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1. INTRODUCITION

Let S be a compact space and E := M;(S) be the space of all probability measures on S
equipped with the weak topology. Let A with domain D(A) be the generator of a Feller-
semigroup on the space C(S) of continuous functions on S. Throughout the whole paper we
will assume that A has a unique invariant probability measure v and that supp (v) = S. The
Fleming—Viot (FV) operator associated with A with no selection and no recombination is defined
as

LF() =5 [ [ utde) @) = i) 550+ [ utaoa (55 ) () F € FCR(DW)),

where

oF dF oo
8—530([1,) = E(H+5(5m)|s:0 ;F S be (D(A)) ’

and
FCP(D(A)) :={F = o((f1,"),-- -, {fa, )| fi € D(A), 0 € Cy°(RY),d € N} .

Here (f,pu) := [ fdp. It is quite easy to see that the closure of this operator in the space
of continuous functions on E generates a Feller semigroup (7;). (Moreover, the Cg([0,0))—
martingale problem is well-posed (cf. [EK2]).) Consequently, L has a stationary distribution
IT € My(E). Since the invariant measure of A is assumed to be unique, it follows that II is
unique too (cf. [EK2]). By general semigroup theory, (7;) induces uniquely strongly continuous
semigroups on all LP-spaces LP(II) with corresponding LP-generators (L,, D(L,)) extending
(L, FC(D(A))), p € [1, ).

The purpose of this paper now is to investigate the long-time behaviour and regularity properties
of (T;) (and hence of the associated FV-process) in the corresponding LP—spaces. We will study
the following problems:

1) Determine explicit bounds on the exponential rate of speed of convergence towards the unique
invariant measure in terms of the mutation (Section 2).

2) Determine regularity properties of the FV—semigroup in dependence of the mutation. We
are in particular interested in the question under what assumptions on the mutation A, the
FV-semigroup is (i) hypercontractive (Section 3), (ii) strong Feller (Section 4) and (iii) compact
(Section 5)).

Concerning Problem (1) we will show that the FV-transition semigroup converges to equilibrium
with exponential rate if the same is true in the variational norm for the semigroup generated
by the mutation operator (cf. 2.7). This condition is also necessary (cf. 2.8). Moreover, in
contrast to previous results (cf. [EK4] and [DK]) we also determine explicit bounds on the
rate of convergence for general mutation operators. The main feature of our result is that the
rate of convergence w.r.t. the L°°—norm is precisely the same as the rate of convergence of the
semigroup genrated by the corresponding mutation. We emphasize that we use the invariant
measure II to obtain this more refined result.

The example of parent independent mutation (PIM) (i.e., Af(z) = 2 [ f(y) — f(z) v(dy), 6§ > 0,

(cf. Example 6.b))) shows that FV-transition semigroups do not have a regularizing effect in

general. In fact, it was the result obtained in [St2] concerning the hypercontractivity of FV-

transition semigroups in the PIM-case that was the starting point for a further detailed analysis
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WIICNH 1ed TO tlsS paper. 1t was SINOWI 111 [Ola| tllat the SeImigroup \Lz) generated Dy tle rv-
operator with parent-independent mutation is hypercontractive if and only if |supp(v)| = co. We
will generalize one half of this result: We prove in 3.1 that the transition semigroups generated
by FV-operators with bounded mutation have no regularizing effect whatsoever if |supp(v)| = oo
(here v denotes again the invariant measure of A).

As a positive result we will show in 3.1, in the case where the semigroup (p;) generated by the
mutation is ultracontrative (U) and the corresponding densities satisfy a certain lower bound
(L), the existence of positive constants ¢; and ¢y for which

(0.1) T F || e < e | elFl) oy £ >0, F € Lo(TT)
and
2 (TtF)2 ca(1+ %) 2 2
L2(IT)

Clearly, (0.1) is a weak form of ultracontractivity, whereas (0.2) is a weak form of hypercontrac-
tivity of (T3) (cf. [Ba], [Dal]).

In Section 4 we study the strong Feller property of (T}) in the case where S is a compact subset
of R?. Again the example of the parent independent mutation shows that some additional
assumption on the mutation is clearly needed. Assuming (U) and (L) again (cf. Section 3) and
in addition a certain regularity assumption (F) on the density of (p;), which implies that p;,
t > 0, maps bounded measurable functions into Lipschitz continuous functions, we will prove in
4.2 that (1}) is strong Feller. Moreover, we will show that under these assumptions (73) maps
bounded functions into functions that are Lipschitz w.r.t. a metric that is compatible with the
weak topology on E. All three assumptions are for example satisfied if A is the Laplacian on
0, 1]¢ with periodic boundary conditions (cf. 4.1 below). We will consider in Example 6.c) also
general diffusion operators on the d—dimensional torus.

The result on Lipschitz continuity, together with the uniform integrability of the set
{(T:F)?|||F|| 2cmy < 1}, which follows from (0.2), easily implies the compactness of (T;) on
L2(I0) (cf. 5.1), so that Fredholm perturbation theory is available to prove existence of invariant
probability measures for FV-operators with general bounded interactive selection (cf. 5.5). FV-
operators with interactive selection are given as first-order perturbations of the ”"neutral” model
(i.e., the model without selection and recombination) (cf. Section 5). We emphasize that, since
the underlying ”neutral” FV-operators are not symmetrizable in the corresponding L?-spaces in
general, and since the selection need not to be of gradient-type, the existence of such measures
cannot be deduced from previous results (cf. [EK3], [ORS]). Moreover, even in the case where
the selection is of gradient type, an explicit formula for the invariant measure, as it is known
in the case where the "neutral” FV-operator is symmetrizable (cf. [EK3]), is not known in the
general case.

In Section 6 we will discuss three particular classes of FV-processes in more detail: FV-processes
with

a) first-order mutation,
b) parent-independent mutation,

¢) mutations induced by diffusions on T¢.



rinally, 1€t us 1make two remarks COncerning tne teCiniques useda 111 our paper. rirst, tiie Inailil
tool in our analysis of the FV-transition semigroup is the analysis of the family of correspond-
ing Moran-processes (cf. Section 2). By the law of large numbers, every common invariant
of the family of n—particle Moran processes can be lift up to some analogous invariant of the
corresponding FV-process (cf. 2.4 and 3.3). The n—particle Moran process associated with
A is just an n—independent particle process, with each particle undergoing an A-motion, to-
gether with a pair—interaction called “sampling-replacement”. It is essentially the influence
of this pair—interaction that is responsible for new effects concerning the regularity properties
of the corresponding FV-transition semigroups, which are different from the known results on
hypercontractivity for transition semigroups of Ornstein—Uhlenbeck type processes (cf. [Ba]).
Second, in Section 5 we present an abstract method of modelling first—order perturbations of
(non-symmetric) FV-operators in L?-spaces w.r.t. an invariant measure. We emphasize that,
using the theory of generalized Dirichlet forms (cf. [St1]), it is possible to construct associated
strong Markov processes with cadlag paths (in fact standard processes), which are solutions of
the corresponding Dg ([0, c0))—martingale problem. We emphasize again at this point that our
methods depend crucially on the invariant measure for the FV-transition semigroup.

2. EXPONENTIAL RATE OF CONVERGENCE TOWARDS EQUILIBRIUM

Let X be a compact space and L be a Feller generator on X, i.e., the generator of a Markovian
Co—semigroup (7;) on the space C(X) of continuous functions on X. Since X is compact,
(T}) can be uniquely represented by a semigroup (p;) of probability kernels on X, i.e., T; f(x) =
[ f(y)pt(z,dy), z € X, and therefore, f +— T} f can be uniquely extended to a linear operator on
By(X), i.e., the space of all bounded measurable functions on X. We will denote this extension
again by T;. If m is an invariant probability measure for (7}) it follows from Jensen’s inequality
that

([izsram)” < ( [nase) dm)% - (/Iflpdm)% pe o),

so that (73) uniquely induces Cy—semigroups of contractions on the corresponding LP—spaces
LP(m), p € [1,00). Denote by (Lp, D(L,)) the corresponding generators. We will sometimes
call L, also the L?-realization of L.

Definition 2.1. Let p € [1,00]. The semigroup (1y) converges to the invariant distribution m
in LP(m) with exponential rate Ao > 0 if there exists M, > 1 such that |TiF — (F)| Lr(m) <
Mpe=?ot t >0, for all F € LP(m). Here, (F) = [ Fdm.

Remark. Let L{(m):={f € L?(m)|fL1}. In the case where (T}) is symmetric it follows that

1T 22 (my = limp—oo ||Tt"||22(m) (cf. [ReSil, VI.6]). Consequently,
0

: 0 ~ 0 w =X Y
1Tl Ezny = B0 (Tt oy = Hm ([Tt 7o, < Mg e™ ™0 = e7

Y

which implies that in the symmetric case the constant M in the above definition can always be
chosen to be 1.

The purpose of this section now is to calculate explicit bounds on the exponential rate of speed
of convergence of semigroups generated by FV-operators with no selection and no recombination
4



111 terims Ol the COrrespondaing qualitities ol the undaderiying mutatlolnl Ooperator. 10 tlils €nda et
S be a compact space and A be the generator of a Feller semigroup on C(S). Denote by L the
associated F'V-operator.

The n—particle Moran process associated with A.

Let (p;) be the semigroup generated by (A, D(A)). For n € N denote by (A, D(A™)) the

generator of the n-fold product (p§”)) of (p¢). Clearly, (p; (n )) is just the transition semigroup of
an n—particle process on S", with each particle undergomg an A-motion independently of each
other. The n—particle Moran process is then obtained by introducing a pair-interaction which
is called “sampling replacement”. Its generator (L™, D(A(™)) is given as follows:

L0 f(@) = AV f@)+ 30 67 fler. o aam) ~ f(2) f € DAM)
1<i<j<n
where gb(n) : B(S™) — B(S™ 1), ¢(n)f(x1, ce X)) = f(@1, o @1, Ty Ty o, Tp—1). (Note
that L(l) = A.) Consequently, the operator (L™ D(A™)) can be seen as the sum of the
operators A f — ) f, f € D(A™), and di<i<i<n (/)E?)f(:vl,... ,Tn-1), f € C(S™), which
depends on one variable less. Since f — >, ;i gbl(.;)f(xl, .+, &p—1) is bounded on C(S™) it

follows that (L), D(A(™)) generates a Cy-semigroup (g; (n )) on C(S™) as well. Clearly, (¢, (n ))
is Markovian again, since L(™1 = 0, hence q§ )1 =1, and L™ f(zg) < 0, where f(zq) =
maxyegn f(x).

Lemma 2.2. Let (q (n)) be the transition semigroup of the n—particle Moran process associated
with A. Then:

(i) ¢ f=a""Vf, feBy(Sm).

(i) The following recursive formula holds:
oV =V, FEB(S), t>0,

o f = e O+ T fye GV (70071 ds, € By(S™), t2 0.

Proof. (i) First ssuppose that g € D(A™~=1Y). Then g € D(A™) too and A™g(zy,... ,z,) =
AM=Dg(xq,... 2, 1). Since (bg-l)g(xl, ce ) = ¢l(~;-l_1)g(a:1, ey o) ifl1 <i<j<n-—1,
and = g(z1,... ,2,_1) if j = n, it follows that L™ g(z1,... ,2,) = L" Yg(zy,... ,2,_1). In
particular, if f € C(S™~1), hence (A\— L=~ f ¢ D(A™=V) for all A > 0, and (A — LM™)(\ —
L)1 f = £ it follows that

/ e—)\tqgn_l)f dt = ()\ — L(n—l))—lf — ()\ o L(n))—lf — / )\t (n)fdt
0 0

for all A > 0 and thus qgn) f= qinil) f for all ¢ by the uniqueness of the Laplace-transform.
Clearly, the last equality now extends to all f € B,(S™).

(ii) Clearly, L) = A implies q f pt f. For the proof of the second equality fix f € B,(S™).
By Duhamels formula

t
qin)f — e—t(2)p§n)f + Z / —s(z)qgﬁ) ¢5J")pgn)f ds .



omee ¢;;° ] & Dplo 7) (1) now 1mplies that g;_;¢;;"Ps "] = Gz—s ~ P35 Ps ~J Which 1mplies the
asssertion. [

For simplicity let us introduce the following notation: If f € B(S™) let
0 My(8) = Ry (07 .

The semigroup generated by the associated FV-operator with mutation A can be calculated
with the help of the transition semigroups of the n—particle Moran processes as follows:

Lemma 2.3. Let (T}) be the semigroup generated by the FV-operator L with mutation A. Then
Toly(p) = (g™ f, ™), € My(S), >0, f € By(S™), n > 1.

Proof. By [DawM, Th. 3.B.2]

(= D7) = (- () = A ST )

for A > 0, where

n

—1
Siaf= Zcﬁ(’)(w(é)—m”) Fl<k<n—1,A>0,

I=k+1 \1<i<j<l

and 57\ f=f, A>0.
By the uniqueness of the Laplace—transform it is therefore sufficient to show that for A > 0

n

oo B " k Cem
/ e Mg fdt =Y (A+ (2) —AWyLgn g
0

k=1

We proceed by induction: If n = 1 then clearly

/ e MgV f dt = / eMpD fdt = (A — Ay 1 |
0 0

Fix now n > 2 and suppose that the assertion is proved for all g € B,(S™™1).

Note that
> A+ @ —A)TISE L f = (A+( ) AM) 1f+Z A+ (k) — AR TSNS ) -
— k=1

It is therefore enough to show that

o — n n n — > — n—
/ e )‘tqg )fdt:()\+ <2) — Al )) 1f+/ e )‘tqg l)( 1,\f)
0 0

6



bHbut clearly

/ e)‘tqgn)fdt:/ ()\_|_( ))t (n)fdt—l- Z / / s (nsl) ¢§Jn)pgn)f) dsdt
0 0

1<i<j<n

n —X(r+s s (n— n n
:(“(2) AT S [ [T O ol g dsar

1<i<j<n

n & n
— () _ A(n) -1 —Ar _(n—1) (n) < ()\+(2))5 (n) d ) d
( +(2) ) f+/0 e g, > / ps”f)ds | | dr

1<i<j<n

_ n\ 4 °°—r<n>
=t () A [T e sy L ar. O

Let II be an invariant probability measure for the semigroup (7}) generated by the FV-operator
with mutation A. Since

[ naw = [tan= [1iean— [ 6 g0 )

for all f € B,(S™), it follows that the measure g, € M{(S™) defined by
[ Fden= [(ram ) £ € Bs™),

is an invariant measure for the n—particle Moran process associated with A. Consequently, (g, (n ))
induces Cp—semigroups on the corresponding LP—spaces, p € [1,00). The following Proposition
is one example that demonstrates how to transfer common properties of the n—particle Moran
processes to a similar property of the FV-process with the help of the law of large numbers. For
similar transfer procedures see the proof of 3.3 below.

Proposition 2.4. Let p € [1,00) and M. Suppose that ||q,§n)f — (P zron) < M| fllr(on) for
all f € LP(0,,). Then
[T — (F)all ey < M| F|[ze)

for all F € LP(II).

Proof. Fix f € By(S™) and let S,,f := LY | fop, € By(S™™), where py : (S™)™ — S
denotes the projection onto the k-th coordinate. Note that (S,,f, u™™) = (f,u") for all p €
M1(S) but (|Smf|P, u™™) # (|f|P,u™) in general. On the other hand, by the law of large
numbers |{| Sy f|P, u™™) — [{f, u™)|P| — 0, m — oo, for all u E Ml(S). Since (]S, f?, ”m>

m > 1, is uniformly bounded it follows that [(|S,f|P, u™™)1I — [|{f, ™) [P II(dp), m
0.

Fix m > 1. Then
/ Tuts, ; — (€, )P dIL = / (@™ S f — (£, 1), 1™ P TL(dp)
< / 1a™™ S f — (L., 1)1P, 1™ T1(dps) = / 6™ S, f — (s, )P dowm

< M”/ |Sin fIP donm = Mp/<|smf|p,wm> dTI(dp) .
7



rinally, using L.epesgue s tleoreil, we obtalnl tliat

m—00

/ Tty — ()P dll = lim [ [Tits,; — (G, ;)P dII
< lim M? / (IS fIP, ™™ TH(dp)

= [ (g, i)

Since {l¢|f € By(S™),n > 1} C LP(II) dense, the last inequality extends to all F' € LP(II). O

The following Proposition now gives a sufficient condition under which we can verify the as-
sumptions of 2.4.

Proposition 2.5. Suppose that ||p:g—(9)|lec < Me=2Y|gl|oo for all g € By(S) and some M > 1
and Ao € (0,00). Let ng = n(Ao) be the largest integer n with () < Xo. (Note that ng > 1.) Let
f € By(S™). Then

A
Zz:n0+1 (k: 0

g™ f = (£5) oo < (2M)™(n A mg)le 2) 20 et £l £ >0 .

For the Proof of the Proposition we will need the following Lemma:
Lemma 2.6. Let (p;) be as in 2.5 and g € By(S™). Then

159 = (ghun oo < nMe™glloc >0

Proof. We will prove the assertion using induction. The statement is clear if n = 1. If n > 1
let g € By(S™™ 1) be defined by g(z1,... ,2p-1) = [ g(x1,... ,Tpn_1,y)v(dy). Then

pgn_l)g(xlv s ,$n_1)|

Tp) —
< /---|/g(y1,--- yn)—/g(yl,--- s Yn—1,T) V(dx) pe(Tp, dyp)| ... pe(x1, dyr)

< Me ! glloo -

|p1(5n)g(xla R

1) .

Since (g),» = (§),»—1 and by assumption ||p§n_ G—{Dn1llee < (n— 1)Me 2|g]loe <

(n — 1)Me Y| g5, the assertion now follows. [

Proof (of 2.5). For simplicity define

A
Z’Z:no+l (k 0

dn(t) == (2M)™™ (n A mg)! e L )

We will prove the assertion using induction. If n = 1 then clearly,

gV f = ) oo = 187 = (fs ) ]loo < Me™2 f]| a0 -
8



QUPPOSE NOW That the Stateinent 1s proveda 1or all g © Oplo - ) and ©t =~ U. 11C li—1variance ol
(T}) implies that

(05) = (Tty) = e~ G0 i p) T > / RO

1<i<ji<n

Hence

lat™ f = (€plloe < G p{™ F = (€m0 e

n—1 n n
b [ O OB ~ g s

1<i<j<n

In the following we will consider the two cases n < ng and n > ng separately. If n < ng then,
using 2.6,

||Qtn 1)(¢§?)pgn)f) — <€¢(n> (n)f>||oo
= 1"V (047 D0 F = (F0™) = Eyim o gmy) e

< dpor (= 8|65 D F = (F, ™) oo
< dy 1 (t — 8)Mne || fl

for all s € [0,¢] and 1 <i < j < n. Consequently,

lai™ f = (€)oo < e~ CHYDEM £ = (0 Dl

Y / D2lgm, DS ) = e om o ds
1<i<j<n Y
<e G f — (0" |oo + e B)Y / Fov™) = o™ fy ™) TH(dp) | s

+ (2M)nle= ! @ /0 "= (D)5 as)

< 2Mneote” () o0 + (200) e 20t (1 — &GN £
< dn (1)) flc -

If n > ng then

laf™ F = (Cplloe < ™ EID{™ F = (00 ) oe

. / D g™V 65 £) = (Lo 0 o 5
1<i<j<n
—(2)r i 5 g aat (P [ (D)2
< 26~ (" floc + (200)"0ngle e (D) [ @0 g
0

_(n)t " Zﬁ;ioﬂ (k))\gko ot (g) _((n)_)\o)t
< 2e7 V7| flloo + (2M) 0 nole 2em et — (1 — e N il
S Renott TR

k=ng+1 (g)_ko e—)\ot”f”OO ’

9

< (2M)™ngle



where we used

("32—)&) =1+ G do__ < e(3)=% in the last inequality. U]

The following is the main result of this section:

Theorem 2.7. Let A be the generator of a Feller semigroup (p;) on C(S) with unique in-
variant probability measure v satisfying supp(v) = S. Let (T;) be the semigroup generated
by the corresponding FV-operator and let 11 be its unique invariant probability measure. If
1Peg — (9)]| oo < Me ||g|le for all g € By(S) and some M > 1 and A € (0,00) then

p—1 oo Ao
p—1 p Zk:no-l»l (k

1 p—1 _ _p=1
|1 — ()| oy < 25 (2M)™(no)) 7 70 6= 55 P oy

for all F € LP(IT), t > 0, and p > 1. Here, as before, ng = n(\g) is the largest integer n with
(2) <.

Remark 2.8. (i) Note that the assumption of an exponential rate of convergence to equilibrium
in variational norm on the semigroup generated by the mutation operator A is clearly necessary
to obtain the same statement for the corresponding FV transition semigroup, since for f € 5,(.5)

15| Loy = || fl| oo () and

[ Tely — <€f>||L°°(H) = |lpef — <f>1/||L°°(y) .

(ii) 2.7 does not follow immediately from 2.5 since in general the supremum norm ||f||~ for
f € By(S™) is strictly bigger than ||{f|| () even in the case where II has full support. As an
example consider @ ;14,, A; € B(S) \ {0}, pairwise disjoint. Clearly, ||f|lcc = 1, but (f, u") <
n~™ for all My(S), hence [|{s|| =) < n~™. On the other hand, if f € C; (S™) is symmetric
under permutations, and zo € S™ such that f(z¢) = ||f|ec, let p= 237, Oyr € My (S). I 11
has full support then

104l zoemy > (f, ™) =0 " > Flag™ 2™y
c0:{0,...,n}—{0,... ,n}

> 7" flloo ~ V2rne™" || flloo

by Sterling’s formula.

For the proof of 2.7 we need two Propositions on the general connection between convergence
in variational norm and convergence in LP—spaces.

Proposition 2.9. Let (X, m) be a probability space, T : L' (X, m) — L'(X,m) be a Markovian
contraction and assume that ||T'f — (f)||oc(m) < Aol fllnoc@m) for all f € L (m).
(i) Let p > 1. Then
75~ (Pllzemy < 28207 1flLzoim
for all f € LP(m).
(ii) Let T be symmetric and p > 1. Then

|Tf — (Fzem) < Aollfllzem)
10



b & L\m).

Proof:. Define the linear operator U : L' (X, m) — LY (X,m) by Uf =Tf — (f).

(i) Since T is a contraction on L!(m) it follows that ||[Uf||; < 2||f|l;. By the Riesz—Thorin
Interpolation theorem (cf. [ReSill, Theorem IX. 17]) U can be restricted to a bounded linear

operator on LP(m) with operator norm less than 2v )\ 7 for all p> 1.

(ii) Let f € L>°(m) and h := 1pps(pyy — Lizp<(s)}- Since T is symmetric it follows that

[z = plam= [@s = ()ham
= [Tthdm = ()0) = [ FTR) dm— () (n)
= [ £(Th — ) dm < 17217 = (B ey < Nl i

It follows that [|U f|L1(m) < Aol fllL1(m) for all f € L*(m). By the Riesz—Thorin Interpolation
theorem U can now be restricted to a bounded linear operator on LP(m) with operator norm
less than \g. [

2.9 and the Remark following 2.1 now immediately imply:
Proposition 2.10. Let (X, m) be a probability space, (T}) be a semigroup of Markovian con-

tractions (T;) on L*(m). Assume that |Tof — (f)|| oo (m) < Me || fll zoo(m) for all f € L>(m).
(i) Let p > 1. Then

1 1

ITef = ()l <25 M™% e 7 M| £,
for all f € LP(m).
(ii) Let (Ty) be symmetric on L?>(m). Then:
() T f = (F)lemy < Me || fllLo(m) for all f € LP(m), p > 1.
(0) | Tef = {H)llzzemy < e fllz2my for all f € L*(m).

Zoo:n 1 AO
Proof (of 2.7). For simplicity let M; := (2M)™ (ng)le T (5) -2 Let 0n € M1(S™) be
the invariant measure for the n—particle Moran process associated with A. p,, has full support,
since [ fdon, =0, f € C(S™), > 0, implies that

O—thme( )/ (n)fdgnz hm/ )fdgn:/fdy”,

hence f = 0, since v™ has full support. Since ||q§n)f— (oo < Mye=20t| f||oo for all f € By(S™)

it follows that ||q§n)f — (Noc(on) < Mre 2| f|| Lo (o, for all f € C(S™) and subsequently for
all f € L>(p,,). 2.10 now implies that

n 1 Bl pn
1™ F = Fllzogeny <22 M,7 €572 o)
11



for all f € LP(0n), p € [1,00]. By 24 [T} F — (F)||zrar) < 2P M, " e~
FeLr(Il), pe[l,0).

Finally, let F' € L*(II). Then

7 PO F|| ey for all

1 Bl pn
||TtF — <F>||Loo(H) = pli)l’{.lo ||TtF — <F>||Lp(1‘[) < pli{{.lo 2» M]. P e p )\otHFHL:D(H)

= MleiAot”FHLoo(H) . O

3. HYPERCONTRACTIVITY

The purpose of this section is to study contractive properties of the FV—semigroup in depen-
dence on the mutation operator. Two important concepts have been studied in many cases
of Stochastic Analysis: ultracontractivity and hypercontractivity of transition semigroups (cf.
[Ba], [Da]) . Recall that ultracontractivity of a Markovian transition semigroup (1) on L!(m),
m being a probability measure, means that 7} : L*(m) — L% (m) is bounded, ¢ > 0, whereas
the common use of the notion of hypercontractivity just implies that 7} : L?(m) — L**¢(m) is
bounded for ¢ > 0 and for some ¢ > 0 (which may depend additionally on t). It turns out that
even this weaker concept is still too strong for FV-transition semigroups (cf. 3.3 below).

Throughout the whole section let S be a compact space, A a Feller generator on S with unique
invariant measure v and supp (v) = S. Let (1}) be the transition semigroup of the corre-
sponding FV-operator. We will state below sufficient conditions on A implying a weak form of
ultracontractivity and a weak form of hypercontractivity for the semigroup (7}) (cf. 3.3). The
latter result implies in particular the uniform integrability of the set {(T;F)?|||F||rz(m) < 1} for
all £ > 0. That this cannot be true for general mutation operators is implied by the following
negative result:

Theorem 3.1. Suppose that |suppv| = +oo. If A is a bounded operator on L*(v) it follows
that for all t > 0 the set {(T,F)*|||F||L2qm) < 1} is not uniformly integrable.

Proof. Let (p;) be the semigroup generated by A and f € By(S5). It follows from [EK2, proof

of 5.2] that [(f,u) = [ fdv and [(f, p)*I(dp) = 35 [;° _t||ptf||%2(y) dt. By Jensen’s
inequality,

1 > —t 2 1 > —t 2 _ 1 -1 2
5| e de = 5 [T s dtlag, = 510 - )7 1

Since A, and thus 1 — A too, is a bounded operator we have that
/f2 dv=/(1-A)(1—A) " fllFe) < 1= APIQ = AT fl72) -

Combining the last two estimates we obtain that

[t > g [ v

12



ol1ce A 1Is bounded on L (V) € Call be delllled as a bounlded operator on L \V) Ior all © © X
and thus

1fllz20) = le” e fllrz2ay < e flrz0) = el fll 20y -

Again combining the last two inequalities, we obtain that

e 2tlAll
(3.1) [t nia > s [ v

Since [supp v| = +oo it follows that L?(v) # L'(v). Consequently, there exist (f,) C L?(v)
with [ f2dv=1but [|fa]dv — 0, n — oo. Let F,(u) := (fn, ), n > 1. Then [(T}F,)?dll <
[((pefn)?, WIL(dp) = [(pefn)?dv < 1, n > 1. However, ((13F,)?) is not uniformly integrable,
since

/|TtFn| I < /<|ptfn|,u> M(dys) = / peful dv < /\m dv — 0,n — oo,

whereas on the other hand (3.1) implies that
t[@E)zan s e S g2 0
3121/< > i212||1—A||2/f V=0

Remark 3.2.

(i) The proof of 3.1 shows that the same conclusion still holds true if we can find f, € D(A)
such that
(a) [f2dv<1,n>1,
(b) [|fnldv — 0if n — oo, and
(c) infn>1 fy° e_t||pt+5fn||2L2(y) dt > 0, s > 0, where (p;) denotes the semigroup generated by A.
)

(ii) The last result extends a result obtained in [St2] on the hypercontractivity of the semigroups
corresponding to the FV-operator with parent—independent mutation (cf. Example 6.b) be-
low).

Let us now specify conditions on A implying boundedness of T} : L(L?log L?,1I) — L(L?,1I),
t > 0. Denote by (p;) the semigroup generated by A and let v be its unique invariant measure.
Suppose that (p;) is ultracontractive. More precisely,

(U) There exist M, a > 0 such that [|p;f|lcc < Mt=||f[/11( for all € (0,1].

It follows from (U) in particular that p;(z,-) is absolutely continuous w.r.t. v. We suppose in
addition that its density p;(z,y) satisfies a lower bound for small ¢ of the following type:

(L) There exist 4, m, 3 > 0 such that p;(z,y) > me=7 for all t € (0,0), z,y € S.

Theorem 3.3. Assume that the semigroup (p;) generated by A satisfies (U) and (L). Let (1)
be the transition semigroup generated by the associated F'V-operator and Il its unique invariant
measure. Then there exist positive constants ¢y, co such that:

(1)
C1 1 o
ITLF || qmy < e U8l oy o8> 0, F € Lo(T),
13



(T; F)21 ﬂ dII < e<2(1+73) 2 2
t 0og € t ||F||L2(H),t>O,FEL (H) .
||TtF||L2(H)

For the proof of 3.3 we will state a series of Propositions and Lemmas first.

Let 0, € M;(S™) be the invariant measure for the n—particle Moran process associated with A.

Proposition 3.4. (Absolute continuity and lower bound on the density) o, < v™ and for its

density h, := g%z w.r.t. V" we have that

(i) i =1, ha(2) = 31 cicjcn I et(3) fpt(¢)§;b)z,a:)hn_l(z)l/”_l(dz) dt, n > 2.

n—1 2 n(n
(ii) (Lower bound) inf,cgn hy(x) > (5—?> (n— 1)!6_(‘”76)%.

22
Proof. (i) Clearly, gl = v, hence h +1 = 1 (cf. the proof of 3.1). Since [(f, u™)(dp) =
D i<icj<n Jo e f ¢E?)ptn)f7 "= TI(du) dt, n > 2 (cf. [EK2, proof of 5.2]), we obtam that
/ fdon, = / / oo™ fdon_ 1 dt .
1<i<j<n

Hence, if p,,_1 is absolutely continuous w.r.t. »("~1) with density h,_1 it follows that

[ fae. - / ) [ 59165 s a2)

(32 - / /(@) / ) [5G @) hos(2) v @) dt | v (o)

where gz_ﬁgl) (2) = (21,...,2j_1, %, %j, ..., Zn—1). In particular, g, is absolutely continuous w.r.t.
v™ and its density is given by (3.2).

(ii) For the proof of the lower bound note that (L) and (i) now imply that for n > 2



1terating tie lnequality above alld uslng the IaClt tllat 17 = 1 We ODlalll tllat

inf h,(x) > (m_5

n—1 —(6428)nn+D)
— 1! s 2 .
xES™ 2% ) (n ) ¢

Theorem 3.3 (i) clearly follows from the next Proposition.

Proposition 3.5. There exists a positive constant ¢ such that

1™ Fll e ny < €A [l oy St >0,

for all f € By(S™). In particular, ||Tily|femy < ec(1+?13)||e|ef|||L1(H), t >0, for all f € By(S™),

and thus | T,F|| gy < e ||elfV| 1y, ¢ > 0, for all F € L(I1),

Proof. Step 1: Note that (U) implies p;(z,y) < Mt~ for all z,y € S, t € (0,1]. Hence we

obtain that pgn)(:v, y) < (Mt )™ for all z,y € S™ and thus

(3.3) 1P Flloo < (M=) fll (o) -

Since ||p§n)f||Loo(l,n) < || f|lzes (n) too, the Riesz-Thorin Interpolation theorem now implies that

||p§n)||Loo(Vn) < (Mt | fllLe@ny, t € (0,1]. In particular, if p, := 4@n, n > 1, where a is the
smallest integer > «, it follows that ||p§n)f||Lc>o(yn) < M 1at 1 | fl|zen(wny for t € (0,1]. Since
by 3.4 (ii) || fl|Len (wn) < €[ f||Lon (on) for some positive constant ¢ it follows that

n ceng—+
(3.4) 15 Fll oo my < €t 5| f ]l on(on) »t € (0,1]

for some positive constant ¢ independent of n.

k
2

Step 2: ||q§”)f||Loo(,,n) < en—t(3) 41 I fllzon (on) + 22;11 cge_t( )||f||ka(gn), t € (0, 1], where

C}ZZQeck(k—gl)exp<i ﬁ) 1<k<n-—1.

=k+2 \2 Pr—1\2

Proof: We will prove this step using induction. If n = 1 then clearly, ||q; f| L) = ||Pt]| L) <

et~ (| fl| L1 (1) by (3:4).
15



QUPPOSE NOW Lllal tie aSsertion 1s provea 1or n — 1. 110en

t
Z/ =) 1" P f oo 1y ds
i<j 70
t
<Y [ e @etr eI ) 0 s, ds

i<j /0

n ch / SIEB fllregn  ds
Pp_1—1

t n Dr— n— Dy P
< ec(nfl)ft("gl) ((Z)/ e—s((z)_pn71i1( 21))(t— s)_4(pn71171) ds) !
0

1

Pn—1
0y / [ o) dgr s
1<J
t 0 ge)
k n _ P
+ Cn_]'e*t(2) << >/ e S(() :Dk PEp—1 )ds)
1
Pk
(x / [ b5 dow v ds
1<J
Pp—1—1
n Pn—1
< e 0-1(") (%) [ fllzen—1(on)
4(pn—1_1)
n—2 ) X (n) p’;—;l
> et | I 1l ok (o)
k=1 (2) T o pr—1 (2)
n—1
i (k
<> e G flonen € (0,1],
k=1
where we used the inequalities
o\ G
n Pk
2 <exp< 2 )‘1<k<n—1
n k — n k ’T = — ’
<(2) - pfil (2)) (2) - pfil (2)
Pp_1—1
and (— L) " <zt o9 59
1, D n-1—4
Consequently, if t € (0, 1],
n (™ n—1 n n
1™ fllzeqmy < e ™ fllpmm + Y / gm0 6 00 fll ey dis
1<J

< 3 4||f||Lpn<gn>+che Sz -

16



Dtep 9. l1l1ere exi1ists a posmve constant ¢ sucn tiat
g™ fll oo omy < €5 1€l L1y 1t € (0,1,
for all f € By(S™), n > 1.

Proof: First note that || f|7ek(o,) < (p,g'fe‘f| don) ™ < 46zk||e|f|||L1(gn). Since

Ry
e:mz(é)_%(g)_ 2) Jk xz_p;]:klk(k 1)

k(k— 1) (pk—1)% k) pesgh(k—1)
< log )
2 P k— /o2 k(k — 1)

ket g bk 1)

— )P - y>i1-4L)>
and k — [ k(k — VE(VE \V P 1 )2 3(l-35) 2 N

12k, it follows that exp (Ze:k+2 %> < exp((12k) log(12k)) and hence there exists a
2) T pp—1T\2

Cllﬁti

, hence

=

positive constant c¢; such that cj4ak <e for all £ and n. Young’s inequality st < is‘l + %t%,

s,t > 0, now implies that

n—1 3
n en—t(%2),—2 c1k? —t(k
1a{™ Fll ooy < €™ G2 fllpoomy + 3 e G el 1,0
k=1

c(2k)3 —t(k
e t( )t 4||f||oo <C1+Ze4((k 1)) 4 )) ||e|f|||L1(gn)

< e t(5) ¢~ 4||f|| ted ||e|f|||L1(gn) ,t e (0,1,

for some positive constant ¢ independent of n.

For g € B,(S™) define S,,g := %Z;n:lg opr € Bp(S™), where pr : (S™)™ — S™ denotes
the projection onto the k-th coordinate. Fix now f € B,(S™) and note that (e!Smfl pmm) —
exp(|(f, u™)|) for all p € M;(S) by the law of large numbers. Since

1™ Fll poeomy = 19m@™ fllnoewnmy = 16" S f || e ()

for all m it follows that

(nm) S

lat™ fllposwny = lim_[laf"™™ Sl pos )

< lim e U f g + €3 el 1

m—o0 (Qnm)

=i lim [ (el umm) T(dps) = e el paqay £ € (0,1

m—00
by Lesbesgue’s theorem. Hence Step 3 is proved.

Fix again f € B,(S™). Since p,, and v™ are equivalent measures by 3.4 it follows from Step 3 that

for t > 1 l¢™ fllzoewny = 6™ Flloeon) = 143 Flloooton) = 14V Fllooewmy < el | L if
17



t > L, hence ||q; " JllLee(wn) > € e/ i) or all t > U wihich 1mplies the 1Hrst assertion.
The second assertion follows from

T ey = T (/ (™ f, IpH(du)) < Jim (/ |q(”)f|pd@)

= las™ £l oe oy = N1 £ ]| oo (umy-

The last assertion is easily implied by the fact that {{¢|f € B,(S™),n > 1} C L*(II) is dense
w.r.t. pointwise, uniform bounded convergence. []

As one of the main tools in the proof of 3.3 (ii) let us define for n € N the following seminorm
N,, on measurable functions:

Nu(f) = S (/f2vdgn> ,f€B(S™) .

e“ ldon=1

Clealy, Ny (Af) = [A|Na(f) for A € R and No(f +g) < Na(f) + Nu(g) : £, 9 € Bo(S™).

Lemma 3.6. Let f € B,(S™). Then

([ ros (gt ) d‘)"f D= ([ (e (fs) 1) )

Proof. For the proof of the lower bound note that vy := log (W + 1) € BT (S™) satisfies
L%(en)

[N

e —1do, = [ ”f” =1 and thus N,,(f) > ([ f?vo dgn) . For the proof of the upper
L2(on )

bound note that Young’s mequality st < slogs —s+et, s >0, t € R, implies that for f such
that | 12(g,) = 1

2 2 2 _ g2 e 2 f?
/f dQnS/f tog /*— 1 dgn—i-/ “den = /f <log<||f||L2(9 )>+1> e

1

2

for all v € BT(S™) with [e” —1dp,, = 1, hence N, ( <f f? (log <||f|| ) + 1) dQn) .
L2(en)

The general case || f||12(,,) 7 1 now follows from homogeneity. [

3.6 implies in particular that N, (-) respects p,—classes, i.e., N,(f) = N,(g9) if f = g on—a.e.,
hence N, (-) induces a norm on L2*¢(p,), € > 0.

Lemma 3.7. Let f € B,(S™) and m > 1. Then Ny (f) < N, (f).
Proof. Let v € BT(S""™) be such that [ e"—1dp,, =1 and v(x) € B (S™) be a 0y 1.mversion

version of log E,, . [€”|o(x1,...2,)]. Then [€” —1do, = [€" — 1dopim
18



= J Loniml€ |0\ X1y ... Lpn )| — L UOp+m = 1 alld THUS

(/ f?v dgm_m)% = </ fQEQner [vlo(z1,...,2,)] dgm_m)

< (/ f? logE,, . .. [e°lo(x1, ... 2,)] dgn+m>

:=</f%d%)%§A%U%

[N

1
2

which implies the assertion. [
Lemma 3.8. There exists a positive constant ¢ such that

N f) < ([Togt] + 1)% e T3 G| ]| 2,0, ¢ € (0, 1],

for all f € By(S™), n > 1.

Proof. It suffices to consider the case [ f?dp, = 1. Since ||p,§n)f||C>o < (M=) || fllLrny (cf.
(3.3)) and thus

1™ Flloo < (M=) =@ +5("27) 1 (0,1]

for some constant ¢ > 0 by 3.4 (ii), it follows that

(n) ;2 3
(n) (n) 2 1 ( f) d
Mmtﬁs(ﬂmf><%G@ﬂ;;>+Q on

. Mit—a)2n2(1—n) o(64+2)n(n+1)
/ o7 1)? | 1og | L) O
||pt f“Lz(Qn

N

IA

+ 1] do,

1
n n n 2
< ((crn® + 2aml1ogt]) 10" F132(,,) — 19" F132(,,) Tog 10F" F 132 )

for some positive constant ¢;. Since —x logx < e !, hence —||ptn)f||2L2(gn) log ||ptn)f||2L2(gn) <

,and [( (n)f )2 don, < fp(n) f?) don < € )fqgn)(fQ) do, = et(3) [ f? don, we obtain that

1
Nn(pgn)f) < ((cln2 + 2an|logt|) e'(3) 4 e_1> ’
1
= ((cln2 + 2am| log t|) et(3) ¢ e_1> ’ Ifll2c0n)
which implies the assertion. [

Proposition 3.9. Let c be the constant specified in 3.8. Let

cZ:z3(1+k2)<k;1) ﬁ (1+li2> f[ (%) m>1,1<k<n-1,
l=k+1 2

l=k+42 2
19



and cn () = (R2y cRe™ ™) + (14 n?) (1 + | logt])e*" =) ) . Then Nu(ar™ ) < en(®)1f 1 22(e0) ]
€ (0,1], for all f € By(S™).

Proof. First consider the case n = 1. Since q f pef 3.8 implies that

Na(pf" ) < € (1ogt] + 1)7 1 12(00) = 1B 1200 -
Hence the assertion is proved in this case.

Next suppose that the assertion is proved for n — 1. Let (X,,, N,,) be the abstract completion of
L*(g,) w.r.t. Ny,. 3.6. implies that L?T¢(p, ) — X,, continuously for all € > 0. In particular, if

f € C(S™) then [0,t] — X,, s — Qt(ns 1)¢£?)p5n)f, is continuous and thus Bochner’s inequality
implies that

t t
o ([ O elgsas) < [ e Om e pi s

holds for 1 < i < j < n. For general f € B,(S™) we can find a uniformly bounded se-
quence (f,) C C(S") converging to f pointwise everywhere (cf. [EK1, 4.2]). Consequently,

lim, o psn) fn= () f uniformly bounded and pointwise everywhere for all s and thus

lim,, o0 q,E” 1)¢§j)p§”) frn = q,E"S 1)q5(n) (") ¢ uniformly bounded and pointwise everywhere and

thus in X,, too by Lebesgue’s theorem It follows that the last inequality extends also to the
limit f € By(S™). Consequently, by the triangle inequality,

Na(@™ 1) < e ON M+ 3 N / e ("7 (6™ p £) ds)

1<i<j<n

< e CIN, (™ ) + Z/ No(ar™s " (@) piV £)) ds

1<i<j<n

Since No (g1, V(047 1) < Nuca (a1, V(659" £)) by 3.7 and N (g7, V(659 £)) <
Cn1(t — 3)||(,/>(n 1)pgn)f||Lz(Qn_1) by assumption, it follows that

S [N G s

1<i<j<n
Z / Cn 1( t—S)Hﬁb(ni ) (n)f”Lz(@n ) ds

1<z<_7<n

(SIS

[\
VR
VRS

N3
~
C\&

o

o
~~
v 3
S~—

)

-

~~

~
|

w

N—

QL

)
~~

(V]

) / / o (0™ f)? don-1 ds

1<i<j<n

t
/ o—5(3) g2eh—(t=)(5) 4

0

t
n n—1
/ o—5(3) g2etn—1)—(t—s)("; )(1+ |log(t—s)|)ds)%||f||Lz(gn)

0

+ (14 (n—1)?) (g)

S(HZCZ 1# 2ck— t()+3(1+(n—1) )(
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Lonsequently,

2

Na(gi™ £) < e #E) (1 + |Log )2 || £l 2(pn) + (Zﬁ”)) 1F 122 on)

k=1 2

< (<1+n2>e—t<’2‘><1+ [logt]) + (1+ %)Zk%”)) #1220

1 (2) N (g
= cn(t)||f||L2(@n) J

where we used the inequality v/a+ vb < ((1 +n?)a + (1 + %)), a,b > 0, in the last but one
step. [0

Proof of 3.3. As already mentioned, 3.3 (i) follows from 3.5.

(ii) Let c,(t) be as in 3.9. First note that there exists a positive constant cp such that
limsup, . c2(t) <ed, te(0,1].

Indeed, since

t=k+1 (=k+1
and
n ¢ n k -
() (5) k dz
1 5 (£ %) o (6
V4 k Y4 k 2 — —
0=k+2 (2) (2) (=k+2 (2) - (2) 2 o 22 —k(k—-1)
k(k—1) k+k(k—1)
3 5 = e 10
(3-5) Xp< 5 g(k_ FE=D)
< exp (— log(4k)) < exp <3k§> ’
therefore
n—1 . 5 )
c2(t) < Z 3(1 + k%) (k —g 1>6E+3k2+2ckt(§) F(1+n?)(1+ |10gt|)e2cn7t(2)
k=1
n—1
< 144 37 G203 —1(2) 4 4(1 4 |log ])e(+2In=(3)
k=1

(8+20)%(2k)3 n
< 144 ( 8+20+ Z iJ(rtQ(k 12;3 %(g)> +4(1 + |10gt|)e(1+20)n—t(2) ,

where we have applied Young’s inequality st < is“ + %t%, s,t > 0, in the last step, it follows
that

201t O c
limsup c? (t) < 144 <€8+20 fe o e‘ﬂ@) <ed te (0,1],

21



Oor S0Ine positlve CoNstant Co.

Fix now f € By(S™) and let Sy, f := L 37" | fopy € By(S™™), where py : (S™)™ — S™ denotes
the projection onto the k-th coordinate. 3.6 and 3.9 now imply that

(4" 81)

/ (qt("m)Smf ) i log g

l; mf”%Z(gnm)

+ 1| dopm

< N (@™ S, f)? < & (8) / (Sunf)? donm -

Note that 1imm_>oo((5 )2, unmy = ( ,1u™)? for all u € My(S) and thus
limy, oo (S f)2, p™™) = (f, u™)? in L1(II) by Lebesgue’s theorem. Hence, Jensen’s inequality
implies that

[y 0Ty it = tim [ (a0 f, 5 gl S0 1) )

<timsup [ (6" S0 ) log(a"™ S, 1) Tdp)

m—0o0

:limsup/( nm)Smf) log(q nm)Smf) dOnm

(nm) 2
m—o0o ||qtnm Smf||L2(Qnm)

g™ S f 2 gy 108 0™ S f 12,00
< Hmsup N (68" S f)? + 10™ S f 122, 108 [47™ S f |22,

m—00

< imsup (6 [ (Sinf)? dowm + 1" S g 108 108" S 3,

m—00

< el ||£ ||L2(H) + ||Tt€f||L2(H) log ||Tt€f||L2(H) ,t € (0,1],

where we used 3.6 in the last but one inequality. If ¢ > 1 then clearly

(Ttg )2 C2 C2
/(Ttgf)2 log (HthfHJ;z dl <e HTt—lEfH%?(H) <e Hng%?(H) )
L2(1I)

which implies 3.3 (ii) for F' = ¢y, f € By(S™), n > 1. Since {{;|f € By(S™),n > 1} C L*(I)
dense, the assertion now follows for general F' € L?(II) by taking limits. [

4. STRONG FELLER PROPERTY

Throughout this section we suppose that S is a compact subset of R, Let A be a linear
operator generating a Feller semigroup (p;) with unique invariant probability measure v such
that supp(v) = S. We assume in addition to (U) and (L) (cf. Section 3) that

(F) pof € CYS) if f € By(S), t > 0, and there exist ¢ > 0 and o € (0,1) such that

ZZ:1 [Okpe flloo < cot™ || f]l Lo vy for all f € By(S), t > 0.
22



LXampie z«.1. Let o = [U, 1" alld A = 54 Withh periodic boundary conditions. i a4 = 11t 15
well-known that p,f(z) =, — o t)_ fo y) exp( M) dy € C1([0,1]) and Lp, f(z) <

t_%HfHLoo(dx) for all f € By(]0,1]), t > 0. Hence pi )fe C1(S) and

d
S 100 Flloo < dt73 ey 5t > 0,
1

k=
for all f € By(S), hence (F) is satisfied. (U) and (L) are obvious. For more general diffusion
operators consider Example 6.c) below.

Recall that M (S) endowed with the weak topology is a metrizable space. A compatible metric
is given by

dw(p, 1) == sup ‘/fdu fdp
f:S—R
UE@=fwl o,

sus i € Ma(9) .

The main result of this section will be the following

Theorem 4.2. Assume that the semigroup (p;) generated by A satisfies (U), (L) and (F). Let
(T}) be the semigroup generated by the F'V-operator with mutation A and denote by I its unique
tnvariant measure. Then:

(i) There exists a positive constant ¢ such that

(41) |TF(p) = TF(R)] < (L+ 8" *)e 55 el by - du(p, 1) 8> 05, o € My(S),

forall F € C(M4(S)). In particular, (T}) is strong Feller, i.e., Ty(By(M1(S))) C C(M1(S)),
t >0, and (4.1) extends to all F € By(M1(S)).

((i1) If € > 0 then Ty : LPT¢(I1) — LP(II) is compact for all p € [1,00].

For the proof of 4.2 let us state a series of Lemmas first:
k

n (2)
Y lkte TV TR n
Lemma 4.3. Let ¢, (t) = cont™ “e” t(3 )-i—co > (]‘H'l)e = (2)-(3) Ltlfae_t(z), n>1.

-«
Then q,S")f € C1(S™) and
dn
> 10ka™ flloe < en(®)llflloc £ >0,
k=1
for all f € By(S™).

Proof. We will prove the assertion using induction. If n = 1 then the assertion is true by
assumption on (pg).

k+1)eZ S -

Suppose now that the assertion is proved for n — 1 and define ¢ := k( 5

1<k<n-—1. Then

t
" f=etCpMpe N / e E)g" Vol p(m £ ds € (5™
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smeepy "y eior)and ¢_g "@;;°Ds ] €U0 7)€ LTo7) Dy assumption.

Note that by assumption Zk ) 1 0kg" U(bi?)psn)fﬂoo < ep1(t— )||¢>£;Z)psn)f||oo
< Cp-1(t — 8)||f]|oo and therefore

dn d(n 1)
> 110ka™ flloe < cont= e G flloo + Y / ||a 0", VP f dsl|oc ds
k=1 1<i<j<n

<ent™e O flate Y / J(n—1 <t—s>—ae—<f—s><”?> ds ||l

1<i<j<n
0o D / (Z G (- s)" > ds | 1o
1<z<]<n
n n— 1
< cont*o‘e_t(ﬁ||f||oo + ¢ (Z) (n— l)e_t( 21)mtl*0‘||f||oo

1

REI
NP SR e

£ e ™3) || f o
(8%

k

n—1 n (2)
n k ]_ Z: 2 ]_
< comae—t<z>+cozk< s ) T ) ff . O
—
k=1

Lemma 4.4. Let f € C*(S™). Then

|(fm" "< Z 10k f oo duw(pts 1) 5 115 11 € Ma(S) -

Proof. Let v(s):=s-u+ (1 —s)- i, s €0,1]. Then

[(f, ™) = (f, ") <

//Sn ) f(z)y(s)™ 1(dx1 d e dzn)p(dzy) — f(dxy) ds

0 k=1

|/ / / flzoy o 2k 1,21, Xk, - .. ,a:n)’y(s)"_l(dazg...da:n)u(dxl)—
S Sn 1

k=1
/s

< L-d,

/ f(zo, .. 2he1, 21, Tk 2)Y(8) N dy . . . day)i(dey) ds|
k=1 Sn—1
YO

where the " in the first line indicates that the term below it is absent, and where L denotes the
Lipschitz constant of

no a1
Iy = Z/ / f(anv"' y Lk—1, L1y Thy -« ’mn)’y(s)n_l(de._.dmn)ds .
k=170 /8"

Clearly, L < Zzil |0k f||oo- Combining the two inequalities we obtain the assertion. [
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Lerniiia 4.9. 1L NeEre exritsits a posmve consitant ¢ sucn tnat
(@ foumy = (@, 5| < (14 eI el Ly du (1, ) 5 0, 0 € MA(S) Lt >0,
for all f € By(S™).

k
Proof. Let c,(t) be as in 4.3. Since exp <Z?:k+2 %) < exp(3k2) (cf. (3.5)) it follows
2

(z

from Young’s inequality st < is‘l + %t%, s,t > 0, again that

cn(t) < cont™%e t(3) 4 07

6 o Z T -4 (5)
4(t(k—1
T t e* + (t(k—1))

k=2
n—1
07 6 te (e4+ei_§ e_%(§)> .
-«

Thus we conclude that there exists a positive constant c1 such that ¢, (t) < (1+t'7%)e er(1+5),
t > 0. Since v has full support, hence ™ too, and ¢, )f e C(S™), t > 0, we obtain from 3.5
that [|¢\™ f]le = ||qtn)f||Loo(Vn) < 662(1+t3)||e|ef|||L1(H), t > 0, for some positive constant cs.
Combining 4.3 and 4.4 we conclude that for u, € M1(S)

< cont_o‘e_t(g) + ¢

< cont*ae_t(g) + ¢

(@™ foumy — @™ f, 5"

dn
<> 106a™ Flloo dus (2, 1)
k=1

t n _

< en(G) gty Nl - du (k. )
t, . 8 _
(5)e= e | Ly - duo (o, 1)

< (17l e OES || 1y - doy (i) >0 O

IN

Cn

Proof of Theorem 4.2. (i) Let C := {(f,u™)|f € Cp(S™)n > 1}. Then 4.5 implies that for

some positive constant
—a ,C 1 -
(4.2) T F (1) = T,P()| < (148 *)e ) [ elFl| iy - dus(p, 1) 8> 0

Since C' C C(M;(S)) dense w.r.t. |- | (4.2) extends to all FF € C(My(S)), which proves
the first assertion. For general F' € B,(M;(S)) we can find a uniformly bounded sequence
(F,) € C(My(S)) converging to F pointwise everywhere (cf. [EK1, 4.2]). In particular,
sup,,>1 |le/f![| L1 ry < 400, which implies that (T3F,),>1 C C(M;1(S)) precompact by Arzela-
Ascoli. Hence there exists G € C(M1(S) such that limy_ . T +F, = G uniformly for some
subsequence (T} F,, ). Since on the other hand T;F, — T;F pointwise everywhere we conclude
that T F' € C(M4(S)) and (4.2) extends to all F.
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(11) ror the proof of {11) 1et us CoNnslder the two Cases p — OO ald p < OO separately. 1L p = o0 alld
(Fy,) C L*°(II) bounded (i) implies that (T} F,,) C C(M;(S)) is bounded and uniformly contin-

uous, hence precompact by Arzela-Ascoli, which implies the assertion. To prove compactness
in the case p < 400 fix a sequence (F},) C LP*<(II) such that supp>1||Fy| pe+eqny < M. Let
F¢ = F,1{F, <c}, ¢ > 0. Then (T(F5)) C C(M1(S)) precompact for all ¢ > 0. Consequently,
we can find a subsequence (ny) such that (1, F)" )x>1 is LP-Cauchy for all m. Note that

g
/|Tt (F, Fm)|de</|F Fm|de<< ) /|F [Pre dIl < (1) M
m

and thus lim, oo sup,>; [ [Ti(Fn — FJ*)|PdII = 0. hence, if ¢g > 0, we can find m60 such
that sup, >, [ |T:(F, — F)'0)|PdIT < %? and k., such that ||T:(Fn," — Fp,*)||Leamy < 52 for
all k,1 > ke,. Consequently, ||T}(Fy, — Fp,)|lzrany < €o for all k: l > ke, which 1mphes the
assertion. [J

5. COMPACTNESS

Let S be a compact subset of R? and A be a Feller generator with unique invariant probability
measure v satisfying supp(v) = S.

Theorem 5.1. Suppose that the semigroup (p;) generated by A satisfies (U), (L) and (F). Let
(T}) be the semigroup of the associated FV-operator and II be its unique invariant measure.
Then:

(i) Ty : L*>(T1) — L2(T1) is compact for all t > 0.
(ii) The embedding D(Ly) — L*(II) is compact.

Proof of 5.1. (i) Fix t > 0 and let (F,) C L?(II) be bounded. We have to show that (1;F),)
contains a strongly convergent subsequence. We may suppose that || F,|[z2m) < 1. Let G :=
(Tt/QFn)1{|Tt/2Fn|§m}- Then Tt/QGnm € C(Ml(S)) by 4.2 (1) and |Tt/2G:Ln(u) — Tt/QGZl(ID/)| <
(1+ tl_a)ec(1+?15)+mdw(u, ). By Arzela-Ascoli (T;/2G')n>1 contains a uniformly convergent
subsequence for all m. Hence, passing to a subsequence, again denoted by (F},), we may suppose
that (T} /oG )n>1 is L?(II)-convergent for all m.

Note that 3.3 (ii) implies that ((13/2F,)?) is uniformly integrable. Consequently,
lim sup / (Ty/2Glt — Ty F,)? dIl < lim sup / (G — Ty o F)? dll
m—00 > m—oop>1

< lim sup/ (Ty/2Fn)*dIl =0 .
{1 T /2 Fnl>m}

m—oop>1

If ¢ > 0 is arbitrary we can therefore find m. such that sup,,>, [|T;/2G1' — TiFol[p2(m) < §
and for m. there exist n. such that ||13/2G)' — Ty /oG ||2amy < § for all k,1 > n.. Conse-
quently, | Ty Fy — Ty Fil r2amy < (| TeFk =Ty 2 G | n2qmy + 112G = T2 G | 2y + | T2 2 G —
Ty Fi||r2qmy < € for all k,1 > n.. Hence, (i) is proved.

(ii) Let (Ga) be the resolvent of L, i.e., GoF = [~ e T;F dt, o > 0. Since (1}) is compact for
all t > 0 we conclude that G, is compact too. Indeed, if (F,) C L*(1) is weakly convergent
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1O [+ (1) 1INplies that \L¢l'p ) 1S SUIOoNngly L —CONvergent to LgL* 10r all t >~ U. Lonsequently, DYy
Lebesgue’s theorem,

n—oo

lim ”GaFn - GaF||L2(H) S lim / e_atHTtFn - TtF||L2(H) dt =0 .
n—oo [q

Recall that (Lo, D(Ls)) denotes the L?-generator of (1;) (cf. Section 2). If (F,) C D(Ls)
is bounded, it follows that ((1 — Ly)F},) C L*(II) is bounded and thus contains a subsequence
((1—Ly)F,,) weakly convergent to some element H € L*(II). But then F,,, = G1(1—Lo)F,, —
G1H strongly in L?(IT), hence the assertion follows. [

Application to the existence of absolutely continuous measures for Girsanov-type
perturbations.

In this subsection we are going to model FV-operators with interactive selection. Since the
selective model is a first-order perturbation of the neutral model we will first consider an abstract
setting as follows: Let S be a compact metric space, A be a Feller generator with unique invariant
measure v, and L be the corresponding FV-operator (with no selection). Consider a measurable
function B : § x M(S) — R such that

(5.1) ag = szp var, (B(-, 1)) < oo .

Denote by II the unique invariant measure of L and let D(L5) be the domain of the corresponding
L?-realization. Note that by the invariance of II

/Var(VF) dIl = /L(FQ)dH—Z/LF-FdH = —2/LFFdH < 2| LF|| 2wy | F || 22y

for all F € FC°(D(A)). Since FCp°(D(A)) C D(Ls) dense, it follows that F' — V.F(u) —
(V.F, u) can be uniquely extended to all F' € D(Ls). Consequently, the first-order perturbation

1
LQBF(/") = LQF(N) + §COVM(B('a /L)’ VF(/L)) e D(LQ) )
is well-defined.
Proposition 5.2. (L D(L,)) generates a Markovian Co—semigroup (T}F).

Remark 5.3. Let G = {,, g € D(A™), and B(z,n) = V,G(u). Then (5.1) is clearly satis-
fied. If P is a solution for the C'ry, (5)([0, 00))-martingale problem for L, (X;) is the canonical
coordinate process, and F; := 0{X;|s < t}, t > 0, it follows that

R
R

t
Ry = exp(G(X,) — G(Xo) — 2/ e~ Le%(X,)ds) t >0,
0
is an (P, (F;))—martingale with E[R;] = 1. If we define @ by ‘;—gb:t = R, it follows that @ is a
solution of the martingale problem for LE (cf. [EK2, Th. 3.3]). In particular, the semigroup (U;)
defined by U, F (1) = E,[F(X¢)Re], t > 0, F' € Bp(M1(5)), uniquely determines a Cy—semigroup
on L?(IT) whose generator extends (LY, D(Ls)). Since (L, D(Lz)) is maximal, i.e., there exists
only one extension of (LZ, D(Ls)) generating a Co—semigroup on L(I1) ((LZ, D(Ls)) itself)
it follows that (U;) and (TP) coincide. Equivalently, (L2, D(Ls)) is the L?-realization of the
Girsanov transform @ of P.
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Lemnliia J.4.

(i) Let o € C®(R), ||¢]|oo < 00. Then

[ zaF eyt = = [ van, (VE G2 () ()

for all F € D(Ly).

(ii) [LEF F*+dIl < % [(F)2dII for all F € D(Ly).

Proof. (i) Let 1) € C°°(R) be such that ¢» = ¢. Since FC°(D(A)) C D(Ls) dense it suffices to
consider F' € FC°(D(A)). But then ¢(F) € FC°(D(A)) and Ly(F(p)) = @(F(p))LF(p) +
tvar, (VF(u))@(F(p)). Consequently,

0= [ Lo(FG) ) = [ LE (P () ) + 5 [ van,(VF()$(F ()L

which implies the assertion.

(ii) Again it suffices to consider F' € FC°(D(A)). Let ¢. € C*°(R) be such that ¢, > —¢,
0 < &, pe(t) =t ift > 0. Then (i) implies

/ LBFFTadl = lim LBFp (F)dll
E—

1
= lim—§/var(VF)go'€(F) dH—I—%/cov(B,VF)FerH

1 1 ag
=73 /Var(F)l{FZO} i+ /Var(F)l{FZO} d+ g /(F+)2 .

which implies the assertion. [
Proof of 5.2. Since
1
/LQBFFdH = /LQFFdH+ 3 /cov(B,VF) Fdll
1 1 9 1
< —3 var(VFEF) dII + 3 var(B)F~ dIl + 3 var(VFEF) dII

g%/FQdH

for all F € D(Ly) it follows that (L¥ — %2, D(Ly)) is negative definite. To prove that LF —
%0 (hence L too) generates a Co—semigroup, it is therefore enough to show that (a + %2 —
LB)(D(Ls)) = L?(I0) for one (hence all) a > 0. To this end let (G,) be the resolvent of L and
note that F +— cov(B, VF) is a strict contraction if o > 2ad, since 3 [ cov(B, VG F)?dIl <
% [ var(VGaF) dl = ~a3 [ LsGaF GuF dil < 03| LaGaF | 2| Ga Flla < 225 | Fl2 .
Consequently, T : F +— F —cov(B, VG, F) is invertible if a > 2a2. Since (a — L¥)GooT 'F =
T 'F—2cov(B,VG, T 'F)=ToT 'F = F, the assertion follows. Let (V) be the resolvent
generated by L§ — 4. Then (V,) is positivity preserving, i.e., Vo' > 0 if F > 0. To see this
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er = Vo lt. »ollice & = (—L) 1L I0UOWS 1Iroll 9.0 (11) that & j{& ) dil > J o +— & —
L) (-G)(-G)Tdll = — [ F(-G)TdIl <0, i.e., G > 0. Hence the semigroup (U;) generated
by LB — % is positivity preserving too, since Uy F' = limg o0 etlel@Va—1)F >0 for F >0, and
so is the semigroup (TP) generated by L¥, since TP = e tU,, t > 0. Since LB1 =0, ie.,

TB1 =1, it follows that (T}P) is Markovian. [
Let us now assume again that S is a compact subset of R%.

Theorem 5.5. Suppose that the semigroup (p;) generated by A satisfies (U), (L) and (F).
Let (T}) be the semigroup generated by the corresponding FV-operator and denote by II its
unique invariant probability measure. Let (Lo, D(Ls)) be the corresponding Lo—realization and
B : S x Mi(S) — R satisfying (5.1). Then there exists an invariant measure 1P for the
semigroup (TP) generated by L3F = LoF + %CO’U(B,VF), F € D(Ls), which is absolutely
continuous w.r.t. Il and has a square—integrable density.

Proof. Since D(Ly) — L?(II) is compact by 5.1 and the topologies induced by the graph
norm of Ly and L% respectively are equivalent it follows from [Ka, IV.5.26] that ind(L$) =
ind(22tl — LB) = 0. Since on the other hand dimker(LZ) > 0 (since LZ1 = 0) we conclude
that dim koker(L¥) > 0. Hence there exists H € L%(II) \ {0} such that [ LFFH dII = 0 for all
F € D(Ls). If we denote the adjoint semigroup of (T}2) by (I}P) the last equality implies in
particular TtB H = H,t>0. We will show in the following that we may suppose that H > 0.
Since T/ is positivity preserving we conclude that its adjoint TtB is positivity preserving too,
because F' > 0 implies that [ ((TtBF)>2 dll = — [TPF(TPF) dll=— [ FTP(TPF) dIl <
0,1i.e., TEF > 0. Consequently, T,F (Ht) > (I H)* = H*, and on the other hand [T (H*)—
H*dll = [H*TP1— Htdll = 0, ie., T,P(H") = H* and thus, TP(H~) = H~ too. Since
at least one, HT or H~, # 0 it follows that there exists H > 0, [ HdIl = 1, such that

[LEBF HdIl = 0 for all F € D(Ls) and hence H dII is an invariant probability measure for the
semigroup (T}?) generated by (LY, D(Lz)). O

Example 5.6. (population homozygosity, cf. [EK2, p. 357]) Let D := {(z,x)|z € S} be the
diagonal in §% and A\ > 0. Let G(u) := X1p,u?) and B(x,u) = V,G(u). Then B satisfies
(5.1).

6. EXAMPLES

a) Fleming-Viot operators with derivations as mutation operators.

This class of examples is the simplest class of Fleming—Viot operators. Let A be the generator
of a Feller semigroup (p;) with unique invariant probability measure v and let L be the corre-
sponding Fleming-Viot operator with no selection and no recombination. The corresponding
invariant measure IT can be identified explicitely in the special case where the semigroup (p;)

commutes with the nonlinear operators gbﬁ-?. In this case we obtain in particular that

(pef)*(2) = 6P (f @ ) (@) = P63 (F @ f)(x) = pe(f)(x) .

It follows that the measure p;(x,-) is equal to a Dirac measure, i.e., there exists £, (t) € S such
that p,f(z) = f(£:(t)). By the Markov-property, t — &,(t) induces a deterministic flow on the
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Space o ald tlie CoIrresponding generator A 15 a dllliereintial operator Ol 1rst oraer . vioreover,
the domain D(A) of the generator of (p;) on C(S) is an algebra and the derivation property
A(fg) = Af g+ f Ag holds, since f,g € D(A) implies that

1 1 1
15 (pe(f9) = f9) —(Af g+ f Ag)lloo < |5 (pef = f) = Af llscllglloo + I3 (g —9) = Agllollglloc — 0,
if t — 0. This implies in particular that —A is the dual operator of A (w.r.t. the measure v).

Example 6.1. Let S = [0, 1] and A be the time-derivative with periodic boundary conditions.
Then p,f(x) = f((x +t)mod 1). Since (p;) is a Feller semigroup with unique invariant measure
dt, the invariant measure II for the corresponding FV-transition semigroup is unique too.

The following Proposition identifies the measure II.

Proposition 6.2. Let A be a derivation with unique invariant measure v. Let 11 be the uniquely
determined invariant measure for the corresponding F'V-operator. Then

1(B) = / 15(6,)v(dz) , B € BIM;(S)).

Proof. It suffices to prove that for f € B,(S™)

[ n@ = [ s opts)

We proceed by induction. If n = 1 the assertion is obvious. Suppose that the statement is
proved for all f € B,(S™~!). Since

[mna =3 / ) [t £y )

1<i<j<n

(cf. the proof of 3.4), it follows that

/<f, = > / / oo\ f(x, ... 2) (dx) dt

1<i<j<n

= 2 / / Ce f (e, x)(da:)dt:/f(x,...,x)y(dw). O

1<i<j<n

Remark 6.3. The last Proposition implies in particular that the measure IT has no full support.
Moreover, if f € D(A™),

L0 () = SO f i) = (") + (AP £, ) = (AP £, ™) Tas.
1<J
Consequently, the diffusion part of the Fleming-Viot operator L corresponding to A vanishes

and L is a differential operator of first order w.r.t. its unique invariant measure II.

The explicit expression of II also allows one to identify the dual operator L of L:
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rroposition o.4. A1An€e auat operator L, of Lo (wW.T.t. NE measure 11/ 1S e 'V —OPETALoT Wilh
mutation operator —A (the dual operator A of A (w.r.t. the measure v)).

Proof. Let f,g € D(A™). First note that

/A(n)f(w,...,x)g(a:,..., /f 2)AMg(x, ..., z)v(dx) .
Since, by 6.2,

/ f@ . 2) A (e, .. x) v(de)

= [ [ S (6 g0 = (.07 = (4907} | T O

1<J

The derivation property of A implies in particular that A has no mass gap and 6.2 (cf. also
2.8) implies that the corresponding FV-operator has no mass gap either. Clearly, if |S| = 400,
(p¢) neither satisfies (U), (L) nor (F), and the semigroup generated by the corresponding FV-
operator is neither ultracontractive nor hypercontractive. However, this is not true in general
for the associated resolvent as follows from the next example:

Example 6.5. Consider 6.1 again. If D(Ls) denotes the domain of the L2-generator of the
associated FV-semigroup it follows quite surprisingly that D(Ls) C L°°(II) continuously. In
particular, the resolvent generated by L is ultracontractive, i.e., (o — L)~ : L2(IT) — L*°(II) is
bounded for all a > 0.

Proof: Fix f € D( ) and let f(x) = f(x,...,z). Note that Ll;(8,) =Y p_; Ouf(a,... ,2) =
( ). Since |f — f (z)dz it follows from 6.2 that

les = el =17 = (P < [ @iz = [(ep? an

Since {{f|n > 1, f € D(%4; )} is a dense subset of D(L), the last inequality now implies that
F e L*>(II) for all F € D( ) and ||F — (F)|leo < ||LF|]2. The ultracontractivity of (v — L)1,
a > 0, is now an easy consequence.
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D) rleming-viot operators witil pareint independacint mutatlolIls.

In this case the mutation operator A is given by

Af(@) =5 [ $6) = Fa)mldy) . € C(S)

for some probability measure 14 on the space of types S and some 6 > 0. Fleming-Viot operators
with parent—independent mutation are the best studied class of Fleming-Viot operators. This
is so because in this case the invariant measure, in this case denoted by mg,,,, can be described
explicitely. In fact, let (py, p2,...) have a Poisson—Dirichlet distribution with parameter 6 and
let (&,)nen be ii.d. with distribution vy and independent of (p1, p2,...). Then

mgyyo [A] =P

D pnbe, €A
n=1

Moreover, mg,,, is a symmetrizing measure for the corresponding Fleming-Viot operator Lg ,,

(cf. [EK2]). Let (p) (resp. (13)) be the semigroup generated by A (resp. Lg,,). Clearly,
pof(@) = e 20 f(z) + (1 — e 29)(f), so that |[pef — (f)]lso < 26 2%(|f||oc. 2.7 now implies that
[T — (F) || Lo (me ) < Ce_gtHFHLw(mg,,O)a t > 0, for some constant c. Since (7}) is symmetric
2.10 (ii) now implies that | T3F — (F)| 2(m,..) < € 28| F |l 2(mg,, ), t > 0, i, Loy, has a mass
gap of size &. It follows from [St2, 2.2 (i) and 3.4] that this result is optimal. Moreover, it has
been shown in [St2, 3.6] that (7}) is hypercontractive if and only if [supp (v)| < oo. Clearly,
(T%) is neither strong Feller nor compact if [supp (v)| = oo, since Tils(p) = e f ) + (1 —

e_%t)<f7 VO)? f € Bb(s)
c) Mutations induced by diffusions on T¢.

In this example we will generalize Example 4.1 to a general diffusion operator on the d—
dimensional torus T¢. We consider T¢ as the set [0,1]¢ by identifying opposite boundaries.
Let

d d
Af(z) = Z a;j(x)0i; f(x) + Zaz‘f(x) ,f € C*(TY),

be a differential operator satisfying

Aolhl? <) aij(@)hih; < AFYRP h € RY

i,j=1
for some strictly positive constant \g and
aij,biEC’ (T ),1§Z,j <d.

In the following, we will construct an associated Feller semigroup (p;) on T¢ having a unique
invariant probability measure with full support and satisfying (U), (L) and (F).

To this end let us introduce the following notation: if g € B(T4), let g € B(R?) be its unique
periodic extension to R?, i.e., g(z) = g(x) if z € T¢ and g(z + k) = g(=) for all k € Z°.
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vonslidaer tne dilierentlal operator
n n
Af() Y ay(2)di;f (x Z f € CERY).
ij=1 =1

Clearly, (a;;) is strictly uniformly elliptic again and aj, b; € C}(R?), 1 <1i,j <d. By [Fr, Th.
1.10] there exists a fundamental solution p;(x,y) of Au = J,u satisfying the following estimates:

12
(6.1) 1Dt (x, )| < et ? eXp(—A'x 2ty| ) 2,y €RYLE >0,
0 |z —y]? d
(6.2) |—pt(x Y)| < cot™ =n exp( A 57 ),z,y e RYt >0,
for some positive constants c1, ¢y and A > 0. By [Fr, Th 1.12 and 2.10] p,. f(z) = [ f(y)pe(2z,y) dy

is the unique solution of the Cauchy problem d;u = Au, u(0,-) = f, f E Cyp(R4). Moreover,
pef > 0if f >0 by [Fr, Th. 2.11] and p;1 = 1 by uniqueness.

Let us prove a lower bound on p;(x,y). First note that there exists d;, m,r > 0 such that

(6.3) sup  pi(z,y) > m Ve € T [t € (0,d,).

yEBQd(O)
Indeed, fix ¢ € Cp(R?), 15 < gp <1 BM(O) Let 6; > 0 be such that ||pp — ¢|,5 < %, t € (0,61)
and m = 55. Then 5 < pp(2) = [ra p()Pe(2,y) dy < SUPyep,,(0) Pr(2, ¥) (), t € (0,01),
which proves (6.3). Let

d d
Za 2)0; f(« ZZ ()0, f ()

be the formal adjoint of A. Then by [Fr, Appendix, Th. 5] (cf. also the proof of [Fr, Appendix,
Cor. 1]) (Harnack’s inequality) it follows that there exists a positive constant ¢, depending only
on Ao, d and the coefficients of A*, such that for ¢ € (0, d2), do > 0 sufficiently small,

ly — y|?

n —2),$,y,g€Rd,

Bi(2,y) = s (2, ) exp(—c
and now (6.3) implies that

—gl? 3d
64)  Bule) = mesp(-e Y0 2> mep(-BL ) mye T e (0.0, A %),

Let us now define py f(z) := pf (@) = Y ez Joa fW)De(x,y + k) dy, f € C(T?), ¢t > 0. Clearly,
(pt) is a Feller semigroup on T?¢ whose generator extends (A, C?(T%)).

Since py(x,y) > p(z,y) (6.4) implies that (p;) satisfies (L). In particular, (p;) is strictly positive

and thus by [Ku, Th. 1.3.6] (p;) has a unique invariant probability measure v with full support.

Moreover, v is absolutely continuous w.r.t. dz (cf. [Ku, 1.3.5]). The proof of [Ku, 1.3.5] shows
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Consequently, by (6.1)

_d z—y—kJ? _d
i@l < et S [ 1wlep-2\ETE= ) ay < 3 g 17 € BT o> 0
keza 't

hence (U) is satisfied.
Finally, note that (6.2) implies that

Aw—y—kP

d
57 ) dy

@) < eat™ 3 [ 1wl exnl-

kezd
1
< cpt 2 ||f||Loo(V) ,t>0,f¢€ Bb(Td).

Consequently, (F) is satisfied.

Let (T}) be the semigroup generated by the FV-operator with mutation A and denote by II its
unique invariant probability measure. We may now apply Theorems 4.2 and 5.1 to conclude
that (i) (T}) is strong Feller and (ii) compact on L?(II).
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