thus have an exact sequence

(%) (0) — N — MQ) — Zue(\) — (0)

whose extreme terms are uniserial modules of length 2.
Note that the linear map v : s€(2), — sf(2); given by

ve)=f 5 af)=e ;5 y(h)=—=h; v(vo) =~

is an automorphism of the restricted Lie algebra sf(2)s. By abuse of notation we will denote
the corresponding automorphism of u(sf(2)s) also by . For an arbitrary u(sf(2)s)-module
M we let M be the u(sf(2),)-module with underlying k-space M, and action given by

u-m =y u)m YV u € u(sl(2)s), me M.

Note that M +— M is an auto-equivalence of the category mod(u(sf(2),)) of finite dimen-
sional u(sf(2),)-modules. Since each simple u(s¢(2)s)-module S is uniquely determined by
its dimension, we have



Hence P(\)) 22 P(X\) and M(A\)™) =2 M()), with the latter isomorphism following from the
fact that M(A) is a “Loewy factor” of P(A). Let w be the automorphism of sf(2) that is
induced by 7. Then we have an isomorphism

M\ 22 M(\)

of u(sl(2))-modules. According to [40, (2.2)] this implies that the rank variety Vsy2)(M(N))
is invariant under w, i.e., w(Vsu2)(M(N))) = Vsy2) (M(N)).

Since every indecomposable -module of length 2 is periodic (cf. [2, (VIL.7)]), we conclude
the periodicity of N and Zg)(A'). Hence both modules have complexity 1, so that their
rank varieties are one-dimensional. It now follows from [27, (2.2)] that the rank varieties
of these indecomposable modules are in fact lines. We have Vo) (Zsi2) (X)) = ke (cf. [20,
(3.4)]), and there is 2y € Vo) with Vi) (N) = kxzg. Since M(A) is not projective, the
sequence (x) readily yields

{O} 7£ VsE(Z)(M(/\)) - k?l‘() U ke.

The assumption kxo = ke thus implies Vsg0)(M (X)) = ke, which contradicts the w-invariance
of Vsgay(M(X)). Hence kzg N ke = (0). An application of [27, (2.1)] gives

Vsu2)(Zsez)(N)* @k N) = Vaea)(Zso) (X)) N Vg (V) = (0),
so that Zg)(N)* @k N is injective. Observing [3, (3.1.8)] we obtain
Exti(sg(Q))(ng@)(X), N) = EXti(se(z))(k: Za@)(N)" @ N) = (0),

and the sequence (x) splits.

It remains to identify the module N. From (1.6) we see that N has dimension p, with
Top(N) =2 S(XN) and Soc(N) = S(X). Since (x) splits, [27, (2.1)] yields Vo) (M (M) =
ke U Vgy2)(N). The w-invariance then implies

ke U Vo) (N) = kf UwVage)(IV)),

whence Vyy2)(N) = kf. Thus, N|, ) is not projective, so that dimy Soc,s)(N) > %dimk N
=1 (cf. [5, (2.2)] or [20, (3.1)]). Since the u(k f)-socle of the simple u(s¢(2))-module S(¢) is
the one-dimensional weight space S(¢)—_¢, it follows that Soc,s) (N) ¢ Soc(N). Observing
Top(NN) = S(X) we conclude the existence of an element v € N_y N Socyuys)(N) that
generates N. Accordingly, the map v ® o — auv induces a surjection Z. 6(2)()\) — N,
which, by equality of dimensions, is in fact an isomorphism. O

Let A € X, be given such that A\(h) # —1. The block B()) has two simple modules
S(1) := S(\) and S(2) := S(XN). We denote the corresponding principal indecomposable
modules by P(1) and P(2). The Verma modules are labelled in the same fashion. The
Hopf algebra u(sf(2)s) is isomorphic to its opposite algebra u(sf(2)s)°?. Note that this
isomorphism preserves the dimensions of the simple modules, so that B = B°P for every block
B C u(sl(2),). It now follows from general theory (cf. [3, (2.2.6)]) that Ay := Endp (P(1)®
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P(2)) is the basic algebra of B(A). By the same token, we have Ay = eB(\)e for a suitably
chosen idempotent e of B()). Let J be the Jacobson radical of u(sf(2),). Then A := Ag/eJ’e
is isomorphic to Endg(y)(P), where P = P(1) @ P(2), and P(i) := P(i)/J*P(i). Likewise,
K 22 Ag/ele = Endppy(P), with P = P(1) @ P(2), and P(i) := P(i)/IP(i), is the basic
algebra of the block B()) of u(sf(2)) affording the simple modules S(1) and S(2). Thanks
o (6.1) we have )
JP(i) = Za)(i + 1) @ Zlyq) (i),

where the addition is interpreted mod(2). Since Zy(i) and Z{,, (i) have tops S(i) and
S(i+ 1), respectively, we can define A-linear maps

Fi: P(i+1) — Zuey(i+1) CJP@) 3 §i: P(i+1) — Zlyo (i) € JP().
By setting #;(P(i)) = (0) = §:(P(i)) we view &; and §; as elements of A satisfying

Recall the auntomorphism vy € Aut,(sf(2),) that was employed in the proof of (6.1). Direct
computation shows that Z(\) 2 Z/(X). Tt thus follows from (3.1(3)) that Z’()\) is a p*
dimensional uniserial module of length 2p with simple top S(\’) and simple socle S(A). By
the same token we have Z'(A) /voZ'(A) = Z{y5)(A).

In view of (3.1(2)) and the foregoing remarks there exist elements z;, y; € Ay with
imz; = Z(i+ 1) C JP(i), and imy;, = Z'(i) C JP(i), and whose residue classes coincide
with Z;, and g;, respectively. By construction, the subalgebra ) generated by these elements
satisfies @ + Rad(Ao) = Ay, and an application of [3, (1.2.8)] shows that @ = A,.

Now let 7 : P — P be the canonical projection, and observe that ker 7 = voP. We
denote by #;, ; € Ag/ele the residue classes of #; and ;, respectively. By definition, we
have z; om=moZ; and g;om =mwoy; for 1 <i < 2.

Lemma 6.2 The elements x;, y; € Ao satisfy conditions (1) through (4) of section 5.

Proof. We begin by verifying the following claim:
(@) voP(i+1) N Zyyo) (i) = (0) = voP(i + 1) N Zy0 (i + 1).

It follows from (1.5) and (1.6) that voP(i+1) is a simple submodule of JP(i+1). Accordingly,
the assumption voP(i + 1) N Zy2) (i) # (0) entails voP(i + 1) C Zyg)(i). The canonical
projection thus induces a decomposition

JP(i+ 1) 2 Zyoy (i) JuoP(i + 1) @ Zlyy(i+ 1),

which contradicts the indecomposability of JP(i + 1).
(b) We have ker(Zi| p(; 1)) = Zs(2) (i) and ker(Yi| p(;41)) = Ziyo (i + 1).

Directly from (a) we obtain im#; = imZ; and imy; = img;. Hence the map Z;|p, ) :
P(i+1) — se(2) (14 1) is surjective. The Z-filtration of P(i+1) (cf. [41, (I1.11.4)]) provides

a surjection f : P(i+1) — se2) (1 + 1) with ker f 22 Z49)(¢). Thus, both maps define a
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projective cover of Zg2)(i+ 1), and there exists an automorphism ¢ : P(i+1) — P(i+1)
with f o (= 2i|p;yy). Its restriction to ker(Z;]p,, ) is the asserted isomorphism.

The proof of the second statement proceeds analogously by using the modules Z;£(2) in
place of the Zo)’s.

(¢) The elements z;, y; satisfy the standard relations of the algebra K.

We begin by verifying ;11 o 2; = 0. The assumption z;; o #; # 0 implies imz; ¢
ker(Zit1|pgy). From (a) and (b) we see that im@; = Zy)(t + 1) and ker(Zi11]p(;) =
Zsy2)(1+1) are generated by highest weight vectors of highest weight i corresponding to i+1.
Since the weight space Rad(P(i)), is two-dimensional, we conclude that eRad(P(7)), = (0).
As this contradicts (4.2), the desired relations follow. The relations ;41 o g; = 0 can be
proven similarly by replacing the Zy2)’s by Z;e(z)’s-

We continue by showing that ;.1 o 2; # 0. Assume that ;.1 o 2; = 0. Then we have
im2; C ker(g;11| Ig(i)). Since both modules have length 2, we have equality, and (b) gives rise
to

Zsea)(i+ 1) = im&; = ker (Jis1] piy) = Zogz) (9)-

Since Vsg2)(Zsez) (i + 1)) = ke while Vi) (Z4)(i)) = kf, we have reached a contradiction.
The same arguments show that ;.1 o g; # 0.

By the above we have non-zero maps ;41 0 @, &141 0 4; : P(i + 1) — Soc(P(i + 1)).
Schur’s Lemma now provides scalars «; € k '\ {0} such that

Yig1 ©Tj = O Tiy1 OY; 1< <2,

By re-scaling we may assume that as = 1.

Since K is symmetric, there exists a linear form ¢ € K* whose kernel contains no non-zero
left ideals and such that ¢(ab) = ¢(ba) for every a,b € K. In particular, K21 = ko2 does
not belong to ker ¢, so that ¢(9221) # 0. We thus obtain, observing 9;2e = 175,

©(P221) = arp(Z271) = up(T122) = a10(2192) = a10(J2d1).
Thus, a; = 1, and Z;, y; are the standard generators of K.
(d) We have ;11 0% = 0 = §; 41 0 ;.

Since Z;41 0 Z; = 0, we have im (Z;41 0 T;) C vop(i + 1). As we also have im (Z;,1 0 Z;) C
im Z; 11 C Zs2)(), claim (a) gives the desired result.

Note that claims (c¢) and (d) imply the validity of conditions (1) through (3) of section 5

for the generators x;, y; of Ag. It remains to verify condition (4). Let U C P be a uniserial

B(A)-module, z : P — U a surjection. Since P is injective, we have an injection
Homp)(U,P) — Ay ; fr foz,

whose image coincides with Agz. By the same token, there exists an exact sequence

(0) — Homp\)(P/Soc(P), P) — Homp) (P, P) — Homgy(Soc(P), P) — (0),
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so that Rad(Ag) C Hompy(P/Soc(P), P). Since the right-hand space is a left ideal of A,
consisting of nilpotent endomorphisms, we have in fact equality.

Let f be an element of Rad(Ag)Homp (U, P). Then f = ""_, g; 0 h; with g; € Rad(Ay)
and h; € Homg\) (U, P). Thus, f(Soc(U)) = (0) and we have

Rad(Homg (U, P)) C Homp(U/Soc(U), P).

Conversely, let f: U — P be given such that f(Soc(U)) = (0). Since U has a simple socle,
we can find B(A)-modules @1, Q2 such that P = Q; & Q2, U C @y, and Soc(U) = Soc(Qy).
We consider the map f: U@ Qy — P sending u+q to f(u). As P is injective, there exists
a homomorphism ¢ : P — P such that 9 ot = f, where ¢ : U @ Q5 — P is the natural
embedding. Since Soc(P) = Soc(U @ Q2), we see that ¢ € Rad(Ag). Consequently,

f = f|U = lb o L|U € Rad(Ao)HomB(,\)(U, P)
Induction now shows
Rad(Ag)'Homp(y) (U, P) = Homgp (U/Soc'(U), P) ¥V i>1,

where Soc’(U) denotes the i-th term of the socle series of U. Since U is uniserial, we conclude
that Apz = Hompy) (U, P) is a uniserial Ag-module.

Recall that the B(A)-modules Z (i) and Z'(i+ 1) are uniserial. The foregoing observations
thus imply the uniseriality of Agz; and Agy;. In particular, condition (4) holds. O

By way of illustration we record an immediate consequence, which will be generalized and
elaborated on in the succeeding section.

Theorem 6.3 Let B C u(sl(2)s) be a block with two simple modules. Then B is special
biserial. In particular, B is tame.

Proof. By the introductory remarks of section 3 we have (v(Vsy2)))p, = kvo. Let e € B be
an idempotent, such that Ay := eBe is the basic algebra of B. In view of (1.3) the canonical
projection m : u(sl(2),) — u(sf(2)) sends B onto a block B of u(sf(2)). By the same
token, K =2 w(Ay) = m(e)Br(e) is the basic algebra of B. Owing to (6.2) the algebra A,
affords generators z;, y; that satisfy conditions (1) through (4) of section 5. Since u(sf(2)s)
is symmetric, we may now apply (1.6) and (5.2) to see that Ag is special biserial. In virtue of
53, (2.4)] (see also [12, (5.2)] for a proof via covering techniques) this implies the tameness
of Ag. Tt follows that B also enjoys these properties. a

Remarks. (1). In view of (6.3) and the remark following (1.3) the algebra u(sf(2),) is tame.
Note that B := ke®kuvy is a p-subalgebra of sf(2), with restricted enveloping algebra u(B) =
k[X,Y]/(XP,YP). As p > 3, this algebra has a factor algebra k[X,Y]/(X?, X?Y, XY?2 Y?3)
and hence is wild (see [14, (I.10.10(b)]). Thus, in contrast to the modular representation
theory of finite groups, subgroups of tame infinitesimal groups may be wild.

(2). We now have a complete picture of the representation theory of the family (u(s¢(2)),)
of p*-dimensional algebras. There is a dense orbit of special biserial algebras corresponding
to the semisimple orbit G - h, and two wild orbits of degenerations of these algebras that
correspond to the nilpotent orbits G -0 = {0} and G - e.
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7. Tame Principal Blocks and their AR-Quivers

In this section we establish our first main result concerning tame blocks of enveloping algebras
of restricted Lie algebras. The tame blocks occurring are obtained from the algebra K by
“lengthening” some of the relations. Specifically, for n € INy, we let K(n) be the algebra
that is given by the quiver

and relations (z192)”" = (122)"", (21)”" = (@201)"", 122 = 0, yi1y2 = 0, Zoxy =
0, y2y1 = 0.

Note that I = K(0) is the trivial extension of the Kronecker algebra defined in section
5.

Given an arbitrary restricted Lie algebra L, we denote by T'(L) the largest toral ideal of
L. Note that T'(L) is contained in the center C(L) of L. The p-unipotent radical of L will
be denoted rad,(L). We put n(L) := dimrad,(L).

Theorem 7.1 Let (L,[p]) be a restricted Lie algebra of characteristic p > 3. Then the
following statements are equivalent:

(1) The principal block By(L) is tame.

(2) Each block B C u(L/T(L)) is either Morita equivalent to the truncated polynomial
algebra k[X]/(X?"™) or to K(n(L)). In particular, By(L) is of the latter form.

Proof. (1) = (2). By [25, (1.1)] we have By(L) = By(L/T (L)), so that we may assume with-
out loss of generality that T'(L) = (0). Now [25, (6.4)] yields L = s{(2),, for a suitably chosen
p-semilinear map 1 : s¢(2) — V, whose target is an n-dimensional nil-cyclic restricted Lie
algebra V = (kuy), with v([)p]n = 0. Consequently, n = n(L). According to (1.1), the algebra
u(L) is symmetric.

The remark following (1.3) together with the obvious analogue of (1.5) for S(p—1) implies
that the block B(p — 1) is Morita equivalent to k[X]/(X?").

As before, we let J be the Jacobson radical of u(L), and put I := u(L)vg as well as
I' := u(L)vh. We consider an arbitrary block B C (L) containing two simple modules.
Since By(L) is tame, a consecutive application of (1.2), (1.4) and (1.6) gives the inclusions
I'BC J*BC JBCIBCJB.

Let L' = L/(k;v([]p])p, so that u(L') = wu(L)/I". According to (2.2) we have L' =
sl(2)g, sl(2), or sl(2)s. By [25, (1.1(3))] the principal block By(L’) is tame, so that by
(1.2) and (4.4) the latter alternative applies.

We let B and B be the images of B under the canonical projections u(L) — (L)
and u(L) — u(sl(2)), respectively. From the structure of the quivers of u(L), u(L’), and
u(sl(2)), it follows that B’ and B are blocks with two simple modules. Let Ay, A} and K be
the basic algebras of B, B’ and Z’S’, respectively. Then we have surjections
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From (6.2) we obtain the existence of generators x}, y. of A{ satisfying conditions (1) through
(4) of section 5.

Since ker 7 C Rad(Ag)? any choice of pre-images x;, y; € Ay gives rise to generators that
enjoy properties (1) through (3). Setting J := Rad(Ay) and J’ := Rad(A}) we continue by
verifying the simplicity of Jx;/Jx;. To that end we first show that J* N Jz; C J%w;.

Note that J?? NJz; = J?e;NJx;. We have J?Pe; = J#1(Je;) = J# Lo, + J# 1y,;. Since
J#® 1y, C J?x;, it is enough to show that J?P~ly; N Ja; C J?w;. Assume az; = by; for some
a € Jejy1 and b € J# le;, 1. Then the images a' := 7(a), b’ := w(b) € A} satisty o'z = b'y..
Observe that Ajx}, Ajy. C Aje; are uniserial submodules of length 2p having socle Soc(Aje;).
Since b € (J)*~, we have by, € Soc(Ajy!), and hence o'z} € Soc(Ayy)) = Soc(Ajx;) =
(J)#~1z;. Accordingly, we may assume a’ € (J)*~! so that a € J#~! + kerm C J*~L.
Consequently, ax; € J?~lz; C J?x;, as desired.

Since J# N Jz; C J2x; the canonical surjection Top(Jz;) — Top(J'x}) induced by 7 is
injective. Consequently, Top(Jz;) is simple. The simplicity of Top(Jy;) follows analogously.

Owing to (1.6) Ay is a symmetric algebra satisfying the conditions of (5.2). Consequently,
we may assume that

Tip1; = 0 = Yip 1Y 1<i<2.

Property (2) ensures the existence of a natural number m € IN such that

m

(@i1y:)"" = (Y1) 1<i<2.

Let m be minimal subject to the above relations. Since the elements z;,1y; — y;+12; belong
to the kernel I of the projection Ay — K and I*" = (0) we have m < n. Thanks to (5.1)
we have

Tz = (0) = Sy,

so that each principal indecomposable Ag-module has Loewy length < 2p™ 4+ 1. Owing to
(1.6) the Loewy length of each principal indecomposable Ag-module is t = 2p™ + 1, so that
n < m. Consequently, m = n and the bound quiver algebra IC(n) surjects onto Ag. The
formulae of (5.1) show that K(n) has dimension 8p”, and the remark following (1.5) implies
that the above surjection is in fact an isomorphism.

(2) = (1). The given algebra is special biserial. Hence [53, (2.4)] implies that By(L) is
tame. O

Remark. Since the Cartan matrix of IC(n) is singular, it is not a basic algebra of a group
algebra of a finite group.

Given a self-injective algebra A, we denote by I's(A) its stable Auslander-Reiten quiver. By
definition, I's(A) is a directed graph whose vertices are the isoclasses [M] of the non-projective
indecomposable A-modules M, and whose arrows are given by the irreducible morphisms.
The graph T's(A) also possesses an automorphism 7, the so-called Auslander-Reiten trans-
lation that reflects homological properties of A-modules. In fact, if A is symmetric, then
T([M]) = [Q%(M)] for every [M] € T'y(A). We refer the reader to [2, 3] for further details.
Recall that the Auslander-Reiten theory of the trivial extension algebra K of the path
algebra of the Kronecker quiver by its minimal injective cogenerator is well understood. The
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quiver I'y(K) has infinitely many components of type Z[A,]/(7) (homogeneous tubes) and 2
components of Euclidean type Z[Alg]. The general AR-theory of self-injective special biserial
algebras can be found in [17].

Let A be a tame algebra. For each d € IN we let pa(d) be the minimum number of
(A, k[X])-bimodules Q1. ..., Q,, @) giving rise to the one-parameter families of elements of
indy (d). The algebra A is said to have polynomial growth if there exists a natural number m
such that pa(d) < d™ for every d > 1 (see [50]). Moreover, we refer to A as being domestic
if there is a natural number m such that pa(d) < m for every d > 1 (see [8, (5.7)])

Corollary 7.2 Let (L, [p]) be a restricted Lie algebra such that By(L) is tame.

(1) If Bo(L) is domestic, then L/T (L) = sl(2).

(2) IfL)T(L) 2 sl(2), then By(L) is not of polynomial growth, and T's(By(L)) is the dis-
joint union of infinitely many components of type LA /(1) and infinitely many components
of type Z[AZ).

Proof. According to (1.1) the block By(L) is symmetric. Thus, [19, (2.5)] shows that all
tubes of the stable Auslander-Reiten quiver have rank 1. In view of (7.1) and [17, (2.1)] the
domesticity of By(L) implies that I'y(By(L)) contains a component of type Z[Ay;]. By [14,
(IV.3.8.3)] this readily implies that every principal indecomposable By(L)-module has length
4. In view of (1.5) we have n(L) = 0, whence L/T(L) = sl(2).

If L/T(L) % sf(2), then n(L) > 1, and [17, (2.2)] gives the shape of the AR-quiver along
with the fact that By(L) is not of polynomial growth. O

Remark. The representation theory of infinitesimal group schemes affords an analogue of
Webb’s Theorem [54] for finite groups (cf. [16, 19, 22]). For p > 3 the actual occurrence
of components of type Z[AX] was previously not known. A consecutive application of [21,
(2.1)] and [21, (4.1)] shows that the hearts of the principal indecomposable modules be-
longing to simple modules of complexity > 3 are indecomposable. The above results show
that decomposability of the hearts of the principal indecomposables is concomitant to the
tameness of the corresponding blocks.

We continue with an observation concerning the position of Verma modules within the stable
Auslander-Reiten quiver of u(sf(2),). As a direct consequence of (3.1) we obtain that each
Verma module Z(\) (with A(h) # —1) belongs to a homogeneous tube.

Corollary 7.3 Suppose that A(h) # —1.
(1) Each [Z(N)] lies at the end of a homogeneous tube.
(2) [Zse2)(N)] is the unique vertex of minimal dimension of a component of type Z[AZ)].

Proof. (1). We have noted in (3.1) that Vsy2),(Z()\)) = ke. Let M be an indecomposable
module whose isoclass belongs to the component of Z(\). In view of [19, (5.2)] we then have
Vo), (M) = ke, so that M|, sk is projective. Consequently, dimy M is a multiple of
p? = dimy, Z(\), so that Z()\) has minimal dimension in its component. This readily implies
our assertion.
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(2). Since the u(sf(2)s)-module Zg2)(A) is readily seen to be isomorphic to the induced
module u(s£(2);) @urnoreskvo) kr, [20, (3.4)] implies Vo), (Zsi(2)(A)) C ke @ kvg. Note that
every element x € ke @ kvy operates on Zgz)(A) via its image z € ke C s((2). In view of
ke C V) (Zse2)(A)) we obtain ke @ kvy C Vsea), (Zse2y(A)). It thus follows from (7.1) and
the proof of (7.2) that Z2)(A) belongs to a component of type Z[AZ].

Now let M be another vertex of the component containing Zg2)(A). Then Vo), (M) =
Vse2), (Zso2y(N)) (cf. [19, (5.2)]) so that M|,y is projective. Hence dimy M is a multiple of
p = dimy, Zsp2y(A). The unicity of [Zy2)(A))] is a direct consequence of [33, Prop.3]. O

Theorem 7.4 Let (L,[p]) be a restricted Lie algebra of characteristic p > 3. Then the
following statements are equivalent:

(1) By(L) is tame.

(2) L =sl(2)y, where ) : sl(2) — C(L) is a p-semilinear map satisfying ¢ (e), Y(f) €
C(L)? and C(L) = ky(h) + C(L)P!,

(3) L/C(L)P = 5£(2), s£(2), and dim; C(L)/C (L) <1,

Proof. (1) = (2). Suppose that By(L) is tame. Owing to [25, (6.4)] we have L = s{(2),,
where ¢ : sl(2) — C(L) is a p-semilinear map. By the same token, there exists a de-
composition C(L) = V @ T(L), with a nil-cyclic algebra V' = (kvg),. If V = (0), then
C(L) = C(L)P, and we are done. Alternatively, we write 1) = )y + 1 as a sum of two
p-semilinear maps ¥y : s€(2) — V and ¢ : s€(2) — T(L). As in (2.1) we see that each
pair (g, ) € SL(2) x Aut, (V) defines an isomorphism

G 0@y — S petgmrsioer) 5 T+ + L (Adg)(a) + p(v) +1.

of restricted Lie algebras. Let 1 : s{(2) — C(L)/C(L )[p be the p—semlhnear map obtained
by composing 1 with the canonical projection C(L) — C(L)/C(L)¥. Then L/C(L)P =
s((2),, is a one-dimensional central extension of s/(2) with nil-cyclic center. By [25, (1.1)]
the principal block By(sf(2);) is tame, and a consecutive application of (2.2), (4.4) and (6.3)
ensures the existence of a pair (g,a) € SL(2) x k* such that ¢ := a(g - 1) satisfies

Cle) =0=C(f); ¢(h) = vy + C(L)P.

Suppose that dimg V' = n, so that {vy, vp], . [p]n } is a basis of V. Let po : V. — V be
the automorphism given by

n—1 )
z@ 0y = 3 ot

=0

Then we have s€(2)y = 50(2) yao(g-ty )+(g-¢or) and

To (a0 (g -Yv)+ (9 %r)) =mopso(g-vv)=C

Consequently, the p-semilinear map g, o (g -y ) + (g - ¥r) satisfies (2).
(2) = (3). Trivial
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(3) = (1). We decompose the abelian Lie algebra C'(L) = V @ T(L) into its p-unipotent
and toral part. Then C(L)P! = VIl @ T(L), so that dim;, V/VIPl < 1. Hence V = (0) or
V = (kwp), is nil-cyclic.

Suppose that L/C(L)P =
Consequently, C'(L) =T(L) an
tame.

Next, we assume that L/C(L)P! 2 s((2),, and put L' ;== L/T(L). If V' C L' denotes the
image of V under the canonical projection L — L/, then L'/V'Pl = [/C(L)P) = s¢(2),. Let
A’ be the basic algebra of By(L'). Since By(s{(2),) = By(L')/By(L')V'P], there exists an ideal
I € Rad(A)? such that A” := A’/I is the basic algebra of By(sl(2);). It now follows from
(6.3) and (7.1) that A" possesses generators satisfying conditions (1) through (4) of section
5. As L is a central extension of s¢(2) (1.1) shows that A’ is symmetric. Hence (5.2) applies
and A’ is special biserial. Owing to [53, (2.4)] the algebras A" and By(L') are tame, and (1)
now follows from [25, (1.1)]. O

). Then L/C(L)P is simple, so that C(L) = C(L)P!

sl(2 :
d [25, (1.1)] implies that By(L) = By(L/T(L)) = By(sl(2)) is

8. Tame Blocks of Reduced Enveloping Algebras

In the foregoing section we have classified the blocks of the algebra u(L/T(L)) under the
assumption that the principal block By(L) of the enveloping algebra u(L) is tame. As we
shall see below, the remaining blocks of u(L) occur in certain Frobenius algebras associated
to the restricted Lie algebra (L, [p]).

Let (L, [p]) be a restricted Lie algebra with ordinary universal enveloping algebra U(L).
Given a linear form x € L*, the factor algebra

u(L,x) :=U(L)/({2? — ol — x(x)P1; x € L})

is called the y-reduced enveloping algebra of L. This algebra is known to be a Frobenius
algebra of dimension pdimcL (cf. [52, (V.3.1),(V.4.3)]). Note that u(L,0) = u(L) is the
restricted enveloping algebra of L. Rank varieties may also be defined in this context, and
they possess the same properties as the ones considered so far (see [29, §6]). Thus, given a
u(L, x)-module M, we define

V(M) = {z € Vi, ; M|utkax|,) is not free} U {0}.

We consider the character group X (T'(L)) of the toral radical T'(L) C L that consists of
all linear forms v € T(L)* such that v(tPl) = ~(¢)? for every t € T(L). Note that X (T(L))
naturally identifies with the set of algebra homomorphisms w(7'(L)) — k. For v € X(T'(L))

we put
Ay = u(L)/({t = ()1 ; t € T(L))).
Lemma 8.1 There is an isomorphism u(L) = @%X(T(L)) A, of k-algebras.

Proof. Since tori are rigid, T'(L) C C(L) is contained in the center of L. Thus, u(7'(L)) is a
semisimple subalgebra of the center Z(L) of the restricted enveloping algebra u(L).
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Since the set {k, ; v € X(T'(L))} is a full set of representatives of the isomorphism
classes of simple u(7'(L))-modules, we have a decomposition

wT(L)= @ ke,

YEX(T'(L))
where the e, are primitive, orthogonal idempotents such that
ae, = y(a)e, Vaeu(T(L)), ve X(T(L)).
Thus, each ideal I, := u(L)e, of u(L) is generated by a central idempotent, and we have
ul)= @ I
YEX(T'(L))

Given vy € X(T'(L)), welet 7 : u(L) — A, be the canonical projection. If ue,, € ker 7N L,
for some u € u(L), then we have

uery = 3 ault —0(0)1),

teT(L)

with all but finitely many a; € u(L) being zero. Consequently,

Ue, = ue?y0 = Z at(t —yo(t)l)e,, =0,
teT (L)

so that |, is injective.
Let ~ be an element of X(T(L)) \ {0} Then we have yy(e,)e,, = e,e,, = 0, so that
Yo(ey) = 0. Since m(a) = yo(a)m(1) for every element a € u(7'(L)), it follows that

7(e3) = o(en) (1) = 0.
Consequently, 7(7,,) = m(u(L)) = A,,, so that 7|z, is an isomorphism. This implies
u(L) = @ I, = @ A,
VEX(T(L)) VeX(T(L))

as desired. O

Let L := H & C be direct sum of Lie algebras such that [C,C] = (0). We assume H and
C' to be restricted, and consider the extension L, that is given by the p-semilinear map
Y : H — C. Thus, L, has a p-map defined by

(h+ )Pl := BlPI - 4p(R) 4 P! forall h € H, ce€ C.

Lemma 8.2 Let A € C* be a linear form, and denote by x € H* the unique linear form
satisfying x(h)P = (Ao ) (h) for every h € H. Then there exists an isomorphism u(H, x) =

u(Ly)/({c =)L ;5 ce C}).
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Proof. Let Ay = u(Ly)/({c — AMc)l ; ¢ € C}). Directly from [52, (1.9.7)] we obtain
dimy Ay = ptm# = dim;, u(H, x). Now let ¢ : H — A, be the composite of the canonical
maps H — Ly, L, — u(Ly), and u(Ly) — A,. Then we have

¢([a,b]) = ¢(a)C(b) = C(b)¢(a) Y a,be H.

Since

C(R)P = C(h") = x(R)"L = AP 4 4p(h) — P — x(R)"L = 4h(h) — (A o) (R)L =0

for every element h € H, the universal property of u(H,x) (see [52, (V.3)]) ensures that ¢
lifts to a homomorphism ¢ : u(H, x) — A, of k-algebras. Owing to [52, (1.9.7)] the map ¢
is surjective and therefore, by equality of dimensions, bijective. O

Our analysis of the representation type of the blocks is based on the following facts concerning
isomorphism classes of reduced enveloping algebras. From the universal property it readily
follows that any isomorphism f : L — L’ of restricted Lie algebras induces isomorphisms

u(L,x) = u(L',xo0 )
of reduced enveloping algebras for every y € L*. Thus, the coadjoint action
SL(2) — GL(s(2)*) ; g-A:=AXoAd(¢g™)
induces isomorphisms
u(sl(2), X) = u(sl(2), 9 - x)

for g € SL(2) and x € sf(2)*. Owing to [29, §2] there are three isomorphism types of reduced
enveloping algebras of s/(2):

L. x =0, ie., u(sl(2)y, X) is the restricted enveloping algebra,

2. x is of semisimple type, i.e., X is conjugate to a linear form x, satisfying x,(e) = 0 =
Xs(f), Xs(h) # 0, and
3. X is of nilpotent type, i.e., X is conjugate to the linear form y,, satisfying x,(e) =0 =

In view of our projected applications we continue by considering the following set-up. We
are given a Lie algebra s/(2),, defined by a p-semilinear map v : s{(2) — V whose target
is an n-dimensional nil-cyclic Lie algebra (0) # V' = (kvy),. Let x € s£(2);, be a linear form
such that x(V) = (0), and denote by x € s£(2)* the linear form induced by x.

Given g € SL(2) the map

§:502)y — $U2gy 5 @+ Ad(g)(@) +0
is an isomorphism of restricted Lie algebras that induces isomorphisms
u(s(2)y, x) = u(sl(2)g4,9 - X),

where g -y := y o g~!. Accordingly, we shall henceforth consider only the following linear
forms
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1. The form x =0, i.e., u(sl(2), x) is the restricted enveloping algebra,
2. the semisimple forms x; given by xs(ke ® kf @ V) = (0) and xs(h) # 0, and

3. the nilpotent form x,, given by x,(ke ® kh ® V) = (0) and x,(f) = 1.

In either case I := u(sl(2),, x)vo is a nilpotent ideal such that u(s€(2)y, x)/I = u(sl(2), x)-
In particular, the algebras u(sf(2),,x) and u(sf(2), x) have the same simple modules.

Owing to [29, §2] the simple u(sl(2)y, x)-modules are indexed by highest weights A €
X (x), where

X(X) = {\ € (kh @ ke)* ; A(h)? — A(RP)) = x(R)?, A(e) = 0}.

When convenient we will view elements of X'(y) as linear forms of the space kh @ ke @V by
setting A(V) = (0). As before we will write S(A) and P(\) for the simple module associated
to A and its projective cover, respectively.

Given a p-semilinear map ¢ : sf(2) — V| we let U s0(2) — V/V the p-semilinear
map obtained by composing ¢ with the canonical projection.

Replacing [42] by [29, (2.2),(2.3)] in the arguments of the proof of (1.5) we obtain the
following result:

Lemma 8.3 Let x € {xs, Xn}-
(1) The module viP(X\)/vi™ P(X) is the projective cover of the u(s(2), X)-module S(\)
for0 <1 <p"—1.
(2) If x = xn and X(h) = =1, or if x = Xs, then dimg P(\) = p"*! and ((P()\)) = p".
(3) If x = xn and A(h) # —1, then dimg P(\) = 2p™*! and ((P()\)) = 2p". O

We consider the number R
d(v) := dimy ke Nker ) € {0, 1}.

Lemma 8.4 Given simple u(sl(2)y, xn)-modules S and T', we have

0 if ST
dimg Exty oz, ) (5 T) = 8 L4d(¢) if S=T¥S(p—1) .
1 if S=T~8(p—1)

In particular, each block of u(sl(2)y, Xn) is primary.

Proof. As in (1.3) we put M := Homg(S,T), and observe that M is a u(s/(2),)-module
that is annihilated by vy (cf. [52, (V.2.7)]). Thanks to [29, (5. 1)] there are isomorphisms
EXtZ(se@),;zn)(S: T) = Hi(u(sl(2)), M) and BExt’ (S,T) = H'(u(sl(2),), M) for every

w(S€(2)pXn)
1 > 0. There thus results an exact sequence

(%) (0) — Bxtliym ) (S: T) — EXtl o), 1y (S T) — H' (u(V), M)*@»
- EXtu (s£(2),x (S T)
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Moreover, the arguments of (1.3) show that
(%) H (u(V), M)sf(Q)w =~ Homy(se(2),xn) y(S,T).

Thus, if S 2 T, then [29, (2.3)] and Schur’s Lemma imply the vanishing of the first and third
term, so that Extu(sg(2 (S, T) = (0). This already implies that each block of u(s€(2)y, xx)
is primary.

If S=S(p—1) =T, then [29, (2.3)] yields Extu (502),3m) (5:5) = (0) = Extu (50@),1m) (559,
whence

dimy, Exty (s62)poxn) (05 S) = 1.

Similarly, we have
1 < dlmk EXt (55(2 (S S)

in the remaining cases.

In order to compute the dimension of the latter space, we consider the Lie algebra L :=
s(2)y/VPL. Then L is a one-dimensional central extension of sf(2). Let x, € L* be the
linear form induced by x,, and denote by P a pro{ective cover of S. As before, we let
J be the Jacobson radical of u(sf(2),,x). Since U([]p € J? C J? we obtain, setting I’ :=
u(s0(2). X
Exti(sg(mw’Xn)(S, S) = Homu(sg(2)¢7Xn)(JP/J2P, S) = Homyr, ) ((JP/I'P)/(J?P/I'P), S)

EXt}L(L,X%) (S, S) .

12

Hence we may assume that dim; V =1 and ¢ = Q/AJ
Thanks to [29, (2.3)] there exists A € X' () with A(h) # —1 and such that

S = u(sl(2), Xn) Quikhoke snlinore) Kr = W((2)y, Xn) Qu(Byxaln,) K,
where we set By, := kh @ ke @ kvy and A(vp) = 0. An application of [20, (3.4)] yields

{0} # Vi(2),(S) C Viketkuo-

If d(¢) = 1, then ¢ (e) = 0, and the arguments of (7.3) may now be adopted verbatim to see
that Vi), (S) = kvo@ke is two-dimensional. Hence the block B C u(sl(2)y, Xn) belonging to
S is not representation-finite. Since B is primary, this implies dimy, Ext} u(s6(2), (S S) >
as desired.

Alternatively, 1(e) # 0, so that Viesry, = kvo. Hence S is periodic and B has finite
representation type (cf. [19, (3.2)]). In particular, dimy, Exti(sg(2 Yoo (5:9) =1 O

Suppose that V' = kvg and ¢(e) = 0. Then B := k(h+1(h))® ke is a p-subalgebra of s{(2),,
and every highest weight A € X'(,,) gives rise to a one-dimensional u(B, x,|z)-module k.
We consider the Verma modules

Z(A) == u(50(2)p, Xn) Qu(B,xnlp) Fr and Zgy2)(A) := u(50(2), Xn) @uB,tnls) Fa-

Thanks to [29, (2.3)] the module Zg)()) is simple. In view of (8.3) the block B()\) C
u(sl(2)y, Xn) associated to A is primary. The arguments of (3.1) now yield the first two
parts of the following result.
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Lemma 8.5 Suppose that V = kvy, ¥(e) = 0 as well as \(h) # —1.
(1) We have isomorphisms viZ(\) Jvst' Z(N) = Zgyay(A) for 0 <i <p—1.
(2) The module Z(X) is uniserial of length p with viZ(\) = J'Z(\) for0 <i<p—1.
(3) Loty (Z(N) = Z(A).

Proof. (3). By the PBW-Theorem u(sl(2)y, x») is a free left and right module of rank p? over
the subalgebra u(B, x,|5) = u(B). Accordingly, the functor M — u(sl(2)y, Xn) @u(B,xn|s)
M is exact, and Frobenius reciprocity (cf. [3, (2.8.4)] ensures that it sends projectives to
projectives. Directly from the definition of the Heller operator we therefore obtain (cf. [6,

(4.4)])
Qu(se2)yxn) (Z(N) © P Zu(s0(2) g, Xn) DuBoxnls) QulBoxals) (Fr)

for some projective module P. Observing that u(B, xx|5) Qu(k(h+1p(h) xnle(nawiy) K 15 the
projective cover of ky, we see that Qg y.|5)(kr) has a composition series with composition
factors kajoic for 1 <4 < p—1. Here ¢ : kh @ ke @ kvg — k denotes the linear map
sending h to 1 and all other basis vectors to zero. Thus, the module u(s4(2)y, Xn) @u(B,xn|s)
Qu(Bxn| ) (k) is filtered by modules Z(X 4 2i¢) with 1 <i <p—1.

By (1) and [29, (2.3)] Z(A) and Z(X') are the only Verma modules belonging to the
primary block B(A). Among these, only Z()\’) occurs as a filtration factor (with multiplicity
one). Set M := u(5€(2)y; Xn) @uB,xnls) LuB,xals)(kr), and let V' C M be the first module of
the filtration containing Z(\') as a filtration factor. There results an exact sequence

0) — V' —V — Z(\) — (0).

Since the filtration factors of V' all belong to blocks different from B(\), the sequence splits.
Thus, Z()\') is a submodule of M, and we have an exact sequence

(0) — Z(\) — M — M/Z(X) — (0).

Arguing as above, we conclude that Z()') is a direct summand of M. Consequently, there
exists a u(sl(2)y, xn)-module @ such that

ZN) @ Q = M = Qusu2y,xn)(Z(N) @ P.

Thus, Z(X') and Qu(se2)4.x.) (Z(N)) are the unique non-projective parts of M belonging to
B(A). The theorem of Krull-Remak-Schmidt now yields €y se(2),,xn) (Z(A)) = Z(N).

A

It remains to show that Z(\) = Z(XN). To that end we let i € {0,...,p — 2} be an
element such that A(h) = ¢ mod(p). From the Cartan-Weyl identities it follows that

0: Z(N)—Z(\) ; u@l—ufttel
is a homomorphism of u(sf(2),, x,)-modules. Since x,(f) = 1, we have
fr="a 1= +1,

proving that im o + voZ(A) = Z(A). In view of (2) this readily yields the surjectivity of o.
As both modules have dimension p?, ¢ is an isomorphism. O
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For the proof of our main result we also require the following Lemma concerning the Loewy
layers of certain principal indecomposable modules. Given a highest weight A € X'(,,) with
A(h) # —1, we consider the associated principal indecomposable module P(\), the block
B(\) C u(sl(2)y, xn) as well as the algebra A(X) := B(\)/viB(\). In the sequel we will
determine the structure of the module M () := JP(X)/J?P()\). As usual, J C u(sl(2)y, Xn)
denotes the Jacobson radical. Recall that vy € J.

Lemma 8.6 Suppose that 1(e) = 0 and M(h) # —1. Then we have {(J'P(X)/JH1P())) = 2
for 1 <1 <p"*—1. In particular, M(X) is an A(X)-module of length 4.

Proof. By (8.3) and [29, (2.3)] the modules v P(\)/vi™ P(A\) are uniserial of length 2 for
0 <17 <p"—1. Accordingly, we have proper inclusions

wP(A) C JP(A) C P(X).

Since ((JP(X)/vgP (X)) = 1, the module vyP(A) is a maximal submodule of JP(X), so
that J2P(A\) C voP()\). Thanks to (8.4) the module JP(X)/J?P()) has length 2, implying
l(voP(N)/J*P()\)) = 1. Since vy P(A\)/v2 P()) is uniserial of length 2 and v3P()\) C J2P(\),
we thus obtain

J2P(A\) = JugP(A\) = vy P()).

An easy induction argument now yields
J'PA) = JuitP(N) V> 1.

Suppose that i € {1,...,p" —1}. Since vj*P(\)/vi P()\) and vj P()\)/vi™ P()\) are uniserial
modules of length 2, the above identity yields £(J'P(X) /vy P(N)) = 1 = L(vi P(N)/JTLP(N)).
Thus, ((J'P(N)/JTP(N)) =2, and M () is an A()\)-module of length 4. O

Lemma 8.7 Suppose that ¥(e) = 0 and A(h) # —1. Then A(N) is Morita equivalent to
kX, Y]/(X2,Y?). In particular, A(X\) is symmetric.

Proof. We consider the principal indecomposable module P(\) := P())/v2P(\) of the
primary algebra A(A). The proof of (8.6) shows that

(0) € J2P(N\) C vyP(N\) € JP(A) C P()\)

is a composition series of P(\).

Accordingly, £(P(\)) = 4, and we note that Soc(P())) is annihilated by vy. Since P())
is free over k[vg] = k[X]/(X?), it follows that Soc(P())) is contained in the uniserial module
voP(\) = voP(N)/v2P(N). Thus, Soc(P(\)) is simple, and the primary algebra A()) is
self-injective (cf. [3, §1.6]).

By the above, the left multiplication by vy defines a central generator of the Jacobson
radical of the local algebra A := EndA(,\)(f’()\)). It now follows from (8.4) that A is a
commutative algebra. By [14, (1.3.4)] A is a four-dimensional, local, symmetric algebra, and

14, (I11.3)] now implies A = k[X, Y]/(X2Y?). O
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Lemma 8.8 Suppose that zﬁ(e) =0. If A\ € X(Xn) is a highest weight with A\(h) # —1, then
M ()) is indecomposable.

Proof. Since v([)p le 3. we may assume V = kvy and ¢ = zﬂ In particular, the Verma modules

Z(\) are at our disposal. According to (8.5(2)) the A(X\)-module Z(\) := Z(\)/v2Z(\) is
uniserial of length 2.
In view of (8.5(3)) we have an exact sequence

(%) (0) — Z(A) — P(A) — Z(A) — (0).
The exact sequence (+) induces
(0) — Z(A) — JP(A) — JZ(A) — (0),
which in turn gives rise to an exact sequence
Z(N)/J2Z(N) — M(X) — JZ(N)/J*Z(A) — (0).

In virtue of (8.5(1)) the first and third term are isomorphic to Z()). Since ¢(M()\)) = 4, and
U(Z (X)) = 2, the left-hand arrow is injective, so that we finally obtain an exact sequence

A A

() (0) — Z(A\) — M(N) N Z(A\) — (0)

of A(\)-modules.
Similar arguments show that (x) gives rise to

A A

(0) — Z(A) — P(A) — Z(\) — (0),
whence Z(\) = Q) (Z(N)).

We put @(sl(2)y, Xn) = w(8€(2)y, Xn)/u(sl(2)y, Xn)vi. By the PBW-Theorem the set
{fi(h+¥(h)evs ; 0 < i,j,rs < p—1} is a basis of u(sl(2)y, xn) over k. Abusing
notation we will not distinguish between elements of u(s¢(2)y, x») and @(sl(2)y, X,,). Thus,
{fi(h+¥h)evs; 0 <idjr<p—1,0<s <1} is a basis of 4(sl(2)y,xn) over
k, and the canonical projection u(sl(2)y, xn) — @(s0(2)y, Xn) restricts to an embedding
u(B, XnlB) — G(sl(2)y, Xn). Moreover, u(sl(2)y,xn) is a free left and right u(B, x,|5)-
module of rank 2p.

We proceed in several steps.

(i) We have an isomorphism @(s0(2)y, Xn) @u(B,xnls) kr = Z(\).

The canonical projection u(s€(2)y, Xn) — @(s€(2)y, X») induces a surjective map
Z(X) — (80(2)y, Xn) @uByxnlp) Fr 3 U@ 1= m(u) @1,

whose kernel obviously contains v2Z()). Since dimy, Z(\) = dimy 4(s6(2)y, Xn) ®u(B,xnls) Fas
the above map induces the desired isomorphism.

(ii) The sequence (xx) does not split.
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Assume the contrary and let i € {0,...,p — 2} be a natural number such that A(h) =
i mod(p). From the Cartan-Weyl identities (cf. [52, (I.1.3)]) and (i) it follows that

S0Cu(Bxalm) (Z(N) = k(1@ 1) ® k(v ® 1) @ E(FH @ 1) ® k(v @ 1).

Thus, the splitting of (+) implies dimy Soc,(p,y,| ;) (M (A)) = 8.

Thanks to (8.6) the module V := v3P(\)/J?P(\) C M()) is simple. Consequently,
V' = Zy2)(A) and the above arguments yield dimy, Socyp,y,|) (V) = 2. Owing to (8.3) P(\)
is a projective u(sl(2)y, xn)-module of dimension 4p. By our above observations, it is also
projective over the Nakayama algebra u(B, x,|p). As noted above, the principal indecom-
posable u(B, x,|p)-modules are p-dimensional. Consequently, dimy Soc,(s,y,| B)(P()\)) =4,
so that the dimension of the module Socy(g . 5)(JP(N)/v3P(N)) is bounded by 4. The exact
sequence

(0) — V — M(\) — JP(\)/v2P(\) — (0)

gives rise to the exact sequence
(0) — S0CuBxul) (V) — SOCu(Bxul5) (M (X)) — S0Cu( 1,1 (JP(N) [EP(N)).

whence dimy, Soc, gy, |5) (M (N)) < 244 = 6, a contradiction. As a result, the sequence (xx)
does not split.

Now let ¢ : Z(A) — Z()) be a non-zero, non-isomorphism. Since Soc(M())) ¢ kerw, there
exists a map g : Z(A) — Soc(M (X)) so that wo p # 0. By Schur’s Lemma we thus have
( = a(wopu) =wo (au) for some scalar a € k. Consequently, ¢ factors through w. As A(\)
is symmetric, we have DTr(Z(\)) 22 Qi‘(/\)(ZA()\)) >~ Z(\). In view of (ii) and the foregoing
observation [2, (V.2.2)] implies that the sequence (xx) is almost split. Since the periodic
length 2 module Z()) is located at the mouth of a homogeneous tube, it follows that M ()

is indecomposable. O

Lemma 8.9 Suppose that xﬁ(e) =0. If A € X(xn) is a highest weight with A(h) # —1, then
the algebra B(X)/J*B(\) is Morita equivalent to k[X,Y]/(Y?, X?Y, X3). Consequently, B(\)

15 wild.

Proof. Let A be the basic algebra of B(A\)/J3B(\) and put R := Rad(A). The arguments
employed in (8.7) show that A is commutative. It follows from (8.8) and (8.6) that R is
indecomposable of length 4 with the top and socle of length 2. Moreover, there exists an
exact sequence

(0) — U — R— U — (0),

where U is a uniserial submodule of R of length 2. Hence U = Ay for some element y € R\ R?.
Since R is indecomposable, and R/R?, R? are of length 2, there exists an element z € R\ R?
such that R = Az + Ay, Az is of length 3, and Soc(Ay) = Soc(Azx) NSoc(Ay) = kry = kyz.
Clearly, then 22 # 0. We claim that y? = 0. Suppose y? # 0. Then y? = axy for some non-
zero element o € k. Take y' :=y — ax. Then R = Ay’ + Ay and yy' = v’y = (y — az)y = 0.
Then Ay’ and Ay are uniserial modules of length 2 with Soc(Ay’) = k(y')? and Soc(Ay) =
ky* = kxy. Moreover, (v')? = a?z® — ary & Soc(Ay), because z° & Soc(Ay). Therefore, we
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obtain R = Ay’ @ Ay, which contradicts the indecomposability of R. Thus, y? = 0, and A is
isomorphic to k[X,Y]/(Y?2, X2Y, X3). Tt follows from [14, (1.10.10(d))] that this algebra is

wild, and consequently B(A) is also wild. O

Remark. 1t follows directly from (8.9) that the algebra u(sf(2)s, x») is wild. Thus, the re-
stricted Lie algebra sf(2), possesses reduced enveloping algebras whose representation theory
is more complicated than that of its restricted enveloping algebra. This phenomenon does
not arise for Lie algebras with representation-finite enveloping algebras (see [19, (4.3)]).

We are now in a position to establish the main result on the block structure of restricted
enveloping algebras with tame principal block. Recall that n(L) = dimjrad,(L) is the
dimension of the p-unipotent radical of the restricted Lie algebra (L, [p]).

Theorem 8.10 Let (L, [p]) be a restricted Lie algebra of characteristic p > 3 such that
Bo(L) is tame. Then each block B C u(L) is either Morita equivalent to k[X]/(X?"™),
E[X]/(X2"), K(n(L)), or B is wild. In particular, each tame block of u(L) has exactly 2
simple modules.

Proof. Thanks to [25, (6.4)] we have an isomorphism L/C(L) =2 s/(2). By the same token,
the center C'(L) decomposes into a direct sum

C(L) =V aT(L)

of restricted Lie algebras with a nil-cyclic Lie algebra V' = (kvy),, of dimension n = n(L). In
view of the general observations made in section 1, we thus have a decomposition

L=s((2)®Va&T(L)

of Lie algebras. The p-map on L is induced by those of the three summands, and a p-
semilinear map v : s¢(2) — C(L), which we write as a sum ¥ = ¢y + 9 of two p-semilinear
maps Yy : sl(2) — V and ¢ : sl(2) — T(L).

We consider the restricted Lie algebra H := sf(2) & V whose p-map is given by

(z + )P = 2l 4oy (2) 4 0P Vaesl2),velV.
If ¢/, : H — T(L) denotes the p-semilinear map defined by
P(x +v) = r(x) Vrzesl(2),veV,

then Ly = H @ T(L) is the originally given restricted Lie algebra (L, [p]).
For an element v € X(T'(L)), we let x., € H* be the linear form satisfying
Xo(R)? = (yoi)(h) for every h € H.

In particular, we have V' C ker x,. A consecutive application of (8.1) and (8.2) shows that
there exists an isomorphism

u(l)= P ulH.x,)

YEX(T(L))
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of k-algebras.

In particular, the blocks of u(L) are preceisely the blocks of the algebras u(H, x), where
7 ranges over X (T'(L)).

Now let B C u(H, x~) be a block.

Suppose that x, = 0. By [25, (1.1)] the principal block By(H) is tame. Since n(H) =
n(L) = n Theorem 7.1 now shows that B is either Morita equivalent to K(n(L)) or to
KIX)/(XP),

Assume ., # 0 to be of semisimple type. In this case [29, (2.2)] ensures that u(s/(2), x,)
is semisimple, so, for n(L) # 0, the Jacobson radical I = J of u(H, x,) is generated by the
central element vy. Morita’s Theorem [9, (62.26)] then ensures that u(H, x,) is a Nakayama
algebra. Consequently, B also enjoys this property. By (8.3) the block B has Loewy length
p"® and is thereby Morita equivalent to k[X]/(X?"™).

Alternatively, we may assume that x, = X, is of nilpotent type. Owing to [29, (2.3)]
each block of u(sf(2), x») is a Nakayama algebra of Loewy length < 2. Thus, for n(L) = 0,
the block B is Morita equivalent to k[X]/(X*) ¢ € {1,2}.

We assume n(L) # 0. If d(ipy) = 0, then (8.4) shows that the block B is a primary
Nakayama algebra. By (8.3) its Loewy length is p™®) or p?™) so that B is a full matrix
ring over k[X]/(X7"™) or k[X] /(X" ™).

We finally assume d(1y) = 1, and let A € X(x,,) be the highest weight corresponding to
B. If A(h) = —1, then (8.3) and (8.4) imply that B is Morita equivalent to k[X]/(X?"")).
Alternatively, (8.8) yields the indecomposability of JP(\)/J?>P(\). Consequently, B is wild
in this case. g

Let L = sl(2), be a central extension of sf(2). As before we write ¢ = 1y + ¢p. For a
linear form x € L* with x(C(L)) = (0) we put

d(, x) = dim Vo) Nker x N ker Uy

Note that d(g -1, g-x) = d(v, x) for every element g € SL(2). Since Vyy2) Nker x,, = ke, we
have d(¥, x,) = d(¢v).

Corollary 8.11 Let L = s((2)y, be a central extension of s¢(2) with center C(L) = VT (L),
V = (kvo),. Then the following statements are equivalent:

(1) u(L) is tame.

(2) (a) by € (k* x SL(2)) - 1, is of semisimple type, and

(b) d(xy,¥v) =0 for every v € X(T'(L)) such that x is of nilpotent type.

Proof. (1) = (2). Condition (a) is a direct consequence of (7.4) and (b) follows from the
proof of (8.10).

(2) = (1). If Ly, denotes the restricted Lie algebra sf(2) & V with p-map given by vy,
then (8.1) and (8.2) imply u(L) = @, c () W(Lpy, Xy)- According to (7.4) condition (a)
implies that By(L) is tame. The proof of (8.10) in conjunction with condition (b) shows that
each algebra u(Ly, , x-) is tame. Consequently, u(L) is tame as well. O
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Examples. Consider the 5-dimensional restricted Lie algebra L := sl(2) @ kvy @ kty with
center C'(L) = kvy @ kto.
(1). We define a p-map on L via

el =0 ; WP i=h4uy o fPli=1¢, ; v([)p] =0 ; t([)p]:to.

In view of (7.4) the principal block By(L) is tame. In fact, it is Morita equivalent to K(1).
Let v : ktog — k be given by ~(t) = 1. Note that 1y = by = 1), and that ¥, € sf(2)*
coincides with x,,. Since d(¢y) = 1, the algebra u(L) is wild.

(2). Now define a p-map on L via

el =y o BlPl=n o =y 4ty v([)p] =0 ; tg’]:to.

Then 1y is of semisimple type and the principal block By(L) is tame. Let v : ktg — k be
given by y(to) € GF(p)\{0}. As before, x., € s£(2)* is of nilpotent type. Since d(x, v ) = 0,
the algebra u(L) is tame.
Corollary 8.12 Let (L, [p]) be a restricted Lie algebra of characteristic p > 3. Then the
following statements are equivalent:

(1) u(L,x) is tame for every x € L*.

(2) L/T(L) = st(2).

Proof. (1) = (2). Since u(L) is tame, (7.4) implies that L/C(L)P! = s£(2), s¢(2),. In the
former case we have (2) while in the latter there exists a linear form y € L* which is zero
on C(L)P and equal to x, on sf(2),. Accordingly, u(L, ) surjects onto the wild algebra
u(sl(2)s, Xn)-

(2) = (1). This follows from the proof of (8.10). O

9. The Krull-Gabriel Dimension of u(L)

Given a k-algebra A, we denote by mod(A) and C(A) the categories of finite dimensional left
A-modules and finitely presented covariant functors from mod(A) to mod(k), respectively.
We will write A/S for the abelian quotient of an abelian category A by a Serre subcategory
S (cf. [35, (1.11)] and [49, (1.2)]). We put C_; := 0 and define C,, to be the category of all
functors F' € C that are sent to an object of finite length by the canonical quotient functor
C — C/C,—;. Following [31] we define the Krull-Gabriel dimension KG(A) € IN U {oco} via

KG(A) := min{n € NU {0} ; C, =C}.

It was shown in [1, (3.14)] that KG(A) = 0 if and only if A is of finite representation type.
As an application of our classification of tame restricted Lie algebras, we have the fol-
lowing result on the Krull-Gabriel dimension of restricted enveloping algebras:
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Theorem 9.1 Let (L, [p]) be a restricted Lie algebra of characteristic p > 3. Then the
following statements are equivalent:

(1) KG(u(L)) < oo.

(2) L/T(L)= sl(2), or L/T(L) is the semidirect sum of a torus of dimension < 1 and
a nil-cyclic ideal.

(3) KG(u(L)) € {0,2).

Proof. (1) = (2). Suppose that u(L) has finite Krull-Gabriel dimension. Owing to [32] this
implies that u(L) is of finite or tame representation type. In the former case, the classifi-
cation of representation-finite restricted Lie algebras (cf. [19, (4.3)]) shows that L/T(L) is
a semidirect sum of torus of dimension < 1 and a nil-cyclic ideal. If w(L) is tame, then
By(L) also enjoys this property. Thanks to (7.4) we thus have L/C(L)P! 2 s¢(2) or s((2),.
In the latter case (7.2) shows that By(L) is not of polynomial growth, so that the string
algebra By(L)/Soc(By(L)) is non-domestic. In view of [46, Prop.2] this algebra has infinite
Krull-Gabriel dimension. Thus, KG(u(L)) = oo, and we have reached a contradiction. It
follows that the Lie algebra L/C(L)IP = s£(2) is simple, so that C(L) = C(L)P! = T(L).

(2) = (3). If L is given as in (2), then (7.4), the proof of (8.9) and [19, (4.3)] show that
u(L) is of tame or finite representation type. In the latter case [1, (3.14)] yields KG(u(L)) =
0. Alternatively, we have L/T(L) = sf(2) and [25, (1.1)] implies By(L) = By(s¢(2)). Since
By(sf(2)) is the trivial extension H x D(H) of the Kronecker algebra H, an application of
132, (3.9)] gives KG(By(sl(2))) = 2. Owing to (8.9) all other blocks of u(L) are Nakayama
algebras, so that u(L) has Krull-Gabriel dimension 2.

(3) = (1). Trivial O
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